
Formal Methods in Computer-Aided Design 2024

Symbolic Computer Algebra for Multipliers
Revisited - It’s All About Orders and Phases

Alexander Konrad Christoph Scholl
University of Freiburg, Freiburg, Germany
{konrada, scholl}@informatik.uni-freiburg.de

Abstract—Using Symbolic Computer Algebra (SCA) enabled
a huge progress in formal verification of arithmetic circuits in
recent years. Several different approaches have been proposed
showing great success especially for the verification of multipliers.
Some of them are based on precomputing and simplifying
polynomials for specific circuit structures like converging cones
while others take advantage of known or detected hierarchy
information to replace and simplify particular sub-circuits of the
design. In this paper we propose a new method that avoids the
use of such methods and applies only two dynamic approaches:
(1) choosing a good substitution order for the backward rewriting
process and (2) adjusting the phases of signals occurring in the
intermediate polynomials during the verification process. Both
methods are simply based on a greedy local search taking the
sizes of intermediate polynomials into account. Our experimental
results show that this method is very competitive with already
existing tools and it improves their robustness, e.g. against
optimizations of the verified circuits using logic synthesis.

I. INTRODUCTION

Arithmetic circuits account for an important part in cir-
cuit designs, be it general-purpose processors or specialized
hardware aimed for computationally intensive applications
like cryptography, signal processing or machine learning. The
infamous Pentium bug [1] from 1994 raised the communities’
awareness about the need of formal methods to verify the
correctness of arithmetic circuit designs. Today, the design
of arithmetic circuits is not limited to the major processor
vendors only, but is also done by various different suppliers
of special-purpose embedded hardware who cannot afford to
employ large teams of specialized verification engineers being
able to provide human-assisted theorem proofs. This results
in a growing interest for fully automatic formal verification of
arithmetic circuits.

Especially the verification of multiplier and divider cir-
cuits remained a challenging problem for long time. While
BDD-based methods [2], [3] suffer from exponential space
complexity, SAT-based methods [4], [5] face exponential run
times for larger bit-widths. *BMDs [6]–[8] were presented
as a suitable verification data structure for multipliers, but
unfortunately *BMDs based verification approaches did not
fulfill expectations in practice. Nevertheless, methods based on
Symbolic Computer Algebra (SCA) have shown great progress
for the automatic formal verification of gate-level multipliers
and dividers in recent years. They enabled the verification

This work was supported by the German Research Foundation (DFG) within
the project VerA (SCHO 894/5-1).

of large and complex arithmetic circuit structures, including
finite field multipliers [9], integer multipliers [10]–[25], mod-
ular multipliers [26] and divider circuits [27]–[31]. Here the
verification task has been reduced to an ideal membership test
for the specification polynomial based on so-called backward
rewriting, proceeding from the outputs of the circuit in the
direction of the inputs. For integer multipliers, SCA-based
methods are closely related to verification methods based on
word-level decision diagrams like *BMDs, since polynomials
can be seen as “flattened” *BMDs [29]. In addition, rewriting
based approaches [32], [33] have also shown to be able to
verify complex multipliers as well as arithmetic modules with
embedded multipliers at the register transfer level.

Most multiplier architectures are basically composed of
three stages: (1) Partial Product Generator (PPG), (2) Partial
Product Accumulator (PPA) and (3) Final Stage Adder (FSA).
Surprisingly, difficulties with exponential polynomial sizes in
SCA-based multiplier verification often occurred when using
fast adders [34] as the FSAs, and not so often when using
complex PPAs. A first hint in this direction was already given
by the theoretical analysis for *BMDs in the work of Keim et
al. [35]. Most recently three major approaches were published
to tackle this problem:

• [18], [19], [21], [24] use reverse engineering and detec-
tion of converging cones to precompute polynomials for
sub-circuits and simplify those polynomials early on by
avoiding so-called vanishing monomials.

• [20], [22], [25], [36] use heuristics to detect a parallel
prefix adder, replace it by a simple ripple-carry adder
and use SAT to prove the soundness of this replacement,
changing the multiplier circuit into a structure for which
rewriting is much easier.

• [23] uses the adder detection from [20] to determine a
parallel prefix adder, but it does not replace the adder
by a simpler form. Instead, it introduces dual variables
and uses a new approach of carry rewriting to avoid
the occurrence of exponential peak polynomials in the
rewriting steps of the parallel prefix adder.

In this paper, we present a new method which consists of
two dynamic approaches. First, we advance the idea from
[21] of dynamically finding a good substitution order for the
backward rewriting process. For this we partition the circuit
into blocks and use a hierarchical approach to select a good
candidate block for the next substitution step as well as a

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_32
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_32
https://creativecommons.org/licenses/by/4.0/


good substitution order for the block itself, with the aim of
keeping intermediate polynomials as small as possible. Sec-
ond, we adjust the phases of signals occurring in intermediate
polynomials during the backward rewriting with the same
goal. Both of our new dynamic approaches work as greedy
local search algorithms that only take the current polynomial
size into account. As a result, we are not as dependent as
other approaches on the detection of specific sub-circuits. This
makes our method more robust to circuit optimizations. The
simplicity of the approach additionally paves the way for easier
certifiability.

The experimental results show that our simple method is
very competitive with other existing approaches, being able to
verify almost all unoptimized 64-bit multiplier circuits which
are at our disposal. However, the main advantage of our
method is seen in the verification of optimized benchmarks
where we outperform other tools by a large margin.

The paper is structured as follows: In Sect. II we provide
background on the basic SCA-method and multiplier circuits.
In Sect. III we summarize and discuss existing methods to
motivate the need of the novel approach presented in Sect. IV.
We evaluate our new approach in Sect. V and conclude with
final remarks in Sect. VI.

II. PRELIMINARIES

A. SCA for Verification

For the presentation of SCA we basically follow [29].
SCA-based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Gröbner
basis representation of the ideal. The ideal membership test
is performed using polynomial division. While Gröbner basis
theory is very general and, e.g., can be applied to finite field
multipliers [9] and truncated multipliers [20] as well, for
integer arithmetic it boils down to substitutions of variables for
gate outputs by polynomials over the gate inputs (in reverse
topological order), if we choose an appropriate “term order”
(see [14] or [17], e.g.). Here we restrict ourselves to exactly
this view.

For integer arithmetic we consider polynomials over binary
variables (from a set X = {x1, . . . , xn}) with integer coeffi-
cients from Z, i. e., a polynomial is a sum of terms, a term is
a product of a monomial with an integer, and a monomial is a
product of variables from X . Polynomials represent pseudo-
Boolean functions f : {0, 1}n ↦→ Z.

As a simple example consider the full adder from Fig. 1.
The full adder defines a pseudo-Boolean function fFA :
{0, 1}3 ↦→ Z with fFA(a0, b0, c) = a0 + b0 + c. We can
compute a polynomial representation for fFA by starting with
a weighted sum 2c0 + s0 (called the “output signature” in
[13]) of the output variables. Step by step, we replace the
variables in polynomials by the so–called “gate polynomials”.
This replacement is performed in reverse topological order of
the circuit, see Fig. 1. We start by replacing c0 in 2c0 + s0
by its gate polynomial h2 + h3 − h2h3 (which is derived
from the Boolean function c0 = h2 ∨ h3). Finally, we arrive
at the polynomial a0 + b0 + c (called the “input signature”

in [13]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers
vk of variables v with k > 1 to v (since the variables are
binary), by combining terms with identical monomials into
one term, and by omitting terms with leading factor 0. We can
also consider a0 + b0 + c = 2c0 + s0 as the “specification” of
the full adder. The circuit implements a full adder iff backward
rewriting, now starting with 2c0 + s0 − a0 − b0 − c instead
of 2c0 + s0, reduces the “specification polynomial” to 0 in
the end. (This is the notion usually preferred in SCA-based
verification.)

The correctness of the method relies on the fact that poly-
nomials (with the above mentioned simplifications resp. nor-
malizations) are canonical representations of pseudo-Boolean
functions (up to reordering of the terms). (This is proven in
[29], e.g..)

B. Multiplier Circuits

In the following, we briefly summarize textbook knowledge
on multipliers. For more details, see [34], e.g.. Most integer
multipliers are composed of three stages: The first stage is
the Partial Product Generator (PPG) which generates partial
products from the bits of the two input operands. Examples
are Simple PPGs, which just compute the logical AND of
all bits of the first input and all bits of the second input,
or PPGs with Booth Encoding which reduce the number of
generated partial products using Booth’s Algorithm [37]. The
second stage is the Partial Product Accumulator (PPA) which
sums up all the partial products until they are reduced to two
numbers only. Well-known accumulation structures are array
accumulation, Wallace trees [38] or Dadda trees [39]. The
third stage consists of the Final Stage Adder (FSA) which
converts the resulting two numbers from the PPA stage into
the final binary representation of the output product. Any two
operand adder networks can be used here, ranging from simple
examples such as the well-known ripple-carry adder to more
complex structures such as various implementations of parallel
prefix adders. Such implementations include the Kogge-Stone
adder [40], the Brent-Kung adder [41] and the Ladner-Fischer
adder [42], to name just a few.

C. Specification Polynomial for Unsigned Multipliers

In this paper, we focus on unsigned gate-level integer
multipliers with input bits a0, . . . , an−1, b0, . . . , bn−1 of mul-
tiplier and multiplicand and output bits p0, . . . , p2n−1 of the
product. The corresponding specification polynomial, which is
the starting point of the backward rewriting process, is

Pspec(p0, . . . , p2n−1, a0, . . . , an−1, b0, . . . , bn−1) =
2n−1∑︂
i=0

2ipi − (

n−1∑︂
j=0

2jaj) · (
n−1∑︂
k=0

2kbk). (1)

As explained in Sec.II-A the multiplier circuit is correct iff
backward rewriting reduces Pspec to 0.

262



b0

a0

c

c0

s0

h1

h2

h3

c0 = h2 + h3 − h2h3

s0 = c+ h1 − 2ch1

h3 = ch1

h2 = a0b0
h1 = a0 + b0 − 2a0b0

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c+ h1
h2→ 2a0b0 − 2a0b0ch1 + c+ h1
h1→ a0 + b0 + c

Fig. 1: Full adder circuit with series of substitutions.

In the SCA-based verification for integer arithmetic we use
terms with coefficients from Z in the polynomials. However,
for n-bit integer multipliers the polynomial computations can
be performed in Z22n instead of Z which is desirable, since it
improves efficiency by reducing the maximal coefficient size.
In this case the specification polynomial can be defined as

Pspec,mod(p0, . . . , p2n−1, a0, . . . , an−1, b0, . . . , bn−1) =⎛⎝2n−1∑︂
i=0

2ipi − (

n−1∑︂
j=0

2jaj) · (
n−1∑︂
k=0

2kbk)

⎞⎠ mod 22n. (2)

In the following paragraph, we give the sketch of a proof
that a circuit fulfills the specification from Eqn. (1) iff it fulfills
the specification from Eqn. (2) (a similar proof is given in
[20]): Consider the polynomial Pspec from Eqn. (1). For all
possible assignments to pi, aj , bk ∈ {0, 1} it holds that Pspec

evaluates to a value in {−(2n−1)2, . . . , 22n−1} (which is easy
to see since the upper bound is reached for p0, . . . , p2n−1 = 1
and a0, . . . , an−1, b0, . . . , bn−1 = 0, and the lower bound is
reached for the opposite case). By replacing variables by their
gate polynomials (without modulo 22n) we obtain functions
depending on a different set of variables, but their range is
still a subset of the range of Pspec. In the end (after all
substitutions) we get a function whose range is still a subset
of {−(2n−1)2, . . . , 22n−1} (regardless of whether the circuit
is correct or not). If we now apply a modulo 22n operation on
those values, they might change, but still 0 will be mapped to 0
and values different from 0 will be mapped to values different
from 0, since the absolute values in {−(2n−1)2, . . . , 22n−1}
are all smaller than 22n. Therefore it holds: All assignments
consistent with some circuit C evaluate Pspec to 0 iff all
assignments consistent with C evaluate Pspec,mod to 0. This
means that we can perform all polynomial computations in
Z22n instead of Z during backward rewriting.

III. REVIEW OF EXISTING APPROACHES

A large number of excellent and non-trivial methods has
been presented in the literature to enable SCA-based multiplier
verification and increase its efficiency. Most of those methods
are tailored towards certain structural properties of existing
multiplier circuits. Here we will review and analyze existing

approaches from the literature. Some of those techniques
mentioned here have been described in the literature based
on computations with Gröbner bases (like the elimination of
certain polynomials from Gröbner bases). Here we prefer a
description based on backward rewriting, as already mentioned
in Sect. II-A. Note however that the difference is only in the
representation, not in the actual contents.

The first approach is the detection of so-called “atomic
blocks” in the multiplier design [19]. Atomic blocks may be
XOR gates, half adders (HAs), full adders (FAs), or Com-
pressors (CMs). In [19], [24] and [17] the information about
atomic blocks is used to enable a hierarchical polynomial com-
putation: Polynomials for atomic blocks are computed first and
during the backward rewriting the local polynomials for atomic
blocks are used for replacements in the global specification
polynomial. If atomic blocks have several outputs, then either
polynomials for the outputs are computed separately and are
handled as mentioned above, or the “word-level” polynomial
for the atomic block (like 2c0 + s0 = a0 + b0 + c for a
FA) is used for rewriting the global specification polynomial,
provided that it has an appropriate form (in the case of the
FA mentioned above: if the only terms containing c0 and s0
in the specification polynomial are 2k+1c0 and 2ks0).

Note that in our work we use atomic block detection as well,
but we always perform replacements by backward rewriting on
the gate level, not on the block level. Atomic blocks are only
used to guide the order in which we replace the gates.

Sayed-Ahmed et al. [14] observed that polynomials can
be simplified based on the observation that the sum outputs
s and the carry outputs c of HAs can never be 1 at the
same time. Therefore, terms containing both c and s (called
“vanishing monomials”) can be removed from the polynomial
immediately. The authors of [14], [18] argue that vanishing
monomials are the main cause of polynomial size explosions
during backward rewriting of multipliers. This technique is
used in other works like [15] as well. In [18] the observation
was used in the context of a hierarchical polynomial computa-
tion. [18] computes so-called Convergent Gate Cones (CGCs)
which are logic cones where paths from outputs of the same
half adder (HA) converge in a common node. The polynomials
of CGCs are precomputed, vanishing monomials are removed

263



during this computation, and the “cleaned” polynomials for
CGCs are used during the final backward rewriting. If large
CGCs occur, the advantage of this method is not clear at first
sight, since the vanishing monomials can only be removed at
the end of backward rewriting of a CGC. However, in fast final
stage adders (FSAs) like carry-lookahead or parallel prefix
adders there are usually overlapping CGCs of different sizes.
It is essential that the method from [18] starts with the smaller
CGCs, cleans them, and uses the resulting polynomials when
polynomials for larger, overlapping CGCs are computed. In
[26] the approach has been generalized to arbitrary pairs of
contradicting signals.

The idea of a hierarchical polynomial computation has also
been applied in [21], [24] to fanout-free cones of gates which
are not included in atomic blocks and CGCs. This technique
has been called “Common Term Rewriting” in [14].

The special treatment of CGCs was motivated by difficulties
of SCA-based methods when the FSA is a parallel prefix adder.
Kaufmann et al. [20], [23] propose other techniques to tackle
the same problem. They substitute a final parallel prefix adder
by a simple ripple-carry adder and then verify the resulting
simplified multiplier. In [20] the equivalence of the substituted
parallel prefix adder with a ripple-carry adder is proven by
SAT solving. [23] introduces the concepts of dual variables
and tail substitution and uses them during “carry rewriting”
inside the detected FSA. For both [20] and [23] certain circuit
structures inside the FSA as well as the FSA bounds have
to be structurally detected. Those methods work well and are
fast for clean multipliers (as the circuit rewriting from [32],
[33] as well), but they become problematic, if logic synthesis
steps at the gate level have destroyed the clear structure. This
observation is clearly confirmed by our experiments in Sect. V.

Finally, the order of traversing the circuit during backward
rewriting is of utmost importance. Reverse topological order-
ings are usually not unique, but leave a lot of degrees of
freedom. Different orderings may lead to totally different sizes
of the intermediate polynomials during backward rewriting.
Some methods try to find good static orders for the traversal
(and sometimes need structural information about the circuit
to find them). [13] performs a “row-wise” traversal of the
multiplier (which resembles a breadth-first search in the cir-
cuit, augmented with information on hierarchy bounds), [15]
performs a “column-wise” traversal (which resembles a depth-
first search). In [15] a decomposition of the multiplier speci-
fication polynomial into column-wise “sub-specifications” is
used in addition (needing an additional multiplier-specific
reasoning for correctness). In contrast, in [21] a dynamic
substitution order was proposed. Here the order in which
backward rewriting processes the circuit is not determined
beforehand, but it is adjusted dynamically based on the sizes
of intermediate polynomials. It is important to note that the dy-
namic substitution order is used in the context of hierarchical
polynomial computation on the level of “components” (atomic
blocks, CGCs, fanout-free cones) here. The substitution orders
to compute polynomials for the components are still chosen
statically.

Most of the approaches mentioned above work well, when
they are applied to clean multipliers at the gate level where
logic synthesis has not been applied, but they become weaker,
when they are applied to multipliers which are optimized by
logic synthesis. This does not only hold for methods which
rely on the detection of FSA boundaries and FSA structures
as mentioned above [20], [23], but also for other methods: The
hierarchical polynomial computation becomes weaker, if the
boundaries of atomic blocks are destroyed by logic synthesis;
the removal of vanishing monomials based on CGCs gets into
trouble, if HAs at the origin of CGCs cannot be detected
anymore due to logic restructuring; the computation of static
replacement orders may suffer as well, if the circuit structures
are destroyed on which the order computation relies (like
XOR-skeletons for the computation of column-wise slices in
[25]).

For this reason, we investigate in this paper whether it is
possible to increase the robustness of SCA-based verification
of multipliers by avoiding complex approaches which are
vulnerable against changes to the clean multiplier structure.
Our goal is to simplify the approach and at the same time
to increase its robustness. We restrict ourselves to a flat and
non-hierarchical polynomial computation based on backward
rewriting with gate polynomials, but we invest considerable
effort into the computation of good substitution orders. More-
over, we deeply integrate the technique of phase optimization
into our order optimization to make the approach more robust
against the selection of unfavourable orders.

IV. BACKWARD REWRITING WITH PHASE AND ORDER
OPTIMIZATION

In this section we present our SCA-based verification
method which is based on two simple ingredients: The op-
timization of “phases” of signals and the optimization of
the order of gate replacements during backward rewriting.
Both methods are integrated into an overall phase and order
optimization, but we begin with the description of phase
optimization.

A. Phase Optimization

The idea of phase optimization is to adjust the phases of
occurring signals during backward rewriting to keep interme-
diate polynomial sizes small and to make backward rewriting
more robust, e.g., against different orderings. The approach
is based on the observation that replacing variables by their
negation in intermediate polynomials may reduce the sizes of
those polynomials.

Example 1. Let us consider the function f(x1, x2, x3) = x1∨
x2 ∨ x3 which computes the disjunction of 3 inputs. It is easy
to see that the polynomial for f is p = x1 + x2 + x3 −
x1x2 − x1x3 − x2x3 + x1x2x3 with 7 terms. Now we change
the phase of one variable, let’s say x1, i.e., we introduce a
“new input variable” called x1 representing the negation of
x1 and replace x1 in p with 1 − x1. This results in p′ =
1− x1 + x1x2 + x1x3 − x1x2x3 with 5 terms. Changing the
phase of x2 (i.e. replacing x2 with 1 − x2) results in p′′ =

264



Algorithm 1 Phase Optimization.
Input: Polynomial P , Set of candidate signals S
Output: Polynomial P with optimized phases
1: for each s ∈ S do
2: old size← size(P );
3: P ← Flip-Phase(s, P ); ▷ flip signal s in P
4: new size← size(P );
5: if old size < new size then P ← Flip-Phase(s, P ) ▷ flip s back
6: return P ;

1−x1 x2+x1 x2x3 and changing the phase of x3 finally results
in p′′′ = 1 − x1 x2 x3 with 2 terms. The example shows that
phase optimization is able to reduce the sizes of polynomials.
If f(x1, x2, x3) = x1 ∨ x2 ∨ x3 is part of a larger circuit and
x1 has to be replaced with the polynomial of another gate
g, then the phase flipping of x1 has of course to be reverted
before replacing x1 with the polynomial of g. Anyway, our
hope is that phase optimization is able to reduce the size of
intermediate polynomials. If g is constant 1, e.g., then reverting
the phase flipping of x1 results in 1 − x2 x3 + x1x2 x3 and
after replacing x1 with constant 1 we arrive at p′′′′ = 1. The
experimental results in Sect. V show that our hope for the
benefits of phase optimization is well founded.

We perform phase optimization by a simple greedy algo-
rithm, see Alg. 1. The algorithm is a general function of the
polynomial package and, therefore, does not need any circuit
information, but only uses the polynomial which should be
optimized and a set of candidate signals which are objective
to the optimization. For every candidate signal s the following
is done: Saving the current size of the polynomial P (which is
just the number of terms in P , line 2), then flipping the phase
of the signal s in P (line 3). If the now achieved polynomial
size is larger than before, the phase change was not beneficial
and s is flipped again to restore the previous polynomial (line
5). Only if the polynomial size could have been reduced by
the phase change, the flipped phase is kept in the polynomial
and the algorithm continues with the next candidate signal.
In the end, a smaller polynomial with optimized phases is
found or (in case no phase changes led to a smaller size) the
original polynomial remains. Therefore our phase optimization
never increases the polynomial size. In our implementation, we
perform phase optimization after each rewriting step. To save
computation time, we restrict the search space of the phase
optimization by choosing the set S of candidate signals in
Alg. 1 as the set of variables which were newly introduced
into the polynomial in the last rewriting step.

The correctness of flipping phases of signals during back-
ward rewriting can be seen easily: Consider some arbitrary
gate g of a circuit computing the signal xi. Phase flipping
of xi can be simulated by inserting two consecutive inverters
immediately at the output of g (which apparently does not
change the function of the circuit). The signal after the first
inverter is called xi, the signals before the first inverter and
after the second inverter are called xi. Phase flipping for
xi corresponds to backward rewriting of the second inverter
(introducing xi into the polynomial). Reverting phase flipping

101 102 103 104 105 106

101

102

103

104

105

106

with Phase Optimization

N
o

O
pt

im
iz

at
io

ns

Peak Poly. size
diagonal

Fig. 2: Peak polynomial sizes for different orderings.

before replacement of g corresponds to backward rewriting of
the first inverter (introducing xi into the polynomial again).

Before showing how we integrate phase optimization into
our dynamic order optimization approach, we present an
example which shows that phase optimization makes backward
rewriting much more robust against changes of replacement
orders. The example is a toy example chosen for illustration,
but the demonstrated effect is similar to the effects occurring
during backward rewriting of parallel prefix adders which
contain large OR trees in their implementation. Large OR
trees may be a problem for SCA-based methods due to their
exponential polynomial representation, see also [20] and [23].

Example 2. Consider a circuit with 32 input signals
i0, . . . , i31. The 32 input signals are connected to 32 inverters
and the outputs of inverters are the inputs of a balanced OR
tree. It is clear that this circuit basically implements a NAND
function with 32 inputs. Thus, backward rewriting starting with
the polynomial po = o for the output variable o leads to the
final polynomial p = 1− i0 · . . . · i31. The final polynomial has
size 2 (number of terms).

Backward rewriting proceeds in reverse topological order
and of course there is a huge number of different possible
reverse topological orders to traverse the circuit. In our
experiment, we randomly choose one of the possible reverse
topological orders and perform backward rewriting with and
without phase optimization. We repeat the experiment 10.000
times with different random choices. Fig. 2 shows a scatter plot
with each data point representing one possible traversal order.
The y-axis indicates the peak polynomial size during backward
rewriting using this order without phase optimization and the
x-axis with phase optimization (note that the axes are scaled
logarithmically). Fig. 2 shows that with phase optimization the
peak polynomial size is always between 7 and 9. Without phase
optimization, the peak polynomial sizes vary considerably
and in 698 out of 10.000 cases our chosen upper bound of
1.000.000 terms is exceeded. The large intermediate sizes of
the polynomials in the version without phase optimization can
be easily explained by the fact that the intermediate polyno-
mials often represent disjunctions of a large number of inputs

265



which have exponential representations as polynomials [23].
Apparently, phase optimization keeps intermediate polynomial
sizes small and makes the backward rewriting much more
robust.

Our phase optimization is related to the method from [23]
using dual variables. In contrast to [23] we do not introduce
dual phases xi and xi of variables, but we only enable flipping
the phases of variables, i.e., we flip all occurrences of a signal
in the polynomial. This makes the approach much simpler
and does not need additional handling and simplification steps
in the polynomial (like the merging algorithm in [23] which
checks if two terms can be merged into one because they only
differ in one dual variable).

Interestingly, as also observed in [43], phase optimization
is strongly related to replacing the so-called positive Davio
decomposition by negative Davio decomposition in K*BMDs
[44]. In contrast to K*BMDs, *BMDs [6] only allow posi-
tive Davio decomposition. The positive Davio decomposition
wrt. variable x1 decomposes a function f : {0, 1}n ↦→ Z
according to f = fx1=0 + x1 · (fx1=1 − fx1=0). fx1=0

and fx1=1 are the functions resulting from f by replacing
the variable x1 by 0 and 1, respectively. The correctness of
the decomposition can be easily shown by case distinction
wrt. x1 = 0, x1 = 1. *BMDs are graphs which basically
represent the “sub-functions” fx1=0 and fx1=1 − fx1=0 by
nodes. The representation of Boolean polynomials without
phase flipping corresponds to positive Davio decomposition:
If p is the polynomial for f , then the polynomial for fx1=0

contains all terms which do not include x1 (in Example 1
x2 + x3 − x2x3) and x1 · (fx1=1 − fx1=0) contains all terms
which do include x1 (in Example 1 x1 − x1x2 − x1x3 +
x1x2x3 = x1 · (1 − x2 − x3 + x2x3)). Thus, *BMDs can be
seen as a factored form of Boolean polynomials. The negative
Davio decomposition wrt. x1 decomposes f according to
f = fx1=1+(1−x1)·(fx1=0−fx1=1). By replacing 1−x1 with
x1 it is easy to see that negative Davio decomposition corre-
sponds to Boolean polynomials with phase flipping for x1. In
Example 1 fx1=1 = 1, fx1=0−fx1=1 = −1+x2+x3−x2x3,
and fx1=1 + x1 · (fx1=0 − fx1=1) = 1+ x1 · (−1+ x2 + x3 −
x2x3) = p′.

Whereas [43] performs phase optimization as well, its opti-
mization approach is pretty complex: It translates polynomials
into K*BMDs, then uses a K*BMD minimization method [45]
that changes the decomposition types (positive or negative
Davio) of the variables, and finally it translates the K*BMDs
back into polynomials – in the hope that size reductions
in K*BMDs translate into size reductions of polynomials.
As already mentioned above, our implementation of phase
optimization is much simpler: It greedily optimizes the phases
of variables and additionally restricts the phase optimization
to variables newly introduced into the polynomial in the last
rewriting step.

B. Backward Rewriting with Dynamic Order Optimization
Now we introduce our new method of backward rewriting

with Dynamic Order Optimization. It can be seen as an

Algorithm 2 Rewriting with Dynamic Order Optimization.
Input: Specification polynomial SP init ; Circuit CUV
Output: TRUE iff specification holds
1: SPi ← SP init ;
2: A← Detect-Atomic-Blocks(CUV );
3: B ← Compute-EABs(A,CUV );
4: for each b ∈ B do
5: Penalty[b]← 1;
6: C ← Get-First-Candidate-EABs(B);
7: while C is not empty do
8: for each c ∈ C do
9: Score[c]← Count-Occurrence(c, SPi) · Penalty[c];

10: sortedC ← Sort-Candidates-Ascending(C, Score);
11: SPold ← SPi; chosen← 0;
12: j ← 0; upB fac← 1; best j ← −1;
13: while chosen = 0 do
14: SPi ← SPold;
15: (success, SPi)← Rewrite(SPi, sortedC[j], upB fac);
16: if success = TRUE then
17: threshold← 0.01× Get-Node-Count(sortedC[j]);
18: growth← (size(SPi)− size(SPold))/size(SPold);
19: if growth < threshold then
20: chosen← sortedC[j];
21: else
22: best j ← Save-Best-Candidate-So-Far(SPi, j);
23: Penalty[sortedC[j]]← Penalty[sortedC[j]]× 2;
24: else
25: Penalty[sortedC[j]]← Penalty[sortedC[j]]× 2;
26: j ← j + 1;
27: if chosen = 0 and j = size(sortedC) then
28: if best j ≥ 0 then
29: chosen← sortedC[best j];
30: (success, SPi)← Rewrite(SPi, chosen, upB fac);
31: else
32: j ← 0; upB fac← upB fac× 2;
33: C ← Update-Candidates(B, C, chosen);
34: if size(SPi) = 0 then return TRUE else return FALSE;

improvement of the algorithm from [21] which was the first
work to introduce dynamic rewriting in a SCA context.

The observation is that during backward rewriting, usually,
there are several candidates (be it on the lower level of
individual nodes or on a higher “component” level like atomic
blocks or fan-out-free cones) to choose from for the next
substitution step. The goal is always to find a substitution order
which keeps intermediate polynomials small. While it is easier
to find “good” static orderings (which are computed before
the rewriting process started) for clean multiplier circuits,
this task gets hard for optimized circuits where the clean
boundaries between different functional blocks might vanish,
e.g. due to applied logic synthesis. The idea of Dynamic Order
Optimization is to take the current polynomial into account
to choose good candidates for the next substitution step. We
combine this idea with our new phase optimization approach
to achieve a stronger dynamic ordering.

We start with a rough overview of our Dynamic Order
Optimization: Basically, we use two dynamic procedures on
different hierarchy levels to obtain a good dynamic order for
backward rewriting. On the higher “component level” (see
Alg. 2) we use dynamic ordering on the level of components,
choosing a good candidate component in every step. In our
case the components are so-called Extended Atomic Blocks

266



(EABs) [31]. On the lower level (see Alg. 3) we use dynamic
ordering as well, but now on the level of individual circuit
nodes inside the components. This is an important difference
to the approach from [21] which uses a dynamic ordering
approach on the component level, but a static approach for
precomputing polynomials of those components (which are
used later on in a global rewriting procedure).

Now we come to a more detailed description of our method:
Our algorithm for backward rewriting with Dynamic Order
Optimization is depicted in Algs. 2 and 3. We start in Alg. 2
with the specification polynomial SP init and the circuit under
verification CUV in AIG format. In the beginning we detect
atomic blocks (XORs, HAs, FAs, as well as single sum
and carry outputs of FAs) (see line 2). Next, we combine
these atomic blocks and the remaining gates of the circuit
into Extended Atomic Blocks (EABs) [31] (line 3). The idea
of EABs is to combine atomic blocks and remaining gates
into fanout-free cones to partition the circuit into functionally
and structurally related subcircuits. While [31] uses EABs to
compute don’t cares on their inputs to optimize polynomials
during backward rewriting and [21] uses a similar concept
called “components” with the purpose of locally precomputing
polynomials for those components before using them in a
global rewriting procedure, we use EABs only for the purpose
of helping to find good substitution orders.

For every EAB we initialize a penalty factor of 1 (line 5).
Next the initial list of candidate EABs is computed (line 6). To
do substitutions in reverse topological order, this list contains
all EABs which only have fan-outs into primary outputs but
not into any other EABs. Our method can be seen as a two-
leveled, hierarchical ordering approach. The first, upper level,
working on the level of EABs, is described by the while loop
from lines 7 to 33. In each round one candidate EAB for
substitution is picked in a dynamic fashion and the candidate
set is adjusted, until all EABs and therefore the complete
circuit has been substituted. In detail this works as follows: A
score is assigned to each candidate which is computed as the
number of occurrences of the candidate’s output signals in SPi

multiplied by the individual penalty factor of the candidate
(lines 8 and 9). Afterwards, the candidates are sorted by their
scores in ascending order (line 10). The intuition is to prefer
candidates with small numbers of output signal occurrences
in the polynomial, since from a worst-case perspective many
occurrences of EAB output signals in the current polynomial
lead to a higher risk of a large polynomial after substitution of
this EAB, see also [21], Example 6. Here this idea is adjusted
by an additional penalty factor which will be explained later.

In the inner while loop from lines 13 to 32 the actual
selection of the candidate EAB happens by iterating through
the sorted candidates until a suitable one has been chosen.
First, the old polynomial is restored. Next, the actual back-
ward rewriting steps are performed for the current candidate
(line 15). The details of how an EAB is rewritten are shown
in Alg. 3 and will be explained later. At this point it is
only important that rewriting may succeed or fail due to
size limitations, which will be indicated by the return value

success. If it succeeded, a polynomial is returned where
all nodes from the current candidate have been rewritten.
Otherwise the rewriting has been aborted. In the successful
case a threshold (line 17) defines how much growth of SPi is
acceptable for the current candidate. This threshold increases
with the number of AIG nodes in the candidate EAB to
avoid a bias towards the selection of small EABs (whose
replacement cannot increase the polynomial too much). If
the growth of SPi stays below the threshold the candidate
is accepted (line 20). Otherwise it is checked if the current
candidate produced the smallest polynomial size so far and
is therefore saved as best candidate until now (line 22). The
penalty factor of the current candidate EAB is increased, if
it either has not been accepted (line 23) or the rewriting of
the candidate even failed due to the size limit (line 25). The
idea of a penalty factor is to avoid that the same candidates
get checked unsuccessfully over and over again, because their
occurrence count is small, but their substitution is very costly
all the same.

In case all candidates have been checked and none of
them stayed below the threshold (line 27), the best found
candidate is rewritten again. This way we do not need to
repeat the complete iteration as long as one candidate could
have been rewritten successfully. Only in the case that none of
the candidates could have been rewritten without aborting, the
upper bound factor upB fac used for the internal rewriting
of Alg. 3 is increased (line 32) and the iteration starts with
the same set of candidates again. By this increasing it is
guaranteed that eventually some candidate can be rewritten
successfully (assuming unlimited resources). After a candidate
was chosen, the set of candidate blocks is adjusted (line 33):
The chosen candidate is removed and new candidate EABs,
which are fan-ins of the just chosen one might get included,
if all of their fan-out EABs have already been substituted. At
the end the algorithm returns TRUE if SPi has been reduced
to 0, meaning the specification is fulfilled by the circuit.

Next, we explain the actual rewriting process for an EAB
which can be seen as the second, lower level of our hierarchi-
cal ordering approach working on the level of individual nodes
inside of EABs. The algorithm is shown in Alg. 3. As inputs it
takes the current polynomial SPi, an EAB E and some factor
upB fac. An upper bound for intermediate polynomial sizes
is computed (line 2) as follows: If 10× size(SPi) < 100, 000
the upper bound is set to 10 × size(SPi), otherwise it is
set to size(SPi) + 100, 000. Additionally the upper bound is
multiplied by the upB fac factor afterwards.

Before computing an order dynamically, the algorithm first
tries rewriting with two predefined orders based on breadth-
first-search and depth-first-search (line 3), with applying phase
optimization after every node rewriting. It is history dependent
(based on successful rewriting for the current EAB in the past)
which order is tested first, and if the first order fails (due to
exceeding the upper bound limit) the second is tried. In case
one of the orders was successful, TRUE is returned together
with the rewritten polynomial SPi.

Only if none of the two predefined orders was successful,

267



Algorithm 3 Dynamic Rewriting of an EAB.
Input: Polynomial SPi, EAB E, Factor upB fac
Output: ((TRUE if successful, FALSE otherwise), Polynomial SPi )
1: SPstart ← SPi;
2: upperBound = Compute-Upper-Bound(size(SPi), upB fac);
3: (success, SPi)← Try-Rewriting-With-BFS-DFS-Orders(SPi, E);
4: if success = FALSE then
5: SPi ← SPstart;
6: success← TRUE;
7: N ← Get-First-Candidate-Nodes(nodes(E));
8: while N is not empty and success = TRUE do
9: for each n ∈ N do

10: Score[n]← Count-Occurrence(n, SPi);
11: sortedN ← Sort-Candidates-Ascending(N, Score);
12: SPold ← SPi; chosen← 0; j ← 0;
13: while chosen = 0 do
14: SPi ← SPold;
15: SPi ← Rewrite(SPi, sortedN [j]);
16: SPi ← Phase-Opt(SPi, Get-Inputs(sortedN [j]));
17: threshold← 0.1;
18: growth← (size(SPi)− size(SPold))/size(SPold);
19: if growth < threshold then
20: chosen← sortedN [j];
21: else
22: best j ← Save-Best-Candidate-So-Far(SPi, j);
23: j ← j + 1;
24: if chosen = 0 and j = size(sortedN) then
25: chosen← sortedN [best j];
26: SPi ← Rewrite(SPi, chosen);
27: SPi ← Phase-Opt(SPi, Get-Inputs(chosen));
28: N ← Update-Candidates(nodes(E), N, chosen);
29: if size(SPi) > upperBound then
30: success← false;
31: SPi ← SPstart;
32: return (success, SPi)

dynamic ordering is started. The dynamic ordering on the node
level works very similar to the dynamic ordering on EAB level
of Alg. 2, thus we will keep the description short here. Again
candidates, which are individual circuit nodes here, are sorted
based on a scoring and we look for a candidate which can keep
the relative polynomial growth below a threshold (which is a
fixed value of 0.1 here) or, if such candidate does not exist, the
best found so far is picked. This is repeated until all nodes have
been rewritten. After each (tentative or final) node rewriting we
immediately apply phase optimization to the newly introduced
signals (lines 16, 27). There is one special case for nodes of the
EAB being part of an atomic block (XORs, HAs, FAs, single
FA outputs) that is not explicitly represented in Alg. 3: They
are only rewritten if all output nodes of the atomic block are in
the candidate set N and whenever one of the output nodes of
the atomic block should be rewritten, then all the nodes in the
atomic block are rewritten in a fixed precomputed order. The
major difference to Alg. 2 is that after every chosen candidate
node it is checked whether the current polynomial size exceeds
the upper bound (line 29). If this is the case, the dynamic
rewriting of this EAB E is aborted and returns FALSE together
with the starting polynomial SPstart. Therefore, the rewriting
of an EAB is not always completed. This is used in Alg. 2 to
avoid investing too much space and time in the rewriting of
one specific candidate EAB, while there may be other suitable
EABs to choose from.

C. Simple Certifiability

Certification is an important aspect to increase the trust in
fully automatic tools. To this day, most SCA-based verification
tools lack certification. Kaufmann et al. have made efforts to
provide (easily checkable) certificates for different versions of
their rewriting tools so far [20], [22], [25], [36]. They even
showed in [36] unsoundness for an existing SCA-based tool by
using fuzzing techniques. An alternative approach to guarantee
the soundness of an automatic verification is to formally verify
the verification tool itself. This approach is taken by Temel et
al. [32], [33], [46] for the automatic verification of multipliers
(which is not based on SCA, however). They verified the
verification tool with the ACL2 theorem prover [47].

We want to highlight that the simplicity of our new approach
facilitates certification, although our prototype tool does not
yet produce certificates. Whereas the intensive search process
for a good substitution order and for a good phase assignment
for the intermediate polynomials may be expensive, it is easy
to write out the final set of signals to virtually insert double
inverters for phase optimization (see Sect. IV-A) as well as
the finally computed substitution order. The substitutions are
only performed at the gate level and not in a hierarchical
manner and we do not use any properties derived by SAT or
other techniques which would need a separate proof method.
Thus, a simple dedicated and formally verified proof checker
could be used whose memory requirements are limited by the
memory requirements of the verifier or the certificate could
be simply mapped to the existing practical algebraic calculus
(PAC) format [48].

V. EXPERIMENTAL RESULTS

We have implemented the new method from this paper in
our tool DYNPHASEORDEROPT. Tests have been run on a
single core of an Intel Xeon CPU E5-2650v2 with 2.60GHz.
Resources were limited to 32GB main memory and 12 hours
of CPU run time. For comparison we also run the following
SCA-based multiplier verification tools on the same setup:
AMULET 2.2 [25], [36], TELUMA [23], REVSCA-2.0 [24]
and DYPOSUB [21]. First experiments with the VeSCMul tool
by Temel et al. [32], [33], [46] have shown that it is not
suitable for flat AIG-based designs as we consider them here,
since their rewriting method relies on hierarchy information
and in case of flat AIG-based designs it fails even for multi-
pliers with very small bitwidths. Therefore, the comparison
with VeSCMul was omitted. The examined benchmark set
contains 310 different unsigned 64-bit multiplier circuits and
is composed of:

• all 192 64-bit unsigned multipliers from the aoki-
benchmark set [49] (which unfortunately is no longer
available online and therefore was obtained from the
artifact data of [22])

• all 28 possible 64-bit unsigned multipliers obtainable
from the multiplier generator GenMul [50], [51]

• all 90 possible 64-bit stand-alone unsigned multipliers
obtainable from the multiplier generator multgen [52].

268



100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

N
um

be
r

of
so

lv
ed

in
st

an
ce

s

(a) No optimization.

100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

(b) Optimized with resyn3.

100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

Our Tool
AMulet 2.2
TeluMA
RevSCA-2.0
DyPoSub

(c) Optimized with dc2.

Fig. 3: Verification times for different tools and optimizations.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

N
um

be
r

of
so

lv
ed

in
st

an
ce

s

(a) No optimization.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

(b) Optimized with resyn3.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

Our Tool
AMulet 2.2
TeluMA
RevSCA-2.0
DyPoSub

(c) Optimized with dc2.

Fig. 4: Maximum memory usage for different tools and optimizations.

The multiplier circuits cover a wide range of different imple-
mentation options for PPGs, PPAs, and FSAs (see Sect. II-B).
We provide the benchmark set, our tool and experimental data
at [53].

The experimental results are shown in Tab. I. Col. 1 states
the used tool. For each tool, we differentiate between five types
of results (Col. 2): “Solved” means that the tool has success-
fully verified that the multiplier is correct within the given
resource limits. “TO” indicates a time out, i.e. exceeding the
time limit, while “MO” indicates a memory out, i.e. exceeding
the available main memory. “SegFault” means the program
was terminated by a segmentation fault and “F.Buggy” states
that the multiplier circuit has been erroneously reported as
buggy. For testing the robustness of the tools we consider
different optimizations on the benchmark set given in Cols. 3
to 5 which are either none or the ABC [54], [55] commands
resyn3 and dc2. The numbers in Cols. 3 to 5 indicate how
many results of each type a specific tool (indicated by the
row) has produced for a given optimization variant (indicated
by the column). In Col. 6 we sum up the results over all
benchmarks. For AMULET 2.2 we first used its standard
method which substitutes possible complex FSAs and verifies
the modified circuits afterwards. Since AMULET 2.2 produced
several segmentation faults when trying to substitute complex

FSAs in optimized benchmarks, we have chosen the following
approach: Whenever AMULET 2.2 produced a segmentation
fault when trying to substitute complex FSAs, we omitted the
substitution and ran the verification on the original circuit.

It can be seen that none of the tools is able to suc-
cessfully verify all 310 unoptimized benchmarks (Col. 3).
Our tool solves the most with 300 benchmarks, followed by
AMULET 2.2 with 243, DYPOSUB with 239, REVSCA-2.0
with 238 and TELUMA with 221. The advantage of our
tool can be seen even better in the results for optimized
circuits. With logic optimization, we are still able to solve
275 benchmarks for resyn3 and 226 for dc2. Here we also see
the large deficit of AMULET 2.2 and TELUMA which can
only solve up to 23 for any optimized benchmark set. While
AMULET 2.2 runs into time outs for most instances, TELUMA
also produces up to 143 segmentation faults for the optimized
benchmarks. REVSCA-2.0 and DYPOSUB perform better on
optimized benchmarks, but still lag behind our tool. They solve
at least 62 benchmarks less for resyn3 and 57 less for dc2.
In total, our tool is able to solve 801 benchmarks while the
second best tool, REVSCA-2.0, only solves 620 (Col. 6). In
contrast to our tool, all comparison tools produce segmentation
faults and even erroneously reported buggy results on some of
the benchmark.

269



TABLE I: Verification results for different tools.

Optimization
Tool Result none resyn3 dc2 sum

Our tool
DYNPHASE-
ORDEROPT

Solved 300 275 226 801
TO 10 34 76 120

MO 0 1 8 9
SegFault 0 0 0 0
F.Buggy 0 0 0 0

AMULET
2.2 [25], [36]

Solved 243 23 7 273
TO 57 282 303 642

MO 2 5 0 7
SegFault 0 0 0 0
F.Buggy 8 0 0 8

TELUMA [23]

Solved 221 11 2 234
TO 89 219 165 473

MO 0 1 0 1
SegFault 0 77 143 220
F.Buggy 0 2 0 2

REVSCA-
2.0 [24]

Solved 238 213 169 620
TO 21 20 53 94

MO 21 70 73 164
SegFault 12 0 0 12
F.Buggy 18 7 15 40

DYPOSUB [21]

Solved 239 211 151 601
TO 18 23 98 139

MO 24 69 54 147
SegFault 12 0 0 12
F.Buggy 17 7 7 31

More details on the results are shown in Fig. 3 and Fig. 4
where we show cactus plots for the required run times and
the maximum memory usage, respectively, for all tools and all
optimizations (but only for solved instances). Fig. 3 shows that
AMULET 2.2 and TELUMA are excellent wrt. time efficiency.
All instances that could be solved needed 233 CPU seconds
or less. A similar picture emerges for memory efficiency
(Fig. 4). However, this advantage is paid by a much lower
robustness; other tools show significantly better results for
optimized benchmarks. This can be explained by the fact that
AMULET 2.2 and TELUMA are tailored towards detecting
certain structural pecularities in the circuit implementations.
They are very fast, if those characteristics are found in the
benchmarks. If logic synthesis has destroyed those structural
properties, the other tools (and in particular our tool DYN-
PHASEORDEROPT) can demonstrate their robustness and their
consistent performance for the general case.

In summary, the presented results show that our new tool
DYNPHASEORDEROPT is not only able to solve almost all
unoptimized benchmarks within reasonable times, but it also
performs better than the other tools especially on optimized
benchmarks, confirming the higher overall robustness of our
method.

Finally, we investigated for our tool DYNPHASEORDEROPT
the detailed question of whether it makes sense to try two

TABLE II: Statistic on successful orders used in Alg. 3.

Optimization % BFS % DFS % Dynamic
none 97.63 2.32 0.05

resyn3 98.49 1.47 0.04
dc2 98.40 1.58 0.02

precomputed orders based on breadth-first-search (BFS) and
depth-first-search (DFS) first, before computing a dynamic
order in Alg. 3 on the level of individual nodes within an
EAB. The goal of this approach is to avoid time-intensive
dynamic order computations for simple cases where BFS or
DFS are sufficient. Tab. II clearly shows that the approach
does make sense. For the table we consider all successful
cases where the ordering for an EAB was not discarded later
on by choosing another EAB to be processed before it on
the higher “component level” of Alg. 2. We count how often
BFS, DFS, and dynamic ordering was used, separately for each
optimization (none, resyn3, dc2). Tab. II gives the fraction for
each ordering method. It shows that most EABs are ordered
by BFS. This fact may seem surprising at first sight, but can
be explained by the fact that BFS is the default first order to
try and it is chosen in all simple cases such as very small
EABs with only a few nodes, EABs consisting of only one
atomic block (like an XOR gate, an HA, or an FA which is
anyway ordered according to a fixed precomputed order), or
EABs which are just not very sensitive to different rewriting
orders. Even though the number of dynamic orders applied
on the level of individual nodes within an EAB is only up to
0.05 %, it is still important to use dynamic ordering to avoid
exponential blowups while rewriting the individual nodes of
an EAB in cases where neither BFS nor DFS are successful,
since even the occurrence of just one such EAB in the entire
circuit can lead to a failed verification attempt. Moreover, note
that the precomputed BFS and DFS orders are used only on the
level of individual nodes, while on the higher level of ordering
EABs (see Alg. 2) a dynamic approach is always used.

VI. CONCLUSIONS AND FUTURE WORK

We have discussed the latest SCA-based approaches to fully
automatic verification of multiplier circuits and presented a
new, particularly simple method for this task. The new method
consists of two major contributions. The first is our Phase
Optimization algorithm which dynamically adjusts the phases
of variables in occurring polynomials to reduce intermediate
polynomial sizes. The second is our backward rewriting with
dynamic Order Optimization, which uses several heuristics
to create a dynamic order for backward rewriting that keeps
intermediate polynomial sizes as small as possible. Our exper-
iments show that our simpler method does not only compete
well with latest tools on clean benchmarks but also adds more
robustness, e.g. for the verification of optimized circuits. We
believe that our dynamic approaches will be crucial for the
verification of multipliers as well as other arithmetic circuits
in the future.

270



REFERENCES

[1] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs J., vol. 20, no. 4,
pp. 129—-135, 1995.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[3] J. R. Burch, “Using BDDs to verify multipliers,” in DAC, 1991, pp.
408–412.

[4] J. P. M. Silva and T. Glass, “Combinational equivalence checking using
satisfiability and recursive learning,” in DATE. IEEE Computer Society
/ ACM, 1999, pp. 145–149.

[5] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in DATE. IEEE Computer
Society, 2001, pp. 114–121.

[6] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in DAC, 1995, pp. 535–541.

[7] R. E. Bryant and Y. Chen, “Verification of arithmetic circuits using
binary moment diagrams,” STTT, vol. 3, no. 2, pp. 137–155, 2001.

[8] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of
binary moment diagrams for verifying arithmetic circuits,” in ICCAD,
1995, pp. 78–82.

[9] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, 2013.

[10] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in CAV, 2008, pp. 473–486.

[11] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[12] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level
arithmetic circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[13] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” TCAD, vol. 35,
no. 12, pp. 2131–2142, 2016.

[14] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE, 2016, pp. 1048–1053.

[15] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD, 2017, pp. 23–30.

[16] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[17] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in DATE, 2018,
pp. 1556–1561.

[18] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers,” in
ICCAD, 2018, pp. 129:1–129:8.

[19] ——, “RevSCA: Using reverse engineering to bring light into backward
rewriting for big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[20] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

[21] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020, pp.
544–549.

[22] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier
circuits,” in TACAS. Springer, 2021, pp. 357–364.

[23] D. Kaufmann, P. Beame, A. Biere, and J. Nordström, “Adding dual
variables to algebraic reasoning for gate-level multiplier verification,” in
DATE. IEEE, 2022.

[24] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: Sca-based
formal verification of nontrivial multipliers using reverse engineering
and local vanishing removal,” TCAD, vol. 41, no. 5, pp. 1573–1586,
2022.

[25] D. Kaufmann and A. Biere, “Improving AMulet2 for verifying multiplier
circuits using SAT solving and computer algebra,” STTT, vol. 25, no. 2,
pp. 133–144, 2023.

[26] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and
boolean satisfiability,” in DAC, 2022.

[27] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification
of integer dividers: Division by a constant,” in ISVLSI, 2019, pp. 76–81.

[28] ——, “Functional verification of hardware dividers using algebraic
model,” in VLSI-SoC, 2019, pp. 257–262.

[29] C. Scholl and A. Konrad, “Symbolic computer algebra and SAT based
information forwarding for fully automatic divider verification,” in DAC,
2020.

[30] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in DATE. IEEE, 2021, pp. 1110–1115.

[31] A. Konrad, C. Scholl, A. Mahzoon, D. Große, and R. Drechsler, “Divider
verification using symbolic computer algebra and delayed don’t care
optimization,” in FMCAD. IEEE, 2022, pp. 1–10.

[32] M. Temel, A. Slobodová, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in CAV, 2020, pp. 485–507.

[33] M. Temel and W. A. Hunt, “Sound and automated verification of real-
world RTL multipliers,” in FMCAD. IEEE, 2021, pp. 53–62.

[34] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd.,
2001.

[35] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Poly-
nomial formal verification of multipliers,” Form Methods Syst. Des.,
vol. 22, no. 1, pp. 39–58, 2003.

[36] D. Kaufmann and A. Biere, “Fuzzing and delta debugging and-inverter
graph verification tools,” in TAP@STAF. Springer, 2022, pp. 69–88.

[37] A. D. Booth, “A signed binary multiplication technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 01 1951.

[38] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. on
Electronic Comp., vol. EC-13, pp. 14–17, 1964.

[39] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, 1965.

[40] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Computer,
vol. 22, no. 8, pp. 786–793, 1973.

[41] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Computer, vol. 31, no. 3, pp. 260–264, 1982.

[42] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal
of the ACM, vol. 27, no. 4, pp. 831–838, 1980.

[43] A. A. R. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler,
“Equivalence checking using gröbner bases,” in FMCAD. IEEE, 2016,
pp. 169–176.

[44] R. Drechsler, B. Becker, and S. Ruppertz, “K*BMDs: A new data
structure for verification,” in European Design & Test Conf. IEEE
Computer Society, 1996, pp. 2–8.

[45] S. Höreth and R. Drechsler, “Dynamic minimization of word-level
decision diagrams,” in DATE. IEEE Computer Society, 1998, pp. 612–
617.

[46] M. Temel, “Vescmul: Verified implementation of S-C-Rewriting for
multiplier verification,” in TACAS. Springer, 2024, pp. 340–349.

[47] W. Hunt, M. Kaufmann, J. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philos. Trans. R. Soc.
A, vol. 375, p. 20150399, 2017.

[48] D. Kaufmann, M. Fleury, and A. Biere, “The proof checkers pacheck
and pastèque for the practical algebraic calculus,” in FMCAD. IEEE,
2020, pp. 264–269.

[49] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Formal design
of arithmetic circuits based on arithmetic description language,” IEICE
Trans. Fundamentals, vol. 89-A, pp. 3500–3509, 2006.

[50] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Recent Findings in Boolean Techniques, R. Drechsler and D. Große,
Eds. Springer International Publishing, 2021, pp. 177–191.

[51] ——, “Genmul,” 2023. [Online]. Available: https://ics.jku.at/research/
sca-verification/genmul/

[52] M. Temel, “Fast multplier generator multgen,” 2019. [Online].
Available: https://github.com/temelmertcan/multgen

[53] A. Konrad and C. Scholl, “Benchmarks, binaries and experimental
data,” 2024. [Online]. Available: https://abs.informatik.uni-freiburg.de/
src/projects view.php?projectID=24

[54] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in CAV, 2010, pp. 24–40.

[55] “ABC: A system for sequential synthesis and verification,” available at
https://people.eecs.berkeley.edu/∼alanmi/abc/, 2019.

271

https://ics.jku.at/research/sca-verification/genmul/
https://ics.jku.at/research/sca-verification/genmul/
https://github.com/temelmertcan/multgen
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://people.eecs.berkeley.edu/~alanmi/abc/

	Introduction
	Preliminaries
	SCA for Verification
	Multiplier Circuits
	Specification Polynomial for Unsigned Multipliers

	Review of Existing Approaches
	Backward Rewriting with Phase and Order Optimization
	Phase Optimization
	Backward Rewriting with Dynamic Order Optimization
	Simple Certifiability

	Experimental Results
	Conclusions and Future Work
	References

