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Abstract. We present an approach which schedules task sets using
scratchpad memory (SPM ) in an embedded multi-task system with real-
time constraints. A new task model is introduced, where each task is rep-
resented by di�erent pre-compiled variants which di�er in the amount
of scratchpad memory used. A higher use of SPM leads to smaller run-
times of a task. Moreover, the energy consumption is reduced by replac-
ing memory accesses by SPM accesses. Our heuristic method assembles
a task set of these variants by choosing one variant per task. After se-
lecting candidates from the pre-computed set of task variants, the task
set can be handled by a real-time scheduler like EDF. Our approach is
able to build a new incremental task set and feasible transition in dy-
namically changing environments. Furthermore we show an extension of
our approach to multicore environments.

1 Introduction

Designing embedded systems with minimal energy consumption is becoming in-
creasingly important. The need for energy savings has manifold reasons. Apart
from problems stemming from limited energy resources on earth, there are also
problems with heat dissipation by processors and corresponding cooling prob-
lems. Moreover, embedded systems are used in more and more application areas
where their energy supply has to rely on batteries.

There are several approaches to minimize energy in embedded processors
and controllers. One particular aspect we consider in this paper is the usage of
scratchpad memories (SPM ) [3, 15] instead of conventional caches. Scratchpad
memories (SPM ) are fast and located near to the CPU. Since they usually have
no access penalty through wait states at accesses, they provide fast access to often
used data. Moreover, SPM accesses need less energy than main memory accesses.
In contrast to caches, SPMs are managed by the programmer / compiler, who
decides which data is located in this memory. SPMs which are equal in memory
size to caches, need no parallel comparison logic and therefore less chip area and
less energy.

We use scratchpad memory to reduce processor utilization and energy con-
sumption in a multi-task environment. More precisely, for each task we provide
several pre-compiled variants using di�erent amounts of scratchpad memory,
i.e. we assume a framework like [24] which is able to map memory addresses
either to main memory or scratchpad memory and produces di�erent executa-
bles depending on a given upper limit to the amount of SPM provided to the
task. Usually, the WCET (worst case execution time) of a task is shorter and
its worst case energy consumption is lower, if it has more SPM at its disposal.
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[19], e.g., provides a heuristical method which minimizes run-times and energy
consumption by analyzing the code of a task and by assigning code and/or data
memory to available SPM of a given size. Thus, each tasks variant is connected
with a triple of WCET, SPM, and energy consumption. Several tasks have to
share both the CPU and the scratchpad memory. Given a certain amount of
scratchpad memory in the system, we select for each task a variant such that

1. the sum of the SPM consumptions of all selected task variants does not
exceed the available SPM,

2. the CPU utilization caused by the selected task variants does not exceed 1
and

3. the energy consumption is minimized under those constraints.

If the resulting CPU utilization factor is smaller than 1, then we have the
additional opportunity to decrease the processor frequency (until the utilization
factor is 1) which minimizes the energy consumption further.

The given problem resembles the Multiple Choice Knapsack Problem (MCKP)
[16, 10] and can be solved exactly by 0-1-Integer-Linear-Programming. Since we
need fast solutions in dynamically changing real-time system, we developed a
heuristic which is much faster than the exact solution, and it compares well in
quality though. Additionally our algorithm provides incremental solutions when
a new task enters a system. This solution incorporates a feasible transition from
the �rst set of task variants to the second without exceeding the available amount
of SPM or processor resources. We extended our heuristics to multicore systems
where exactly one task variant has to be allocated to exactly one processor.

Related Work In [15] a �rst approach distributing data between SPM and ex-
ternal DRAM was presented which accelerates memory accesses for memory
architectures using both SPM and caches. Later on, [3] showed, that SPMs have
signi�cant lower area and power consumption compared to caches. They also
presented a simple SPM allocation method outperforming caches. [19] statically
mapped global data memory objects and program code to SPM of a single task.
They formulated a Knapsack problem with energy minimization as the optimiza-
tion goal.

Many publications con�rm that SPMs are useful for reducing of area, run-
times and energy consumptions. Most methods use pro�le runs to determine
frequently accessed data and executed code as a basis for SPM allocation. Static
SPM allocation is used in [2, 18] for global data and stack variables, and in [1,
23] for code. Dynamic SPM allocation is used in [21, 5]. Here, global data, stack,
or even heap variables are dynamically allocated to SPM at runtime.

More recent methods looked into the minimization of WCETs as well which is
more important for embedded real-time systems [8, 9, 20]. The results show, that
by increasing the amount of available SPM, it is possible to decrease the WCET
and the energy consumption of a task. This is the basic assumption underlying
our approach.

Our approach is neither restricted to any special method for assigning data
and / or code to an SPM nor to the application of static or dynamic methods for
allocating SPM. For our method it is only important that for each task variant
there exists a �xed upper bound on the size of the SPM used by this variant;
our method is completely orthogonal to the question how this amount of SPM
is used by the task variant.

More recent methods consider SPM usage also in multi-task environments. A
�rst approach was presented in [22]. In this work, a statically scheduled system



with a �xed number of processes was considered. In the `saving' approach, the
whole SPM is given to the currently active task, the SPM contents are saved and
restored at each context switch. Our method is closer to the so called `non-saving'
approach. Here, the SPM is split into disjoint regions, at most one for each task.
In contrast to this method, our approach considers several task variants to select
from instead of one, it can handle a dynamic number of tasks, it is integrated
into the scheduler, and selects a schedulable set of variants for the tasks with
the goal of minimizing the energy consumption.

The work in [7] uses the same SPM sharing strategies as [22], but is suitable
for dynamic multitasking systems. The shares are redistributed whenever a task
enters or leaves the system. This approach relies on the existence of an MMU
in the memory architectures as it uses page faults to copy new pages into the
SPM. In contrast to our approach, [7] has di�culties in real-time systems, since
it is hard to provide tight WCET estimates with a strategy based on page
faults. Furthermore, this approach is not designed to give guarantees regarding
schedulability of a real-time task set.

[25] and [26] look into the `saving approach' discussed above for sharing SPM
between several tasks. They propose and analyze re�ned schemes for saving
and restoring SPM data during context switches. An earlier work [17] proposes
hardware support by DMA (Direct Memory Access) to reduce the cost of copying
between scratchpad and main memory.

The remaining paper is structured as follows: We discuss the preliminaries of
this work in Sect. 2. Sect. 3 presents our basic idea and gives an exact formulation
of the resulting optimization problem. We give a heuristical solution to this
problem in Sect. 4. In Sect. 7 the approach is evaluated by experiments. Finally,
Sect. 8 concludes the paper with a summary.

2 Preliminaries

We assume a set of periodic tasks which can be preempted and are scheduled
by the Earliest Deadline First (EDF) scheduler [13]. If we do not consider task
variants, then a task τi is speci�ed by its worst-case computation time Ci and
its period Ti. We assume that the relative (hard) deadline Di of a task is the
same as the period Ti. The utilization factor U of a task set of n independent
periodic tasks is de�ned as U =

∑n
i=1

Ci

Ti
. Such a task set is schedulable with

EDF if and only if U ≤ 1. This holds for EDF scheduling for a single processor
system. For simplicity we �rst assume a single processor in this work.

Our task variant selection problem is a generalization of the Multiple Choice
Knapsack Problem (MCKP). In the Multiple Choice Knapsack Problem (MCKP)
[16] exactly one item from each of n classes Ni is selected such that the pro�t is
maximized:
Multiple Choice Knapsack Problem
Given: n classes Ni of items with weights wij ∈ N and pro�ts pij ∈ N
(1 ≤ i ≤ n, j ∈ Ni), a capacity c ∈ N.
Find : Maximize

∑n
i=1

∑
j∈Ni

xijpij with∑n
i=1

∑
j∈Ni

xijwij ≤ c,
∑

j∈Ni
xij = 1 (1 ≤ i ≤ n), xij ∈ {0, 1} (1 ≤

i ≤ n, j ∈ Ni).
(xij = 1 i� the item j from class Ni is selected.)



MCKP is an NP-complete problem. There is a number of exact solution
methods such as dynamic programming, branch-and-bound, or 0-1 Integer Linear
Programming [6, 12, 16].

3 Basic Idea and Problem Formulation

As already mentioned in the introduction, our basic idea is to use di�erent
code variants for each task which di�er in the amount of SPM that can be
used. If a variant is allowed to use more SPM, this usually means that the
energy consumption and the WCET is reduced [9]. The selection of variants
for the di�erent tasks has to be done in a way that a) the sum of the SPM
consumptions of all selected task variants does not exceed the available SPM,
b) the CPU utilization caused by the selected task variants does not exceed
1, and c) the energy consumption is minimized under those constraints. If the
utilization factor resulting from the selected variants is larger than 1, then the
task set with its variants is not schedulable with the given amount of SPM in the
system. If the utilization factor is smaller than 1, it may be possible to reduce
the processor frequency in order to save even more energy.

In the following we assume that all computations are done with worst case
execution times resulting from the maximal processor frequency. If a schedulable
selection of task variants has been found, then the processor frequency can be
adjusted accordingly. So our algorithm works with worst case execution times
instead of cycles and we always mean the worst case execution times under the
maximal processor frequency.

Furthermore, we assume a system without caches to avoid unstable WCET
estimations for di�erent task variant combinations and thus di�ering cache hit
and miss patterns.

We assume a size M of the scratchpad memory in the system. Each task τi
is connected with a task period Ti and a set of variants Vi. Each variant j in Vi

is connected with the following properties:

� An SPM consumption Mij which represents a fraction sij =
Mij

M of the total
SPM in the system.

� A (worst case) computation time Cij leading to a contribution uij =
Cij

Ti
to

the processor utilization factor.
� A (worst case) energy consumption Eij . When computing the average en-
ergy consumption of the whole system, the energy consumptions of single
task variants have to be weighted by the fraction of time the task variant
is running on the processor, which is equal to uij . Thus, the task variant
contributes eij = uij · Eij to the average energy consumption.

De�nition 1. We call sij =
Mij

M the scratchpad memory share (or memory

share for short), uij =
Cij

Ti
the utilization share, and eij = uij · Eij the energy

contribution of the task variant.

Altogether, if a task τi has vi variants, it is represented by a set

Vi = {(sij , uij , eij) | 1 ≤ j ≤ vi}.
De�nition 2. For all 1 ≤ i ≤ n let curr i (with 1 ≤ curr i ≤ vi) be the selected
task variant for task τi. By analogy to the processor utilization factor we de�ne
the SPM utilization factor of the selected task variants by S :=

∑n
i=1 sicurr i .

The average energy consumption is given by E :=
∑n

i=1 eicurr i
.



Now we have the requirements that the sum of scratchpad memory shares
sij and the sum of the utilization shares uij over all selected variants is ≤ 1.
The average energy consumption has to be minimized. Thus, we arrive at the
following problem formulation:

Task Variant Selection (TVS)
Given: n tasks τi with sets
Vi = {(sij , uij , eij) | 1 ≤ j ≤ vi} of task variants, sij , uij ∈ (0, 1] ⊆ Q,
eij ∈ Q≥0 (1 ≤ i ≤ n, 1 ≤ j ≤ vi).
Find : Minimize

∑n
i=1

∑vi
j=1 xijeij with∑n

i=1

∑vi
j=1 xijsij ≤ 1,

∑n
i=1

∑vi
j=1 xijuij ≤ 1,

∑vi
j=1 xij = 1 (1 ≤ i ≤ n),

xij ∈ {0, 1} (1 ≤ i ≤ n, 1 ≤ j ≤ vi).
(xij = 1 i� variant j of task τi is selected.)

It is easy to see that the TVS problem generalizes the Multiple Choice Knap-
sack Problem, since it has two cost constraints (for processor and SPM utilization
factors) instead of one. It can be solved exactly by 0-1-ILP.

4 Heuristical Solution

Especially if we apply our approach in the context of dynamically changing real-
time embedded systems, we need a fast solution to the Task Variant Selection
(TVS) problem. For this reason we present a fast heuristical solution here.

In a �rst step we compute a feasible solution, i.e., a solution where both
the sum of selected sij and the sum of selected uij is less or equal to 1. If we
�nd a feasible solution, then we further minimize the energy consumption while
maintaining feasibility in step 2.

4.1 Step 1: Computing a Feasible Solution

In the �rst step we do not yet look at energy contributions eij , but concentrate
on computing a feasible solution.

Step 1.1: Filtering wrt. Pareto Optimality At �rst, we remove all task vari-
ants which are not Pareto optimal wrt. (sij , uij). If the set Vi = {(sij , uij) | 1 ≤
j ≤ vi} of task variants for task τi contains a pair of variants x and y with
six ≥ siy and uix ≥ uiy, then we remove variant x from Vi, since variant x is not
helpful in �nding feasible solutions.

Step 1.2: Initial Solution For a feasible solution, we have to competing goals:
Reduction of the processor utilisation below 1, while staying inside the SPM
limit.

So we construct a balanced initial solution which tries to avoid large scratch-
pad memory and utilization shares at the same time. To do so, for a �xed task τi

we compute the Euclidean lengths l(sij , uij) :=
√

s2ij + u2
ij of all vectors (sij , uij)

(1 ≤ j ≤ vi), and select the task variant start i with the minimal length to be
included into the initial solution.

The intuition is that we try to avoid long vectors which have a large mem-
ory share or a large utilization share or both. For this step to make sense, it
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Fig. 1: The graph illustrates 4 di�erent
cases for the exchange based algorithm. I
corresponds to a feasible solution, II and
III violate only a single constraint (either
the utilization U or the memory S), IV vi-
olates both.

S

U

1

1

II

II1
II2

currII,2
newII,2

currII,1

newII,1

III

III2III1

currIII,1
newIII,1

currIII,2

newIII,2

Fig. 2: The choice of possible exchange
partners is illustrated. In case II the
two choices currII,1 and currII,2 are con-
sidered for exchange with either newII,1

or newII,2. Because the di�erence vector
diffnewII,1,currII,1 has the minimum gra-
dient, this exchange will be taken. Case
III is analogous.

is important that the memory and utilization shares are normalized in a way
that we require both

∑n
i=1 sistart i ≤ 1 and

∑n
i=1 uistart i ≤ 1 with the same

upper bound of 1 for a feasible solution. Nevertheless, this approach is only a
heuristical method to obtain a good initial solution. It still may be the case that∑n

i=1 sistart i > 1,
∑n

i=1 uistart i > 1 or both. For this reason, we try to improve
the initial solution by exchanging task variants.

Step 1.3: Exchange Based Algorithm The exchange based algorithm always
holds a current solution consisting of one task variant curr i (1 ≤ curr i ≤ vi) for
each task τi. It starts with the initial solution, i.e, with curr i := start i for all
1 ≤ i ≤ n. The exchange based algorithm is a greedy approach; a task variant
which has previously been removed from the solution is never brought back into
the solution.

The algorithm di�erentiates between 4 cases for the current solution which
are illustrated by Fig. 1. Each task variant curr i corresponds to a vector
(sicurr i , uicurr i). The sum of all vectors over all tasks corresponds to the pair
(
∑n

i=1 sicurr i
,
∑n

i=1 uicurr i
) which gives for the current solution the scratchpad

memory utilization factor S and the processor utilization factor U . If we already
have a feasible solution (case I), we stop exchanging in step 1 and continue with
Step 2. Otherwise we are looking for a new exchange candidate.

An exchange candidate is rated by the di�erence vector di� new i,curr i
:=

(sinew i
−sicurr i

, uinew i
−uicurr i

), where new i of task τi is considered a candiate
for curr i. Note that in all di�erence vectors di� new i,curr i

either the �rst or the
second component is negative. If both components were negative (positive), then
variant curr i (new i) would not be Pareto-optimal and would have been removed
in Step 1.1. The next exchange is determined based on the gradients of vectors
di� new i,curr i

depending on the following cases II, III, and IV, see Fig. 2.

� Case II:
∑n

i=1 sicurr i ≤ 1,
∑n

i=1 uicurr i > 1: We choose an exchange can-
didate which reduces the processor utilization factor, i.e., a candidate new i
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Fig. 3: Case IV of the initial solution: In
the example task a has variants a1 and
a2, task b variants b1 and b2. The initial
solution consisting of a1 and b1 violates
both constraints. After the �rst exchange
of a1 with a2 only the U -constraint is vio-
lated, after the second exchange of b1 with
b2 we obtain a feasible solution.
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Fig. 4: Dynamic system case: We start
from a feasible solution a. A new task n+1

is dynamically added to the task set. Our
method tries to reach the green area with
0 ≤ S ≤ 1 − sn+1startn+1

and 0 ≤ U ≤
1 − un+1startn+1

without violation of the

constraints S ≤ 1 and U ≤ 1 in the ex-
change process.

with uinew i − uicurr i < 0. Among those candidates we choose the one with
minimal (negative) gradient

uinew i
− uicurr i

sinew i − sicurr i

(1)

of the di�erence vector di� new i,curr i
. The intuition for this decision is that

the gain wrt. processor utilization factor U relative to the penalty wrt. SPM
untilization factor S is maximized.

� Case III:
∑n

i=1 sicurr i > 1,
∑n

i=1 uicurr i ≤ 1: Here we have to choose an ex-
change candidate which reduces the SPM utilization factor, i.e., a candidate
new i with sinew i

−sicurr i
< 0. Similarly to case II, among those candidates

we choose the one with minimal gradient

sinew i
− sicurr i

uinew i
− uicurr i

(2)

of the di�erence vector di� new i,curr i
.

� Case IV:
∑n

i=1 sicurr i
> 1,

∑n
i=1 uicurr i

> 1: Since we cannot reduce SPM
and processor utilization at the same time, we arbitrarily choose one compo-
nent �rst and try to reduce the other one later on, depending on the following
cases II, III and IV. Fig. 3 illustrates an example with an initial solution vi-
olating both the processor utilization and the SPM utilization constraints
(case IV). An exchange reducing S leads us into case II, a second exchange
leads us to case I where both S and U are reduced to values ≤ 1.

In general, during the search for a feasible solution, it may happen that
our algorithm switches back and forth between the exchange directions, towards
more SPM usage or more processor usage, for several times. However, it always
stops, if a feasible solution is found or at latest if all task variants have been
moved once. If we have found a feasible solution, the solution is postprocessed
in step 2 with the goal of further minimizing the average energy consumption.



4.2 Step 2: Postprocessing for energy minimization

We start with a feasible solution and perform further exchanges for energy min-
imization. We start with an application speci�c observation: As seen in step 1,
there are only two cases wrt. exchanges: Either processor utilization is reduced
and SPM utilization is increased or processor utilization is increased and SPM
utilization is decreased. Increases in processor utilization and decreases in SPM
utilization usually both increase the energy consumption. So we completely ne-
glect exchange steps of the �rst type (i.e. we always proceed as in case II of
step 1). There are only two di�erences compared to case II of step 1: (1) We
omit exchanges which would produce an infeasible solution with SPM utiliza-
tion larger 1. (2) For choosing exchange candidates we consider the gradients
einew i

−eicurr i

sinew i
−sicurr i

instead of
uinew i

−uicurr i

sinew i
−sicurr i

, since now our goal is to minimize

the average energy. (Moreover, we remove task variants which are not Pareto-
optimal wrt. (sij , eij) before we start exchanging in step 2.)

4.3 Complexity

Let V =
∑n

i=1 vi be the number of task instances in the original problem,
vmax = maxni=1 vi the maximum number of variants per task. The main ob-
servation for worst case complexity estimation of step 1 or 2 is the fact that
each of the V task instances is exchanged at most once. Each exchange step is in
O(vmax +n), leading to an overall worst case complexity of O(V · (vmax +n)).

5 Dynamic systems

Many real-time systems change behaviour dynamically over time. Our algorithm
is suitable for an incremental use where a new task comes into the system. It
exchanges task variants until a new feasible solution is found. If not, the newly
arrived tasks is rejected.

However, there is an important additional constraint to be ful�lled: Even if
we are able to compute a feasible solution including the new task, it is not guar-
anteed that there is a transition from the previous set of task variants to the new
set of task variants (including a variant of the new task) which does not violate
the processor utilization constraint or the SPM utilization constraint in between.
Here we make the realistic assumption that task variants can not be exchanged
instantaneously, but the code of one task variant ij can only exchanged to the
code of another variant ij′ , when the current instance of ij has �nished, i.e., no
task variant of ij is active.

In the following we present an approach that constructs a sequence of task
instance exchanges guaranteeing S ≤ 1 and U ≤ 1 for the intermediate con�gu-
rations as well. The `schedule of task instance exchanges' follows the steps in a
modi�ed exchange algorithm.

In a �rst sequence of exchanges we try to `make room' for the newly arriving
task τn+1, such that adding a variant of τn+1 leads to a feasible solution. Since
we do not yet know which variant of τn+1 will be selected in the end, we proceed
similar to Step 1.2 in Sect. 4.1, i.e., we select the variant startn+1 of τn+1 with
the smallest Euclidean vector length. Now we start from the current set of task
variants and try to reach a pair (S,U) of SPM utilization factor and processor
utilization factor with S ≤ 1−sn+1startn+1

and U ≤ 1−un+1startn+1
. Of course,



we have to ensure that for each intermediate step on this way we have S ≤ 1
and U ≤ 1. Fig. 4 illustrates the approach.

The implementation of the approach is similar to Step 1.3 in Sect. 4.1 with
the di�erence that we replace the limit 1 for S by 1− sn+1startn+1

and the limit
1 for U by 1 − un+1startn+1

. Moreover, we only accept exchange steps leading
to an intermediate solution with S ≤ 1 and U ≤ 1. If we have �nally reached
the situation that 0 ≤ S ≤ 1− sn+1startn+1

and 0 ≤ U ≤ 1− un+1startn+1
, we

add τn+1 with the current variant (sn+1startn+1
, un+1startn+1

) into the solution.
Then, exactly the postprocessing step for energy minimization from Sect. 4.2
follows which minimizes the average energy further without violating S ≤ 1 and
U ≤ 1.

6 Multicore Systems

Since many embedded systems feature multicore CPUs, we extend our approach
to the use with these systems. We use a simple multicore system where each
CPU has its own local SPM (of the same size) and there is a �xed assignment
of the tasks to CPUs. For multicore CPUs, TVS is generalized to the following
problem TVSM which can be solved exactly by 0-1-ILP:

Task Variant Selection Multicore (TVSM)
Given: m processor cores p1, . . . , pk, n tasks τi with sets
Vi = {(sij , uij , eij) | 1 ≤ j ≤ vi} of task variants, sij , uij ∈ (0, 1] ⊆ Q,
eij ∈ Q≥0 (1 ≤ i ≤ n, 1 ≤ j ≤ vi).
Find : Minimize

∑m
k=1

∑n
i=1

∑vi
j=1 xijkeij with∑n

i=1

∑vi
j=1 xijksij ≤ 1 (1 ≤ k ≤ m),∑n

i=1

∑vi
j=1 xijkuij ≤ 1 (1 ≤ k ≤ m),∑m

k=1

∑vi
j=1 xijk = 1 (1 ≤ i ≤ n),

xijk ∈ {0, 1} (1 ≤ i ≤ n, 1 ≤ j ≤ vi, 1 ≤ k ≤ m).
(xijk = 1 i� variant j of task τi is selected and assigned to processor k.)

For the heuristical solution we adapt our heuristics from the single-core case:
The initial task variant selection from Step 1.2, Sect. 4.1, is extended by a
distribution over the m available processor cores. The tasks are assigned to the
cores one by one. For each core we sum up the Euclidian lengths of task variant
vectors which are already assigned to it and we always greedily assign the next
task to the core with the smallest sum.

Then, each task set on each core is optimized individually as in the single-core
case.

For the dynamic system case, the new task is added to the core with the
smallest average energy consumption. This core will then be treated as in Sec. 5.

7 Experimental Results

To evaluate our algorithm, we considered benchmarks with data generated from
the MiBench [11] benchmark suite. SPM allocations for the MiBench programs
were made with the help of the MACC framework [24], which only allocates
global data but also tries to relocate local data to global data. These SPM
enabled variants are then run in the MPARM/MEMSIM simulator [4] to obtain
the corresponding energy and runtime values. For our experiments we used seven



Table 1: Results MiBench data Benchmarks

Algorithm SPM usage [%] Processor utilization [%] Energy share Solution time [ms]

Baseline initial 0.00 54.54 168,971,415 �
Gurobi initial 99.45 48.38 142,724,205 2.9984
Heuristic initial 68.90 48.30 145,104,542 1.0592

Baseline 0.00 63.63 317,414,842 �
Gurobi dynamic 99.73 56.43 275,237,960 6.4964
Heuristic dynamic 69.85 56.55 277,601,029 0.1171

programs with two to �ve obtained variants. These programs were bitcount,
dijkstra, stringsearch (large and small), rijndael, sha and crc. bitcount acts as
the task joining the system dynamically. For computing exact solutions to the
task variant selection problem we used the 0-1-ILP solver Gurobi [14].

Table 1 shows the results of these experiments. The �rst three lines in Table 1
give results for the initial task set. The line labeled `baseline' shows the processor
utilization and the average energy for the task set without using the SPM at all.
Our heuristics is able to compute a solution with an average energy which is only
about 2 percent higher than the energy obtained by the exact solution (Gurobi),
but with only one third of the solution time.

Our solution for the dynamic system is within a 1 percent range of the exact
solution regarding the average energy. Here our heuristics is even faster with a
factor of about 60. It is important to keep in mind, that our heuristics gives
not only a feasible solution but also a feasible transition from the �rst task set
to the second one. Gurobi only computes the new optimal task set without any
guarantee that such a transition exists.

In order to set the evaluation onto a broader basis we also performed exper-
iments with synthetic benchmarks. We randomly generated tasks with variants
whose triplets of SPM usage, WCET, and energy consumption show character-
istics derived from results in the literature discussed in Sect. 1, whereas SPM
usage is reciprocal to runtime, and runtime correlates to energy. We generated
initial task sets consisting of 15 tasks, each with 4 variants. Starting from a
solution of such a task set, we added another task to evaluate the behavior for
dynamic systems. 1000 of these task sets were created for the evaluation. Finally,
we applied our approach also in a multicore setting, where 4 cores obtained a
total of 60 tasks with 4 variants each. As before we add another task to the
initial set to evaluate the dynamic behavior. Because of high run times of the
exact solution we con�ned ourselves to 11 test runs with a multicore data set.

Table 2: Results synthetic Benchmarks
Algorithm SPM usage [%] Processor utilization [%] Energy share Solution time [ms] Solutions

Gurobi initial 99.73 42.42 61.7597 56.2189 998
Heuristic initial 99.48 42.32 70.2280 0.7359 998

Gurobi dynamic 99.80 50.58 84.7071 114.9391 879
Heuristic dynamic 99.50 50.05 90.5008 0.4214 871

Gurobi (4 cores) initial 99.97 40.87 228.8178 492,301.5050 11
Heuristic (4 cores) initial 99.45 41.17 265.2159 4.1255 11

Gurobi (4 cores) dynamic 99.98 42.86 245.0765 1,528,642.3016 11
Heuristic (4 cores) dynamic 99.50 43.17 283.1873 0.4718 11

As we can see in Table 2, in 998 out of 1000 cases our algorithm �nds a
feasible solution for the initial task set. In the remaining 2 cases there exists no
feasible solution as the exact result computed by Gurobi shows. On average the
energy consumption in our solution is about 12 percent higher than in the exact



solution. SPM usage and processor utilization are almost equal to the values of
Gurobi. However, our approach needs less than 2 percent of the runtime of the
exact solution.

In the dynamic system case, Gurobi �nds 879 solutions, 8 more than our
heuristics. However, we do not know whether there is a feasible transition be-
tween the old and the new task sets in these 8 cases. Again remember that our
heuristics additionally guarantees a feasible transition from the initial task set
with 15 tasks to the new one with 16 tasks. The solutions of our heuristics are
still in a 10 percent range of the exact ones regarding the average energy. The
CPU times of our heuristics are by a factor of about 300 lower than those of
Gurobi.

The last four rows in Table 2 show results for the multicore case. The values
for SPM and processor utilization are the average values over all 4 cores. Both
Gurobi and the heuristics found feasible solutions for all 11 multicore bench-
marks. The energy values of the exact solutions are about 15 percent better
on average. The focus here lies on the run times, where our heuristical solution
clearly outperforms the exact solution by several orders of magnitude in the
initial, as well as in the dynamic case.

8 Conclusions

In this work we presented a new approach for using scratchpad memories in
embedded systems with the goal of reducing the average energy consumption in
a multi task environment.

We use a new task model, where a task can have multiple pre-compiled
variants which di�er in their use of scratchpad memories and therefore also
in energy usage and worst-case execution times. Apart from an exact solution
based on 0-1-Integer-Linear-Programming we presented a fast heuristics for the
solution. The heuristical solution is well suited for incremental use in a dynamic
environment when tasks enter or leave the system. It also computes a transition
from an old to a new task set which guarantees that no system constraints
regarding SPM usage and processor utilization are violated in between.

The algorithm presented here works completely orthogonal to the method
for assigning data and / or code to an SPM.

The experiments show that the solutions computed by the heuristics are com-
petitive to the exact solutions wrt. the energy consumptions. The CPU times for
computing the solutions are much faster (sometimes by several orders of magni-
tude) than those for the exact method and are thus suitable for an application
in embedded real-time systems.
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