
Dead-Code Detection with IC3 using SMT-LIBv2 Solvers
Lukas Mentel1, Tobias Seufert2, Karsten Scheibler1, and Christoph Scholl2
1BTC Embedded Systems AG, Oldenburg, Germany, firstname.lastname@btc-embedded.com
2University of Freiburg, Germany, lastname@cs.uni-freiburg.de

Abstract

In this case study we evaluate an SMT-based IC3 implementation which is designed for formally proving the absence
of dead-code in embedded C code. Our IC3 implementation is able to use any off-the-shelf SMT-LIBv2 solver which
allows solving under assumptions and supports QF_BVFP. We extend the basic IC3 generalization techniques by splitting
theory variables into intervals enabling more fine grained reasoning. We compare different state-of-the-art SMT-LIBv2
solvers and evaluate how their performance is affected by optimizations of IC3, like target enlargement or stronger
generalization of proof obligations, as well as a preprocessing technique known as constant elimination that has proven
to be very effective in our application context. We further evaluate how IC3 with SMT-LIBv2 solvers and interval-based
generalization competes in comparison to iSAT3+IC3 as a part of BTC EmbeddedPlatform® which we currently consider
the strongest stand-alone engine in dead-code detection on floating-point dominated benchmarks.

1 Introduction

Developing safety-critical systems must adhere to high
standards of quality. For instance, the ISO 26262 standard
[24] for the automotive sector demands that unintended
functionality like unreachable code fragments—so-called
dead-code—is cleaned up. The standard recommends code
coverage metrics like MC/DC [26] (modified condition /
decision coverage): a segment of code is considered as
being covered, if at least one test case is able to execute this
code. A coverage of 100 % indicates that no (unreachable)
dead-code exists.
An effective approach to detect dead-code or prove its
absence automatically is classical safety verification. We
formulate a line of code as reachability goal and use
software model checking to find an execution sequence
(counterexample) that executes the line or prove its
unreachability otherwise.
Lately, the test and verification tool suite BTC Embed-
dedPlatform® showed unmatched performance in model
checking floating-point dominated industrial models from
the automotive domain [40]. Furthermore, in earlier work,
we successfully extended a software model checker called
iSAT3 [34] included in the BTC EmbeddedPlatform® with
IC3 [36]. IC3 [8] and its variant PDR [17] are widely
considered as the strongest available hardware model
checking techniques, regarding software model checking
and infinite state systems in general, however, the situation
is not (yet) so clear. Nevertheless, we found that IC3
(and especially its generalization routines) greatly benefits
from the combination with Interval Constraint Propagation
(ICP) [3] in iSAT3 even adding important yet unproven
dead-code instances to the iSAT3 portfolio (consisting
of industrial-strength [40] variations of bounded model
checking, interpolation-based model checking [29], as well
as k-induction [39]).
We use the gained insights from our earlier interval
based implementation of IC3 and apply them to a new

implementation that uses off-the-shelf SMT-LIBv2 [2]
SMT solvers which allow solving under assumptions
and support QF_BVFP (quantifier free segment of the
theory of bitvectors with floating point arithmetic) like
Bitwuzla [32], cvc5 [1], MathSAT [14] and Z3 [16].
Our main goal is to evaluate the strengths and weaknesses
of these SMT solvers in our problem domain. We further
hope to improve on the results of IC3 in iSAT3 and find
even more yet unproven dead-code instances.
We would like to emphasize that each single automatically
derived result of dead code or each proven requirement can
save several hours or even days of manual effort and is thus
of utmost importance in the development and verification
of safety-critical embedded software.
Our case study will mainly (among others) focus on the
following key aspects.

• During the generalization of program state sets,
we consider assignments of state variables as point
intervals and try to profit from more fine grained
generalization of interval bounds—like it deemed
very helpful in iSAT3.

• We investigate how SMT-LIBv2 solvers respond
to additional techniques which worked well for
IC3 in iSAT3. We try target enlargement [36,
17]—which checks for multiple step predecessors
(instead of one step) of the unsafe (or target) states—
as well as a preprocessing technique that eliminates
constants (both syntacically and semantically) from
the underlying transition relation [30].

• The problem instances we consider have been
generated by BTC EmbeddedPlatform® and might—
in general—contain dead-end states (i.e. states which
falsify the transition relation). This happens when
the user specifies additional restrictions. This would
render classical SAT- or SMT-based lifting [11] for
the generalization of proof obligations (state sets

mailto:firstname.lastname@btc-embedded.com
mailto:lastname@cs.uni-freiburg.de


which are direct or indirect predecessors of the unsafe
resp. target states) useless [38]. In previous work,
we therefore applied a more cautious proof obligation
generalization technique which works on general
transition relations (called GeNTR [36, 38]) and is
strongly related to classical clause cover techniques.

However, the considered workflow from [31]
produces no such restrictions and it is therefore safe to
apply lifting. We investigate whether the application
of more stronger proof obligation generalization
techniques (such as lifting over GeNTR) has a
positive effect on our SMT-LIBv2 approach—as it is
the case in hardware verification [17, 19, 38].

Related work
IC3 has been applied to general software model checking
with mixed results [4]. There are several more or
less successful attempts [12, 23, 13, 25, 20, 6, 28].
General software verification tasks often struggle with
representing the control flow—which might even be non-
deterministic. The authors of [12] present solutions from
encoding the program counter into the state space to
explicitly unwinding the control flow (and only consider
data symbolically). A similar approach from [28] operates
on so-called control flow automata. Other solutions run
IC3 on (Boolean) abstractions and apply CEGAR-like
techniques for refinement [6, 13].
Our problem domain however focuses on the detection
of dead-code in automatically generated C code, which
is preprocessed (loops are unrolled, functions inlined,
and complex data structures flattened) and translated (via
a proprietary intermediate C-like language called SMI)
into one unbounded feedback loop that cascades ITE (if-
then-else) as well as arithmetic operators. As a result,
the control flow is implicitly represented and we are
(successfully) able to apply standard IC3 on top of a
generic interface to arbitrary off-the-shelf SMT-LIBv2
solvers.
Technically, our intermediate format would allow for
translations to constrained horn clauses (CHC) which is
supported by SMT-LIBv2. Also, translation to the input
format of nuXmv [10] which implements IC3 with implicit
abstraction, e.g., might be manageable. However, to the
best of our knowledge, nuXmv as well as CHC solvers
like Spacer [23, 27, 21] or Golem [7] do not natively
support floating point reasoning and, e.g., instead might
overapproximate floating point using arithmetic over the
reals. These approximations are not viable in our use
case1. Therefore, we refrain from any comparison with
these tools.

Structure of the paper
In Sect. 2 we provide some preliminaries including
information about IC3 and its features that are relevant

1For example, when considering an if condition with an expression
like 1020+1= 1020, the expression evaluates to true under 64 bit floating-
point arithmetic (with round-to-nearest) while it evaluates to false under
real-valued arithmetic—leading to spuriously detected dead code.

for our case study. The implementation of our SMT-
LIBv2 based IC3 is presented in Sect. 3 and our extensive
case study is presented in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Preliminaries

In the following, if we consider Boolean formulas over
variables, we denote a variable or its negation with the
term literal. Furthermore, we call a disjunction of literals
a clause and a conjunction of literals a cube. The negation
¬c of a cube c is a clause and vice versa.
We break down the formal verification of safety properties
to reachability analysis of state transition systems.
Informally, we assume that such a system is represented by
a set of states being assignments to a set of state variables~s
and a transition relation T (~s,~i,~s′) which encodes possible
state transitions between a present state over ~s and a next
state over ~s′ under user-controlled inputs ~i. We identify
the inital states of a system with the predicate2 I(~s) and
the good states that satisfy a given safety property P by
P(~s). We ask whether or not there exists a path starting in
an initial state satisfying I to a bad state that violates the
safety property P.

2.1 IC3
IC3 [8, 17] is able to prove safety w.r.t. P(~s) of a
system by finding an inductive invariant F(~s) for which
it holds that F ⇒ P. IC3 does not unroll the transition
relation as other SAT-based techniques such as BMC [5]
do. It incrementally constructs overapproximations Fi(~s)
of the reachable states in up to i steps—with one
exception: F0(~s) is represented exactly by letting F0(~s) =
I(~s). The Fi are gradually strengthened by removing
provably unreachable states (starting from I) that contain
predecessors of the bad states. In particular, a bad state
s (or predecessor of a bad state)—theses states are called
proof obligations—is removed from Fi+1 if the formula
¬s∧Fi(~s)∧T (~s,~i,~s′)∧s′ is unsatisfiable3. If ¬s∧Fi∧T ∧s′

is satisfiable, a new proof obligation is extracted from the
satisfying assignment (?). Eventually, a proof obligation
is either proven unreachable at some point (because the
overapproximations were only too weak beforehand) or it
is part of an actual counterexample which disproves safety.
If a proof obligation s is unreachable in up to i+ 1 steps,
we strengthen all Fk with k ∈ 1, . . . , i+ 1 by letting Fk =
Fk ∧¬s. This allows IC3 to always maintain the invariant
Fi ⇒ Fi+1 for all i—including F0 = I. IC3 terminates if
either a counterexample is found or if all proof obligations
are resolved and two overapproximations Fi and Fi+1 are
found equivalent.

2For brevity, if it is clear from context, we will sometimes skip the
set of state variables in parentheses on which the respective predicates
depend.

3It is not necessary for the correctness of IC3 to add ¬s to the query.
Nevertheless, it is sound and improves efficiency [17].



2.2 Generalization of Proof Obligations in
IC3

Proof obligations are generalized once they are introduced
at (?). We assume that m is extracted as a satisfying
assignment (which is represented by a cube of literals of
all state variables from ~s) from ¬s∧Fi(~s)∧ T (~s,~i,~s′)∧ s′

and thus as a predecessor in ¬s ∧ Fi(~s) of another proof
obligation s. In particular, we want to find a subset
(in terms of literals) cube m̂ such that for all possible
combinations of assignments to variables of the removed
literals from m \ m̂ the proof obligation (and therefore
bad state or bad state predecessor) s can be reached. An
approach to achieve this is the so-called lifting [33, 11].

Lifting
Lifting considers proof obligations m which are (yet)
ungeneralized, i.e. single states. We further assume that
m reaches s under the user-controlled input assignment
i. Hence—given a transition relation which acts as a
function [38]—the formula m∧ i∧T ∧¬s′ is unsatisfiable
(mind the negation in ¬s′). We can now make use of
IC3’s underlying decision procedure (usually a SAT or
SMT solver) and extract a minimal subset cube m̂ of
literals from m which is still sufficient to render m̂ ∧
i∧ T ∧¬s′ unsatisfiable. SMT-LIBv2 offers get-unsat-
assumptions for this purpose.
Techniques for extracting such a subset are usually not
optimal because they depend on the order of m. Hence,
lifting can be extended by so-called literal dropping, which
more aggressively tries to remove additional literals from
m̂.
However, lifting is not generally applicable: if T is non-
deterministic, m ∧ i ∧ T ∧ ¬s′ might become satisfiable
because there might be another successor of m∧ i. If T
is not total, then a seemingly valid generalization of m
might contain a dead end state m′ for which m′ ∧ i ∧ T
is unsatisfiable already. As a result, the generalization
might add states which are no actual predecessors of
the bad states and therefore we end up with spurious
counterexamples.

GeNTR
An alternative to lifting is so-called GeNTR [36]
(Generalization with Negated Transition Relation) which
is—in the spirit of clause cover approaches—applicable
to general transition relations [36, 38]. We consider a
full satisfying assignment A = m ∧ i ∧ c′ of the formula
¬s ∧ Fi(~s)∧ T (~s,~i,~s′)∧ s′ with m over ~s, i over ~i, and c′

over ~s′, whereas it must hold that4 c′ ⇒ s′. Obviously,
A ∧ T (~s,~i,~s′) is valid because it fixes all variables of
T (~s,~i,~s′) to a valid predecessor-successor-combination. In
turn, A ∧ ¬T (~s,~i,~s′) is unsatisfiable and therefore again
reveals a lifting of m (removing literals from m as long as
A∧¬T (~s,~i,~s′) remains unsatisfiable).

4This means that even though s′ might already be generalized, we
require a single state, i.e. a full assignment to the next state variables,
included in s′.

Even though GeNTR works for general transition
relations, it is preferable to use lifting—if it is applicable—
since lifting is very likely to achieve more general
results [38].

2.3 Generalization of Unreachable State
Sets

If a proof obligation s is unreachable within up to i+ 1
steps, i.e. ¬s ∧ Fi(~s) ∧ T (~s,~i,~s′) ∧ s′ is unsatisfiable, its
negation ¬s (clause) is added to Fi+1. Again, there is
potential for generalization: one might generalize s to ŝ
by removing literals such that ¬ŝ∧Fi(~s)∧T (~s,~i,~s′)∧ ŝ′ is
still unsatisfiable [17, 8, 22].

3 IC3, ICP, and SMT-LIBv2 Solvers

We present an IC3 implementation which may use any off-
the-shelf SMT-LIBv2 SMT solver that supports QF_BVFP
theory. The solvers are queried incrementally. When
evaluating formulas like ¬s∧Fi ∧T ∧ s′, we pass the cube
s′ as well as an activation literal a for ¬s via check-sat-
assuming. Similar to [36] we use one formula containing
all blocked cubes which are activated and deactivated via
assumption literals. We also pass full assignments m for
generalization with lifting or GeNTR (see Sect. 2.2) as
well as the proof obligations during further generalization
of unreachable state sets (see Sect. 2.3) via check-
sat-assuming. We extract the subset of conflicting
assumptions via get-unsat-assumptions.

3.1 Splitting Intervals
When assuming (via check-sat-assuming) a particular
value a of a theory variable x, the natural way would
be to assume a literal l with l ⇔ x = a using the ‘=’
operator of SMT-LIBv2. However, we try to profit from
the advantages of Interval Constraint Propagation (ICP)
without a dedicated ICP-Solver (like iSAT3 [34]) by
splitting these equalities into intervals. Hence, given an
equality x = a, we interpret it as x ∈ [a,a] and introduce
two literals lx,ux. Whereas lx represents the lower bound
lx ⇔ x ≥ a and ux represents an upper bound ux ⇔ x ≤ a.
Obviously, assuming that x ∈ [a,a] is equivalent to
assuming that x= a. It is very helpful during generalization
though: if it is not possible to remove the equality literal l,
it might still be possible to at least remove the lower bound
lx or the upper bound ux literals.
Furthermore, generalization will be at least as powerful
as purely with literals that represent equality. Assume
that we, e.g., apply lifting with literal dropping (see
Sect. 2.2). Hence we subsequently remove literals from
a proof obligation as long as the solver state remains
unsatisfiable. If the solver state remains unsatisfiable after
dropping literal l, it will also remain unsatisfiable if we
drop lx and lu.
We remark that for NaN (not-a-number) floating point
values, we do not consider intervals but fall back to
equation instead.



In the following, if we address an IC3 version without
splitted intervals, we refer to it as with equality.

3.2 Ungeneralization
Our implementation also incorporates a technique which
is not a common feature of IC3 implementations. It
worked very well in the ICP context though [36] because it
benefits greatly from splitting intervals. One of IC3’s main
invariants is that Fi ⇒ Fi+1 for all overapproximations of
states reachable in up to i resp. i+ 1 steps. Since F0 = I,
we have to take special care, that for any generalization
(according to Sect. 2.3) result ĉ of an unreachable cube c
(representing a state set) it always holds that I ⇒¬ĉ.
I ⇒ ¬ĉ being valid is equivalent to I ∧ ĉ being
unsatisfiable. For the ungeneralized cube c, this holds by
definition of IC3 [8, 17] and it also holds that ĉ ⊆ c, if
we consider the cubes as sets of literals. Thus, if I ∧ ĉ
is satisfiable, we query I ∧ c (which is unsatisfiable by
definition) and extract exactly the literals (we pass c via
check-sat-assuming) via get-unsat-assumptions
of which we have to undo their removal and add them
to ĉ again (‘ungeneralize’ ĉ), such that I ∧ ĉ is also
unsatisfiable.

3.3 Target Enlargement
In the context of IC3, the states which are considered
as bad are usually the ones that violate P and therefore
satisfy ¬P(~s). However, it is also clear that states which
satisfy T (~s,~i,~s′)∧¬P(~s′) can be considered as bad. We
call this a target enlargement by one. If we represent the
bad states by T (~s,~i,~s′)∧T (~s′,~i′,~s′′)∧¬P(~s′′) we call this a
target enlargement by two, and so on. There are indicators
that target enlargement up to some extent is beneficial in
IC3 [17, 19, 36]. Our implementation can be extended by
different target enlargements and we are able to evaluate
how this interacts with interval splitting and different SMT-
LIBv2 solvers.

3.4 Constant Elimination
The underlying transition system might contain state
variables which remain constant on every possible
execution path (even though they are not declared as such).
It seems desireable to detect such constants and feed this
information to the underlying SMT-LIBv2 solver. For
instance, during the generalization of unreachable states
(see Sect. 2.3) constant state variables can be immediately
removed [37].
We have two versions of constant elimination from [30] at
hand. One that applies a syntactic approach and another
one that applies a semantic approach. It is determined, that
each constant which is detected by the syntactic approach
is also detected by the semantic approach (but not vice
versa). The semantic approach is not guaranteed to find
all constants.
We investigate how robust the SMT-LIBv2 solvers are
w.r.t. more or less (un-)detected constant state variables.

4 Experimental Results

For our experiments we use the same benchmarks
as [35], [36] and [31]. The benchmark set contains
8778 instances originating from TargetLink-generated
production C code from the automotive domain containing
a fair amount of floating-point arithmetic. Each benchmark
describes a goal defined by a structural code coverage
metric (e.g. MC/DC [26]) which correlates to the
reachability of a certain line of code. Thus, unreachable
goals correspond to dead-code.
Unfortunately, the benchmarks are actual customer code
and we are not allowed to disclose them. However, we are
working on making at least parts of them public at some
point.
The experiments (one benchmark per core) were
performed on a cluster with each cluster node having 64
GB RAM and two 8-core CPUs @2.6 GHz. We limit CPU-
time and memory to 1 h resp. 4 GB.
The used SMT-LIBv2 solvers are used—if not stated
otherwise—in their latest5 versions and in their default
configurations.
Among the SMT-LIBv2 solvers which are able to handle
QF_BVFP (quantifier free segment of the theory of
bitvectors with floating point arithmetic) we found that
bitwuzla as well as MATHSAT perform overwhelmingly
better than cvc5 as well as Z3 in our specific application
context. Therefore, for the sake of brevity, we consider
only bitwuzla and MATHSAT in the detailed discussion
and only mention the two best configurations for cvc5 and
Z3 in our final overall comparison. This is also the reason
why we have no GeNTR versions of cvc5 and Z3 listed in
Tab. 2.
We distinguish between the different versions by their
respective added features: +int for interval splitting (see
Sect. 3.1), +l for lifting instead of GeNTR (see Sect. 2.2),
+ld for additional (bound6) literal dropping (see also
Sect. 2.2), +ce for constant elimination (see Sect. 3.4), and
+ti for a target enlargement by i time frames (see Sect. 3.3).
As plain versions, we consider standard IC3 with equality,
GeNTR, and without any target enlargement or constant
elimination.
Our results are displayed in Tab. 1. We denote
found counterexamples by ‘CEX’ (reachable code) and
proofs (unreachable dead-code) by ‘DC’. Timeouts resp.
memouts are denoted by ‘T/M’. We remark that we focus
mostly on ‘DC’ instances, which are the most practically
relevant results.
Counterexamples are internally sanity-checked by
resimulation. All of the proofs are internally double-
checked with another bitwuzla instance. That means, that
if IC3 returns an inductive strengthening F of P, then we
use the SMT solver to prove that

• I =⇒ F ∧P and

• F ∧P∧T =⇒ F ′∧P′.

5Experiments performed in April, 2024.
6If this configuration also uses interval splitting, then literal dropping

is implicitly able to drop lower as well as upper bound literals.



Configuration CEX DC T/M
IC3 bitwuzla 5241 444 3093
IC3 bitwuzla +int 6534 761 1483
IC3 bitwuzla +ce 5196 810 2772
IC3 bitwuzla +ce +int 6716 933 1129
IC3 bitwuzla +ce +l 6130 936 1712
IC3 bitwuzla +ce +int +l 7446 1007 325
IC3 bitwuzla +ce +l +ld 6087 933 1758
IC3 bitwuzla +ce +int +l +ld 7431 999 348
IC3 bitwuzla +ce +int +l +t2 7394 1003 381
IC3 bitwuzla +ce +int +l +t3 7515 986 277
IC3 bitwuzla +ce +int +l +ld +t2 7326 978 474
IC3 bitwuzla +ce +int +l +ld +t3 7527 956 295
IC3 bitwuzla v1230d80 +ce +int +l +ld 7586 1015 177
IC3 MATHSAT 5807 798 1919
IC3 MATHSAT +int 6930 952 1133
IC3 MATHSAT +ce 5863 905 2010
IC3 MATHSAT +ce +int 7060 990 728
IC3 MATHSAT +ce +l 6421 943 1414
IC3 MATHSAT +ce +int +l 7544 1007 227
IC3 MATHSAT +ce +l +ld 6584 942 1252
IC3 MATHSAT +ce +int +l +ld 7561 1008 209
IC3 MATHSAT +ce +int +l +t2 7576 1009 197
IC3 MATHSAT +ce +int +l +t3 7577 1000 205
IC3 MATHSAT +ce +int +l +ld +t2 7562 1007 213
IC3 MATHSAT +ce +int +l +ld +t3 7567 1000 215
IC3 Z3 +ce +int +l 6033 834 1911
IC3 Z3 +ce +int +l +ld 6522 864 1392
IC3 cvc5 +ce +int +l 6076 832 1870
IC3 cvc5 +ce +int +l +ld 6517 864 1397
iSAT3+IC3 7622 1003 153

Table 1 Detailed Results. All configurations that achieved better results than the original IC3 implementation in iSAT3
in detecting dead-code are highlighted in boldface. The result of the best performing version is additionally underlined.



3600s

2400s

1200s

0s
0 4389 8778

Number of solved benchmarks

Ti
m

e

IC3 bitwuzla +ce
IC3 bitwuzla +ce +int
IC3 bitwuzla +ce +l
IC3 bitwuzla +ce +l +int

Figure 1 bitwuzla and the effect of interval splitting.

3600s

2400s

1200s

0s
0 4389 8778

Number of solved benchmarks

Ti
m

e

IC3 MATHSAT +ce
IC3 MATHSAT +ce +int
IC3 MATHSAT +ce +l
IC3 MATHSAT +ce +l +int

Figure 2 MATHSAT and the effect of interval splitting.

4.1 Effect of Interval Splitting
We showcase the effect that interval splitting (see
Sect. 3.1) had on bitwuzla and MATHSAT. The versions
which included interval splitting are marked by ‘+int’.
Besides the results in Tab. 1, we present survival plots
for bitwuzla in Fig. 1 as well as for MATHSAT in Fig. 2.
There we compare the effect of interval splitting (+int) on
versions with and without lifting (+l) enabled; we consider
the versions with semantic constant elimination (+ce).
Apparently, both solvers benefit greatly from interval
splitting instead of simple equality. The largest effect
can be observed for plain bitwuzla with constant elimina-
tion (+ce), where interval splitting allows for almost 1700
additionally solved instances.
The effect of better generalization via interval
splits slightly weakens with better proof obligation
generalization (+l, +ld).
In iSAT3 [36] we also considered bound generalization,
which is a cheap technique as it can be performed when
traversing the implication graph to collect the relevant
assumption literals. With off-the-shelf SMT-LIBv2 solvers
additional solve calls would be required to check whether
a bound can be generalized to a weaker value. Another
reason to not add bound generalization, is that previous
experiments with iSAT3 showed that it does not help to
increase the number of detected dead-code instances which
is our main focus here.

4.2 Effect of Stronger Proof Obligation
Generalization

We observe that stronger generalization of proof
obligations via lifting (+l) and additional literal dropping

bitwuzla MATHSAT Z3 cvc5
GeNTR 19.41 21.20 - -
Lifting 20.27 20.20 25.34 19.64
Lifting +ld 20.44 26.23 32.37 23.72

Table 2 Proof Obligation generalization capabilities in
%.

(+ld) has great effect on the performance. Inspired by
TIP [18, 15], we abort literal dropping after two failed or
32 total attempts.
Bitwuzla seems to profit a lot more from these techniques
than MATHSAT. Whereas MATHSAT is able to detect 990
dead-code instances only with GeNTR (gain by lifting is
17 ‘DC’ instances), bitwuzla improves from 933 (GeNTR)
to 1007 with lifting.
Results for additional literal dropping are mixed:
MATHSAT seems to profit only slightly (one more ‘DC’
instance), bitwuzla not. Z3 and cvc5, however, gain a lot
more instances by adding literal dropping.
In Tab. 2 we present the average reduction ratio (original
size in terms of literals, divided by generalized size) over
all generalization attempts on jointly solved benchmarks
for each solver. Interestingly, the generalization
capabilities (e.g., via get-unsat-assumptions) of the
solvers do not seem to correlate with their overall
performance. Nevertheless, the rather good GeNTR
reduction ratio achieved by MATHSAT might be a cause
for it only solving slightly less benchmarks than with
lifting. Z3 is able to find the best proof obligation
generalizations on average.

4.3 Effect of Target Enlargement
In iSAT3+IC3 [36] we observed a significant gain in
solved problem instances by adding an adaptive target
enlargement (in case IC3 gets ‘stuck’). In this case study
however, we observed that adaptive target enlargement is
not beneficial. These were observations that we made prior
to our case study, therefore there are no statistics regarding
adaptive target enlargement in Tab. 1. Target enlargement
in general only slightly improves the performance of
MATHSAT. There are some slight improvements in the
‘CEX’ instances (only marginal from t2 to t3).
We expected that at least the ‘CEX’ instances would
always improve under target enlargements—bitwuzla
though even performed worse in configuration +ce +int +l
+t2 compared to the same without target enlargement +ce
+int +l.

4.4 Effect of Constant Elimination
We compare the effect of constant elimination (+ce)
on versions with and without lifting (+l) enabled.
Furthermore, we compare semantic constant elimina-
tion (+ce) against syntactic constant elimination (+ce
(syntactic)).
We present survival plots for bitwuzla in Fig. 3 as well as
for MATHSAT in Fig. 4.
Apparently, semantic constant elimination provides us



3600s

2400s

1200s

0s
0 4389 8778

Number of solved benchmarks

Ti
m

e

IC3 bitwuzla
IC3 bitwuzla +ce (syntactic)
IC3 bitwuzla +ce
IC3 bitwuzla +ce +l

Figure 3 bitwuzla and the effect of constant elimination.

3600s

2400s

1200s

0s
0 4389 8778

Number of solved benchmarks

Ti
m

e

IC3 MATHSAT
IC3 MATHSAT +ce (syntactic)

IC3 MATHSAT +ce
IC3 MATHSAT +ce +l

Figure 4 MATHSAT and the effect of constant elimina-
tion.

with better results than the syntactic variant. In fact, we
observed that the results of semantic constant elimination
almost always subsumed the ones with syntactic constant
elimination. Therefore we only consider semantic constant
elimination (+ce) in Tab. 1.
It seems like constant elimination is beneficial throughout
all IC3 configurations. This matches previous results we
had for k-induction in [30].

4.5 Overall Comparison
If we consider the overall performance of the best
configurations for each solver, Bitwuzla and MATHSAT
perform similarly well, whereas both Z3 and cvc5 also
perform similarly (but not so well).
Furthermore, we made the very interesting observation,
that bitwuzla in an older version (v1230d80) performs
better than in the current version—even outperforming
MATHSAT.
Compared to the currently strongest IC3 implementation
in BTC EmbeddedPlatform® which is denoted by
‘iSAT3+IC3’ in Tab. 1, the here considered configurations
are able to detect at most twelve more (very valuable7)
instances of dead-code.
Lastly, in Fig. 5 we present a survival plot which
compares the configuration with semantic constant elimi-
nation, interval splitting, and lifting (+ce +int +l) of all
SMT-LIBv2 solvers. We remark that here we depict the

7While 12 out of 8778 sounds insignificant at first sight, we want to
point out, that only a minority (we suspect around 1100) are actual dead-
code. Furthermore, we consider only around 100 to be really hard for
IC3. Thus, solving twelve more of these hard instances is pretty valuable
for us.

3600s

2400s

1200s

0s
0 4389 8778

Number of solved benchmarks

Ti
m

e

bitwuzla
cvc5
MATHSAT 5
Z3

Figure 5 Overall comparison in +ce + int +l
configuration.

latest version of bitwuzla (not v1230d80).

5 Conclusion and Future Work

We presented an IC3 implementation that uses an SMT-
LIBv2 interface and is therefore compatible with any SMT
solver which supports SMT-LIBv2 as well as the theory
QF_BVFP. For generalization queries handed to the SMT
solvers, we split equalities into a lower and an upper bound
of a point interval, enabling more fine grained reasoning.
We evaluated different state-of-the-art SMT solvers in our
application context of dead-code detection in embedded
C code. We further investigated how the SMT solvers
are affected by different techniques for the generalization
of proof obligations, target enlargement, as well as a
preprocessing technique that detects constant variables.
We observed that bitwuzla and MATHSAT outperform
Z3 and cvc5 on our benchmark set. Apparently,
all of the configurations we considered benefit greatly
from generalizing with lower and upper bounds instead
of equalities—especially, if a weaker proof obligation
technique (like GeNTR) has to be used. Furthermore,
preprocessing benchmarks with constant elimination from
[30] also pays off in the IC3 context (with all of the
considered SMT-LIBv2 solvers).
Finally, we were able to improve upon previous results of
our native ICP implementation in iSAT3+IC3. It would
be very interesting to further elaborate on the reasons for
the (sometimes vast) differences between our selection of
SMT-LIBv2 solvers.
Considering future work, it might be interesting to bit blast
into AIGER and compare the word-level SMT approach to
a bit-level SAT approach with tools like ABC’s PDR [9].

6 Literature

[1] Haniel Barbosa, Clark W. Barrett, Martin Brain,
Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina
Niemetz, Andres Nötzli, Alex Ozdemir, Mathias
Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. cvc5: A versatile and
industrial-strength SMT solver. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms



for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as
Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I,
volume 13243 of Lecture Notes in Computer Science,
pages 415–442. Springer, 2022.

[2] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The
smt-lib standard: Version 2.0. In Proceedings of the
8th international workshop on satisfiability modulo
theories (Edinburgh, UK), volume 13, page 14, 2010.

[3] Frédéric Benhamou and Laurent Granvilliers.
Continuous and Interval Constraints. In Handbook of
Constraint Programming, volume 2 of Foundations
of Artificial Intelligence, pages 571–603. Elsevier,
2006.

[4] Dirk Beyer and Matthias Dangl. Software verification
with PDR: an implementation of the state of the
art. In Armin Biere and David Parker, editors, Tools
and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings,
Part I, volume 12078 of Lecture Notes in Computer
Science, pages 3–21. Springer, 2020.

[5] Armin Biere, Alessandro Cimatti, Edmund M.
Clarke, Masahiro Fujita, and Yunshan Zhu. Symbolic
model checking using SAT procedures instead of
bdds. In Mary Jane Irwin, editor, Proceedings of
the 36th Conference on Design Automation, New
Orleans, LA, USA, June 21-25, 1999, pages 317–320.
ACM Press, 1999.

[6] Johannes Birgmeier, Aaron R. Bradley, and Georg
Weissenbacher. Counterexample to induction-guided
abstraction-refinement (CTIGAR). In Armin Biere
and Roderick Bloem, editors, Computer Aided
Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in
Computer Science, pages 831–848. Springer, 2014.

[7] Martin Blicha, Konstantin Britikov, and Natasha
Sharygina. The golem horn solver. In Constantin
Enea and Akash Lal, editors, Computer Aided
Verification - 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings,
Part II, volume 13965 of Lecture Notes in Computer
Science, pages 209–223. Springer, 2023.

[8] Aaron R. Bradley. Sat-based model checking
without unrolling. In Ranjit Jhala and David A.
Schmidt, editors, Verification, Model Checking,
and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January
23-25, 2011. Proceedings, volume 6538 of Lecture
Notes in Computer Science, pages 70–87. Springer,
2011.

[9] Robert K. Brayton and Alan Mishchenko. ABC:

an academic industrial-strength verification tool.
In Tayssir Touili, Byron Cook, and Paul B.
Jackson, editors, Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings, volume 6174 of
Lecture Notes in Computer Science, pages 24–40.
Springer, 2010.

[10] Roberto Cavada, Alessandro Cimatti, Michele
Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. The nuxmv symbolic model
checker. In Computer Aided Verification - 26th
International Conference, CAV. Springer, 2014.

[11] Hana Chockler, Alexander Ivrii, Arie Matsliah,
Shiri Moran, and Ziv Nevo. Incremental formal
verification of hardware. In Per Bjesse and
Anna Slobodová, editors, International Conference
on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011, pages 135–143. FMCAD Inc.,
2011.

[12] Alessandro Cimatti and Alberto Griggio. Software
model checking via IC3. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided
Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 277–293. Springer, 2012.

[13] Alessandro Cimatti, Alberto Griggio, Sergio Mover,
and Stefano Tonetta. IC3 modulo theories via
implicit predicate abstraction. In Erika Ábrahám
and Klaus Havelund, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, volume 8413
of Lecture Notes in Computer Science, pages 46–61.
Springer, 2014.

[14] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost
Schaafsma, and Roberto Sebastiani. The mathsat5
SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems - 19th
International Conference, TACAS, 2013.

[15] Koen Claessen and Niklas Sörensson. A liveness
checking algorithm that counts. In Gianpiero Cabodi
and Satnam Singh, editors, Formal Methods in
Computer-Aided Design, FMCAD 2012, Cambridge,
UK, October 22-25, 2012, pages 52–59. IEEE, 2012.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner.
Z3: an efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, 14th
International Conference, TACAS, Lecture Notes in
Computer Science, 2008.

[17] Niklas Eén, Alan Mishchenko, and Robert K.
Brayton. Efficient implementation of property
directed reachability. In Per Bjesse and Anna
Slobodová, editors, International Conference



on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011, pages 125–134. FMCAD Inc.,
2011.

[18] Niklas Eén and Niklas Sörensson. An extensible
sat-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of
Satisfiability Testing, 6th International Conference,
SAT 2003. Santa Margherita Ligure, Italy, May 5-
8, 2003 Selected Revised Papers, volume 2919 of
Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

[19] Alberto Griggio and Marco Roveri. Comparing
different variants of the ic3 algorithm for hardware
model checking. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 35(6):1026–1039, 2016.

[20] Henning Günther, Alfons Laarman, and Georg
Weissenbacher. Vienna verification tool: IC3 for
parallel software - (competition contribution). In
Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9636 of Lecture Notes
in Computer Science, pages 954–957. Springer, 2016.

[21] Arie Gurfinkel, Temesghen Kahsai, Anvesh
Komuravelli, and Jorge A. Navas. The seahorn
verification framework. In Daniel Kroening and
Corina S. Pasareanu, editors, Computer Aided
Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, volume 9206 of Lecture Notes in
Computer Science, pages 343–361. Springer, 2015.

[22] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi.
Better generalization in IC3. In Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013, pages 157–164.
IEEE, 2013.

[23] Krystof Hoder and Nikolaj S. Bjørner. Generalized
property directed reachability. In Alessandro
Cimatti and Roberto Sebastiani, editors, Theory and
Applications of Satisfiability Testing - SAT 2012 -
15th International Conference, Trento, Italy, June 17-
20, 2012. Proceedings, volume 7317 of Lecture Notes
in Computer Science, pages 157–171. Springer, 2012.

[24] ISO. Road vehicles – Functional safety, 2011.
[25] Dejan Jovanovic and Bruno Dutertre. Property-

directed k-induction. In Ruzica Piskac and
Muralidhar Talupur, editors, 2016 Formal Methods
in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016, pages 85–92.
IEEE, 2016.

[26] Hayhurst Kelly J., Veerhusen Dan S., Chilenski
John J., and Rierson Leanna K. A Practical
Tutorial on Modified Condition/Decision Coverage.

Technical report, 2001.
[27] Anvesh Komuravelli, Arie Gurfinkel, and

Sagar Chaki. Smt-based model checking for
recursive programs. Formal Methods Syst. Des.,
48(3):175–205, 2016.

[28] Tim Lange, Martin R. Neuhäußer, Thomas Noll, and
Joost-Pieter Katoen. IC3 software model checking.
Int. J. Softw. Tools Technol. Transf., 22(2):135–161,
2020.

[29] Kenneth L. McMillan. Interpolation and sat-based
model checking. In Warren A. Hunt Jr. and Fabio
Somenzi, editors, Computer Aided Verification, 15th
International Conference, CAV 2003, Boulder, CO,
USA, July 8-12, 2003, Proceedings, volume 2725
of Lecture Notes in Computer Science, pages 1–13.
Springer, 2003.

[30] Lukas Mentel, Karsten Scheibler, and Tino Teige.
Detection and elimination of constants to strengthen
k-induction. In Methods and Description Languages
for Modelling and Verification of Circuits and
Systems, MBMV 2022, 25th Workshop, Virtual
Event, Germany, February 17-18, 2022, pages 1–10.
VDE/IEEE, 2022.

[31] Lukas Mentel, Karsten Scheibler, Felix Winterer,
Bernd Becker, and Tino Teige. Benchmarking
SMT solvers on automotive code. In Methods
and Description Languages for Modelling and
Verification of Circuits and Systems, MBMV 2021,
24th Workshop, Virtual Event, Germany, March 18-
19, 2021, pages 1–10. VDE/IEEE, 2021.

[32] Aina Niemetz and Mathias Preiner. Bitwuzla. In
Constantin Enea and Akash Lal, editors, Computer
Aided Verification - 35th International Conference,
CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part II, volume 13965 of Lecture Notes
in Computer Science, pages 3–17. Springer, 2023.

[33] Kavita Ravi and Fabio Somenzi. Minimal
assignments for bounded model checking. In Tools
and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS,
2004.

[34] Karsten Scheibler. Applying CDCL to Verification
and Test: When Laziness Pays Off. PhD
thesis, University of Freiburg, Freiburg im Breisgau,
Germany, 2017.

[35] Karsten Scheibler, Felix Neubauer, Ahmed Mahdi,
Martin Fränzle, Tino Teige, Tom Bienmüller, Detlef
Fehrer, and Bernd Becker. Accurate icp-based
floating-point reasoning. In Ruzica Piskac and
Muralidhar Talupur, editors, 2016 Formal Methods
in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016, pages 177–184.
IEEE, 2016.

[36] Karsten Scheibler, Felix Winterer, Tobias Seufert,
Tino Teige, Christoph Scholl, and Bernd Becker. ICP
and IC3. In Design, Automation & Test in Europe
Conference & Exhibition, DATE 2021, Grenoble,



France, February 1-5, 2021, pages 1116–1121. IEEE,
2021.

[37] Tobias Seufert, Christoph Scholl, Arun
Chandrasekharan, Sven Reimer, and Tobias
Welp. Making PROGRESS in property directed
reachability. In Bernd Finkbeiner and Thomas Wies,
editors, Verification, Model Checking, and Abstract
Interpretation - 23rd International Conference,
VMCAI 2022, Philadelphia, PA, USA, January
16-18, 2022, Proceedings, volume 13182 of Lecture
Notes in Computer Science, pages 355–377. Springer,
2022.

[38] Tobias Seufert, Felix Winterer, Christoph Scholl,
Karsten Scheibler, Tobias Paxian, and Bernd Becker.
Everything you always wanted to know about
generalization of proof obligations in PDR. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst.,
42(4):1351–1364, 2023.

[39] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck.
Checking safety properties using induction and a
sat-solver. In Warren A. Hunt Jr. and Steven D.
Johnson, editors, Formal Methods in Computer-
Aided Design, Third International Conference,
FMCAD 2000, Austin, Texas, USA, November 1-3,
2000, Proceedings, volume 1954 of Lecture Notes in
Computer Science, pages 108–125. Springer, 2000.

[40] Lukas Westhofen, Philipp Berger, and Joost-Pieter
Katoen. Benchmarking software model checkers on
automotive code. In Ritchie Lee, Susmit Jha, and
Anastasia Mavridou, editors, NASA Formal Methods
- 12th International Symposium, NFM 2020, Moffett
Field, CA, USA, May 11-15, 2020, Proceedings,
volume 12229 of Lecture Notes in Computer Science,
pages 133–150. Springer, 2020.


	Introduction
	Preliminaries
	IC3
	Generalization of Proof Obligations in IC3
	Generalization of Unreachable State Sets

	IC3, ICP, and SMT-LIBv2 Solvers
	Splitting Intervals
	Ungeneralization
	Target Enlargement
	Constant Elimination

	Experimental Results
	Effect of Interval Splitting
	Effect of Stronger Proof Obligation Generalization
	Effect of Target Enlargement
	Effect of Constant Elimination
	Overall Comparison

	Conclusion and Future Work
	Literature

