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Abstract—Dependency quantified Boolean formulas (DQBFs)

are a powerful formalism, which subsumes quantified Boolean
formulas (QBFs) and allows an explicit specification of depen-
dencies of existential variables on universal variables. Driven
by the needs of various applications which can be encoded by
DQBFs in a natural, compact, and elegant way, research on DQBF
solving has emerged in the past few years. However, research
focused on closed DQBFs in prenex form (where all quantifiers
are placed in front of a propositional formula) and non-prenex
DQBFs have almost not been studied in the literature. In this
paper we provide a formal definition for syntax and semantics
of non-closed non-prenex DQBFs and prove useful properties
enabling quantifier localization. Moreover, we make use of our
theory by integrating quantifier localization into a state-of-the-
art DQBF solver. Experiments with prenex DQBF benchmarks
including those from the QBFEVAL’18 competition clearly show
that quantifier localization pays off in this context.

I. INTRODUCTION
During the last two decades enormous progress in the solution
of quantifier-free Boolean formulas (SAT) has been observed.
Nowadays, SAT solving is successfully used in many applica-
tions, e. g., in planning [1], automatic test pattern generation [2],
[3], and formal verification of hard- and software systems [4],
[5], [6]. Motivated by the success of SAT solvers, efforts have
been made, e. g., [7], [8], [9], [10], to consider the more general
formalism of quantified Boolean formulas (QBFs).

Although QBFs are capable of encoding decision problems
in the PSPACE complexity class, they are not powerful enough
to succinctly encode many natural and practical problems that
involve decisions under partial information. For example, the
analysis of games with incomplete information [11], topolog-
ically constrained synthesis of logic circuits [12], synthesis
of safe controllers [13], synthesis of fragments of linear-
time temporal logic (LTL) [14], and verification of partial
designs [15], [16] fall into this category and require an even
more general formalism, which is known as dependency
quantified Boolean formulas (DQBFs) [11].

Unlike QBFs, where an existential variable implicitly de-
pends on all the universal variables preceding its quantification
level, DQBFs admit that the dependency sets are explicitly
specified. Essentially the dependency specifiable quantifications
correspond to Henkin quantifiers [17]. The semantics of a
DQBF can be interpreted from a game-theoretic viewpoint
as a game played by one universal player and multiple non-
cooperative existential players with incomplete information,
each partially observing the moves of the universal player as
specified by his/her own dependency set. A DQBF is true
if and only if the existential players have winning strategies.
This specificity of dependencies allows DQBF encodings to
be exponentially more compact than their equivalent QBF
counterparts. In contrast to the PSPACE-completeness of QBF,
the decision problem of DQBF is NEXPTIME-complete [11].

Driven by the needs of the applications mentioned above,
research on DQBF solving has emerged in the past few
years, leading to solvers such as IDQ [18], dCAQE [19], and
HQS [20], [21], [22].

As an example for a DQBF, consider the formula
∀x1∀x2∃y1(x1)∃y2(x2) : (x1 ∧ x2) ≡ (y1 ≡ y2). The DQBF

asks whether there are choices for y1 only depending on the
value of x1, denoted ∃y1(x1), and for y2 only depending on
x2, denoted ∃y2(x2), such that the Boolean formula after the
quantifier prefix evaluates to true for all assignments to x1
and x2. The Boolean formula in turn states that the existential
variables y1 and y2 have to be equal iff x1 and x2 are true.
Since y1 can only ‘see’ x1 and y2 only x2, y1 and y2 ‘cannot
coordinate’ to satisfy the constraint. Thus, the formula is false.

So far, syntax and semantics of DQBFs have been defined
only for closed prenex forms (see for instance [12]), i. e., for
DQBFs where all quantifiers are placed in front of the matrix
and all variables occurring in the matrix are either universally
or existentially quantified. In this paper, we consider quantifier
localization for DQBF, which transforms prenex DQBFs into
non-prenex DQBFs for more efficient DQBF solving.

Quantifier localization for QBF has been used with great
success for image and preimage computations in the context of
sequential equivalence checking and symbolic model checking
where it has been called “early quantification”. Here existential
quantifiers were moved over AND operations [23], [24], [25],
[26]. In [27] the authors consider quantifier localization for
QBFs where the matrix is restricted to conjunctive normal
form (CNF). They move universal and existential quantifiers
over AND operations and propose a method to construct a tree-
shaped quantifier structure from a QBF instance with linear
quantifier prefix. Moreover, they show how to benefit from this
structure in the QBF solving phase. This work has been used
and generalized in [28] for a QBF solver based on symbolic
quantifier elimination.

To the best of our knowledge, quantifier localization has
not been considered for DQBF so far, apart from the seminal
theoretical work on DQBF by Balabanov et al. [12], which
considers – as a side remark – quantifier localization for
DQBF, transforming prenex DQBFs into non-prenex DQBFs.
For quantifier localization they gave two propositions. However,
a formal definition of the semantics of non-prenex DQBFs was
missing in that work and, in addition, the two propositions are
not sound, as we will show in our paper.

In this paper, we provide a formal definition of syntax and
semantics of non-prenex non-closed DQBFs. The semantics
is based on Skolem functions and is a natural generalization
of the semantics for closed prenex DQBFs known from the
literature. We introduce an alternative constructive definition
of the semantics and show that both semantics are equivalent.
Then we define rules for transforming DQBFs into equivalent or
equisatisfiable DQBFs, which enable the translation of prenex
DQBFs into non-prenex DQBFs. The rules are similar to
their QBF counterparts, but it turns out that some of them
need additional conditions for being sound for DQBF as well.
Moreover, the proof techniques are completely different from
those for their corresponding QBF counterparts. We provide
proofs for all the rules.1 Finally, we show a method that
transforms a prenex DQBF into a non-prenex DQBF based on
those rules. It is inspired by the method constructing a tree-

1 We omitted some of the more technical proofs to increase the readability.
They are available in [29] as a technical report .
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shaped quantifier structure from [27] and works for DQBFs
with an arbitrary formula (circuit) structure for the matrix. The
approach tries to push quantifiers “as deep into the formula”
as possible. Whenever a sub-formula fulfills conditions, which
we will specify in Sect. III, it is processed by symbolic
quantifier elimination. When traversing the structure back,
quantifiers which could not be eliminated are pulled back
into the direction of the root. At the end, a prenex DQBF
solver is used for the simplified formula. Experimental results
demonstrate the benefits of our method applied to a set of
4811 DQBF benchmarks (including QBFEVAL’18 competition
benchmarks).

The paper is structured as follows: In Sect. II we provide
preliminaries needed to understand the paper, including existing
transformation rules for QBFs. Sect. III contains the main
conceptual results of the paper whereas Sect. IV shows how to
make use of them algorithmically. Sect. V presents experimental
results and Sect. VI concludes the paper.

II. PRELIMINARIES
Let ϕ, κ be quantifier-free Boolean formulas over the set V
of variables and v ∈ V . We denote by ϕ[κ/v] the Boolean
formula which results from ϕ by replacing all occurrences of v
(simultaneously) by κ. For a set V ′ ⊆ V we denote by A(V ′)
the set of Boolean assignments for V ′, i. e., A(V ′) =

{
µ �� µ :

V ′ → {0, 1}
}
. As usual, for a Boolean assignment µ ∈ A(V ′)

and V ′′ ⊆ V ′ we denote the restriction of µ to V ′′ by µ |V ′′ .
For each formula ϕ over V , a variable assignment µ ∈ A(V )
induces a truth value 0 or 1 of ϕ, which we call µ(ϕ). If
µ(ϕ) = 1 for all µ ∈ A(V ), then ϕ is a tautology. In this case
we write � ϕ.

A Boolean function with the set of input variables V is
a mapping f : A(V ) → {0, 1}. The set of Boolean functions
over V is denoted by FV . The support of a function f ∈ FV is
denoted by supp( f ) ⊆ V . The constant zero and constant one
function are 0 and 1, resp. A quantifier-free Boolean formula
ϕ over V defines a Boolean function fϕ : A(V ) → {0, 1}
by fϕ (µ) := µ(ϕ). When clear from the context, we do not
differentiate between quantifier-free Boolean formulas and
the corresponding Boolean functions, e. g., if ϕ is a Boolean
formula representing fϕ , we write ϕ[v′/v] for the Boolean
function where the input variable v is replaced by a (new)
input variable v′.

Now we consider Boolean formulas with quantifiers. The
usual definition for a closed prenex DQBF is given as follows:

Definition 1 (Closed prenex DQBF). Let V = {x1, . . . , xn,
y1, . . . , ym} be a set of Boolean variables. A dependency
quantified Boolean formula (DQBF) ψ over V has the form
ψ := ∀x1∀x2 . . .∀xn∃y1(Dy1 )∃y2(Dy2 ) . . . ∃ym(Dym ) : ϕ
where Dyi ⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency
set of yi , and ϕ is a quantifier-free Boolean formula over V,
the matrix of ψ.

We denote the set of universal variables of ψ by
V ∀ψ = {x1, . . . , xn} and its set of existential variables by
V ∃ψ = {y1, . . . , ym}. The former part of ψ, ∀x1∀x2 . . .∀xn
∃y1(Dy1 )∃y2(Dy2 ) . . . ∃ym(Dym ), is called its prefix. Some-
times we abbreviate this prefix as Q such that ψ = Q : ϕ.

The semantics of closed prenex DQBFs is given as follows:

Definition 2 (Semantics of closed prenex DQBF). Let ψ be
a DQBF with matrix ϕ as above. ψ is satisfiable iff there
are functions syi : A(Dyi ) → {0, 1} for 1 ≤ i ≤ m such that
replacing each yi by (a Boolean formula for) syi turns ϕ into
a tautology. Then the functions (syi )i=1,...,m are called Skolem
functions for ψ.

A DQBF is a QBF, if its dependency sets satisfy certain
conditions:

Definition 3 (Closed prenex QBF). Let V = {x1, . . . , xn,
y1, . . . , ym} be a set of Boolean variables. A quantified Boolean
formula (QBF) (more precisely, a closed QBF in prenex normal
form) ψ over V is given by ψ := ∀X1∃Y1 . . .∀Xk∃Yk : ϕ,
where k ≥ 1, X1, . . . , Xk is a partition of the universal
variables {x1, . . . , xn}, Y1, . . . ,Yk is a partition of the existential
variables {y1, . . . , ym}, Xi , ∅ for i = 2, . . . , k, and Yj , ∅ for
j = 1, . . . , k − 1, and ϕ is a quantifier-free Boolean formula
over V.

A QBF can be seen as a DQBF where the dependency
sets are linearly ordered. A QBF ψ := ∀X1∃Y1 . . .∀Xk∃Yk :
ϕ is equivalent to the DQBF ψ ′ := ∀x1 . . .∀xn∃y1(Dy1 ) . . .
∃ym(Dym ) : ϕ with Dyi =

⋃`
j=1 X j where Ỳ is the unique set

with yi ∈ Ỳ , 1 ≤ ` ≤ k, 1 ≤ i ≤ m.
Quantifier localization for QBF is based on the following

theorem (see, e. g., [27]) which can be used to transform
prenex QBFs into equisatisfiable non-prenex QBFs (where
the quantifiers are not necessarily placed before the matrix).
Two QBFs ψ1 and ψ2 are equisatisfiable (ψ1 ≈ ψ2), when ψ1
is satisfiable iff ψ2 is satisfiable.

Theorem 1. Let � ∈ {∧,∨}, let Q ∈ {∃,∀}, Q = ∃, if Q = ∀ and
Q = ∀ otherwise. Let V free

ψ be the set of all variables occurring
in ψ which are not bound by a quantifier. The following holds
for all QBFs:

¬(Qx : ψ) ≈ Qx : (¬ψ) (1a)

Qx : ψ ≈ ψ, if x < V free
ψ (1b)

∀x : (ψ1 ∧ ψ2) ≈ (∀x : ψ1) ∧ (∀x : ψ2) (1c)
∃x : (ψ1 ∨ ψ2) ≈ (∃x : ψ1) ∨ (∃x : ψ2) (1d)

Qx : (ψ1 �ψ2) ≈
(
ψ1 � (Qx : ψ2)

)
, if x < V free

ψ1
(1e)

Qx1 Qx2 : ψ ≈ Qx2 Qx1 : ψ (1f)

III. NON-CLOSED NON-PRENEX DQBFS
A. Syntax and Semantics
In this section, we define syntax and semantics of non-prenex
DQBFs. Since the syntax definition is recursive, we need non-
closed DQBFs as well.

Definition 4 (Syntax). Let V be a finite set of Boolean variables.
Let ϕ−v result from ϕ by removing v from the dependency sets
of all existential variables in ϕ.

The set Φncnp of non-closed non-prenex DQBFs in negation
normal form (NNF) over V as well as their existential, universal,
and free variables are defined by the following rules. As usual,
Φncnp is defined to be the smallest set satisfying those rules.

1) If v ∈ V, then v ∈ Φncnp, V ∃v = ∅, V ∀v = ∅, V free
v = {v}.

2) If v ∈ V, then ¬v ∈ Φncnp, V ∃¬v = ∅, V ∀¬v = ∅, V free
¬v =

{v}.
3) If ϕ1 ∈ Φ

ncnp, ϕ2 ∈ Φ
ncnp, (?), then ψ = (ϕ1 ∧ ϕ2) ∈

Φncnp,
V ∃ψ = V ∃ϕ1 ∪̇ V ∃ϕ2 , V ∀ψ = V ∀ϕ1 ∪̇ V ∀ϕ2 , V free

ψ = V free
ϕ1 ∪ V free

ϕ2 .
4) If ϕ1 ∈ Φ

ncnp, ϕ2 ∈ Φ
ncnp, (?), then ψ = (ϕ1 ∨ ϕ2) ∈

Φncnp,
V ∃ψ = V ∃ϕ1 ∪̇ V ∃ϕ2 , V ∀ψ = V ∀ϕ1 ∪̇ V ∀ϕ2 , V free

ψ = V free
ϕ1 ∪ V free

ϕ2 .
5) If ϕ ∈ Φncnp, v ∈ V free

ϕ , Dv ⊆ V \ (V ∃ϕ ∪̇ V ∀ϕ ∪̇ {v}),
then ψ = ∃v(Dv) : ϕ−v ∈ Φncnp,
V ∃ψ = V ∃ϕ ∪̇ {v}, V ∀ψ = V ∀ϕ , V free

ψ = V free
ϕ \ {v}.

6) If ϕ ∈ Φncnp, v ∈ V free
ϕ , then ψ = ∀v : ϕ ∈ Φncnp,

V ∃ψ = V ∃ϕ , V ∀ψ = V ∀ϕ ∪̇ {v}, V free
ψ = V free

ϕ \ {v}.

Here the condition (?) means
(
V ∃ϕ1 ∪̇ V ∀ϕ1

)
∩

(
V ∃ϕ2 ∪̇ V ∀ϕ2

)
=

∅ ∧ V free
ϕ1 ∩ (V ∃ϕ2 ∪̇ V ∀ϕ2 ) = ∅ ∧ V free

ϕ2 ∩ (V ∃ϕ1 ∪̇ V ∀ϕ1 ) = ∅.
We set Vψ = V ∃ψ ∪̇ V ∀ψ ∪̇ V free

ϕ for ψ ∈ Φncnp.



Remark 1. For the sake of simplicity, in Def. 4 we assume that
variables are either free or bound by some quantifier, but not
both, and that no variable is quantified more than once. Every
formula that violates this assumption can easily be brought into
the required form by renaming variables. We restrict ourselves
to NNF, since prenex DQBFs are not syntactically closed under
negation [12]. For closed prenex DQBFs the (quantifier-free)
matrix can be simply transformed into NNF by applying De
Morgan’s rules and omitting double negations (exploiting that
x ≡ ¬¬x) at the cost of a linear blow-up of the formula.

Definition 5 (Skolem Function Candidates). For a DQBF
ψ over variables Vψ in NNF, we define a Skolem function
candidate as a mapping from existential and free variables to
functions over universal variables s : V free

ψ ∪̇ V ∃ψ → FV∀ψ with

1) supp
(
s(v)

)
= ∅ for all v ∈ V free

ψ , i. e., s(v) ∈ {0, 1},
and

2) supp
(
s(v)

)
⊆

(
Dv ∩ V ∀ψ

)
for all v ∈ V ∃ψ .

Sψ is the set of all such Skolem function candidates.

That means, Sψ is the set of all Skolem function candidates
satisfying the constraints imposed by the dependency sets of
the existential and free variables.

Notation 1. Given s ∈ Sψ for a DQBF ψ ∈ Φncnp, we write
s(ψ) for the formula that results from ψ by replacing each
variable v for which s is defined by s(v) and omitting all
quantifiers from ψ, i. e., s(ψ) is a quantifier-free Boolean
formula, containing only variables from V ∀ψ .

Definition 6 (Semantics of DQBFs in NNF). Let ψ ∈ Φncnp.
We define the semantics JψK of ψ as follows: JψK :=

{
s ∈ Sψ ��

� s(ψ)
}
=

{
s ∈ Sψ ��∀µ ∈ A(V ∀ψ ) : µ(s(ψ)) = 1

}
. ψ is

satisfiable if JψK , ∅; otherwise we call it unsatisfiable. The
elements of JψK are called Skolem functions for ψ.

The semantics JψK of ψ is the subset of Sψ such that for
all s ∈ JψK we have: Replacing each free or existential variable
v ∈ V free

ψ ∪̇V ∃ψ with a Boolean expression for s(v) turns ψ into
a tautology.

Example 1. Consider the DQBF

ψ := ∀x1∀x2 : (x1 ≡ x2) ∨ (∃y1(x2) : (x1 . y1)).

y1 with dependency set {x2} is the only existential variable in
ψ and there are no free variables. Thus Sψ = {y1 7→ 0, y1 7→
1, y1 7→ x2, y1 7→ ¬x2}. It is easy to see that s = y1 7→ x2 is a
Skolem function for ψ, since � s(ψ) =

(
(x1 ≡ x2) ∨ (x1 . x2)

)
,

and that the other Skolem function candidates do not define
Skolem functions.

Remark 2. For closed prenex DQBFs the semantics defined
here obviously coincides with the usual semantics as specified
in Def. 2 if we transform the (quantifier-free) matrix into NNF
first.

Remark 3. A (non-prenex) DQBF ψ is a (non-prenex) QBF
if every existential variable depends on all universal variables
in whose scope it is (and possibly on free variables as well).

The following theorem provides a constructive characteri-
zation of the semantics of a DQBF ψ.
Theorem 2. The set JψK for a DQBF ψ over variables Vψ in
NNF can be characterized recursively as follows:

JvK =
{
s ∈ Sv �� s(v) = 1

}
for v ∈ Vψ, (2a)

J¬vK =
{
s ∈ S¬v �� s(v) = 0

}
for v ∈ Vψ, (2b)

Jϕ1 ∧ ϕ2K =
{
s ∈ Sψ �� (2c)
s
|V free
ϕ1 ∪̇V

∃
ϕ1
∈ Jϕ1K ∧ s

|V free
ϕ2 ∪̇V

∃
ϕ2
∈ Jϕ2K

}
,

Jϕ1 ∨ ϕ2K =
{
s ∈ Sψ �� (2d)
s
|V free
ϕ1 ∪̇V

∃
ϕ1
∈ Jϕ1K ∨ s

|V free
ϕ2 ∪̇V

∃
ϕ2
∈ Jϕ2K

}
,

J∃v(Dv ) : ϕ−vK = Jϕ−vK, (2e)

J∀v : ϕK =
{
t ∈ Sψ

��� (2f)

∃s0, s1 ∈ JϕK : s0 (v) = 0 ∧ s1 (v) = 1 ∧
∀w ∈ V free

ψ : t (w) = s0 (w) = s1 (w) ∧

∀w ∈ V∃ψ, v < Dw : t (w) = s0 (w) = s1 (w) ∧

∀w ∈ V∃ψ, v ∈ Dw : t (w) = ITE
(
v, s1 (w), s0 (w)

)}

For the proof as well as for the following example, we
denote the semantics defined in Def. 6 by JψKD (i. e., JψKD =
{s ∈ Sψ | � s(ψ)}) and the set that is characterized by Thrm. 2
by JψKT .

Proof: JψKD = JψKT is shown by induction on the structure
of ψ, for details see [29].

The following example illustrates the recursive characteri-
zation of Thrm. 2 (and again the recursive Def. 4).

Example 2. Let us consider the DQBF ψ from Ex. 1 again.
We compute JψKT recursively. As an abbreviation for (¬x1 ∧
y1) ∨ (x1 ∧ ¬y1), (x1 . y1) is a DQBF based on rules 1–4
of Def. 4 with V ∃x1.y1

= V ∀x1.y1
= ∅, V free

x1.y1
= {x1, y1}. With

Thrm. 2, (2a)–(2d) we get Jx1 . y1KT = {s : {y1, x1} →
F∅ | s(y1) , s(x1)}. For ψ ′ = (∃y1(x2) : (x1 . y1)), we obtain
by rule 5: V ∀ψ′ = ∅, V ∃ψ′ = {y1}, V free

ψ′ = {x1}. According to
Thrm. 2, (2e) we have J∃y1(x2) : (x1 . y1)KT = Jx1 . y1KT .
Similarly we obtain Jx1 ≡ x2KT = {s : {x1, x2} → F∅ | s(x1) =
s(x2)}. Then, for ψ ′′ = (x1 ≡ x2) ∨ (∃y1(x2) : (x1 . y1)) we
have V ∀ψ′′ = ∅, V ∃ψ′′ = {y1}, V free

ψ′′ = {x1, x2}, and by Thrm. 2,
(2d) Jψ ′′KT = {s : {x1, x2, y1} → F∅ |

(
s(x1), s(x2), s(y1)

)
∈

{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}}.
Now we consider ∀x2 : ψ ′′. V ∀

∀x2:ψ′′ = {x2}. V ∃
∀x2:ψ′′ = {y1},

V free
∀x2:ψ′′ = {x1}. We use (2f) to construct J∀x2 : ψ ′′KT . In prin-

ciple, there are 3 possible choices s0 ∈ Jψ ′′KT with s0(x2) = 0
and 3 possible choices s1 ∈ Jψ ′′KT with s1(x2) = 1. Due to
the constraint s0(x1) = s1(x1) in the third line of (2f), there
remain only 4 possible combinations s(1)

0 , s(1)
1 , . . . , s(4)

0 , s(4)
1 :

•
(
s(1)

0 (x1), s(1)
0 (x2), s(1)

0 (y1)
)
= (0, 0, 0),(

s(1)
1 (x1), s(1)

1 (x2), s(1)
1 (y1)

)
= (0, 1, 1), leading to

t (1) (x1) = 0, t (1) (y1) = ITE(x2, s
(1)
1 (y1), s(1)

0 (y1)) =
ITE(x2, 1, 0) = x2,

•
(
s(2)

0 (x1), s(2)
0 (x2), s(2)

0 (y1)
)
= (0, 0, 1),(

s(2)
1 (x1), s(2)

1 (x2), s(2)
1 (y1)

)
= (0, 1, 1), leading to

t (2) (x1) = 0, t (2) (y1) = ITE(x2, s
(2)
1 (y1), s(2)

0 (y1)) =
ITE(x2, 1, 1) = 1,

•
(
s(3)

0 (x1), s(3)
0 (x2), s(3)

0 (y1)
)
= (1, 0, 0),(

s(3)
1 (x1), s(3)

1 (x2), s(3)
1 (y1)

)
= (1, 1, 0), leading to

t (3) (x1) = 1, t (3) (y1) = ITE(x2, s
(3)
1 (y1), s(3)

0 (y1)) =
ITE(x2, 0, 0) = 0,

•
(
s(4)

0 (x1), s(4)
0 (x2), s(4)

0 (y1)
)
= (1, 0, 0),(

s(4)
1 (x1), s(4)

1 (x2), s(4)
1 (y1)

)
= (1, 1, 1), leading to

t (4) (x1) = 1, t (4) (y1) = ITE(x2, s
(4)
1 (y1), s(4)

0 (y1)) =
ITE(x2, 1, 0) = x2.

Altogether, J∀x2 : ψ ′′KT = {t (1), t (2), t (3), t (4) }.
Finally, for ψ = ∀x1∀x2 : ψ ′′ we have V ∀ψ = {x1, x2},

V ∃ψ = {y1}, V free
ψ = ∅. For the choice of s0 and s1 in (2f) we need

s0(x1) = 0, s1(x1) = 1 and, due to x1 < Dy1 , s0(y1) = s1(y1)
(see fourth line of (2f)). Thus, the only possible choice is
s0 = t (1) and s1 = t (4) and t(y1) = x2 is the only possible



Skolem function for ψ. This result agrees with the Skolem
function computed using Def. 6 in Ex. 1.

B. Equivalent and Equisatisfiable DQBFs
Now we define rules for replacing DQBFs by equivalent and
equisatisfiable ones.

Definition 7 (Equivalence and Equisatisfiability). Let ψ1, ψ2 ∈
Φncnp. We call them equivalent (written ψ1 ≡ ψ2) if Jψ1K = Jψ2K;
they are equisatisfiable (written ψ1 ≈ ψ1) if Jψ1K = ∅ ⇔ Jψ2K =
∅ holds.

Now we prove Thrm. 3, which is the DQBF counterpart to
Thrm. 1 for QBF.
Theorem 3. Let � ∈ {∧,∨} and Q ∈ {∃,∀}, ϕ, ϕ1, ϕ2 ∈ Φ

ncnp.
We assume that x ′ and y′ are fresh variables, which do
not occur in ϕ, ϕ1, and ϕ2. The following equivalences and
equisatifiabilities hold for all DQBFs in NNF.

∀x : ϕ ≈ ϕ, if x < Vϕ (3a)

∀x : ϕ ≡ ϕ[0/x] ∧ ϕ2[1/x], if V∀ϕ = V
∃
ϕ = ∅ (3b)

∀x : (ϕ1 ∧ ϕ2) ≈
(
∀x : ϕ1

)
∧

(
∀x′ : ϕ2[x′/x]

)2 (3c)
∃y(Dy ) : (ϕ1 ∨ ϕ2) ≈

(
∃y(Dy ) : ϕ1

)
(3d)

∨
(
∃y′(Dy ) : ϕ2[y′/y]

)
∀x : (ϕ1 � ϕ2) ≡

(
ϕ1 � (∀x : ϕ2)

)
, (3e)

if x < Vϕ1 and x < Dy for all y ∈ V∃ϕ1
∃y(Dy ) : (ϕ1 � ϕ2) ≡

(
ϕ1 � (∃y(Dy ) : ϕ2)

)
, if y < Vϕ1 (3f)

∃y1 (Dy1 ) ∃y2 (Dy2 ) : ϕ ≡ ∃y2 (Dy2 ) ∃y1 (Dy1 ) : ϕ (3g)
∀x1 ∀x2 : ϕ ≡ ∀x2 ∀x1 : ϕ (3h)

∀x ∃y(Dy ) : ϕ ≡ ∃y(Dy ) ∀x : ϕ, if x < Dy . (3i)

Note that the duality of ∃ and ∀ under negation as in
QBF (∃ϕ ≡ ¬∀¬ϕ) does not hold for DQBF as DQBFs are
not syntactically closed under negation [12]. Moreover, the
existential counterpart of (3a) does not make much sense, since
by Thrm. 2 we have J∃v(Dv) : ϕ−vK = Jϕ−vK.

Example 3. We give an example that shows that – in contrast to
(1e) of Thrm. 1 for QBF – the condition x < Dy for all y ∈ V ∃ϕ1
is really needed in (3e), if � = ∨. We consider the satisfiable
DQBF ψ = ∀x1∀x2 : (x1 ≡ x2) ∨ (∃y1(x2) : (x1 . y1)) from
Ex. 1 again. First of all, neglecting the above condition, we
could transform ψ into ψ ′ = ∀x1 :

(
(∀x2 : (x1 ≡ x2)) ∨

(∃y1(x2) : (x1 . y1))
)

which is not well-formed according to
Def. 4. However, by renaming x2 into x ′2 in the dependency
set of y1 we would arrive at a well-formed DQBF ψ ′′ = ∀x1 :(
(∀x2 : (x1 ≡ x2)) ∨ (∃y1(x ′2) : (x1 . y1))

)
. According to

Def. 5 the only possible Skolem function candidates for y1 in
ψ ′′ are 0 and 1. It is easy to see that neither inserting 0 nor 1
for y1 turns ψ ′′ into a tautology, thus ψ ′′ is unsatisfiable and
therefore not equisatisfiable with ψ.

Whereas the proof of Thrm. 1 for QBF is rather easy using
the equisatisfiabilities ∃y : ϕ ≈ ϕ[0/y] ∨ ϕ[1/y] and ∀x : ϕ ≈
ϕ[0/x] ∧ ϕ[1/x], the proof of Thrm. 3 is more involved:

Proof: (3a): Since x < Vϕ , V free
∀x:ϕ = V free

ϕ and V ∃
∀x:ϕ = V ∃ϕ

and V ∀
∀x:ϕ = V ∀ϕ ∪ {x}. If JϕK , ∅, then for each s ∈ JϕK with

� s(ϕ) we also have � s(∀x : ϕ). Now assume J∀x : ϕK , ∅ and
s ∈ J∀x : ϕK. Since � s(∀x : ϕ), we have � s(ϕ) and � s(ϕ)[c/x]
for an arbitrary constant c ∈ {0, 1}. Since x < Vϕ , s(ϕ)[c/x]
results from s(ϕ) by replacing x in the Skolem functions for
existential variables in ϕ by the constant c. Altogether we have
found Skolem functions s′ for ϕ where s′(v) does not depend
on x for v ∈ V ∃ϕ , i. e., s′ ∈ JϕK.

(3b): The statement easily follows from Thrm. 2, (2f)
considering that ϕ contains only free variables. Let ψ1 = ∀x : ϕ,

2By ϕ2[x′/x] we mean that all occurrences of x are replaced by x′, including
the occurrences in dependency sets.

ψ2 = ϕ[0/x] ∧ ϕ2[1/x]. We have Sψ1 = Sψ2 and Jψ1K =
{
t ∈

Sψ1
��∃s0, s1 ∈ JϕK : s0(x) = 0 ∧ s1(x) = 1 ∧ ∀w ∈ V free

ψ1
:

t(w) := s0(w) = s1(w)
}
= Jψ2K.

(3c): We set ψ1 := ∀x : (ϕ1 ∧ ϕ2) and ψ2 := (∀x : ϕ1) ∧
(∀x ′ : ϕ2[x′/x]). The proof follows from the fact that, for a
Skolem function t, t(ϕ1) ∧ t(ϕ2) can only be a tautology, if
t(ϕ1) and t(ϕ2) are tautologies. A detailed proof can be found
in [29].

(3d): We set ψ1 := ∃y(Dy ) : (ϕ1 ∨ ϕ2) and ψ2 :=
(∃y(Dy ) : ϕ1) ∨ (∃y′(Dy ) : ϕ2[y′/y]). This case is analogous
to the previous case and needs the additional argument that
t(ϕ1) ∨ t(ϕ2) can only be tautology if t(ϕ1) or t(ϕ2) is a
tautology, because the variables occurring in t(ϕ1) and t(ϕ2)
are disjoint.

(3e): Let ψ1 := ∀x : (ϕ1 � ϕ2) and ψ2 := (ϕ1 � (∀x : ϕ2))
and assume that x < Vϕ1 and x < Dy for any y ∈ V ∃ϕ1 . From
x < Dy for any y ∈ V ∃ϕ1 we conclude that Sψ1 = Sψ2 . Then we
have: Jψ1K =

{
s ∈ Sψ1

�� � s(∀x : (ϕ1 � ϕ2))
}
=

{
s ∈ Sψ1

�� �
s(ϕ1 � ϕ2)

}
=

{
s ∈ Sψ1

�� � s(ϕ1 � (∀x : ϕ2))
}
=

{
s ∈ Sψ2

�� �
s(ϕ1 � (∀x : ϕ2))

}
, since Sψ1 = Sψ2 , and finally Jψ1K = Jψ2K.

(3f): Let ψ1 := ∃y(Dy ) : (ϕ1�ϕ2) and ψ2 := ϕ1� (∃y(Dy ) :
ϕ2). Note that we need y < Vϕ1 , since otherwise ψ2 would not
be well-formed according to Def. 4. The following equalities
hold:

Jψ1K =
{
s ∈ Sψ1

�� � s(∃y(Dy ) : (ϕ1 � ϕ2))
}
=

{
s ∈

Sψ1
�� � s(ϕ1 � ϕ2)

}
=

{
s ∈ Sψ1

�� � s(ϕ1 � (∃y(Dy ) : ϕ2))
}
={

s ∈ Sψ2
�� � s(ϕ1 � (∃y(Dy ) : ϕ2))

}
, since Sψ1 = Sψ2 , and

finally Jψ1K = Jψ2K.
(3g): By applying Thrm. 2, Eqn. (2e) multiple times, we

get: J∃y1(Dy1 )∃y2(Dy2 ) : ϕK = J∃y2(Dy2 ) : ϕK = JϕK =
J∃y1(Dy1 ) : ϕK = J∃y2(Dy2 )∃y1(Dy1 ) : ϕK.

(3h): We set ψ1 := ∀x1∀x2 : ϕ and ψ2 := ∀x2∀x1 : ϕ. Then
we have: Jψ1K = J∀x1∀x2 : ϕK =

{
s ∈ Sψ1

�� � s(∀x1∀x2 : ϕ)
}
={

s ∈ Sψ1
�� � s(ϕ)

}
=

{
s ∈ Sψ2

�� � s(ϕ)
}
, since Sψ1 = Sψ2 , and

then Jψ1K =
{
s ∈ Sψ2

�� � s(∀x2∀x1 : ϕ)
}
= Jψ2K.

(3i): We set ψ1 := ∀x∃y(Dy ) : ϕ and ψ2 := ∃y(Dy )∀x : ϕ.
First note that ∃y(Dy )∀x : ϕ is not well-formed according

to Def. 4 if x ∈ Dy , because x is universal in ∀x : ϕ. With
x < Dy we show that Jψ1K = Jψ2K. We have: Jψ1K =

{
s ∈

Sψ1
�� � s(∀x∃y(Dy ) : ϕ)

}
=

{
s ∈ Sψ1

�� � s(ϕ)
}
. Because x < Dy ,

the Skolem function candidates for y in ψ1 are restricted to
constant functions. The same holds for y in ψ2. Therefore
Sψ1 = Sψ2 is true. So we can write: Jψ1K =

{
s ∈ Sψ2

�� � s(ϕ)
}
={

s ∈ Sψ2
�� � s(∃y(Dy )∀x : ϕ)

}
= Jψ2K.

Remark 4. Note that rules (3c) and (3d) would actually
establish equivalence instead of equisatisfiability, if we would
not have decided to forbid in the formal definition (for sake of
simplicity) that variables are quantified more than once.

The next theorem shows that (3e) can be strengthened, if
we confine ourselves to ∧ and consider equisatisfiability only:

Theorem 4. Let ϕ ∈ Φncnp be a DQBF and let ∀x : (ϕ1 ∧ ϕ2)
be a subformula of ϕ with x < Vϕ1 . Then ϕ ≈ ϕ′ where ϕ′

results from ϕ by replacing the subformula ∀x : (ϕ1 ∧ ϕ2) by(
ϕ−x1 ∧ (∀x : ϕ2)

)
.

Proof: (Sketch) Let ψ = ∀x : (ϕ1 ∧ ϕ2) and ψ ′ =
(
ϕ−x1 ∧

(∀x : ϕ2)
)
. Note that we need x < Vϕ1 , since otherwise ψ ′

would not be well-formed according to Def. 4. We have to
prove equisatisfiability of ϕ and ϕ′. It is easy to see that for each
Skolem function s′ of ϕ′, � s′(ϕ′) implies � s′(ϕ). Now assume
a Skolem function s of ϕ, i. e., � s(ϕ) or µ(s(ϕ)) = 1 ∀µ ∈
A(V ∀ϕ ). We can show by contradiction that s can be transformed
into another Skolem function s′ by replacing for all existential
variables v ∈ V ∃ϕ1 s(v) with s′(v) = s(v)[c/x] with an arbitrary



constant c ∈ {0, 1} inserted for x. The proof by contradiction
uses the facts that ϕ is in negation normal form, i. e., s(ϕ)
(s′(ϕ)) is a tree of or and and operations with the inputs
replaced by negated or non-negated Skolem functions according
to s (s′) and thus shows certain monotonicity properties, ϕ1
and ϕ2 are connected by an ∧-operation (not by ∨), x is only
contained in the subformula ψ / ψ ′ of ϕ, and µ(s(ϕ)) = 1
for all µ ∈ A(V ∀ϕ ). It is easy to see that s′ is then a Skolem
function for ϕ′. The detailed proof can be found in [29].

Finally, we prove a theorem which is needed for our
algorithm taking advantage of quantifier localization. It shows
that, under certain conditions, we can do symbolic quantifier
elimination for non-prenex DQBFs as it is known from QBFs:

Theorem 5. Let ϕ1 ∈ Φ
ncnp be a DQBF and let ∃y(Dy ) : ϕ2

be a subformula of ϕ1 such that ϕ2 does not include any
quantification and includes only variables from Dy∪V free

ϕ1 ∪{v ∈

V ∃ϕ1 | Dv ⊆ Dy }. Then ϕ1 ≈ ϕ
′
1 where ϕ′1 results from ϕ1 by

replacing the subformula ∃y(Dy ) : ϕ2 by ϕ2[0/y] ∨ ϕ2[1/y].
Proof: (Sketch) We show equisatisfiability by proving that

Jϕ′1K , ∅ implies Jϕ1K , ∅ and vice versa.
First assume that there is a Skolem function s′ ∈ Jϕ′1K with �

s′(ϕ′1). We define s ∈ Sϕ1 by s(v) = s′(v) for all v ∈ V ∃
ϕ′1
∪V free

ϕ′1
and s(y) = s′(ϕ2[1/y]). The fact that s ∈ Sϕ1 follows from the
restriction that ϕ2 contains only variables from Dy∪V free

ϕ1 ∪{v ∈

V ∃ϕ1 | Dv ⊆ Dy }, i. e., supp(s(y)) = supp(s′(ϕ2[1/y])) ⊆ Dy .
� s(ϕ1) follows by some rewriting from a result in [30] proving
that quantifier elimination can be done by composition, i. e.,
ϕ2[ϕ2[1/y]/y] is equivalent to ϕ2[0/y] ∨ ϕ2[1/y].

Now assume s ∈ Jϕ1K with � s(ϕ1) and define s̃ just by
removing y from the domain of s. In a first step we change s into
s′′ by replacing s(y) with s′′(y) = s̃(ϕ2)[1/y]. We conclude �
s′′(ϕ1) from [30] and monotonicity properties of ϕ1 in negation
normal form. In a second step we use [30] again to show that
s′′(ϕ1) is equivalent to s̃(ϕ′1). Thus finally � s̃(ϕ′1). Again, the
detailed proof can be found in [29].

C. Refuting Propositions 4 and 5 from [12]
A first paper looking into quantifier localization for DQBF was
[12]. To this end, they proposed Propositions 4 and 5 which
are unfortunately unsound. We literally repeat Proposition 4
from [12]:

Proposition 4 ([12]). The DQBF ∀~x∃y1(S1) . . . ∃ym(Sm) :
(φA ∨ φB) where ∀~x denotes ∀x1 . . .∀xn, sub-formula φA
(respectively φB) refers to variables XA ⊆ X and YA ⊆ Y
(respectively XB ⊆ X and YB ⊆ Y), is logically equivalent to

∀~xc ((∀~xa∃ya1 (Sa1 ∩ XA) . . . ∃yap (Sap ∩ XA) : φA)∨
(∀~xb∃yb1 (Sb1 ∩ XB) . . . ∃ybq (Sbq ∩ XB) : φB)),

where variables ~xc are in XA∩XB, variables ~xa are in XA\XB,
variables ~xb are in XB \ XA, yai ∈ YA, and yb j ∈ YB.

Lemma 1. Proposition 4 is unsound.

Proof: Consider the following DQBF

ψ1 := ∀x1∀x2∃y1(x2) :
(
(x1 ≡ x2)︸     ︷︷     ︸

φA

∨ (x1 . y1)︸     ︷︷     ︸
φB

)
By (3f), ψ1 is equisatisfiable with ψ from Ex. 1 and thus

satisfiable. According to Proposition 4 we can identify the sets
XA = {x1, x2}, XB = {x1}, YA = ∅, and YB = {y1}. and rewrite
the formula to ψ2 := ∀x1 :

(
(∀x2 : (x1 ≡ x2)) ∨ (∃y1(∅) :

(x1 . y1))
)
. This formula, in contrast to ψ1, is unsatisfiable

because the only Skolem functions candidates for y1 are 0

and 1. Both Skolem function candidates do not turn ψ2 into a
tautology.

In the example from the proof, the “main mistake” was to
replace Dy1 = {x2} by ∅. If this were correct, then the remainder
would follow from (3f) and (3e).

Remark 5. Proposition 4 of [12] is already unsound when we
consider the commonly accepted semantics of closed prenex
DQBFs as stated in Def. 2. The proposition claims that ψ1

is equisatisfiable with ψ2 . Additionally, it claims that ψ3 :=
∀x1∀x2∃y1(∅) :

(
(x1 ≡ x2) ∨ (x1 . y1)

)
is equisatisfiable with

ψ2. Due to transitivity of equisatisfiability, Proposition 5 claims
that ψ1 is equisatisfiable with ψ3. However, according to the
semantics in Def. 2, ψ1 is satisfiable and ψ3 unsatisfiable. Also
note that ψ1 and ψ3 are actually QBFs; so Proposition 4 is
also unsound when restricted to QBFs.

Next we literally repeat Proposition 5 from [12]:

Proposition 5 ([12]). The DQBF ∀~x∃y1(S1) . . . ∃yk (Sk )(φA∧
φB) where ∀~x denotes ∀x1 . . .∀xn, sub-formula φA (respec-
tively φB) refers to variables XA ⊆ X and YA ⊆ Y (respectively
XB ⊆ X and YB ⊆ Y), is logically equivalent to

∀~x∃y2(S2) . . . ∃yk (Sk )((∃y1(S1 ∩ XA)(φA)) ∧ φB)
for y1 < YB.

Lemma 2. Proposition 5 is unsound.

Proof: For a counterexample, consider the formula

ψ4 :=∀x1∀x2∃y1(x1, x2)∃y2(x1, x2) :
(y1 ≡ ¬y2)︸       ︷︷       ︸

φA

∧ (y2 ≡ (x1 ∧ x2))︸               ︷︷               ︸
φB

.

with the corresponding variable sets XA = ∅, XB = {x1, x2},
YA = {y1, y2}, and YB = {y2}. We have y1 < YB and {x1, x2} ∩
XA = ∅. Proposition 5 says that ψ4 is equisatisfiable with:

ψ5 :=∀x1∀x2∃y2(x1, x2) :(
∃y1(∅) : (y1 ≡ ¬y2)

)
∧ (y2 ≡ (x1 ∧ x2)) .

The formula ψ4 is satisfiable; the Skolem function s with
s(y1) = ¬(x1 ∧ x2) and s(y2) = (x1 ∧ x2) is in JψK.

The formula ψ5, however, is unsatisfiable: Since Dψ5

y1 = ∅,
there are only two Skolem function candidates for y1, either
s(y1) = 0 or s(y1) = 1. In the first case, we need to find a
function for y2 such that (0 ≡ ¬y2)∧ (y2 ≡ (x1∧ x2)) becomes
a tautology. In order to satisfy the first part, 0 ≡ ¬y2, we need to
set s(y2) = 1. Then the formula can be simplified to (x1 ∧ x2),
which is not a tautology. In the second case, s(y1) = 1, we
get the expression (1 ≡ ¬y2) ∧ (y2 ≡ (x1 ∧ x2)). This requires
to set s(y2) = 0 in order to satisfy the first part, turning the
formula into 0 ≡ (x1 ∧ x2), or more concisely, ¬(x1 ∧ x2),
which is neither a tautology. Therefore we can conclude that
ψ5 is unsatisfiable and, accordingly, Proposition 5 of [12] is
unsound.

For Proposition 5 we make a similar observation as for
Proposition 4:

Remark 6. Also Proposition 5 of [12] is already unsound
when we consider the commonly accepted semantics of closed
prenex DQBFs as stated in Def. 2. The proposition claims
that ψ4 is equisatisfiable with ψ5. Additionally, it claims that
ψ6 := ∀x1∀x2∃y1(∅)∃y2(x1, x2) : (y1 ≡ ¬y2)∧(y2 ≡ (x1∧x2))
is equisatisfiable with ψ5. Due to transitivity of equisatisfiability,
Proposition 5 claims that ψ4 ≈ ψ6 holds. However, according
to the semantics in Def. 2, ψ4 is satisfiable and ψ6 unsatisfiable.
Again, ψ4 and ψ6 are actually QBFs; so Proposition 5 is also
unsound when restricted to QBFs.



Algorithm 1: DQBFQuantLoc
input : DQBF ψ := Q : ϕ

Q := ∀x1 . . . ∀xn∃y1 (Dy1 ) . . . ∃ym (Dym )
ϕ has an arbitrary structure given as AIG

output : DQBF ψ′
1 ψnp := NormalizeToNNF(ψ);
2 ψnp := BuildMacroGates(ψnp);
3 ψnp := Localize(ψnp);
4 ψ′ := Eliminate(ψnp);
5 return ψ′

IV. TAKING ADVANTAGE OF QUANTIFIER LOCALIZATION
In this section, we explain the implementation of the algorithm
that exploits the properties of non-prenex DQBFs to simplify
a given formula. First, we define necessary concepts and give
a coarse sketch of the algorithm. Then, step by step, we dive
into the details.

Benedetti introduced in [27] quantifier trees for pushing
quantifiers into a CNF. In a similar way we construct a quantifier
graph, which is an AIG-like structure to perform quantifier
localization according to Thrms. 3 and 4.

Definition 8 (Quantifier Graph). For a non-prenex DQBF ψnp,
a quantifier graph is a directed acyclic graph G = (N, E). N
denotes the set of nodes of G. Each node n ∈ N is labeled
with an operation � ∈ {∧,∨} from ψnp if n is an inner node,
or with a variable v ∈ Vψnp if it is a terminal node. E is a
set of edges. Each edge is possibly augmented with quantified
variables and / or negations.

The input to the basic algorithm for quantifier localization
(DQBFQuantLoc) shown in Alg. 1 is a closed prenex DQBF
ψ. The matrix ϕ of ψ is represented as an And-Inverter-Graph
(AIG) and the prefix Q is a set of quantifiers as stated in
Def. 1. (If the matrix is initially given in CNF, we preprocess
it by circuit extraction (see for instance [28], [21]) and the
resulting circuit is then represented by an AIG.) The output of
DQBFQuantLoc is a DQBF in closed prenex form again. In
intermediate steps, we convert ψ into a non-prenex DQBF ψnp,
represented as a quantifier graph, by pushing quantifiers of the
prefix into the matrix. After pushing the quantified variables
as deep as possible into the formula, we eliminate quantifiers
wherever it is possible. If a quantifier cannot be eliminated, it
is pulled out of the formula again. In this manner we finally
obtain a modified and possibly simplified prenex DQBF ψ ′.

∨

∨ ∨

∧ ∧ ∧ ∧

∨ ∨y1 x1 x1 x2 y1 x1

x2 y2 x2 y2

∀x1∀x2∃y1(x1)∃y2(x2)

Fig. 1: Quantifier graph in NNF.

In Line 1 of Alg. 1,
we first translate the
matrix ϕ of the DQBF
ψ into negation normal
form (NNF) by push-
ing the negations in the
circuit to the primary
inputs (using De Mor-
gan’s law). The result-
ing matrix in NNF is
represented as a quanti-
fier graph as in Def. 8,
where we only have
negations at those edges which point to terminals. Fig. 1 shows
a quantifier graph as returned by NormalizeToNNF. We will
use it as a running example to illustrate our algorithm.

Then, in Line 2 of Alg. 1, we combine subcircuits into
AND / OR macrogates. The combination into macrogates is
essential to increase the degrees of freedom given by different
decompositions of ANDs / ORs that enable different applications
of the transformation rules according to Thrms. 3 and 4.
A macrogate is a multi-input gate, which we construct by
collecting consecutive nodes representing the same logic
operation. Except for the topmost node within a macrogate
no other node may have more than one incoming edge, i. e.,

Algorithm 2: Localize

input : Quantifier graph for DQBF ψnp

1 for each macrogate g in topological order of the quantifier graph do
2 Vcom := CollectCommonVariables(g); if g is a disjunction

then
3 for each existential variable y in Vcom do
4 push y to macrochildren;
5 delete y from Vcom;
6 end
7 while Vcom , ∅ do
8 v := FindBestVariableDis(Vcom);
9 try to push v to macrochildren;

10 delete v from Vcom;
11 end
12 else
13 while Vcom ∩V

∃
ψ , ∅ do

14 v := FindBestVariableCon(Vcom);
15 try to push v to macrochildren;
16 delete v from Vcom;
17 end
18 for each universal variable x in Vcom do
19 try to push x to macrochildren;
20 delete x from Vcom;
21 end
22 end
23 end

macrogates are subtrees of fanout-free cones. During the
collection of nodes, we stop the search along a path when
we visit a node with multiple parents. From this node we later
start a new search. The nodes which are the target of an edge
leaving a macrogate are the macrochildren of the macrogate
and the parents of its root are called the macroparents. It is
clear that a macrogate consisting of only one node has exactly
two children like a standard node. For such nodes we use the
terms macrogate and node interchangeably. In Fig. 2a we show
a macrogate found in the running example.

After calling NormalizeToNNF and BuildMacroGates the
only edge that carries quantified variables is the root edge. By
shifting quantified variables to edges below the root node we
push them into the formula. Sometimes we say that we push a
quantified variable to a child by which we mean that we write
the variable to the edge pointing to this child.

On the new DQBF ψnp we perform the localization of
quantifiers according to Thrm. 3 and 4 with the function
Localize in Line 2. Alg. 2 presents the details.

The quantifier graph is traversed topologically from the root
to the terminals. For each macrogate g we determine the set of
quantified variables Vcom that occur on all incoming edges of
g by CollectCommonVariables. These are the only ones which
we can push further into the graph. If an existential variable y
cannot be pushed because it does not appear on all incoming
edges, then all the universal variables in y’s dependency set
are also ruled out for pushing (see also (3i)).

In the following we can push existential variables always
before the universal variables due to (3i) (x < Dy holds for
∃y(Dy ) ∀x : ϕ by construction). Universal variables x can only
be pushed, if all existential variables y on the same edge do not
contain x in their dependency set (see (3i)). In Lines 3 and 13 of
Alg. 2 we distinguish between a disjunction and a conjunction.
In case g is a disjunction, at first we simply distribute each
existential variable y from Vcom to all macrochildren with y in
their supports according to (3d) or (3f) (see Fig. 2b). To push
a universal variable x from Vcom we can apply (3e). If there
is only one macrochild with x in its support and additionally
all other macrochildren have no existential variable in their
support which depends on x, then we can write x to the
single macrochild without further efforts. This child then can
be regarded as ϕ2 from (3e). However, if there are several
macrochildren with x or existential variables depending on
x in their support, (and at least one other macrochild), then
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∀x1∀x2∃y1(x1)∃y2(x2)

(a) A macrogate, marked in red.

∨

∨ ∨

∧ ∧ ∧ ∧

∨ ∨y1 x1 x1 x2 y1 x1

x2 y2 x2 y2

∀x1∀x2

∃y1(x1) ∃y1(x1) ∃y2(x2)

(b) ψnp after distributing y1,
y2 according to (3d) and (3f).
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(c) ψnp after collecting macro-
children to enable pushing x2.
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(d) ψnp after processing all macro-
gates.

Fig. 2: BuildMacroGates and LocalizeVariables.

the macrogate g has to be restructured and split to enable the
pushing as shown in Fig. 2c). We merge all children from the
first set mentioned above and treat them as ϕ2 from (3e), i. e.,
we decompose the OR macrogate g into one OR macrogate g′

combining the children in the first set, and another macrogate
g′′ (replacing g) whose children are the remaining children
of g as well as the new g′. Pushing x, we write ∀x on the
incoming edge of g′. The function FindBestVariableDis in
Line 9 determines the order of pushing universal variables (see
also (3h)). It greedily chooses the universal variables x first
where the number of macrochildren is maximal that neither
have x nor existential variables depending on x in their support.

If g is a conjunction, a decomposition of the macrogate g
can take place when we push existential quantifiers according
to (3f) (which we do first). Here we apply FindBestVariableCon
(Line 15) to determine the order of pushing (see also (3g)) with
a similar criterion as for the disjunction. Subsequently, only
universal variables are left for pushing. This is done by (3c),
(3e) or Thrm. 4. As mentioned above a universal variable x
cannot be pushed however, if there is some existential variable
y with x ∈ Dy left on the incoming edge of g, because it could
not be pushed.

The complete procedure is illustrated in Fig. 2.
Finally, in Line 3 of Alg. 1, we try to eliminate those

variables which can be symbolically quantified after quantifier
localization. The conditions are given by Thrm. 5 and (3b). We
proceed from the terminals to the root and check each edge
with at least one quantified variable written to it. If a variable
could not be eliminated, we pull it back to the incoming edges
of this edges’ source node. If a variable has been duplicated
according to (3c) or (3d) and some duplications are brought
back to one edge, then we merge them into a single variable
again.

As Fig. 2d shows, we can eliminate both occurrences of
variable y1 since there are no other variables in the support of
the target nodes. The same holds for y2 because x2 is the only
variable different from y2 in the support of the target node and
x2 is in the dependency set of y2. Subsequently, x2 and x1 can
be eliminated such that we obtain a constant function.

In general, having all remaining variables pulled back to the
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Fig. 3: HQS vs. HQSnp – solved instances

root edge, we return to a closed prenex DQBF with potentially
fewer variables, fewer dependencies and a modified matrix,
which we can pass back to a solver for prenex DQBFs.

V. EXPERIMENTAL RESULTS
We embedded our algorithm into the DQBF-solver HQS which
was the winner of the DQBF track of the QBFEVAL’18 com-
petition [31]. HQS includes the powerful DQBF-preprocessor
HQSpre [32]. After preprocessing has finished, we call the
algorithm DQBFQuantLocalization to simplify the formula.
HQS augmented with the localization of quantifiers is denoted
as HQSnp.3

The experiments were run on one core of an Intel Xeon
CPU E5-2650v2 with 2.6 GHz. The runtime per benchmark was
limited to 30 min and the memory consumption to 4 GB. We
tested our theory with the same 4811 instances as in [22] [33]
[34] [20]. They encompass equivalence checking problems for
incomplete circuits [15], [16], [35], [18], controller synthesis
problems [13] and instances from [36] where a DQBF has been
obtained from a SAT problem.

Out of 4811 DQBF instances we focus here on those 974
which actually reach our algorithm. The remaining ones are
solved by the preprocessor HQSpre or already exceed the time
/ memory limit either during preprocessing or while translating
the formula into an AIG, i. e., in those cases the results for
HQS and HQSnp do not differ.

When we reach the function DQBFQuantLocalization from
Alg. 1, for 963 out of 974 instances we can perform the
localization of quantifiers. Quantifier localization enables the
elimination of variables in subformulas in 840 instances. For
66918 times local quantifier elimination takes place and reduces
the number of variables in 591 benchmarks. Note that if a
variable has been doubled according to (3c) / (3d) and not all
of the duplicates are eliminated, this variable cannot be deleted
from the formula as some duplicates will be dragged back to
the root. The size of the AIG after DQBFQuantLocalization has
been decreased in 551 cases and has grown only in 286 cases,
although in general it is not unusual that symbolic quantifier
elimination increases the size of an AIG.

Altogether 689 instances out of 974 were solved by HQSnp
in the end, whereas HQS could only solve 531. This increases
the number of solved instances by 29.8% (for a cactus plot
comparing HQS with HQSnp see Fig. 3). The largest impact
of quantifier localization has been observed on equivalence
checking benchmarks for incomplete circuits from [35].

Fig. 4 shows the runtime for single benchmarks needed for
HQS resp. HQSnp. The figure reveals that quantifier localization,
in its current implementation, does not lead to a better result in
every case. 12 benchmarks have not been solved by HQSnp, but
by HQS. In all of these 12 instances the AIG sizes have grown
during local quantifier elimination and processing larger AIGs
resulted in larger run times. However, Fig. 4 also shows that
in most cases the run times of HQSnp are faster than those of

3Recent binary of HQSnp and all DQBF benchmarks we used are provided
at https://abs.informatik.uni-freiburg.de/src/projects view.php?projectID=21

https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=21


HQS. Moreover, 170 benchmarks have been solved by HQSnp,
but not by HQS.
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Fig. 4: HQS vs. HQSnp – time com-
parison

For the benchmarks
from QBFEVAL’18 the
situation is pretty sim-
ilar. 68 out of 334
benchmarks reach our
algorithm and in all
instances variables are
pushed into the for-
mula. On 20 bench-
marks variables are
eliminated locally and
this makes it possible
to solve 8 more in-
stances. Here, all in-
stances solved by HQS
have also been solved
by HQSnp and, alto-
gether, HQS solves 22 out of those 68 benchmarks whereas
HQSnp could solve 30 (36.4% more).

VI. CONCLUSIONS
In this paper, we presented syntax and semantics of non-prenex
DQBFs and proved rules to transform prenex DQBFs into
non-prenex DQBFs. We could demonstrate that we can achieve
significant improvements by extending the DQBF solver HQS
based on this theory. Simplifications of DQBFs were due to
symbolic quantifier eliminations that were enabled by pushing
quantifiers into the formula based on our rules for non-prenex
DQBFs.

In the future, we aim at improving the results of quantifier
localization, e.g. by introducing estimates on costs and benefits
of quantifier localization operations as well as local quantifier
elimination and by using limits on the growth of AIG sizes
caused by local quantifier elimination.
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