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Abstract—We consider Dependency Quantified Boolean For-
mulas (DQBFs), a generalization of Quantified Boolean Formulas
(QBFs), and demonstrate that DQBFs are a natural calculus to
exactly express the realizability problem of incomplete combi-
national and sequential circuits with an arbitrary number of
(combinational or bounded-memory) black boxes. In contrast
to usual approaches for controller synthesis, restrictions to the
interfaces of missing circuit parts in distributed architectures
are strictly taken into account. We present a solution method
for DQBFs together with the extraction of Skolem functions for
existential variables, which can directly serve as implementations
for the black boxes. First experimental results are provided.

I. INTRODUCTION

Solver-based techniques have proven to be successful in
many areas in computer-aided design, ranging from formal
verification of digital circuits [1], [2], [3], [4] over automatic
test pattern generation [5], [6] to circuit synthesis [7]. While
research on solving quantifier-free Boolean formulas (the
famous SAT-problem [8]) has reached a certain level of maturity,
designing and improving algorithms for quantified Boolean
formulas (QBFs) is one focus of active research. However,
there are applications like the verification of partial circuits [4],
[9], [10], the synthesis of safe controllers [7] for which QBF
is not expressive enough to provide a compact and natural
formulation. The reason is that QBF requires linearly ordered
dependencies of the existential variables on the universal ones:
Each existential variable implicitly depends on all universal
variables in whose scope it is. Relaxing this condition yields
so-called dependency quantified Boolean formulas (DQBFs).
DQBFs are strictly more expressive than QBFs in the sense
that an equivalent QBF formulation can be exponentially
larger than a DQBF formulation. This comes at the price
of a higher complexity of the decision problem: DQBF is
NEXPTIME-complete [11], compared to QBF, which is “only”
PSPACE-complete. Encouraged by the success of SAT and
QBF solvers and driven by the mentioned applications, research
on solving DQBFs has started during the last few years [12],
[13], [14], [15], yielding first prototypic solvers like IDQ [13]
and HQS [14].

In this paper, we focus on the application of DQBF for
analyzing incomplete combinational and sequential circuits.
Such incomplete circuits appear in early design stages, when
only a subset of the system’s modules has already been
implemented and verification is applied in order to find errors
in the available parts as early as possible. Incomplete circuits
also result if the complexity of the verification task is too high

and therefore some parts, which are supposed not to influence
the validity of some properties, e. g., multiplier or memory
modules, have been removed to make verification feasible.
Analyzing incomplete circuits is also useful if a designer wants
to localize errors (then one can remove parts of the design and if
for all possible implementations of the removed parts the error
does not disappear, the remaining parts must be erroneous).
Therefore this problem has received considerable attention in
the research community during the last 15 years, see, e. g., [4],
[16], [17], [18], [19], [20], [21]. All solver-based approaches
are restricted in the sense that they can either only handle a
single black box or do not take the interfaces of the black
boxes into account, allowing the black boxes to read signals
which are not available to them in the actual design.

We show how the realizability problem for incomplete
combinational and sequential circuits with an arbitrary number
of combinational or bounded-memory black boxes can be
expressed as a DQBF. Here we show for the first time a DQBF-
based solution for sequential circuits with several bounded-
memory black boxes where the exact interface of the black
boxes, i. e., the signals entering and leaving the black boxes,
can be taken into account. We also show that solving a DQBF
has the same complexity as deciding realizability. We not only
sketch how DQBFs are solved in our DQBF solver HQS [14],
[15], but also how so-called Skolem functions can be obtained
from the solution process, provided that the formula is satisfied.
These Skolem functions can directly serve as an implementation
of the black boxes.

This paper builds on different sources: [9], [10] applies
DQBF-based methods to incomplete combinational circuits
with combinational black boxes. SAT- and QBF-based tech-
niques for controller synthesis are considered in [7]; there a
footnote give hints how DQBF can be used for that purpose.
Due to the lack of efficient DQBF solvers at that time, this idea
was not investigated further. However the method described
there considers only a single black box which can read all
primary inputs and the complete state information. The basic
techniques implemented in our DQBF solver HQS have been
described in [14], and [15] defines preprocessing techniques
for DQBF, which speed-up the solution process considerably.

Structure of the Paper: In the next section, we in-
troduce dependency quantified Boolean formulas (DQBFs).
In Section III we describe, how realizability of incomplete
combinational and sequential circuits can be formulated as a
DQBF. Section IV presents a method to solve DQBFs and to
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obtain Skolem functions for satisfied DQBFs. In Section V
we give preliminary experimental results, and conclude the
paper in Section VI, pointing out challenges which need to be
solved.

II. FOUNDATIONS

Let ϕ, κ be quantifier-free Boolean formulas over the set V
of variables and v ∈ V . We denote by ϕ[κ/v] the Boolean
formula which results from ϕ by replacing all occurrences of
v (simultaneously) by κ. For a set V ′ ⊆ V , we denote by
A(V ′) the set of Boolean assignments for V ′, i. e., A(V ′) ={
ν
∣∣ ν : V ′ → {0, 1}

}
. For each formula ϕ over V , a variable

assignment ν to the variables in V induces a truth value 0 or
1 of ϕ, which we call ν(ϕ).

Definition 1 (Syntax of DQBF): Let V = {x1, . . . , xn,
y1, . . . , ym} be a set of Boolean variables. A dependency
quantified Boolean formula (DQBF) ψ over V has the form
ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ, where Dyi ⊆
{x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi,
and ϕ is a Boolean formula over V , called the matrix of ψ.
V ∀ψ = {x1, . . . , xn} denotes the set of universal and V ∃ψ =

{y1, . . . , ym} the set of existential variables. We often write
ψ = Q : ϕ with the quantifier prefix Q and the matrix ϕ.
Q\{v} denotes the prefix that results from removing a variable
v ∈ V from Q together with its quantifier. If v is existential,
then its dependency set is removed as well; if v is universal,
then all occurrences of v in the dependency sets of existential
variables are removed. Similarly we use Q∪

{
∃y(Dy)

}
to add

existential variables to the prefix. We sometimes assume that a
DQBF ψ = Q : ϕ as in Def. 1 with ϕ in conjunctive normal
form (CNF) is given. A formula is in CNF if it is a conjunction
of (non-tautological) clauses; a clause is a disjunction of literals,
and a literal is either a variable v or its negation ¬v. As usual,
we identify a formula in CNF with its set of clauses and a
clause with its set of literals. For a formula ϕ (resp. clause
C, literal l), var(ϕ) (resp. var(C), var(l)) means the set of
variables occurring in ϕ (resp. C, l), lit(ϕ) (lit(C)) means the
set of literals occurring in ϕ (C).

A quantified Boolean formula (QBF) (in prenex normal
form) is a DQBF such that Dy ⊆ Dy′ or Dy′ ⊆ Dy holds for
any two existential variables y, y′ ∈ V ∃ψ . Then the variables in
V can be ordered resulting in a linear quantifier prefix, such
that for each y ∈ V ∃ψ , Dy equals the set of universal variables
which are to the left of y.

The semantics of a DQBF is usually defined by so-called
Skolem functions.

Definition 2 (Semantics of DQBF): Let ψ be a DQBF as
above. It is satisfiable, iff there are functions sy : A(Dy)→ B
for y ∈ V ∃ψ such that replacing each y ∈ V ∃ψ by (a Boolean
expression for) sy turns ϕ into a tautology. The functions
(sy)y∈V ∃

ψ
are called Skolem functions for ψ.

Example 1: Consider the following DQBF:

∀x1∀x2∃y1(x1)∃y2(x2) : (x1 ∨ ¬y1) ∧ (x2 ∨ y1 ∨ y2)
Here the variable y1 depends only on x1, but not on x2;
y1 depends only on x2, but not on x1. It is satisfiable by

BB ⇒ BB

FF

FF

Fig. 1. Sequential circuits with extracted memory
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Fig. 2. Notation for incomplete sequential circuits

using the Skolem functions sy1(x1) = x1 and sy2(x2) =
¬x2. Replacing y1 and y2 by their Skolem functions yields
(x1 ∨ ¬x1) ∧ (x2 ∨ x1 ∨ ¬x2), which is obviously a tautology.

III. ANALYSIS OF INCOMPLETE CIRCUITS

In this section, we show how DQBFs can be used to analyze
incomplete combinational and sequential circuits. In both cases
we ask for realizability: Are there implementations of the
missing parts (“black boxes”) such that the complete circuit
satisfies its specification.

We assume that the missing parts are either combinational or
contain only a bounded amount of memory. In the latter case,
we can put the flipflops of the black boxes into the available
circuit part such that the incoming and outgoing signals of
these flipflops are written and read only by the black boxes as
sketched in Fig. 1.

Then the black boxes themselves are purely combinational.
Note that the case of several black boxes with an unbounded
amount of memory is undecidable [22].

We use the notation for incomplete sequential circuits as
sketched in Fig. 2. The primary inputs are denoted by ~x, the
current state by ~s, and the next state by ~s ′. The missing parts
are BB1, . . . ,BBn, whose interfaces, i. e., the signals entering
and leaving the black boxes, are known. The input signals
of black box BBi are denoted by ~Ii, its output signals by ~yi.
The input cone of black box BBi ensures the constraint ~Ii ≡
Fi(~s, ~x, ~y1, . . . , ~yi−1), the next state is described by trans :=
~s ′ ≡ R(~s, ~x, ~y1, . . . , ~yn). We assume w. l. o. g. that no black
box output is directly connected to an input of another black
box or a flipflop, i. e., ~yi∩~Ij = ∅ for all i, j and ~s ′∩~yj = ∅ for



all j. Otherwise a buffer is inserted between the two black boxes
without changing the functionality of the circuit. Additionally
we assume that there are no cyclic dependencies between the
combinational black boxes, i. e., that BBi only depends on the
outputs of BB1, . . . ,BBi−1.

We are considering invariant properties inv(~s, ~x, ~y1, . . . , ~yn),
defined over the primary inputs ~x, the current state ~s and the
black box outputs ~y1, . . . , ~yn, which are required to hold at
any time.

A. Combinational Circuits

The same notation as introduced above is also used for
combinational circuits. Here, the state and next state signals ~s
and ~s ′ as well as the memory elements are omitted.

Definition 3: The partial equivalence checking problem
(PEC) is defined as follows: Given an incomplete circuit Cimpl

and a (complete) specification Cspec, are there implementations
of the black boxes in Cimpl such that Cimpl and Cspec become
equivalent?

In the following we assume that (incomplete) implementation
Cimpl and specification Cspec are combined into a single circuit
using a miter construction: Corresponding primary inputs are
connected, corresponding outputs are connected via XOR gates.
The outputs of the XOR gates are combined via OR gates into
a single output signal. This output signal is constantly one iff,
for some implementation of the black boxes, the two circuits
are equivalent. This can be considered as a kind of invariant
property, valid at the primary output of the combined circuit.

We now show how DQBF can be used to decide PEC.
Consider a PEC with black boxes BB1, . . . ,BBn. We first

construct the quantifier prefix of the DQBF. The primary inputs
~x and the black box inputs ~I1, . . . , ~In are universally quantified,
all other variables are existentially quantified. The dependency
set of black box outputs ~yi contains exactly the inputs ~Ii of
BBi. Hence the quantifier prefix is

∀~x∀~I1 . . . ∀~In∃~y1(~I1) . . . ∃~ym(~Im) .

If the black boxes are not directly connected to the primary
inputs but to internal signals we have to take into account that
not all possible combinations of values may arrive at the inputs
of the black boxes. Since we use a universal quantification for
the black box inputs we have to ensure that our formula is
satisfied if the value of the black box inputs ~Ii deviates from
the values obtained as a function Fi(~x, ~I1, . . . , ~Ii−1).

ϕ(~x, ~I1, . . . , ~In, ~y1, . . . , ~yn) :=(
n∧
i=1

~Ii ≡ ~Fi

)
⇒ inv(~x, ~y1, . . . , ~yn) .

This formula is not necessarily given in CNF. By applying
Tseitin transformation [23], which is essentially introducing
auxiliary variables for the internal signals of the circuit, one
can obtain a CNF ϕ′ that is satisfiability equivalent to ϕ and
whose size is linear in the size of ϕ. Let ~a be the vector of
these auxiliary variables, which are existentially quantified
in the quantifier prefix. As their values are implied by the

values of the variables in their input cone, we can use as their
dependency sets either the universal variables in their input
cone or the set of all universal variables. We prefer the latter,
because this typically leads to DQBFs that are easier to solve.

The resulting DQBF is:

ψ := ∀~x∀~I1 . . . ∀~In∃~y1(~I1) . . . ∃~yn(~In)∃~a(~x, ~I1, . . . , ~In) :
ϕ′(~x, ~I1, . . . , ~In, ~y1, . . . , ~yn,~a) .

This formula ψ is satisfied iff we can replace all ~yi(~Ii) with
Skolem functions si(~Ii) such that ϕ′ becomes a tautology.
The Skolem functions si exist if and only if there are
implementations for the black boxes BBi of the PEC, such
that the PEC is satisfied. Therefore any PEC can be translated
with linear effort into a DQBF and the PEC is satisfied iff the
DQBF is satisfied.

It is easy to see that there is also the converse transforma-
tion [10]: Each DQBF can be turned into a PEC, having one
black box for each existential variable such that the PEC is
realizable iff the DQBF is satisfiable. This implies that PEC is
NEXPTIME-complete.

B. Sequential Circuits

For incomplete sequential circuits with multiple combinational
or bounded-memory black boxes, we investigate the following
problem:

Definition 4: The realizability problem for incomplete
sequential circuits (RISC) is defined as follows: Given an
incomplete sequential circuit with multiple combinational (or
bounded-memory) black boxes and an invariant property, are
there implementations of the black boxes such that in the
complete circuit the invariant holds at all times?

To decide RISC, one can apply a generalization of ideas
described in [7] for the synthesis of controllers (which are in
fact single black boxes with access to all state bits and all
primary circuit inputs).

According to the notations introduced in the previous section,
let ~s denote the variables encoding the current state of the
circuit, ~s ′ the next state, and ~x the primary inputs. The
formulas F1, . . . , Fn describe the input cones of the black
boxes, ~I1, . . . , ~In their inputs, ~y1, . . . , ~yn their outputs, and R
is the next state function of the circuit. Additionally we assume
that init represents the circuit’s initial state(s) and inv its states
that satisfy the invariant.

Definition 5: A subset W ⊆ S is a winning set if all states
in W satisfy the invariant and, for all values of the primary
inputs, the black boxes can ensure (by computing appropriate
values) that the successor state is again in W .

A given RISC is realizable if there is a winning set that
includes the initial state of the circuit. This can be formulated
as a DQBF. Similar to the combinational case, we have to
take into account that the black boxes are typically not directly
connected to the primary inputs, but to internal signals. This
is done by restricting the requirement that the successor state
is again a winning state to the case when the black box inputs
are assigned consistently with the values computed by their
input cones.
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Fig. 3. Sequential circuit with two black boxes
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Fig. 4. The same sequential circuit as in Fig. 3, but with a single black box

Theorem 1: Given a RISC as defined above, the following
DQBF is satisfied if and only if the RISC is realizable:

∀~s∀~s ′∀~x ∀~I1 . . . ∀~In ∃~y1(~I1) . . . ∃~yn(~In) ∃w(~s) ∃w′(~s ′) :(
init⇒ w

)
∧
(
w ⇒ inv

)
∧
(
~s ≡ ~s ′ ⇒ w ≡ w′

)
∧((

w ∧
n∧
i=1

~Ii ≡ ~Fi ∧ trans
)
⇒ w′

)
.

Theorem 2: RISC is NEXPTIME-complete.
Proof: The reduction to DQBF above shows that RISC

is in NEXPTIME. To show the hardness, we give a reduction
from DQBF to RISC. First we transform the DQBF into an
incomplete combinational circuit as shown in [9] such that the
output of the circuit is constantly 1 iff the DQBF is satisfied.
We now turn this combinational circuit into a sequential circuit
with two states by storing the output of the combinational
circuit in a 1-bit flipflop s. The initial state is s ≡ 1, the
invariant is given by s ≡ 1. The original DQBF is satisfied
iff the unsafe state 0 can be made unreachable by appropriate
black box implementations.

Example 2: We illustrate the solution of RISC using two
incomplete circuits in Fig. 3 and 4. The circuits are simple,
but still illustrate the basic idea. We first start with the circuit
in Fig. 3. The sequential circuit in Fig. 3 consists of two parts.
The first part on the left can be seen as the specification for a
simple sequential circuit: There are two bit streams applied to
the inputs bit1 and bit2. The circuit computes the parities of

the bit streams applied to bit1 and bit2 and outputs 1 iff the
parity for bit stream bit1 is smaller or equal to the parity for
bit stream bit2. The right hand side shows a given architecture
for an implementation with two black boxes, one reading bit
stream bit1 and the other reading bit stream bit2. The outputs
of the black boxes are connected by an equivalence gate. Then
the output of the overall circuit is computed by an equivalence
gate connecting the outputs of specification and incomplete
implementation. We require the invariant property that the
output of the overall circuit is 1 at all times, i. e., that the black
boxes are implemented in a way such that the implementation
part agrees with the specification part. For this simple example
it is easy to see that a corresponding implementation does not
exist, even for black boxes with unbounded memory. Here we
use our method where the number of flip flops for each black
box is restricted to one. Fig. 3 already shows the transformed
circuit where the memory is extracted from the black boxes.

Applying Theorem 1, we obtain the following formula parts:

• initial state:

init := (¬s1 ∧ ¬s2 ∧ ¬i1 ∧ ¬i2)

• transition relation:

trans := (s′1 ≡ s1 ⊕ bit1) ∧ (s′2 ≡ s2 ⊕ bit1)

∧ (i′1 ≡ y12) ∧ (i′2 ≡ y22)

• invariant:

inv :=
(
¬s1 ∨ s2) ≡ (y11 ≡ y12)

)
Putting these parts together yields the following DQBF:

∀bit1∀bit2∀s1∀s′1∀s2∀s′2∀i1∀i′1∀i2∀i′2
∃y11(i1,bit1)∃y12(i1,bit1)∃y21(i2,bit2)∃y22(i2,bit2)

∃w(s1, s2, i1, i2)∃w′(s′1, s′2, i′1, i′2) :
(init⇒ w) ∧ (w ⇒ inv) ∧

(
(w ∧ trans)⇒ w′

)
∧
(
((s1 ≡ s′1)∧(s2 ≡ s′2)∧(i1 ≡ i′1)∧(i2 ≡ i′2))⇒ (w ≡ w′)

)
By applying a DQBF solver, one can verify that this formula is
unsatisfiable, meaning that the design in Fig. 3 is not realizable.

Now consider the circuit in Fig. 4. It differs from the design
in Fig. 3 only in the black boxes: Both black boxes can read
both input signals bit1 and bit2. Thus, the black boxes can
equivalently be merged into one as shown in Fig. 4. It is easy
to see that this implementation, which does not pay attention to
the exact architecture by disregarding the interface of the black
boxes, is now realizable. More precisely, it is realizable if we
assume that the black box with bounded memory has at least 2
memory cells at its disposal. In Fig. 4 we depict the incomplete
circuit with two memory cells extracted from the black box.
Using our approach we can indeed prove realizability. The
formula differs only in the dependency sets of the black box
outputs: Dy11

= Dy12
= Dy21

= Dy22
= {bit1,bit2, i1, i2}. Now

the formula is satisfiable. The following Skolem functions turn
the matrix into a tautology:



Variable y11 y12 y21 y22 w w′

Skolem fct. 1 bit1 ⊕ i1 ¬i1 ∨ i2 bit2 ⊕ i2 1 1

Using these Skolem functions, the two flipflops in the right
half store the same values as the two flipflops in the left half,
i. e., s1 = i1 and s2 = i2. The equivalence y11 ≡ y12 corresponds
to 1 ≡ (¬i1 ∨ i2), which is the same as i1 ≤ i2. Therefore the
design is realizable.

For both incomplete circuits, our solver HQS [14] solved
the DQBF in at most 0.1 seconds.

We can conclude that it is necessary to take the precise
interfaces of the black boxes into account in order to obtain a
valid answer whether the design is realizable.

IV. SOLVING DQBFS

Elimination-based DQBF solvers like HQS [14], [15] apply a
series of transformation steps to the formula until a SAT or
QBF problem results, which can be solved by an arbitrary SAT
or QBF solver. As a pure yes/no answer is not satisfactory
when solving analysis problems as presented in the previous
section, we provide the main ideas how Skolem functions can
be extracted from the solution process. More details can be
found in [24]. This extraction proceeds in the reverse order
of transformation, starting with (constant) Skolem functions
for the final SAT problem, which correspond to a satisfying
assignment.

A. Transformation Steps

The central operation of elimination-based solvers is the
elimination of existential and universal variables from the
formula. QBF solvers can eliminate variables in the order given
by the quantifier prefix (starting with the inner-most variable
block). Because there is no linear order on the variables in a
DQBF, this is typically no longer possible.

Lemma 1: Let ψ = Q : φ be a DQBF and y ∈ V ∃ψ an
existential variable which depends on all universal variables.
Then ψ is equivalent to ψ′ := Q\{∃y(Dy)} : φ[0/y]∨φ[1/y].

If sψ
′

z for z ∈ V ∃ψ′ are Skolem functions for the formula ψ′,
obtained by eliminating y ∈ V ∃ψ , we set sψy := φ[1/y][sψ

′

z /z]

and sψz := sψ
′

z for z 6= y. This yields Skolem functions for ψ.
The elimination of universal variables in solvers like

HQS [14] is done by universal expansion [25], [26], [27], [10].
This is applicable even if some existential variables depend
upon the expanded universal one.

Lemma 2: For a DQBF ψ = ∀x1 . . . ∀xn∃y1(Dy1)
. . . ∃ym(Dym) : ϕ with Exi =

{
yj ∈ V ∃ψ

∣∣xi ∈ Dyj )
}

, the
universal expansion w. r. t. variable xi ∈ V ∀ψ , is defined by(

Q \ {xi}
)
∪
{
∃y′j(Dyj \ {xi})

∣∣ yj ∈ Exi} :

ϕ[1/xi] ∧ ϕ[0/xi][y′j/yj for all yj with xi ∈ Dyj ] .

That means, when eliminating a universal variable x ∈ V ∀ψ , we
have to copy all existential variables y ∈ V ∃ψ that depend upon
x.

Assume that sψ
′

z for z ∈ V ∃ψ′ are Skolem functions for ψ′.
Then sψy := (x ∧ sψ

′

y′ ) ∨ (¬x ∧ sψ′

y ) for y ∈ V ∃ψ with x ∈ Dy

and sψz := sψ
′

y for z ∈ V ∃ψ with x /∈ Dz are Skolem functions
for ψ.

In principle, these two operations suffice to turn each
DQBF into an (exponentially larger) SAT problem. In order to
reduce computation time and memory consumption, pre- and
inprocessing steps have turned out to be essential.

Standard operations are the detection of unit and pure literals.
A literal ` is unit if (`) is a clause in the formula. A literal
` is pure if ¬` does not appear in the formula. In both
cases var(`) can be replaced by a constant (which is also
the Skolem function for that variable). Further preprocessing
techniques like blocked clause elimination, the identification
of equivalent variables, and structure extraction have been
devised for DQBF [15]. All of them are supported when Skolem
functions are to be computed.

B. Elimination Sets

Since the expansion of all universal variables leads to an
exponentially larger SAT instance, this is typically not feasible.
Instead, the solver HQS eliminates variables only until a QBF
is obtained, which can be solved by an arbitrary QBF solver.
The central problem is to determine a minimum set of universal
variables whose elimination turns the DQBF into a QBF [14].
To solve this, we can use the following dependency graph:

Definition 6: Let ψ be a DQBF. Its dependency graph Gψ =
(V ∃ψ , Eψ) is a directed graph with the existential variables as
its nodes and edges Eψ = {(y, z) ∈ V ∃ψ × V ∃ψ |Dy 6⊆ Dz}.
It can be used to recognize if a DQBF is actually a QBF:

Lemma 3: Let ψ be a DQBF. Its dependency graph Gψ is
acyclic iff ψ has an equivalent QBF prefix.
That means we have to find a minimum set U ⊆ V ∀ψ of
universal variables whose elimination makes Gψ acyclic. One
can show that for making the graph acyclic by eliminating
universal variables, it suffices to consider the cycles of length
2. The selection of variables can be done using a MAXSAT
solver: for each universal variable x a variable mx is created in
the MAXSAT solver such that mx = 1 means that x needs to
be eliminated. Soft clauses are used to get an assignment with
a minimum number of variables assigned to 1. Hard clauses
enforce that for all y, z ∈ V ∃ψ , y 6= z, either all variables in
Dy \Dz or in Dz \Dy are eliminated.

The variables in U are then eliminated, ordered according
to the number of existential variables that depend upon them.

For more details, including formal correctness proofs, we
refer the reader to [14].

C. Solver Overview

Fig. 5 shows the structure of the solver HQS. The input is a
DQBF in CNF. After preprocessing, which is done on the CNF,
gate detection is applied, essentially undoing Tseitin transfor-
mation and removing the existential variables introduced by
the CNF transformation. The result is a representation of the
formula as an And-Inverter graph (AIG), on which the further
steps are performed. Before the actual elimination loop starts,
we determine a minimum elimination set as described above.
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Within the elimination loop, we check for unit and pure
variables, which can be replaced by constants. This is done
on the AIG using syntactic checks. Additionally, all existential
variables are eliminated for which this is possible. Otherwise
they would double for each eliminated universal variable. Then
we check if the dependency graph has already become acyclic.
If this is the case we generate the corresponding QBF prefix
and solve the formula using the QBF solver AIGsolve [28],
which operates directly on AIGs. Otherwise we select the next
universal variable to eliminate and expand it.

V. EXPERIMENTAL RESULTS

In the following we present preliminary experimental results
for incomplete combinational circuits. To solve the DQBFs,
we use our elimination-based DQBF solver HQS [14], which
was described briefly in the previous section.

We have extended HQS by the possibility to compute
Skolem functions for satisfied DQBFs. The computation of
Skolem functions works in two phases: During the solution
process we collect the necessary data and store it on a stack.
When the satisfiability of the formula has been determined,
we free the other data structures of the solver and extract
the Skolem functions from the collected data. We can apply
don’t-care minimization to the Skolem functions, based on
Craig interpolants [29], and use the tool ABC [30] for further
minimization of the Skolem functions’ AIG representation.

All experiments were run on one Intel Xeon E5-2650v2
CPU core at 2.60 GHz clock frequency and 64 GB of main
memory under Ubuntu Linux as operating system. We aborted
all experiments which either took more than 1000 s CPU
time or more than 8 GB (= 230 bytes) of main memory.
As benchmarks we used 4318 DQBF instances from different
sources. Most of them are DQBFs resulting from equivalence
checking of incomplete combinational circuits [10], [31], [13].
The remaining ones are controller synthesis problems [7].
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Fig. 6. Computation times (in seconds) of HQS and iDQ (both with
preprocessing) on PEC instances [14], [31], [13] (left) and instances from
controller synthesis [7] (right)

We first compare the efficiency of HQS with the only other
available DQBF solver iDQ [13], which solves the formula by
iteratively solving SAT instances generated from the DQBF.
Both solvers were run after preprocessing the DQBFs. Since
iDQ relies on a formula in CNF, while HQS does not,
different preprocessing operations had to be applied: besides
standard techniques like the detection of unit and pure literals
and equivalent variables, preprocessing for HQS applies gate
detection, which reverses Tseitin transformation in order to
reconstruct the original circuit. This is not possible in case of
iDQ. Instead, for iDQ, we apply blocked clause elimination and
variable elimination by resolution, which are both not beneficial
for HQS. We refer the reader to [15] for more details on DQBF
preprocessing.

Figure 6 shows the results for incomplete combinational
circuits (left, 3686 instances) and instances from controller
synthesis (right, 89 instances) for those instances that could
be solved by at least one solver; the remaining 543 instances
could not be solved. The controller synthesis instances are
incomplete sequential circuits with a single black box that can
read all state bits and all primary inputs. We can observe in
both cases, that HQS (with few exceptions) is more efficient
and solves considerably more instances than iDQ.

In spite of the improvements made during the last few years,
the size of the instances that can effectively be solved is smaller
by roughly one to two orders of magnitude than solvable QBF
instances – strongly dependent on the number of variable copies
which are created to obtain an equivalent QBF.

The second set of experiments concerns the computation of
Skolem functions for satisfiable DQBFs. We first measured
the overhead of collecting the necessary data for computing
Skolem functions during the solution process, i. e., until the
truth value of the formula has been determined. The results
are shown in Figure 7. We can observe that the overhead is
in most cases negligible – in a very few cases, the memory
consumption is even reduced. The reason for this behavior
is that within the AIG package different optimizations like
rewriting is triggered when certain thresholds are exceeded.
This can lead to smaller AIGs and thus save memory (and
computation time for the subsequent operations).
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For all 720 satisfiable instances we were able to solve without
Skolem functions, we could also compute Skolem functions. For
these instances we compare the sizes of the Skolem functions
with and without optimizations using interpolation and ABC.
Figure 8 displays the results. In many cases, we can reduce
the sizes of the Skolem functions considerably, sometimes by
up to two orders of magnitude.

Because QBFs are a special case of DQBFs, we can use
HQS to compute Skolem functions for satisfied QBFs as well.
In Fig. 9, we compare the sizes of the Skolem functions
generated by HQS with those generated by the state-of-the-art
QBF solver DEPQBF 5.0 [32], [33] for a set of satisfiable
QBF instances from the QBF Gallery 20131 and from partial
equivalence checking [4] (with a single black box). Since HQS
(and in particular its preprocessor) is not optimized for solving
QBF instances, we abstain from a detailed comparison of the
running times of HQS and DEPQBF. DEPQBF is often (but
not always) faster than HQS. In a few cases, the generation of
Skolem functions with DEPQBF failed, because the necessary
resolution proof became too large (we aborted DEPQBF when
the size of the dumped resolution proof exceeded 20 GB).

Fig. 9 shows the sizes of the Skolem functions computed
by DEPQBF and by HQS (with interpolation and ABC). To
enable a fair comparison, we also applied ABC with the same
commands to the Skolem functions generated using DEPQBF.
We can observe that HQS’ Skolem functions are in most cases
smaller (often significantly) than those obtained from DEPQBF.

In summary, the experiments show that HQS is able to solve

1see http://www.kr.tuwien.ac.at/events/qbfgallery2013/
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the DQBFs resulting from small to medium-sized circuits
effectively. We can not only obtain a pure yes/no answer, but
also Skolem functions for the satisfiable instances without
significant overhead. On satisfiable QBF instances, the size of
the Skolem functions computed by HQS is similar, in many
cases smaller in comparison to Skolem functions computed by
DEPQBF.

As a side remark, the example provided in Section III could
easily be solved with a DQBF solver. Benchmarks dealing
with the synthesis of multiple black boxes in sequential circuits
currently do not exist, but would be interesting to have.

VI. CONCLUSION AND OPEN CHALLENGES

This paper has shown that DQBF formulations allow to
express the realizability of invariant properties for incomplete
combinational and sequential circuits with multiple black boxes
in a natural way. First prototypic solvers allow not only to
solve the resulting DQBFs for small to medium-sized circuits,
but also to extract Skolem functions, which can serve as
implementations of the missing parts.

Still, many challenges remain: The scalability of the solvers
has to be improved and might be tuned towards specific
applications. More powerful preprocessing techniques are
necessary as well as improvements in the solver core. We
hope that with the availability of solvers more applications
of these techniques become feasible (distributed controller
synthesis) or are newly discovered thereby inspiring further
improvements of the solvers – just as it was for propositional
SAT solving and is for QBF solving.
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