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Abstract

Recent methods based on Symbolic Computer Algebra (SCA) have shown great success in formal verification of multipliers
and – more recently – of dividers as well. Here we give an overview of our work published in [1–3] which enhances SCA-
based verification by the computation of satisfiability don’t cares for so-called (Extended) Atomic Blocks (EABs) and by
Delayed Don’t Care Optimization (DDCO) for optimizing polynomials during backward rewriting. The optimization is
reduced to Integer Linear Programming (ILP). Whereas the basic methods using SCA failed for divider verification, using
those novel methods we are able to verify (formally and fully automatically) large gate level implementations of several
divider architectures (with bit widths up to 512).

1 Introduction and Background

Arithmetic circuits are important components in processor
designs as well as in special-purpose hardware for compu-
tationally intensive applications like signal processing and
cryptography. At the latest since the famous Pentium bug
[4] in 1994, where a subtle design error in the divider
had not been detected by Intel’s design validation (leading
to erroneous Pentium chips brought to the market), it has
been widely recognized that incomplete simulation-based
approaches are not sufficient for verification and formal
methods should be used to verify the correctness of arith-
metic circuits. Nowadays the design of circuits containing
arithmetic is not only confined to the major processor ven-
dors, but is also done by many different suppliers of special-
purpose embedded hardware who cannot afford to employ
large teams of specialized verification engineers being able
to provide human-assisted theorem proofs. Therefore the
interest in fully automatic formal verification of arithmetic
circuits is growing more and more.
In particular the verification of multiplier and divider cir-
cuits formed a major problem for a long time. Both BDD-
based methods [5, 6] and SAT-based methods [7] for multi-
plier and divider verification do not scale to large bit widths.
Nevertheless, there has been great progress during the last
few years for the automatic formal verification of gate-level
multipliers. Methods based on Symbolic Computer Alge-
bra (SCA) were able to verify large, structurally complex,
and highly optimized multipliers. In this context, finite field
multipliers [8], integer multipliers (e.g. [9–16]), and modu-
lar multipliers [17] have been considered. Here the verifica-
tion task has been reduced to an ideal membership test for
the specification polynomial based on so-called backward
rewriting, proceeding from the outputs of the circuit in di-
rection of the inputs.
Research approaches for divider verification were lagging
behind for a long time. Attempts to use Decision Diagrams

for proving the correctness of an SRT divider [18] were con-
fined to a single stage of the divider (at the gate level) [19].
Methods based on word-level model checking [20] looked
into SRT division as well, but considered only a special
abstract and clean sequential (i.e., non-combinatorial) di-
vider without gate-level optimizations. Other approaches
like [21], [22], or [23] looked into fixed division algorithms
and used semi-automatic theorem proving with ACL2, An-
alytica, or Forte to prove their correctness. Nevertheless, all
those efforts did not lead to a fully automated verification
method suitable for gate-level dividers.
A side remark in [24] (where actually multiplier verification
with *BMDs was considered) seemed to provide an idea for
a fully automated method to verify integer dividers as well.
Hamaguchi et al. start with a *BMD representing Q×D+R
(where Q is the quotient, D the divisor, and R the remainder
of the division) and use a backward construction to replace
the bits of Q and R step by step by *BMDs representing the
gates of the divider. The goal is to finally obtain a *BMD
representation for the dividend R(0) which proves the cor-
rectness of the divider circuit. Unfortunately, the approach
has not been successful in practice: Experimental results
showed exponential blow-ups of *BMDs during the back-
ward construction.
Recently, there have been several approaches to fully auto-
matic divider verification that had the goal to catch up with
successful approaches to multiplier verification: Among
those approaches, [25] is mainly confined to division by con-
stants and cannot handle general dividers due to a memory
explosion problem. [26] works at the gate level, but assumes
that hierarchy information in a restoring divider is present.
Using this hierarchy information it decomposes the proof
obligation R(0) = Q×D+R into separate proof obligations
for each level of the restoring divider. Nevertheless, the ap-
proach scales only to medium-sized bit widths (up to 21 as
shown in the experimental results of [26]).
In the following we give a brief review of SCA for verifi-
cation (Sect. 2) and of (simple) divider circuits (Sect. 3). In
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Figure 1: Circuit with series of substitutions.

Sect. 4 we summarize the reasons why divider verification is
not as easy as it might seem from a high-level point of view
and in Sect. 5 we give an overview of our approach.

2 SCA for Verification

For the presentation of SCA we basically follow [1]. SCA
based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Gröb-
ner basis representation of the ideal. The ideal membership
test is performed using polynomial division. While Gröbner
basis theory is very general and, e.g., can be applied to finite
field multipliers [8] and truncated multipliers [14] as well,
for integer arithmetic it boils down to substitutions of vari-
ables for gate outputs by polynomials over the gate inputs
(in reverse topological order), if we choose an appropriate
“term order” (see [11], e.g.). Here we restrict ourselves to
exactly this view.
For integer arithmetic we consider polynomials over binary
variables (from a set X = {x1, . . . ,xn}) with integer coef-
ficients, i. e., a polynomial is a sum of terms, a term is a
product of a monomial with an integer, and a monomial is a
product of variables from X . Polynomials represent pseudo-
Boolean functions f : {0,1}n 7→ Z.
As a simple example consider the full adder from Fig. 1.
The full adder defines a pseudo-Boolean function fFA :
{0,1}3 7→ Z with fFA(a0,b0,c) = a0 +b0 + c. We can com-
pute a polynomial representation for fFA by starting with a
weighted sum 2c0+s0 (called the “output signature” in [10])
of the output variables. Step by step, we replace the vari-
ables in polynomials by the so–called “gate polynomials”.
This replacement is performed in reverse topological or-
der of the circuit, see Fig. 1. We start by replacing c0 in
2c0 + s0 by its gate polynomial h2 + h3 − h2h3 (which is
derived from the Boolean function c0 = h2 ∨ h3). Finally,
we arrive at the polynomial a0 + b0 + c (called the “input
signature” in [10]) representing the pseudo-Boolean func-
tion defined by the circuit. During this procedure (which is
called backward rewriting) the polynomials are simplified
by reducing powers vk of variables v with k > 1 to v (since
the variables are binary), by combining terms with identical
monomials into one term, and by omitting terms with lead-
ing factor 0. We can also consider a0 + b0 + c = 2c0 + s0
as the “specification” of the full adder. The circuit imple-
ments a full adder iff backward substitution, now starting
with 2c0 + s0− a0− b0− c instead of 2c0 + s0, reduces the
“specification polynomial” to 0 in the end. (This is the no-
tion usually preferred in SCA-based verification.)
The correctness of the method relies on the fact that poly-
nomials (with the above mentioned simplifications resp.
normalizations) are canonical representations of pseudo-
Boolean functions (up to reordering of the terms). (This is
formulated as Lemma 1 in [2] and proven in [1], e.g..)

3 Divider Circuits

In the following we briefly review textbook know-
ledge on dividers. We use 〈an, . . . ,a0〉 := ∑

n
i=0 ai2i and

[an, . . . ,a0]2 := (∑n−1
i=0 ai2i)− an2n for interpretations of bit

vectors (an, . . . ,a0) ∈ {0,1}n+1 as unsigned binary numbers
and two’s complement numbers, respectively. The leading
bit an is called the sign bit. An unsigned integer divider is a
circuit with the following property:

Definition 1. Let (r(0)2n−2 . . .r
(0)
0 ) be the dividend with sign bit

r(0)2n−2 = 0 and value R(0) := 〈r(0)2n−2 . . .r
(0)
0 〉= [r(0)2n−2 . . .r

(0)
0 ]2,

(dn−1 . . .d0) be the divisor with sign bit dn−1 = 0 and
value D := 〈dn−1 . . .d0〉 = [dn−1 . . .d0]2, and let 0 ≤ R(0) <
D · 2n−1. Then (qn−1 . . .q0) with value Q = 〈qn−1 . . .q0〉
is the quotient of the division and (rn−1 . . .r0) with value
R = [rn−1 . . .r0]2 is the remainder of the division, if R(0) =
Q ·D+R (verification condition 1 = “vc1”) and 0≤ R < D
(verification condition 2 = “vc2”).

The simplest algorithm to compute quotient and remainder
is restoring division which is the “school method” to com-
pute quotient bits and “partial remainders” R( j). In each step
it subtracts a shifted version of D. If the result is less than
0, the corresponding quotient bit is 0 and the shifted ver-
sion of D is “added back”, i. e., “restored”. Otherwise the
quotient bit is 1 and the algorithm proceeds with the next
smaller shifted version of D. Non-restoring division opti-
mizes restoring division by combining two steps of restor-
ing division in case of a negative partial remainder: adding
the shifted D back and (tentatively) subtracting the next D
shifted by one position less. These two steps are replaced by
just adding D shifted by one position less (which obviously
leads to the same result). More precisely, non-restoring di-
vision works according to Alg. 1.

Algorithm 1 Non-restoring division.
1: R(1) := R(0)−D ·2n−1;
2: if R(1) < 0 then qn−1 := 0 else qn−1 := 1;
3: for j = 2 to n do
4: if R( j−1) ≥ 0 then
5: R( j) := R( j−1)−D ·2n− j

6: else
7: R( j) := R( j−1)+D ·2n− j ;
8: if R( j) < 0 then qn− j := 0 else qn− j := 1;
9: R := R(n)+(1−q0) ·D;

For dividers it is near at hand to start backward rewriting not
with polynomials for the binary representations of the output
words (which is basically done for multiplier verification),
but with a polynomial for Q ·D+R. For a correct divider one
would expect to obtain a polynomial for R(0) after backward
rewriting. As an alternative one could also start with Q ·D+
R−R(0) and one would expect that for a correct divider the
result after backward rewriting is 0. This would be a proof
for verification condition (vc1). (Then it remains to show
that 0≤ R < D (vc2) which we verified in [1–3] as well.)

4 Challenges of Divider Verification

We want to summarize the reasons why divider verifica-
tion is not as easy as it might seem from a high-level point
of view. Fig. 2 shows such a high-level view on the non-
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Figure 2: High-level view of a non-restoring divider.

restoring division algorithm. Stage 1 implements a sub-
tractor, stages j with j ∈ {2, ...,n} implement conditional
adders / subtractors depending on the value of qn− j+1, and
stage n + 1 implements an adder. If we start backward
rewriting with the polynomial Q ·D + R− R(0) (which is
quadratic in n) and if backward rewriting processes the gates
in the circuit in a way that the stages shown in Fig. 2 are
processed one after the other, then we would expect the
following polynomials on the corresponding cuts (see also
Fig. 2): We would expect (∑n−1

i=1 qi2i + 20) ·D+R(n)−R(0)

for the polynomial at cut n which is obtained after process-
ing stage n+ 1, since stage n+ 1 enforces R = R(n)+(1−
q0) ·D. For j = n to 2 we would (by induction) expect
(∑n−1

i=n− j+2 qi2i +2n− j+1) ·D+R( j−1)−R(0) for the polyno-
mial at cut j− 1 after processing stage j, since stage j en-
forces R( j) = R( j−1)− qn− j+1(D · 2n− j)+ (1− qn− j+1)(D ·
2n− j) = R( j−1)+(1−2qn− j+1)(D ·2n− j). Finally, the poly-
nomial at cut 0 after processing stage 1 using the equation
R(1) = R(0)−D ·2n−1 would reduce to 0.
Unfortunately, considering usual optimizations in imple-
mentations of non-restoring dividers the polynomials rep-
resented at the cuts between stages are different from this
high-level derivation. The reason lies in the fact that the
stages do not really implement signed addition / subtraction.
In general, signed addition / subtraction of two (2n−1)-bit
numbers leads to a 2n-bit number. The leading bit of the
result can only be omitted, if “no overflow occurs”. The
fact that no overflow occurs results from the input constraint
0 ≤ R(0) < D · 2n−1 of the divider and from the way the re-
sults of the different stages are computed [1]. Usual im-
plementations even go one step further: By additional argu-
ments using the input constraint and the circuit functionality
it can be shown that it is not only possible to omit overflow
bits of the adder / subtractor stages, but it is even possible
to omit the computation of one further most significant bit.
For a detailed analysis see [2, 3].
These considerations lead to an optimized implementation
shown in Fig. 3 for n = 4, e.g.. (For simplicity, we present
the circuit before propagation of constants which is done
however in the real implemented circuit.) In summary, it is
important to note that (1) the stages in Fig. 3 cannot be seen
as real adder / subtractor stages as shown in the high-level
view from Fig. 2, (2) backward rewriting leads to polyno-
mials at the cuts which are different from the ones shown in
Fig. 2, and (3) unfortunately those polynomials have (prov-
ably) exponential sizes.
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Figure 3: Optimized non-restoring divider, n = 4.

5 Overview of our Approach

Our approaches in [1, 2] work on the gate level, but they do
not need any hierarchy information which may have been
lost during logic optimization. They prove the correctness
of non-restoring dividers by “backward rewriting” starting
with the “specification polynomial” Q×D+R−R(0) (sim-
ilar to [24], with polynomials instead of *BMDs as internal
data structure). Backward rewriting performs substitutions
of gate output variables with the gates’ specification polyno-
mials in reverse topological order. They try to prove dividers
to be correct by finally obtaining the 0-polynomial. The
main insight of [1,2] is the following: The backward rewrit-
ing method definitely needs “forward information propaga-
tion” to be successful, otherwise it provably fails due to ex-
ponential sizes of intermediate polynomials. Forward infor-
mation propagation relies on the fact that the divider needs
to work only within a range of allowed divider inputs (lead-
ing to input constraints like 0 ≤ R(0) < D · 2n−1). [1] uses
SAT-based information propagation (SBIF) of the input con-
straint in order to derive information on equivalent and an-
tivalent signals, whereas [2] uses BDDs to compute satisfi-
ability don’t cares which result from the structure of the di-
vider circuit as well as from the input constraint. The don’t
cares are used to minimize the sizes of polynomials. In that
way, exponential blowups in polynomial sizes which would
occur without don’t care optimization could be effectively
avoided. Since polynomials are only changed for input val-
ues which do not occur in the circuit if only inputs from the
allowed range are applied, the verification with don’t care
optimization remains correct. In [2] the computation of op-
timized polynomials is reduced to suitable Integer Linear
Programming (ILP) problems.
In our most recent work [3] we made two additional con-
tributions to improve [1] and [2]: First, we modified the
computation of don’t cares leading to increased degrees of
flexibility for the optimization of polynomials. Instead of
computing don’t cares at the inputs of “atomic blocks” like
full adders, half adders etc., which were detected in the gate



level netlist, we combined atomic blocks and surrounding
gates into larger fanout-free cones, leading to so-called Ex-
tended Atomic Blocks (EABs), prior to the don’t care compu-
tation. Second, we replaced local don’t care optimization by
Delayed Don’t Care Optimization (DDCO). Whereas local
don’t care optimization immediately optimizes polynomials
w.r.t. a don’t care cube as soon as the polynomial contains
the input variables of the cube, DDCO only adds don’t care
terms to the polynomial, but delays the optimization until
a later time. This method has two advantages: First, by
looking at the polynomial later on, we can decide whether
exploitation of certain don’t cares is needed at all, and sec-
ondly, the later (delayed) optimization will take the effect
of following substitutions into account and thus uses a more
global view for optimization.
Using those novel methods we were able to successfully
verify different large gate-level dividers (with bit widths up
to 512 bits).
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