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Preprocessing for DQBF?

Ralf Wimmer, Karina Gitina, Jennifer Nist, Christoph Scholl, and Bernd Becker

Albert-Ludwigs-Universität Freiburg, Germany
{wimmer | gitina | nistj | scholl | becker}@informatik.uni-freiburg.de

Abstract. For SAT and QBF formulas many techniques are applied
in order to reduce/modify the number of variables and clauses of the
formula, before the formula is passed to the actual solving algorithm.
It is well known that these preprocessing techniques often reduce the
computation time of the solver by orders of magnitude. In this paper we
generalize different preprocessing techniques for SAT and QBF problems
to dependency quantified Boolean formulas (DQBF) and describe how
they need to be adapted to work with a DQBF solver core. We demonstrate
their effectiveness both for CNF- and non-CNF-based DQBF algorithms.

1 Introduction

Many problems, practically relevant and at the same time hard from a com-
plexity theoretic point of view, can be reduced to solving quantifier-free (SAT)
or quantified (QBF) Boolean formulas. Such applications range, among many
others, from verification and test of hard- and software [1, 2] to planning [3],
product configuration [4], and cryptanalysis [5]. During the last three decades,
the development of very efficient algorithms to solve such formulas has paved
the way from academic interest to industrial application of solver techniques.
SAT-formulas with hundred thousands of variables and millions of clauses can
be solved nowadays, with QBF about two orders of magnitude behind.

In this paper, we consider the more general, still practically relevant formal-
ism of dependency quantified Boolean formulas (DQBF). “Standard” quantified
Boolean formulas (in prenex normal form) have the restriction that each ex-
istential variable depends on all universal variables in whose scope it is. This
restriction is relaxed for DQBF, which allows arbitrary dependencies at the cost
of a higher complexity for the decision problem – for SAT it is NP-complete [6],
for QBF PSPACE-complete [7], and for DQBF it is NEXPTIME-complete [8].
However, some applications like the verification of incomplete circuits [9] or
the synthesis of safe controllers [10] require the higher expressiveness of DQBF.
Therefore, first solvers for DQBF have been presented recently: iDQ [11] reduces
the solution of a DQBF to the solution of a series of SAT instantiations. HQS [12]
applies quantifier elimination to solve the formula.

Part of the success of SAT and QBF solving is due to efficient preprocessing
of the formula under consideration. The goal of preprocessing is to simplify the

? This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center AVACS (SFB/TR 14).



formula by reducing/modifying the number of variables, clauses and quantifier
alternations, such that it can be solved more efficiently afterwards. However,
there is typically a trade-off between the number of variables and the number
of clauses; e. g., eliminating variables by resolution can increase the number of
clauses significantly, which in turn increases memory consumption and the cost
of subsequent operations on the formula. Removing redundant clauses is also not
always beneficial: search-based SAT and QBF solvers add implied clauses to the
formula to drive the search away from unsatisfiable parts of the search space [13,
14], which often reduces computation times considerably.

For SAT and QBF, efficient and effective preprocessing tools are available
like SatELite [15], Coprocessor [16] for SAT and squeezeBF [17], bloqqer [18] for
QBF. Both available DQBF solvers, however, still lack a preprocessing phase
before the actual solving process. Due to the success of preprocessing in SAT
and QBF, one can expect that preprocessing is beneficial for DQBF, too – even
more because the actual solving process is more costly than for QBF. This raises
the question which techniques can be generalized from SAT and QBF to DQBF.
Which adaptations need to be made to make them correct for the more general
formalism? After suitable adaptations have been found, the correctness proofs
have to be re-done for DQBF carefully because for QBF they often exploit the
fact that dependencies in QBF follow a linear order. But also techniques like
the detection of backbone literals [19, 20], which work for DQBF in the same
way as for SAT and QBF, have to be re-thought: in SAT only incomplete, but
cheap syntactic tests for the special case of unit literals are useful – determining
backbone literals completely is as expensive as solving the SAT problem itself.
For DQBF the situation is different as the decision problem is much harder. Even
solving QBF approximations [9, 21] of the formula at hand as an incomplete
decision procedure can be beneficial. Additionally the higher flexibility regarding
the dependency sets in DQBF makes some techniques more powerful compared
to QBF and enables new techniques.

Taken together, in this paper for the first time preprocessing techniques are
made available for DQBF solving. We provide several extensions and adapta-
tions and provide techniques demonstrating that preprocessing for DQBF also
conceptually goes beyond standard SAT/QBF techniques. We generalize success-
ful preprocessing techniques for QBF to DQBF like blocked clause elimination
(BCE) [22, 18], equivalence reasoning [17], structure extraction [23], and variable
elimination by resolution [24]. All correctness proofs are available in the appendix
of this paper. We present experimental results which show the effectiveness of
these techniques for DQBF. We demonstrate that the applied techniques have to
be chosen depending on the solving techniques applied in the solver core. For
example, BCE prevents an effective undoing of Tseitin transformation [25], which
is used to transform a formula into conjunctive normal form (CNF). Therefore,
it is better to disable BCE if the underlying solver core does not rely on a for-
mula in CNF, and to use BCE if undoing Tseitin transformation is not possible
because the solver core requires a formula in CNF. The experiments show that
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preprocessing both reduces the computation times and significantly increases the
number of solved instances of both solvers, iDQ and HQS.

Structure of this paper. The next section introduces the necessary foundations
of DQBF. Section 3 reviews incomplete, but cheap decision procedures for DQBF,
Section 4 describes the preprocessing techniques for DQBF that we apply in our
tool to simplify the DQBF at hand. Section 5 gives an experimental evaluation
of the described techniques, and Section 6 concludes the paper.

2 Preliminaries

In this section, we briefly review the necessary foundations regarding dependency
quantified Boolean formulas.

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and
v ∈ V . We denote by ϕ[κ/v] the Boolean formula which results from ϕ by replacing
all occurrences of v (simultaneously) by κ. For a set V ′ ⊆ V we denote by A(V ′)
the set of Boolean assignments for V ′, i. e., A(V ′) =

{
ν
∣∣ ν : V ′ → {0, 1}

}
.

Definition 1 (DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean
variables. A dependency quantified Boolean formula (DQBF) ψ over V has
the form ψ := ∀x1∀x2 . . . ∀xn∃y1(Dψ

y1)∃y2(Dψ
y2) . . . ∃ym(Dψ

ym) : ϕ where Dψ
yi ⊆

{x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi, and ϕ is a Boolean
formula over V , the matrix of ψ.

To simplify the notation, we often write ψ = Q : ϕ with the quantifier prefix
Q and the matrix ϕ. Throughout the whole paper we assume, unless explicitly
stated differently, that a DQBF ψ = Q : ϕ as in Definition 1 with ϕ in CNF is
given. We denote its set of universal variables by V ψ∀ = {x1, . . . , xn} and its set

of existential variables by V ψ∃ = {y1, . . . , ym}. If we do not need to distinguish
between existential and universal variables, we write v ∈ V . Q \ {v} denotes
the prefix that results from removing a variable v ∈ V from Q together with its
quantifier. If v is existential, then its dependency set is removed as well; if v is
universal, then all occurrences of v in the dependency sets of existential variables
are removed. Similarly we use Q ∪

{
∃y(Dψ

y )
}

to add existential variables to the
prefix. The order in which the variables appear in the prefix is irrelevant. We
introduce the dependency function depψ : V → 2V by depψ(v) = Dψ

v if v ∈ V ψ∃ ,

and depψ(v) = {v} for v ∈ V ψ∀ .

Definition 2 (Semantics of DQBF). Let ψ be a DQBF with matrix ϕ as
above. ψ is satisfied (written � ψ) iff there are functions syi : A(Dψ

yi)→ {0, 1}
for 1 ≤ i ≤ m such that replacing each yi by (a Boolean expression for) syi turns
ϕ into a tautology. Then syi is called a Skolem function for yi.

Two DQBFs ψ1 and ψ2 are equivalent iff � ψ1 ⇔ � ψ2 holds.

Definition 3 (QBF). A quantified Boolean formula (QBF)1 is a DQBF ψ such

that Dψ
y ⊆ D

ψ
y′ or Dψ

y′ ⊆ Dψ
y holds for any pair y, y′ ∈ V ψ∃ of existential variables.

1 We only consider closed QBFs in prenex form here, i. e., QBFs in which all variables
are bound by a quantifer and in which the quantifiers precede the matrix.
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In the following we assume that the matrix ϕ is given in conjunctive normal
form (CNF). A formula is in CNF if it is a conjunction of clauses; a clause is a
disjunction of literals, and a literal is either a variable v or its negation ¬v. We
identify a formula in CNF with its set of clauses and a clause with its set of literals,
e. g., we write

{
{x1,¬x2}, {x2,¬x3}

}
for the formula (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3).

A clause C subsumes a clause C ′ iff C ⊆ C ′. For a literal `, var(`) denotes the
corresponding variable, i. e., var(v) = var(¬v) = v and depψ(`) = depψ

(
var(`)

)
.

Moreover, we define the “sign” sgn of a literal as sgn(v) = 1 and sgn(¬v) = 0.

Each DQBF can be transformed such that the matrix is in CNF. While
transforming the matrix directly into CNF can cause an exponential blow-up in
size, Tseitin transformation [25] can do this with only a linear increase in size
at the cost of additional existential variables. The idea is to introduce auxiliary
existential variables that store the truth value of sub-expressions. Since the values
of these variables are uniquely determined by the sub-expression, they can simply
depend on all universal variables.

We assume that none of the clauses of the CNF ϕ under consideration is
tautological, i. e., there is no variable v such that {v,¬v} ⊆ C for all C ∈ ϕ. The
preprocessing operations we present check the modified or added clauses whether
they are tautologies and, if this is the case, remove or ignore them.

Resolution is a central operation on formulas in CNF:

Definition 4 (Resolution). Let ϕ be a formula in CNF, ` a literal, and C,C ′ ∈
ϕ clauses such that ` ∈ C and ¬` ∈ C ′. The resolvent of C and C ′ w. r. t. to the
pivot literal ` is given by C ⊗` C ′ :=

(
C \ {`}

)
∪
(
C ′ \ {¬`}

)
.

Resolvents are implied by the formula, i. e., if R is a resolvent of two clauses in
ϕ, then ϕ and ϕ ∪ {R} are equivalent [26, Sec. 3.2.1].

Currently, three solvers for DQBF have been proposed: An extension of the
DPLL algorithm, typically applied for solving SAT and QBF formulas, has been
described in [27]. However, no implementation thereof is available. The second
solver is iDQ [11], which relies on a formula in CNF and uses instantiation-based
solving, i. e., it reduces deciding a DQBF to deciding a series of SAT problems.
Finally, there is the solver HQS [12], which applies quantifier elimination on
And-Inverter Graphs (AIGs) to solve the formula. An AIG is essentially a circuit
which consists of AND and inverter gates only. Although HQS reads the same
CNF-based input format as iDQ, its back-end can handle Boolean formulas
of arbitrary structure. We use both iDQ and HQS for the evaluation of the
preprocessing techniques presented in the following.

3 Incomplete, but Cheap Decision Procedures

Before we present our preprocessing techniques for DQBF, we review an incom-
plete, but cheap decision procedure for DQBF. Experiments showed that it is
beneficial to use this procedure as filter before the solving process. Our approach
is as follows: First we apply preprocessing for DQBF, which is helpful for both
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the filter technique and the actual solver core. Then we run the filter technique,
and only if it finishes with an inconclusive result, we apply the solver core.

The filter is based on QBF approximations: By using an appropriate quantifier
prefix and the same matrix, a DQBF ψ can be over-approximated by a QBF Ψ↑

such that the unsatisfiability of Ψ↑ implies the unsatisfiability of ψ [9]. Similarly
one can construct an under-approximation Ψ↓ such that the satisfiability of
Ψ↓ implies the satisfiability of ψ. As the under-approximation was inconclusive
for all instances in our experiments, we focus on over-approximations which
allow to show unsatisfiability of DQBFs. The theory for under-approximations is
analogous as for over-approximations.

Definition 5 (QBF over-approximation). A QBF Ψ↑ = Q′ : ϕ is an over-

approximation of ψ (written ψ v Ψ↑) if for all existential variables y ∈ V ψ∃
DΨ↑

y ⊇ Dψ
y holds,.

Lemma 1. Let ψ be a DQBF and ψ v Ψ↑. If Ψ↑ is unsatisfiable, so is ψ.

This lemma directly follows from the fact that Skolem functions for ψ are Skolem
functions for Ψ↑, too.

Typically, there are several QBF over-approximations of a DQBF. They can
be more or less precise. Let Ψ↑1 = Q1 : ϕ and Ψ↑2 = Q2 : ϕ be two QBF over-

approximations of the same DQBF ψ = Q : ϕ. We call Ψ↑1 stronger than Ψ↑2

(written Ψ↑1 v Ψ↑2 ) if for all y ∈ V ψ∃ we have D
Ψ↑

1
y ⊆ D

Ψ↑
2

y . If Ψ↑1 v Ψ↑2 and Ψ↑2
is unsatisfiable, so is Ψ↑1 . A QBF over-approximation is a strongest QBF over-
approximation if there is no different QBF over-approximation that is stronger.
Strongest over-approximations are as close to the original DQBF w. r. t. the
the dependency sets as possible. Therefore it is desirable to solve a strongest
over-approximation as an incomplete decision procedure for DQBF.

Finkbeiner and Tentrup [21] improve this by constructing a series of more and
more precise QBF formulas, starting with a strongest QBF over-approximation.
To make this possible they modify both the sets of variables and the matrix of
the DQBF: The idea is to use k ≥ 1 copies of the matrix and its variables. It is
required that the existential variables are assigned consistently over all copies and
that all copies of the matrix are satisfied. Consistent means that if the universal
variables in the dependency set of an existential variable are assigned the same
values in two copies, then the existential variables have to carry the same value.
This is expressed with the following formula:

Cons(Y, k) :=
∧
y∈Y

k∧
i=1

k∧
j=i+1

(
(yi ≡ yj) ∨

∨
x∈Dψy

(xi 6≡ xj)
)
.

Let Q = ∀x1 . . . ∀xn∃y1(DΨ↑

y1 ) . . . ∃ym(DΨ↑

ym) be the prefix of a strongest QBF

approximation Ψ↑ of the DQBF ψ. We define QBF Ψ(k) for a parameter k ≥ 1
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by2:

Ψ(k) := ∀x11 . . . ∀xk1∀x12 . . . ∀xk2 . . . ∀x1n . . . ∀xkn∃y11(DΨ↑

y1 ) . . . ∃yk1 (DΨ↑

y1 )

∃y12(DΨ↑

y2 ) . . . ∃yk2 (DΨ↑

y2 ) . . . ∃y1m(DΨ↑

ym) . . . ∃ykm(DΨ↑

ym) : Cons
(
V ψ∃ , k

)
∧

k∧
i=1

ϕk .

Theorem 1 ([21]). The DQBF ψ is unsatisfiable iff Ψ(k) is unsatisfiable for
some k ≥ 1.

Experiments show that this technique can identify many unsatisfiable instances
with fairly small values of k (with the majority of unsatisfiable instances identified
already by k = 1 when Ψ(k) is equal to a strongest QBF over-approximation).
Since the sizes of the QBF instances grow considerably with increasing values of
k, in most cases only values k ≤ 3 seem beneficial. For more details we refer the
reader to [21].

4 Preprocessing Techniques for DQBF

In this section we describe techniques which can be applied to preprocess a
DQBF. The proofs of the main theorems and lemmas are given in the appendix
of this paper.

4.1 Backbones, Monotonic and Equivalent Variables

Here we describe techniques which reduce both the number of variables in the
formula and the number of clauses.

Unit and pure variables are well-known concepts from SAT and QBF solving.
They can be replaced by constant values without influencing the formula’s truth
value. Typically a variable is defined as unit if the matrix contains a clause
consisting only of this variable. A variable is pure if it occurs in the whole matrix
either only positive or only negative:

Definition 6 (Unit and pure literals). A literal ` is a unit literal if {`} ∈ ϕ;
` is a pure literal if ¬` does not appear in any clause of ϕ.

These are syntactic criteria that can be checked efficiently. This is necessary
because in particular the detection of unit literals is one of the main operations of
search-based SAT and QBF solvers as a part of Boolean constraint propagation
(BCP).

For DQBF preprocessing, it is possible to use more expensive checks to
determine variables which may be replaced by constants. Therefore we give a
more general semantic definition:

2 For consistency reasons we have negated the formula compared to [21].
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Definition 7 (Backbones and monotonic variables). A variable v ∈ V is
a positive (negative) backbone if ϕ[0/v] (ϕ[1/v], resp.) is unsatisfiable. A literal
` is a backbone, if ` = v and v a positive backbone, or if ` = ¬v and v a negative
backbone.

A variable v ∈ V is positive (negative) monotonic if ϕ[0/v]∧¬ϕ[1/v] (ϕ[1/v]∧
¬ϕ[0/v], resp.) is unsatisfiable.

The following theorem states how we can exploit backbones and monotonic
variables to reduce the size of the formula:

Theorem 2. Let ψ = Q : ϕ be a DQBF and v ∈ V a backbone or a monotonic
variable.

If v is a positive or negative backbone and universal, ψ is unsatisfiable.
Otherwise ψ is equivalent to ψ′ where
• ψ′ = Q \ {v} : ϕ[1/v] if v is existential and either a positive backbone or

positive monotonic, or v is universal and negative monotonic;
• ψ′ = Q \ {v} : ϕ[0/v] if v is existential and either a negative backbone or

negative monotonic, or v is universal and positive monotonic.

This theorem has been proven formally in [28]. Checks whether a variable is a
backbone or monotonic can be done using a SAT solver. As already mentioned, in
the SAT and QBF context typically efficient (sound but not complete) syntactic
criteria are applied to detect backbones and monotonic variables. It is easy to
show that unit literals are backbones and pure literals are monotonic.

Another cheap criterion to identify backbones uses the binary implication
graph of a formula (which later also used to identify equivalent literals):

Definition 8. Let ϕ2 =
{
C ∈ ϕ

∣∣ |C| = 2
}

be the set of binary clauses. The bi-
nary implication graph of ψ is the directed graph BIP(ψ) = (L,E) with the set L =
{v,¬v | v ∈ V } of literals as its set of nodes and E =

{
(v,¬w), (¬v, w)

∣∣ {v, w} ∈
ϕ2
}

the set of edges.

Then the following lemma holds:

Lemma 2. A literal ` is a backbone if there is a path in BIP(ψ) from ¬` to `.

If there is a path from literal ` to literal `′, we can derive the clause {¬`, `′}
by resolution. In case of the lemma, the path from ¬` to ` implies that we can
derive the clause {¬¬`, `} = {`}. Since this is a resolvent of clauses in ϕ, it may
be added to ϕ. Then we can apply Definition 6 to obtain the result.

Unit and pure literals, according to Definition 6, and backbones according to
Lemma 2, can be determined efficiently by traversing the matrix or, respectively,
the binary implication graph. Since solving a DQBF is much harder than solving a
SAT (or even QBF) problem and the gain by eliminating one variable is larger, it
often pays off to additionally use semantic checks (cf. Definition 7) for backbones
and monotonic variables, which are based on solving a sequence of SAT problems.
For backbones in the QBF context this observation has been made in [29].
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Definition 9 (Equivalent literals). The literals ` and µ are equivalent w. r. t.
a propositional formula ϕ iff ϕ is equivalent to ϕ ∧ (` ≡ µ).

Theorem 3. Let ` and µ be equivalent literals. We assume, w. l. o. g., that
sgn(`) = 1.

If var(`), var(µ) ∈ V ψ∀ , then ψ is unsatisfiable. Otherwise, we assume w. l. o. g.

that var(`) ∈ V ψ∃ . If var(µ) ∈ V ψ∀ and var(µ) 6∈ Dψ
var(`), then ψ is unsatisfiable. If

var(µ) ∈ V ψ∀ and var(µ) ∈ Dψ
var(`), then ψ is equivalent to Q \

{
var(`)

}
: ϕ[µ/`].

If var(`), var(µ) ∈ V ψ∃ , then ψ is equivalent to

ψ′ :=
(
Q \ {var(µ), var(`)}

)
∪
{
∃ var(µ)(Dψ

var(µ) ∩D
ψ
var(`))

}
: ϕ[µ/`] .

A proof can be found in the appendix of this paper.
To detect equivalent literals, we exploit the following lemma:

Lemma 3. Two literals `, µ are equivalent if there is a path in BIP(ψ) from `
to µ and vice versa.

The path from ` to µ allows us to derive the clause {¬`, µ} by resolution, the
path from µ to ` the corresponding clause {¬µ, `}. Both clauses may be added
to ϕ as they are resolvents. Because (¬` ∨ µ) ∧ (` ∨ ¬µ) is equivalent to (` ≡ µ),
this implies according to Definition 9 that ` and µ are equivalent.

We decompose BIP(ψ) into strongly connected components (SCCs) using
Tarjan’s SCC algorithm [30]. SCCs have the property that there is a path between
each pair of nodes in an SCC. Therefore literals within one SCC are equivalent.
They are replaced by one representative by applying Theorem 3. This procedure
was described e. g., in [31–34, 16] for SAT preprocessing. Further equivalent literals
can be found using structure extraction (see Section 4.5). Of course, even SAT
checks based on Definition 9 may be beneficial in the DQBF context.

4.2 Reduction of Dependency Sets

In a DQBF, a universal variable x ∈ V ψ∀ may be contained in the dependency

set Dψ
y of an existential variable y ∈ V ψ∃ , but actually, due to the structure of

the matrix, the Skolem function for y does not need to exploit the information
about x’s value to satisfy the formula. If such a situation is detected, x can be
removed from Dψ

y . This potentially reduces the number of copies of variables, if
universal expansion according to Theorem 6 is used for solving a DQBF.

An example for a situation when dependency sets may be reduced is when a
circuit is transformed into CNF by Tseitin transformation. The dependency set
Dψ
y of a Tseitin variable y can be an arbitrary superset of the universal variables

in its cone-of-influence. The variables in Dψ
y that are not in the cone-of-influence

of y can be removed from Dψ
y without affecting the truth value of the formula.

Definition 10. An existential variable y ∈ V ψ∃ is independent of a universal

variable x ∈ V ψ∀ if either x 6∈ Dψ
y or replacing Dψ

y by Dψ
y \ {x} does not change

the truth value of ψ.
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Deciding whether two variables are independent has the same complexity as
deciding the DQBF itself [35]. Therefore one resorts to sufficient criteria to show
independence. The most simple ones are based on the incidence graph of the
matrix:

The variable-clause incidence graph GV,ϕ = (V ∪ ϕ,E) of the formula is an
undirected graph with E =

{
{v, C} ∈ V × ϕ

∣∣ v ∈ C ∨ ¬v ∈ C}.

Theorem 4 (Standard dependency scheme). An existential variable y ∈
V ψ∃ is independent of a universal variable x ∈ V ψ∀ if there is no path in GV,ϕ
from x to y, visiting only variables in {z ∈ V ψ∃ |x ∈ Dψ

z } in between.

For a proof for this theorem, which generalizes a theorem from [35], see the
appendix of this paper.

In the QBF context more powerful dependency schemes have been developed
which can possibly identify more variables as independent, see, e. g., [35–39]. A
generalization of these techniques will have an immediate benefit for DQBF solving
by increasing the potential to save variable copies during universal expansion.

4.3 Universal Reduction, Resolution, and Universal Expansion

Universal reduction, resolution, and universal expansion are well-known techniques
used during the solution of QBFs. Universal reduction removes a universal variable
from a clause if the clause does not contain any existential variable which depends
upon it. This technique has already been generalized to DQBF in [40, 11].

Lemma 4 (Universal reduction, [40, 11]). Let Q : ϕ ∧ C be a DQBF and
` ∈ C a universal literal such that for all k ∈ C with k 6= ` we have var(`) 6∈
depψ(k). Then Q : ϕ ∧ C and Q : ϕ ∧

(
C \ {`}

)
are equivalent.

For QBF resolution and universal reduction together are able to derive the
empty clause iff the formula is unsatisfiable. This does not hold for DQBF [40].
Resolution in QBF formulas allows to eliminate an existential variable by replacing
the clauses containing this variable with their resolvents. While adding resolvents
is sound for DQBF as well, eliminating existential variables by resolution [15]
only works under certain conditions. Here we give a set of sufficient conditions
which allow variable elimination by resolution for DQBF. In particular when
the formula is created by Tseitin transformation [25], variable elimination by
resolution is applicable to a large subset of the formula’s existential variables.

Theorem 5 (Variable elimination by resolution). Let y ∈ V ψ∃ be an ex-
istential variable of ψ. We partition ϕ into the sets ϕy = {C ∈ ϕ | y ∈ C},
ϕ¬y = {C ∈ ϕ | ¬y ∈ C}, and ϕ∅ = ϕ \ (Cy ∪ C¬y).
If one of the following conditions is satisfied:
• for all C ∈ ϕy and all k ∈ C we have depψ(k) ⊆ depψ(y),
• for all C ′ ∈ ϕ¬y and all k ∈ C ′ we have depψ(k) ⊆ depψ(y), or
• y is the defined variable of a functional definition, i. e., there are clauses

encoding the relationship y ≡ f(V ′) for some function f and arguments
V ′ ⊆ V \ {y}, depψ(v) ⊆ depψ(y) for all v ∈ V ′ (cf. Sec. 4.5),
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then ψ is equivalent to ψ′ := Q \ {y} : ϕ∅ ∧
∧

C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′.

Proof sketch. Resolvents are implied by the matrix, i. e., adding resolvents to the
matrix yields an equivalent formula. If ψ is satisfied, then removing the clauses
in ϕy and ϕ¬y cannot make the formula unsatisfied, i. e., ψ′ is satisfied.

Assume that ψ′ is satisfied by Skolem functions sz for z ∈ V ψ∃ \{y}. We define

sy := ¬ϕy
[
0/y
][
sz/z for z ∈ V ψ∃ \ {y}

]
in the first case, sy := ¬ϕ¬y

[
1/y
][
sz/z

for z ∈ V ψ∃ \ {y}
]

in the second case, and sy := f(V ′)
[
sz/z for z ∈ V ψ∃ \ {y}

]
in

the third case. It is not hard to show that sy is an admissible Skolem function

for y and that ϕ[sv/v for v ∈ V ψ∃ ] is indeed a tautology. Details can be found in
the appendix. ut

Theorem 5 does not provide a decision algorithm for arbitrary DQBFs, since it
is possible that the conditions do not hold for any existential variable. Moreover,
eliminating all existential variables fulfilling the conditions of Theorem 5 is in
general not feasible because the number of clauses can grow considerably during
elimination. We first create a list of variables that may be eliminated. For each

such variable y we estimate the cost cy of elimination, i. e., cy := |ϕ∅|+|ϕy|·|ϕ¬y|
|ϕ| .

We eliminate one variable y with minimum cost provided that cy is less than
a user-specified factor ε > 1. After resolving variables we check for subsumed
clauses, i. e., clauses C such that there is a clause C ′ with C ′ ⊆ C. Then C can
be deleted [26, Sec. 3.2].

Universal expansion [41, 42, 40, 9] is the corresponding method for eliminating
universal variables. It is the main operation which the solver HQS [12] uses to
transform the DQBF at hand into an equivalent QBF. This QBF can be solved
by an arbitrary QBF solver.

Theorem 6 (Universal expansion). Let xi ∈ V ψ∀ , and Eψxi =
{
yi ∈ V ψ∃

∣∣xi ∈
depψ(yj)

}
. Then ψ is equivalent to(

Q\{xi}
)
∪
{
∃y′j(Dψ

yj\{xi})
∣∣ yj ∈ Eψxi} : ϕ[1/xi]∧ϕ[0/xi][y

′
j/yj for all yj ∈ Eψxi ] .

A formal proof of this theorem is given, e. g., in [9]. In order to avoid unnecessary
variable copies, we check using the standard dependency scheme (cf. Theorem 4)
which existential variables actually depend on the expanded universal variable.

4.4 Blocked Clause Elimination

The concept of blocked clauses was introduced by Järvisalo et al. for SAT in
[22] and later generalized to QBF by Biere et al. in [18]. Blocked clauses can be
removed from a formula without changing its truth value. Before checking for
blockedness, clauses can be extended by so-called hidden and covered literals [43,
44, 18]. This does not change the truth value of the formula, but increases the
chance that a clause is blocked.
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In this section, we first generalize the notion of blocked clauses to DQBF such
that blocked clauses satisfy the same properties as in SAT and QBF. Then we
investigate how to generalize hidden and covered literals to DQBF.

For a QBF Q : ϕ ∧ C, a clause C containing an existential literal ` ∈ C
can be omitted (resulting in an equivalent formula), if ‘` is blocking for C’,
which means that for all C ′ ∈ ϕ with ¬` ∈ C ′ there is a variable k such that
{k,¬k} ⊆ C ⊗` C ′ and k precedes ` in the quantifier prefix (which means in
DQBF notions: depψ(k) ⊆ depψ(`)). In the QBF context the intuitive background
of blocked clause elimination is simple: Consider a solving approach to QBF
which always removes the innermost existential quantifiers (which depend on
all universal ones) by resolution3 and the innermost universal quantifiers (upon
which no existential variable depends) by universal reduction until all quantifiers
have been removed [24]. If ` is blocking for C, all resolvents resulting from C
contain {k,¬k}, i. e., are tautological, and their addition makes no contribution.
The condition ‘k precedes ` in the quantifier prefix’ ensures that var(k) has not
been removed before ` in the process sketched above, i. e., the reason {k,¬k} for
the resolvents being tautological has not been removed. This implies that we can
alternatively remove C from ϕ ∧ C in the very beginning without changing the
result of the solving process.

Fortunately, we can show that the notion of blocked clauses has a natural
generalization to DQBF. However, the proof idea of blocked clause elimination
sketched above does not work anymore, since in DQBF there is no linear order
for the quantifiers such that ‘removing quantifiers starting with the innermost’
does not have a counterpart in DQBF; the correctness proof has to be re-done for
DQBF carefully taking into account that arbitrary dependencies may be defined
in a DQBF. We first give the generalized definition of blocked clauses:

Definition 11 (Blocked clauses). Let Q : ϕ ∧ C be a DQBF and C a clause
with ` ∈ C. Literal ` is a blocking literal for C if ` is existential and for all
C ′ ∈ ϕ with ¬` ∈ C ′ there is a variable k such that {k,¬k} ⊆ C ⊗` C ′ and
depψ(k) ⊆ depψ(`). A clause is blocked if it contains a blocking literal.

Now we can prove results that are analogous to QBF and SAT.

Theorem 7 (Blocked clause elimination, BCE). Let Q : ϕ∧C be a DQBF
with a blocked clause C. Then Q : ϕ ∧ C and Q : ϕ are equivalent.

Proof sketch. The theorem can be shown by induction on the number |depψ(`)|
of `’s dependencies. The base case depψ(`) = ∅ works analogously to the QBF
case, see [18]. For the induction step, we choose an arbitrary universal variable
x ∈ depψ(`) and eliminate it by universal expansion (see Theorem 6). In the
resulting formula, ` and its copy `′ depend on one variable less. One can show
that both copies of C in this formula are either blocked or tautological. Therefore
they can be removed by the induction assumption. Un-doing the expansion step
yields the result. A more detailed proof can be found in the appendix. ut
3 Adding all possible resolvents with pivot variable v and then removing all clauses

containing v or ¬v corresponds to existential quantification of v.
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Lemma 5. BCE for DQBF has a unique fixed point.

That means that the result of elimination does not depend on the order in which
the clauses are considered.

The purpose of the following techniques is to extend clauses by redundant
literals. This increases the chance that the clause is blocked and can be deleted.
If the extended clause is not blocked, the additional literals are removed again.

Definition 12 (Hidden literals). Let Q : ϕ ∧ C be a DQBF. A literal ` 6∈ C
is a hidden literal for C if there is a clause {`1, . . . , `n,¬`} ∈ ϕ such that
{`1, . . . , `n} ⊆ C.

Theorem 8 (Hidden literal addition, HLA). Let Q : ϕ∧C be a DQBF and
` a hidden literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {`}

)
are equivalent.

The idea of hidden literal addition is based on self-subsuming resolution [15].
The resolvent (C ∪ {`})⊗` {`1, . . . , `n,¬`} is equal to C and subsumes C ∪ {`}.
Thus after adding the resolvent C, C ∪ {`} can be removed, leading to an
equivalent formula. Note that the argument for hidden literal addition is based
on a consideration of the matrix only, thus in this case the argumentation is
exactly the same as for SAT and QBF.

This is in contrast to the ‘covered literal addition’ described in the following.
For covered literals we need a careful generalization of the QBF definition together
with a non-trivial proof of the generalization to DQBF.

Definition 13 (Covered literals). Let ψ = Q : ϕ∧C be a DQBF and let ` be
an existential literal with ` ∈ C. The set of resolution candidates for C w. r. t.
` is the set Rψ(C, `) =

{
C ′ ∈ ϕ

∣∣¬` ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆ C ⊗` C ′ ⇒
depψ(v) 6⊆ depψ(`))

}
.

A literal k is a covered literal for C w. r. t. ` if depψ(k) ⊆ depψ(`) and
k ∈

⋂
Rψ(C, `) \ {¬`}.

Theorem 9 (Covered literal addition, CLA). Let Q : ϕ ∧C be DQBF and
k a covered literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {k}

)
are equivalent.

Proof sketch. Assume that k is a covered literal for C w. r. t. `. We show the
theorem by induction on the number |depψ(`)| of dependencies of `. The induction
base where depψ(`) = ∅ is similar to the QBF case (cf. [18]). For the induction step,
we apply universal expansion of an arbitrary variable in depψ(`) (see Theorem 6)
to obtain a formula in which ` and its copy `′ both depend on one variable less.
It is rather technical to show that adding k (k′) to the copies of C in this formula
leads to an equivalent formula, since these copies are either tautological or k (k′)
is a covered literal. By undoing the expansion step we obtain the desired result.
For a detailed proof we refer to the appendix. ut

A rough basic intuition for covered literal addition is as follows: “If a literal k
is already contained in all non-tautological resolvents of a clause C with pivot
literal `, then k may be added to C resulting in an equivalent formula.” In
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addition to this basic idea we need the condition depψ(k) ⊆ depψ(`) and a bigger

set of resolution candidates Rψ(C, `) =
{
C ′ ∈ ϕ

∣∣¬` ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆
C ⊗` C ′ ⇒ depψ(v) 6⊆ depψ(`))

}
instead of Rψ(C, `) =

{
C ′ ∈ ϕ

∣∣¬` ∈ C ′∧
@v ∈ V : {v,¬v} ⊆ C ⊗` C ′

}
in order to be able to lead the (rather involved)

proof of Theorem 9, see the appendix.
In order to reduce the size of the formula, we determine for each clause C the

set H of hidden and the set K of covered literals. Then we check if C ∪H ∪K is
blocked or tautological. If this is the case, C is removed; otherwise C remains
unchanged. This is iterated until we reach a fixed point.

Note that if a hidden or covered literal is universal, its addition can be helpful
not only because it can make a clause blocked. If a CNF-based solver core uses
elimination of universal variables to decide the formula, all clauses which contain
an existential variable that depends on the eliminated universal variable have to
be doubled [9]. If the clause contains the universal variable to be eliminated, one
of these copies is satisfied and can therefore be omitted (cf. [45]).

4.5 Structure Extraction

The DQBF’s matrix in CNF is often created from a circuit or a Boolean expression
by Tseitin transformation [25], where a new existential variable ve is created for
each sub-expression e (or gate output). Clauses encoding the relationship ve ≡ e
are added and the sub-expression e is replaced by the variable ve. If a solver (like
HQS) does not rely on a matrix in CNF, this transformation step can be undone.
This removes all artificially introduced variables. Structure extraction is used in
the QBF solver AIGsolve [23].

For example, a k-input AND gate y ≡ AND(`1, . . . , `k) has a Tseitin en-
coding consisting of (k + 1) clauses {¬y, `1}, . . . , {¬y, `k}, {y,¬`1, . . . ,¬`k}. In a
functional definition y ≡ f(`1, . . . , `k), y is called the defined variable, f is the
definition of y, and the clauses corresponding to the relationship y ≡ f(`1, . . . , `k)
are the defining clauses.

Theorem 10. Let ψ = Q : ϕ be a DQBF and ϕf ⊆ ϕ the defining clauses
for the relationship y ≡ f(`1, . . . , `k). Then ψ is equivalent to Q \ {y} : (ϕ \
ϕf )[f(`1, . . . , `k)/y] if y ∈ V ψ∃ and for i = 1, . . . , k we have depψ(`i) ⊆ depψ(y).

Our implementation checks for defining clauses for (multi-input) (N)AND
gates and 2-input XOR gates, both with arbitrarily negated inputs. We do not
extract definitions that lead to cyclic dependencies.

Gate detection can be used as the last step of the preprocessing routine.
If a relationship y ≡ f(`1, . . . , `k) is detected which does not lead to cyclic
dependencies, we remove y from the prefix and the defining clauses from the
matrix. We additionally use a data structure which assigns to each defined
variable its definition. To create an AIG representation that can be passed to a
non-CNF-based solver core like HQS, we convert the remaining clause into an
AIG and then substitute the defined variables by their definitions.
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The same structure extraction procedure can also be used to identify equiv-
alent variables and unnecessary variable dependencies. For both purposes, the
relationships are only detected, but neither are the defining clauses removed
nor is the data structure that stores the relationships updated. Therefore this
can also be used if the solver back-end requires a matrix in CNF: If there is
the relationship y ≡ f(`1, . . . , `k) and

⋃k
i=1 depψ(`i) ( Dψ

y , then Dψ
y can be

replaced by
⋃k
i=1 depψ(`i). If two defined variables y, y′ with the same definition

are detected, i. e., y ≡ f(`1, . . . , `k) and y′ ≡ f(`1, . . . , `k), then y and y′ are
equivalent and Theorem 3 can be applied to remove one of them.

5 Experimental Results

We have implemented the described techniques in C++ as a preprocessor for our
DQBF solver HQS. To support other back-end solvers, too, it is able to write
the resulting formula into a file in DQDIMACS format, which can be read by
the currently only competing solver iDQ [11].

As benchmark instances we use 4381 formulas, resulting from the verification
of incomplete circuits [9, 21, 11] and controller synthesis [10]. The synthesis
benchmarks are those shipped with the tool Demiurge 1.1.0 [10]. We used the
encoding described in [10] to create a DQBF formulation.

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz
with 64 GB of main memory, running Ubuntu Linux 12.04 in 64-bit mode as
operating system. We aborted all experiments whose computation time exceeded
900 seconds or which required more than 8 GB of memory. For solving QBFs,
we use DepQBF 4.0 [46, 47] with the QBF preprocessor bloqqer [18] (version 35)
if the matrix is in CNF, and AIGsolve [23] if the matrix is given as an AIG.

We used two parameter settings for preprocessing, in the following called
V1 and V2. Both use the detection of backbones (by syntactic and semantic
checks), monotonic variables (by syntactic checks), and equivalent variables (both
using the binary implication graph and structure extraction). We reduce the
dependency sets of the existential variables using the standard dependency scheme
and structure extraction. For these operations, the functional definitions are only
detected, but neither are the defined variables replaced by their definition nor
are the defining clauses removed.
• V1 additionally enables structure extraction, which replaces the defined

variables by their definitions. V1 does not yield a CNF representation, but rather
an And-Inverter Graph (AIG) [48] for the formula. Since iDQ requires a CNF
representation of the matrix, V1 can only be combined with HQS.
• V2 applies BCE after adding hidden and covered literals and variable

elimination by resolution (ε = 1.1), but disables structure extraction. V2 yields a
matrix in CNF; therefore it can be combined with both iDQ and HQS.

Table 1 shows the number of solved instances (out of 4381) for different combina-
tions of preprocessing, filtering using QBF over-approximations see Section 3), and
the HQS or iDQ solver cores. Preprocessing alone can only solve a small fraction
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of all instances (80 for V1 and 57 for V2). The filter solves already 935 instances for
k = 1 (slightly more with higher values of k). The combination of preprocessing
V1 with the filter allows to decide 2459 instances (2240 with V2). In spite of
using bloqqer as preprocessor for simplifying the QBF over-approximations for
filtering, doing DQBF preprocessing before reduces the solving times for the
QBFs. Without DQBF preprocessing, solving the QBF approximation runs into
a timeout frequently.

Table 1. Effect of preprocessing

Solver Filter Preproc. Solved

none k = 1 none 935
none none V1 80
none none V2 57
none k = 1 V1 2459
none k = 2 V1 2733
none k = 1 V2 2240

HQS none none 1537
HQS none V1 3629
HQS k = 1 V1 3752
HQS k = 1 V1 + BCE 2174
HQS k = 2 V1 3737
HQS k = 1 V2 3542

iDQ none none 1073
iDQ none V2 1378
iDQ k = 1 none 1359
iDQ k = 1 V2 2714

For HQS as solver back-end, the trend is
similar: without preprocessing and filtering,
HQS is able to solve 1537 instances, with V1
preprocessing this number increases to 3629 in-
stances, and if filtering is used thereafter, 3752
instances can be solved. We can also see that
BCE largely prevents structure extraction: if
all described techniques are enabled, only 2174
instances can be solved successfully. Increasing
the value of k to 2 does not seem beneficial
at least if a time limit of 15 min is used. For
larger time limit, k = 2 can slightly increase
the number of solved instances. Finally, if we
combine V2 with filtering (k = 1) and HQS, we
can also observe a positive effect on the number
of solved instances (3542); however, it is not
as strong as with V1, which includes structure
extraction instead of BCE.

iDQ without filtering and preprocessing
solves 1073 instances. This number is increased to 1378 by preprocessing (V2)
and to 1359 instances by filtering (k = 1). The combination with filtering and
preprocessing yields 2714 solved instances.

In summary, the combination of filtering and preprocessing significantly
increases the number of solved instances by a factor of up to 2.44 (for HQS) and
2.52 (for iDQ). The best results are obtained if the preprocessing techniques are
chosen according to the solver core.

Now we focus on the size of the instances before and after preprocessing.
Preprocessing variant V2 reduces the number of clauses by 64 % on average, the
number of existential variables by 76 % on average, but leaving the number of
universal variables essentially unchanged. As preprocessing variant V1 does not
yield a CNF representation, we cannot compare the number of clauses. Instead
we compare the size of the AIG representation of the matrix before and after
preprocessing. V1 reduces the number of existential variables by 97 % on average
(including all Tseitin variables), the number of AIG nodes by 84 %, leaving the
number of universal variables almost unchanged, too.

If the CNF structure of the matrix needs to be preserved (as in V2) not all
Tseitin variables can be removed by identifying functional definitions and by
elimination by resolution, since this leads to a significant increase in size of the
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(a) HQS with filtering and V1 (b) HQS with filtering and V2
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(c) iDQ with filtering and V2 (d) Solution times (in seconds)
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UNSAT Solver Filter Preproc. Suma Avg.b

HQS none none 2 668 335 70.75
HQS yes V1 583 097 4.53
HQS yes V2 797 037 11.84
iDQ none none 3 006 803 35.65
iDQ yes V2 2 028 601 6.02

a over all instances
b over the solved instances

Fig. 1. Running times (in seconds) for HQS and iDQ with and without preprocessing.

CNF (at least for some intermediate instances). This effect is lessened by BCE,
in particular if HLA and CLA are enabled.

Finally, we take a closer look at the solving times of the instances. For the
instances which were solved with or without preprocessing and filtering, Fig. 1
compares the computation times when using only the solver core and when using
the solver core after preprocessing and filtering. The times include everything
from reading the input files to termination. The upper two pictures show HQS
with V1 (Fig. 1(a)) and V2 (Fig. 1(b)) and filtering using k = 1, compared to
HQS without preprocessing and filtering. Fig. 1(c) shows iDQ with V2, compared
to iDQ without preprocessing. In Fig. 1(d) we present the accumulated running
times over all instances (unsolved instances contributing the time limit of 900
seconds) and the average running time of the solved instances.
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In all three cases, preprocessing and filtering reduce the computation times for
the vast majority of instances significantly, often by orders of magnitude. The
very few exceptions in case of iDQ are instances that are very easy to solve
such that the overhead for preprocessing exceeds the solving time. We can also
observe that many instances, for which the solver core alone ran into a time out
or memory out, can be solved successfully after preprocessing and filtering.

6 Conclusion

We have shown how preprocessing techniques for SAT and QBF can be generalized
to DQBF. Experiments have demonstrated that they can reduce the running
time of the actual solving process by orders of magnitude, both for CNF-based
and non-CNF-based solver cores.

In future we want to investigate more powerful dependency schemes and how
the flexibility in the dependency sets can be exploited when choosing sets of
universal variables to eliminate in order to obtain a QBF.

Acknowledgements. We thank Sven Reimer for fruitful discussions and Florian
Pigorsch for providing us with his AIGsolve [29] implementation.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58 (2003) 117–148

2. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: TIGUAN:
thread-parallel integrated test pattern generator utilizing satisfiability analysis. In:
Int’l Conf. on VLSI Design, New Delhi, India, IEEE Computer Society (2009)
227–232

3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of
Artificial Intelligence Research 10 (1999) 323–352
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Appendix

A Proofs of the Main Lemmas and Theorems

A.1 Backbones, Monotonic and Equivalent Variables

Lemma A.1 Unit literals are backbones, and pure literals monotonic.

Proof. Let ` be a literal such that {`} ∈ ϕ, i. e., ϕ = ϕ′ ∪
{
{`}
}

. W. l. o. g., we

assume sgn(`) = 1. Replacing ` by 0 yields ϕ[0/`] = ϕ′[0/`] ∪
{
{0}
}

, which is
unsatisfiable as the clause {0} is false. Therefore ` is a backbone.

Now consider the case that ϕ does not contain ¬`. Then we can partition
ϕ into the clauses C` which contain ` and the clauses C∅ not containing `, i. e.,
ϕ = ϕ` ∧ ϕ∅. We can write ϕ as ϕ = (` ∨ ϕ̄`) ∧ ϕ∅ with an appropriate formula
ϕ̄` that does not contain `. We have

ϕ[0/`] ∧ ¬ϕ[1/`] = (0 ∨ ϕ̄`) ∧ ϕ∅ ∧ ¬
(
(1 ∨ ϕ̄`) ∧ ϕ∅

)
= ϕ̄` ∧ ϕ∅ ∧ ¬ϕ∅

= 0

Hence, ` is monotonic. ut

To prove Lemmas 2 and 3 we need the following property of binary implication
graphs:

Lemma A.2 Let Gψ = (L,E) be the binary implication graph of ψ and `1, `2 ∈ L
two literals. If there is a path from `1 to `2 in Gψ, then ϕ implies the clause
{¬`1, `2}.

Proof. Let `1 = κ1 → κ2 → · · · → κk = `2 be a path in Gψ from `1 to `2. This
means that ϕ contains the clauses Ci := {¬κi, κi+1} for i = 1, . . . , k − 1. We
set r1 = {¬κ1, κ2} and ri = ri−1 ⊗κi Ci = {¬κ1, κi+1} for i = 2, . . . , k − 1. So
we can derive rk−1 = {¬κ1, κk} = {¬`1, `2} from C1, . . . , Ck−1 by resolution. As
resolvents are implied by the formula, they can be added without changing the
formula’s truth value. This shows the claim. ut

Lemma 2. A literal ` is a backbone if there is a path in Gψ from ¬` to `.

Proof. Assume that there is a path in Gψ from ¬` to `. By Lemma A.2 we can
derive the clause {¬¬`, `} = {`} by resolution. Therefore Q : ϕ is equivalent to
Q : ϕ ∧ {`}. By Definition 6 we have that ` is unit in ϕ ∧ {`}. Therefore ` is a
backbone in ϕ ∧ {`} and also in ϕ. ut

Theorem 3. Let ` and µ be equivalent literals. We assume w. l. o. g. that sgn(`) =
1.

If var(`), var(µ) ∈ V ψ∀ , then ψ is unsatisfiable. Otherwise, we assume w. l. o. g.

that var(`) ∈ V ψ∃ . If var(µ) ∈ V ψ∀ and var(µ) 6∈ Dψ
var(`), then ψ is unsatisfiable. If
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var(µ) ∈ V ψ∀ and var(µ) ∈ Dψ
var(`), then ψ is equivalent to Q \

{
var(`)

}
: ϕ[µ/`].

If var(`), var(µ) ∈ V ψ∃ , then ψ is equivalent to

ψ′ :=
(
Q \ {var(µ), var(`)}

)
∪
{
∃ var(µ)(Dψ

var(µ) ∩D
ψ
var(`))

}
: ϕ[µ/`] .

Proof. Assume that ` and µ are equivalent, i. e., ϕ is equivalent to ϕ∧ (¬`∨ µ)∧
(` ∨ ¬µ), which is the same as ϕ ∧ (` ≡ µ).

– We first consider the case where var(`), var(µ) ∈ V ψ∀ .
Since (` ≡ µ) does not contain an existential variable and universal quantifiers
distribute over ∧, ψ is equivalent to(

Q : ϕ
)
∧
(
∀ var(`)∀ var(µ) : (` ≡ µ)

)
.

Obviously, (` ≡ µ) is not a tautology, and therefore ψ is unsatisfiable.

– Next, let var(`) ∈ V ψ∃ , var(µ) ∈ V ψ∀ , and var(µ) 6∈ Dψ
var(`).

Assume ψ were satisfiable. Then there were Skolem functions that turn
ψ∧(` ≡ µ) into a tautology. The only Skolem function for var(`) which is able
to turn (` ≡ µ) into a tautology is svar(`) = µ (note that we assume sgn(`) = 1).

However, this Skolem function is not admissible as var(µ) 6∈ Dψ
var(`). Therefore

ψ is unsatisfiable.
– Now consider the case that var(`) ∈ V ψ∃ , var(µ) ∈ V ψ∀ , and var(µ) ∈ Dψ

var(`).

With a similar argumentation as in the previous case, we can derive that if
ψ is satisfiable, the only Skolem function for var(`) is svar(`) = µ, which is
admissible. Therefore, replacing ` by µ again yields a satisfiable formula. On
the other hand, if ψ is unsatisfiable, replacing the existential variables by any
admissible functions does not turn ϕ into a tautology. Therefore replacing `
by µ yields an unsatisfiable formula again.

– Finally, we consider var(`), var(µ) ∈ V ψ∃ .
First assume that ψ is unsatisfiable, i. e., there is no set of Skolem functions
for the existential variables which turns the matrix into a tautology. In
particular, this also holds for all sets of Skolem functions in which svar(`)
and svar(µ) are identical (modulo negation). Therefore replacing ` by µ and
restricting the dependency set accordingly yields an unsatisfiable formula
again.
Now assume that ψ is satisfied. Because the Skolem functions for var(`) and
var(µ) have to turn (` ≡ µ) into a tautology, they have to be equal because
of (` ≡ µ). Since the Skolem function must be admissible for var(`), it must

not depend on Dψ
var(µ) \D

ψ
var(`). Similarly, because it has to be admissible

for var(µ), it must not depend on Dψ
var(`) \ D

ψ
var(µ). Therefore it may only

depend on Dψ
var(`) ∩D

ψ
var(µ). So we may replace ` by µ if we restrict var(µ)’s

dependency set to Dψ
var(`) ∩D

ψ
var(µ).

ut

Lemma 3. Two literals `, µ are equivalent if there is a path in BIP(ψ) from `
to µ and vice versa.
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Proof. The path from ` to µ allows us, according to Lemma A.2, to derive the
clause {¬`, µ}, the path from µ to ` the corresponding clause {¬µ, `}. Both
clauses may be added to ϕ as they are resolvents. This implies according to
Definition 9 that ` and µ are equivalent. ut

A.2 Reduction of Dependency Sets

To prove Theorem 4 we use the following definition:

Definition 14. Let GV,ϕ = (V ∪ ϕ,E) the variable-clause incidence graph of ψ
and A ⊆ V . Two variables v, v′ ∈ V are connected w. r. t. A if there is a path
from v to v′, visiting only clauses and variables in A in between.

Using this definition, Theorem 4 reads as follows:

Theorem 4 (Standard dependency scheme). An existential variable y ∈
V ψ∃ is independent of a universal variable x ∈ V ψ∀ with x ∈ Dψ

y if they are not

connected w. r. t. Z := {z ∈ V ψ∃ |x ∈ Dψ
z }.

Proof. W. l. o. g. we assume that x = x1 and y = y1.

Let y1 ∈ V ψ∃ and x1 ∈ V ψ∀ be variables such that x1 ∈ Dψ
y1 , but they are not

connected w. r. t. Z.

Let ψ′ = Q′ : ϕ result from ψ = Q : ϕ by removing x1 from the dependency
set Dψ

y1 of y1. We have to show that ψ′ is satisfied iff ψ is satisfied.

Since there is no path from x1 to y1 which only visits clauses and variable
nodes in Z, we can partition the set V ψ∃ of existential variables into the three
pairwise disjoint subsets

V ψA = {a ∈ V ψ∃ |x1 6∈ D
ψ
a },

V ψB = {b ∈ V ψ∃ |x1 ∈ D
ψ
b ∧ b is connected w. r. t. Z to x1},

V ψC = {c ∈ V ψ∃ |x1 ∈ D
ψ
c ∧ c is not connected w. r. t. Z to x1}.

Using these sets of variables, we define the following two sets of clauses:

ϕx1 = {C ∈ ϕ | var(C) ∩ V ψB 6= ∅},

ϕy1 = {C ∈ ϕ | var(C) ∩ V ψB = ∅} .

There is no variable yC ∈ V ψC which appears in ϕx1
. Assume the contrary, i. e.,

there is a clause C ∈ ϕx1 and a variable yC such that yC ∈ V ψC ∩ var(C). Due to

the definition of ϕx1
, var(C) contains a variable yB with yB ∈ var(C)∩V ψB . That

means, yB is connected w. r. t. Z to x1 and GV,ϕ contains edges between yB and
C as well as C and yC . As x1 ∈ Dψ

yB and x1 ∈ Dψ
yC , x1 and yC are connected

w. r. t. Z, which contradicts yC ∈ V ψC .

23



Using this partitioning, we can write ψ as

ψ = ∀x1 . . . ∀xn∃y1(Dψ
y1) . . . ∃ym(Dψ

ym) : ϕ

= ∀x1 . . . ∀xn∃y1(Dψ
y1) . . . ∃ym(Dψ

ym) : ϕx1
∧ ϕy1

ϕx1
does not contain any variable in V ψC , and ϕy1 none of the variables in V ψB .

Therefore we can move the existential quantifier inside [40]:

≡ ∀x1 . . . ∀xn ∃a(Dψ
a )︸ ︷︷ ︸

for a ∈ V ψA

:
(
∃b(Dψ

b )︸ ︷︷ ︸
for b ∈ V ψB

: ϕx1

)
∧
(
∃c(Dψ

c )︸ ︷︷ ︸
for c ∈ V ψC

: ϕy1

)

The variables in V ψA do not depend on x1 and universal quantifiers distribute
over ∧:

≡ ∀x2 . . . ∀xn ∃a(Dψ
a )︸ ︷︷ ︸

for a ∈ V ψA

:
(
∀x1 ∃b(Dψ

b )︸ ︷︷ ︸
for b ∈ V ψB

: ϕx1

)
∧
(
∀x1 ∃c(Dψ

c )︸ ︷︷ ︸
for c ∈ V ψC

: ϕy1

)

As ϕy1 does not contain x1, we can remove x1 from any dependency set Dψ
c with

c ∈ V ψC , in particular from Dψ
y1 :

≡ ∀x2 . . . ∀xn ∃a(Dψ
a )︸ ︷︷ ︸

for a ∈ V ψA

:
(
∀x1 ∃b(Dψ

b )︸ ︷︷ ︸
for b ∈ V ψB

: ϕx1

)
∧
(
∀x1∃y1(Dψ

y1 \ {x1}) ∃c(D
ψ
c )︸ ︷︷ ︸

for c ∈ V ψC \ {y1}

: ϕy1

)

Bringing the formula back to prenex form yields:

≡ ∀x1 . . . ∀xn∃y1(Dψ
y1 \ {x1})∃y2(Dψ

y2) . . . ∃ym(Dψ
ym) : ϕx1 ∧ ϕy1

= ∀x1 . . . ∀xn∃y1(Dψ
y1 \ {x1})∃y2(Dψ

y2) . . . ∃ym(Dψ
ym) : ϕ .

ut

A.3 Universal Reduction, Resolution, and Universal Expansion

Theorem 5 (Variable elimination by resolution). Let Q : ϕ be DQBF and

y ∈ V ψ∃ an existential variable. We partition ϕ into the sets ϕy = {C ∈ ϕ | y ∈ C},
ϕ¬y = {C ∈ ϕ | ¬y ∈ C}, and ϕ∅ = ϕ \ (Cy ∪ C¬y).

If one of the following conditions is satisfied:

1. for all C ∈ ϕy and all k ∈ C we have depψ(k) ⊆ depψ(y),
2. for all C ′ ∈ ϕ¬y and all k ∈ C ′ we have depψ(k) ⊆ depψ(y), or
3. y is the output of a gate, i. e., there are clauses encoding the relationship

y ≡ f(V ′) for some function f and arguments V ′ ⊆ V \ {y} (cf. Sec. 4.5),
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then Q : ϕ is equivalent to

Q′ : ϕ∅ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′.

where Q′ results from Q by removing the quantification of the existential
variable y from the quantifier prefix Q.

Proof. Since the variable y does not occur in ϕ∅ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y C ⊗y C ′, it is

clear that
Q′ : ϕ∅ ∧

∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′

and
Q : ϕ∅ ∧

∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′︸ ︷︷ ︸
ϕ′

(1)

are equivalent. So we have to prove the equivalence of Q : ϕ and Q : ϕ∅ ∧∧
C∈ϕy

∧
C′∈ϕ¬y C ⊗y C ′. First let ϕ be satisfied. Since adding resolvents of ϕ to

ϕ does not change ϕ, we have

Q : ϕ ≡ Q : ϕ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′.

Since deleting clauses from a satisfied formula yields a satisfied formula again,
we can conclude that (1) is satisfied.

Now let (1) be satisfied. We show that this implies the satisfaction of Q : ϕ if
one of the conditions in the theorem is satisfied.

1. First assume that depψ(k) ⊆ depψ(y) holds for all C ∈ ϕy and all k ∈ C. If
(1) is satisfied, there are Skolem functions s′yi for all existential variables yi
(i = 1, . . . ,m) such that replacing yi by s′yi turns ϕ′ into a tautology. We
define the following set of Skolem functions for ϕ:

sz =

{
s′z, if z 6= y,

¬ϕy[0/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y], if z = y.

That means: for all existential variables except y we use the Skolem functions
from (1). The Skolem function for y is chosen such that it assigns 1 to y iff
there is a clause in ϕy which is not already satisfied by (the Skolem functions
of) the other literals. sy defined in the given way depends on a subset of
variables from depψ(y), since we have depψ(k) ⊆ depψ(y) for all C ∈ ϕy and
all k ∈ C.
Clearly, sy1 , . . . , sym satisfy the clauses in ϕ∅. We distinguish two cases for
proving that sy1 , . . . , sym satisfy all clauses in ϕ¬y and ϕ¬y as well (for
all variable assignments to the universal variables). Consider an arbitrary
assignment ν of values to the universal variables.
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– Case 1:
Each clause C ∈ ϕy contains a literal k 6= y such that svar(k)(ν|depψ(k)) =

sgn(k), if k ∈ V ψ∃ , ν(var(k)) = sgn(k), if k ∈ V ψ∀ , i. e., the formula ϕy

evaluates to 1, if we replace existential variables by Skolem functions and
evaluate w. r. t. ν. This is independent from the value for y. According
to the definition of sy = ¬ϕy[0/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y]
we then have sy(ν|depψ(y)) = 0. Thus, all clauses in C¬y evaluate to 1, if
we replace existential variables by Skolem functions and evaluate w. r. t.
ν, since all those clauses contain ¬y.

– Case 2:
There is a clause C ∈ ϕy such that for all literals k ∈ C with k 6= y it
holds svar(k)(ν|depψ(k)) = ¬ sgn(k), if k ∈ V ψ∃ , ν(var(k)) = ¬ sgn(k), if

k ∈ V ψ∀ , i. e., the formula ϕy would evaluate to 0, if we would replace
y by 0. According to the definition of sy = ¬ϕy[0/y][s′yi/yi for all i =
1, . . . ,m with yi 6= y] we then have sy(ν|depψ(y)) = 1 and thus all clauses
in ϕy evaluate to 1 for ν after replacing existential variables by Skolem
functions. We have to show that in this case all clauses in ϕ¬y evaluate
to 1 as well. Assume the opposite, i. e., there is a clause C ′ ∈ ϕ¬y that
does not evaluate to 1. Then consider the resolvent C ⊗y C ′. As for all

literals k in C \ {y} it holds svar(k)(ν|depψ(k)) = ¬ sgn(k), if k ∈ V ψ∃ ,

ν(var(k)) = ¬ sgn(k), if k ∈ V ψ∀ , and for all literals ` in C ′ \ {¬y}
it holds svar(k)(ν|depψ(`)) = ¬ sgn(`), if ` ∈ V ψ∃ , ν(var(`)) = ¬ sgn(`),

if ` ∈ V ψ∀ , the resolvent (C ⊗y C ′)[syi/yi for all i = 1, . . . ,m] as well
evaluates to 0 for assignment ν. This contradicts the assumption that
(1) is satisfied by the Skolem functions s′yi (C ⊗y C ′ does not contain
y and the Skolem functions syi are equal to s′yi for all yi 6= y). Thus
ϕ¬y[syi/yi for all i = 1, . . . ,m] evaluates to 1 for assignment ν.

2. The second condition is dual to the first one. As Skolem functions for ϕ we
choose syi = s′yi for all i = 1, . . . ,m with yi 6= y and

sy = ¬ϕ¬y[1/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y].

3. The third condition requires that there are clauses which define the rela-
tionship y ≡ f(V ′) and depψ(v) ⊆ depψ(y) for all v ∈ V ′. This implies
that given Skolem functions for the remaining existential variables in (1),
there is only one Skolem function for y, which is given by the gate definition.
Therefore we can increase depψ(y) to V ψ∀ without changing the truth value

of the DQBF, i. e., we set the dependency set depψ(y) := V ψ∀ . Then we can
eliminate the variable y as described in [9], e.g.. Eliminating a variable by
existential quantification is then equivalent to elimination using resolution.

ut

A.4 Blocked Clause Elimination

Theorem 7. Let Q : ϕ∧C be a DQBF with a blocked clause C. Then Q : ϕ∧C
and Q : ϕ are equivalent.
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Proof. Let ψ := Q : ϕ ∧ C be a DQBF and C a clause that is blocked by literal
` ∈ C. Furthermore, we set ψ′ := Q : ϕ as the formula after deleting the blocked
clause C. We have to show that ψ ≡ ψ′.

If ψ is satisfied, ψ′ is satisfied, too, as the matrix of ψ′ is a subset of the
matrix of ψ. So we assume that ψ′ is satisfied and show that this also holds for
ψ. We prove this claim by induction on the number |depψ(`)| of dependencies of
the blocking literal `.

Since ψ′ is satisfied, there are Skolem functions syi : A
(
depψ(yi)

)
→ {0, 1}

for the existential variables yi ∈ V ψ∃ such that replacing each yi by syi turns ϕ
into a tautology.

For the induction base, we assume that |depψ(`)| = 0, i. e., depψ(`) = ∅, svar(`)
is a constant function (0 or 1). Now we construct Skolem functions s′yi for ϕ ∧ C
by only modifying svar(`). For this we have to distinguish two cases:

– Case 1: Replacing each yi by syi turns C into a tautology. Then the replace-
ment turns ϕ ∧ C into a tautology. We just set s′yi := syi .

– Case 2: Replacing each yi by syi does not turn C into a tautology. Then
svar(`) = ¬ sgn(`).4 We set s′var(`) := sgn(`) and s′yi := syi for all other
existential variables. Thus, C is turned into a tautology by replacing variables
by Skolem functions. All clauses C ′ ∈ ϕ with ¬` 6∈ C ′ remain tautologies
after replacing variables by Skolem functions. So consider a clause C ′ ∈ ϕ
with ¬` ∈ C ′. Since C is blocked by `, there is a literal k with depψ(k) ⊆
depψ(`) = ∅, k ∈ C ′, and ¬k ∈ C. Since depψ(k) = ∅, s′var(k) = svar(k) is a
constant function. Since ¬k ∈ C and replacing variables by Skolem functions
syi does not turn C into a tautology, s′var(k) = svar(k) = sgn(k). Therefore C ′

with k ∈ C ′ remains a tautology after replacing variables by Skolem functions
(even though svar(`) is changed).

For the induction step, assume that |depψ(`)| > 0. We expand a universal
variable x ∈ depψ(`) (cf. Theorem 6) and show that the two clauses induced by

C in the resulting formula ψ̃ are either satisfied or blocked by ` or its copy `′. By
induction assumption they can be removed as in ψ̃ they depend on one variable
less. Undoing the expansion step yields a formula without the blocked clause
that is equivalent to ψ. This shows the claim.

Eliminating x from ψ by universal expansion (cf. Theorem 6) yields [41, 42,
40, 9]:

ψ̃ = Q̃ :
(
ϕ ∧ C

)[
1/x
]
∧
(
ϕ ∧ C

)[
0/x
][
y′/y for all y with x ∈ depψ(y)

]
= Q̃ : ϕ

[
1/x
]
∧ C

[
1/x
]︸ ︷︷ ︸

(∗)

∧ϕ
[
0/x
][
y′/y . . .

]
∧ C

[
0/x
][
y′/y . . .

]︸ ︷︷ ︸
(∗∗)

where Q̃ results from Q by removing x from all dependency sets and by adding
existential quantifiers for the copied existential variables y′ with the same de-
pendency sets as for variables y. Since x ∈ depψ(`), ` is replaced by the copied
variable `′ in (∗∗).
4 Remember that sgn(v) = 1 and sgn(¬v) = 0 for a variable v.
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Both (∗) and (∗∗) contain a copy of C. We have to show that both can be
removed.

We distinguish the following three cases:

– Case 1: x ∈ C:
Then C[1/x] is satisfied and can be removed from (∗).
We show that in (∗∗), C[0/x][y′/y . . .] = C[y′/y . . .] \ {x} is a blocked
clause that is blocked by literal `′ ∈ C[y′/y . . .] \ {x}: Consider an arbi-
trary clause in ψ̃ which contains ¬`′. This clause has to be in (∗∗) and
has the form C ′[0/x][y′/y . . .]. Since C is blocked by ` in ψ, C contains
a literal k, C ′ a literal ¬k and depψ(k) ⊆ depψ(`). If k = x, we do not
need to consider C ′[0/x][y′/y . . .], since C ′ is satisfied by replacing x by 0,
i. e., C ′[0/x][y′/y . . .] can be removed from (∗∗). k 6= ¬x, since otherwise
C would be tautological. Thus we can assume k /∈ {x,¬x} in the follow-
ing. C[0/x][y′/y . . .] contains k̃, C ′[0/x][y′/y . . .] contains ¬k̃, i. e., {k̃,¬k̃} ⊆
C[0/x][y′/y . . .]⊗` C ′[0/x][y′/y . . .] and depψ(k̃) = depψ(k) ⊆ depψ(`′). (To

simplify notations we always write k̃ for the copy k′ of k in (∗∗), if (∗∗)
contains k′, and otherwise for k.) C[0/x][y′/y . . .] is indeed blocked. Because
`′ does not depend on x anymore in ψ̃ (i. e., it depends on one variable less),
we can apply the induction assumption and remove the blocked clause.

– Case 2: Neither x nor ¬x are contained in C:
Again we show that in (∗∗) C[0/x][y′/y . . .] is a blocked clause that is blocked
by literal `′ ∈ C[0/x][y′/y . . .]. As in Case 1 all clauses in ψ̃ containing ¬`′
are restricted to (∗∗) and have the form C ′[0/x][y′/y . . .]. The proof that
C[0/x][y′/y . . .] is blocked by `′ ∈ C[0/x][y′/y . . .] is exactly the same as in
Case 1 (with the only difference that now k /∈ {x,¬x}, since k ∈ C, but
x /∈ C, ¬x /∈ C due to the assumption of Case 2).
Moreover, we show that in (∗), C[1/x] is a blocked clause that is blocked by
literal ` ∈ C[1/x]. All clauses in ψ̃ containing ¬` are restricted to (∗) and
have the form C ′[1/x]. The proof that C[1/x] is blocked by ` is analogous
to the first part for C[0/x][y′/y . . .]. C[0/x][y′/y . . .] and C[1/x] are blocked
and because ` and `′ do not depend anymore on x in ψ̃ (i. e., they depend on
one variable less), we can apply the induction assumption and remove the
blocked clauses.

– Case 3: ¬x ∈ C:
This case is analogous to the first case.

This shows

ψ ≡ ψ̃ ≡ Q̃ : ϕ
[
1/x
]
∧ ϕ
[
0/x
][
y′/y . . .

]
≡ ψ′.

ut

Lemma 5. BCE for DQBF has a unique fixed point.

Proof. The proof is similar as for BCE on SAT problems [22]: If ψ := Q : ϕ ∧ C
is a DQBF and C a blocked clause w. r. t. ψ. Then any clause C ′ ∈ ϕ which is
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blocked w. r. t. ψ is also blocked w. r. t. Q : ϕ. Therefore the result of BCE is
independent of the order in which the clauses are removed, and hence BCE has
a unique fixed point. ut

Theorem 8 (Hidden literal addition, HLA). Let Q : ϕ∧C be a DQBF and
` a hidden literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {`}

)
are equivalent.

Proof. Assume that ` is a hidden literal for C according to Definition 12. We
set C ′ := C ∪ {`}. ` being a hidden literal for C means that there is a clause
D := {`1, . . . , `n,¬`} ∈ ϕ with {`1, . . . , `n} ⊆ C ⊆ C ′. For the resolvent of C ′

and D w. r. t. ` we have C ′ ⊗` D = C. Adding a resolvent to a CNF yields an
equivalent CNF, i. e.,

ϕ ∧ C ′ ≡ ϕ ∧ C ′ ∧ C.

C subsumes C ′ = C ∪ {`}; therefore C ′ can be removed from the formula. Hence,
ϕ ∧C and ϕ ∧C ′ are logically equivalent. Replacing the matrix of a DQBF with
an equivalent formula does not change the truth value of a DQBF. ut

Theorem 9 (Covered literal addition, CLA). Let Q : ϕ ∧C be DQBF and
k a covered literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {k}

)
are equivalent.

Proof. Let k be covered for C w. r. t. an existential variable `, i. e., depψ(k) ⊆
depψ(`) and k ∈

⋂
Rψ(C, `) \ {¬`}.

We have to show

� Q : ϕ ∧ C ⇔ � Q : ϕ ∧
(
C ∪ {k}

)
.

The direction “⇒” is trivial as each satisfying assignment of ϕ ∧ C also satisfies
ϕ ∧

(
C ∪ {k}

)
. So let Q : ϕ ∧

(
C ∪ {k}

)
be satisfied. We show by induction on

|depψ(`)| that this implies the satisfaction of Q : ϕ ∧ C.

SinceQ : ϕ∧
(
C∪{k}

)
is satisfied, there are Skolem functions syi : A

(
depψ(yi)

)
→

{0, 1} for the existential variables yi ∈ V ψ∃ such that replacing each yi by syi
turns ϕ ∧

(
C ∪ {k}

)
into a tautology.

For the induction base, we assume that |depψ(`)| = 0, i. e., depψ(`) = ∅, svar(`)
is a constant function (0 or 1). Now we construct Skolem functions s′yi for ϕ ∧ C
by only modifying svar(`). For this we have to distinguish two cases:

– Case 1: Replacing each yi by syi turns C into a tautology. Then the replace-
ment turns ϕ ∧ C into a tautology. We just set s′yi := syi .

– Case 2: Replacing each yi by syi does not turn C into a tautology. Then
svar(`) = ¬ sgn(`), because ` ∈ C.5 We set s′var(`) := sgn(`) and s′yi := syi
for all other existential variables. Thus, C is turned into a tautology by
replacing variables by Skolem functions. All clauses C ′ ∈ ϕ with ¬` /∈ C ′
remain tautologies after replacing variables by Skolem functions. So consider
a clause C ′ ∈ ϕ with ¬` ∈ C ′.
We consider two cases: The first case is that C ′ /∈ Rψ(C, `). Since ¬` ∈ C ′,

5 Remember that sgn(v) = 1 and sgn(¬v) = 0 for a variable v.
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there has to be a literal m 6= ` with {m,¬m} ⊆ C ⊗` C ′, but depψ(m) ⊆
depψ(`), i. e., depψ(m) = ∅. We assume w. l. o. g. m ∈ C ′ and ¬m ∈ C. Due
to depψ(m) = ∅, the Skolem function svar(m) has to be a constant function.
Since ¬m ∈ C and replacing variables by Skolem functions syi does not
turn C into a tautology, s′var(m) = svar(m) = sgn(m). Therefore C ′ with

m ∈ C ′ remains a tautology after replacing variables by Skolem functions
(even though svar(`) is changed).
The second case is that C ′ ∈ Rψ(C, `). Then we can conclude that the covered
literal k is contained in C ′. Since depψ(k) ⊆ depψ(`), i. e., depψ(k) = ∅,
the Skolem function svar(k) has to be a constant function. Since replacing

the existential variables yi by Skolem functions syi turns
(
C ∪ {k}

)
into a

tautology, but not C, it follows s′var(k) = svar(k) = sgn(k). Because of k ∈ C ′,
replacement of yi by Skolem functions s′yi turns C ′ into a tautology.

Altogether the constructed Skolem functions s′yi turn ϕ∧C into a tautology, i. e.,
Q : ϕ ∧ C is satisfied.

For the induction step assume |depψ(`)| > 0. We do universal expansion (cf.
Theorem 6) of x ∈ depψ(`) in ψ and obtain the formula [41, 42, 40, 9]:

ψ̃ = Q̃ :
(
ϕ ∧ C

)[
1/x
]
∧
(
ϕ ∧ C

)[
0/x
][
y′/y for all y with x ∈ depψ(y)

]
= Q̃ : ϕ

[
1/x
]
∧ C

[
1/x
]︸ ︷︷ ︸

(∗)

∧ϕ
[
0/x
][
y′/y . . .

]
∧ C

[
0/x
][
y′/y . . .

]︸ ︷︷ ︸
(∗∗)

where Q̃ results from Q by removing x from all dependency sets and by adding
existential quantifiers for the copied existential variables y′ with the same depen-
dency sets as for variables y.

To simplify notations in the proof, we always write ỹ for the copies y′ of
variables y in (∗∗), if (∗∗) contains y′, and otherwise for y. Of course, dependency
sets of literals are defined w. r. t. to the DQBFs containing the literals. If it is
necessary to make clear which DQBF we mean, we use subscripts: The dependency
set of a literal p in ψ is written as depψ(p), the corresponding dependency set in

ψ̃ as depψ̃(p).
The basic proof idea is as follows: We show that k is a covered literal w. r. t.

` in C[1/x] and k̃ a covered literal w. r. t. ˜̀ in C[0/x][y′/y . . .].
Since ` and `′ depend in ψ̃ on one variable less than in ψ, we can apply

the induction assumption and add the covered literals k and k̃ to C[1/x] and
C[0/x][y′/y . . .], resp., resulting in the equivalent formula

ψ̃′ := Q̃ :
(
ϕ∧(C∪{k})

)[
1/x
]
∧
(
ϕ∧(C∪{k})

)[
0/x
][
y′/y for all y with x ∈ depψ(y)

]
,

which is equivalent to Q : ϕ ∧ (C ∪ {k}). This then shows the claim.
It remains to reason why k and k̃ are covered literals. We distinguish the

following three cases:

– Case 1: x ∈ C:
Then C[1/x] is satisfied and arbitrary literals (including k) can be added to
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C[1/x].
It remains to be proven that k may be added to C in C[0/x][y′/y . . .]. We
begin with the special case k = x. In that case adding k to C does not change
C, since already x ∈ C according to the case assumption.

Since x ∈ depψ(`), ` is replaced by the copied variable `′ in (∗∗).
Then C[0/x][y′/y . . .] = C[y′/y . . .] \ {x} contains `′, the copy of `. All reso-
lution candidates for C[0/x][y′/y . . .] in Rψ̃(C[0/x][y′/y . . .], `′) contain ¬`′,
are included in (∗∗), and have the form C ′[0/x][y′/y . . .]. Now we consider
an arbitrary resolution candidate C ′[0/x][y′/y . . .] ∈ Rψ̃(C[0/x][y′/y . . .], `′)
and we prove that C ′ ∈ Rψ(C, `). We assume the contrary, i. e., C ′ /∈
Rψ(C, `). Then there exists a literal m with m ∈ C ′, ¬m ∈ C and it holds
depψ(m) ⊆ depψ(`) in ψ. m 6= x, since otherwise C would be tautological
(¬x ∈ C and x ∈ C due to case assumption). m 6= ¬x, since otherwise
¬x ∈ C ′, C ′[0/x][y′/y . . .] would be satisfied, removed from (∗∗) and thus
C ′[0/x][y′/y . . .] /∈ Rψ̃(C[0/x][y′/y . . .], `′). Therefore m̃ ∈ C ′[0/x][y′/y . . .]

and ¬m̃ ∈ C[0/x][y′/y . . .]. If m ∈ V ψ∃ , then depψ̃(m̃) = depψ(m) \ {x},
depψ̃(`′) = depψ(`) \ {x}, i. e., depψ(m) ⊆ depψ(`) in ψ implies depψ̃(m̃) ⊆
depψ̃(`′) in ψ̃. If m ∈ V ψ∀ , then depψ(m) = var(m), depψ̃(m̃) = var(m̃),
and as before depψ̃(`′) = depψ(`) \ {x}, i. e., depψ(m) ⊆ depψ(`) in ψ

and var(m) 6= x implies depψ̃(m̃) ⊆ depψ̃(`′) in ψ̃. In both cases we have
m̃ ∈ C ′[0/x][y′/y . . .], ¬m̃ ∈ C[0/x][y′/y . . .], and depψ̃(m̃) ⊆ depψ̃(`′) which
is a contradiction to C ′[0/x][y′/y . . .] ∈ Rψ̃(C[0/x][y′/y . . .], `′). Thus the
assumption C ′ /∈ Rψ(C, `) was wrong.
Since k is a covered literal for C w. r. t. `, we then have k ∈ C ′ and depψ(k) ⊆
depψ(`). In the case k = ¬x we then observe that C ′[0/x][y′/y . . .] is satisfied,
removed from (∗∗) and thus C ′[0/x][y′/y . . .] /∈ Rψ̃(C[0/x][y′/y . . .], `′). This
means that Rψ̃(C[0/x][y′/y . . .], `′) = ∅. Rψ̃(C[0/x][y′/y . . .], `′) = ∅ implies
that C[0/x][y′/y . . .] is a blocked clause with blocking literal `′. This in turn
implies that (C ∪ {k})[0/x][y′/y . . .] is blocked as well with blocking literal `′.
Thus we can remove C[0/x][y′/y . . .] from ψ̃ and add (C ∪ {k})[0/x][y′/y . . .]
resulting in an equivalent formula. In the case k /∈ {x,¬x} we have depψ̃(k̃) ⊆
depψ̃(`′) (with the same arguments as for depψ̃(m̃) and depψ̃(`′) given above).

Since k̃ is contained in every C ′[0/x][y′/y . . .] ∈ Rψ̃(C[0/x][y′/y . . .], `′)

and depψ̃(k̃) ⊆ depψ̃(`′), k̃ is a covered literal for C[0/x][y′/y . . .]. Since
depψ̃(`′) contains one variable less than depψ(`), we can apply the induc-

tion assumption and conclude that we can replace C[0/x][y′/y . . .] in ψ̃ by
(C ∪ {k})[0/x][y′/y . . .] resulting in an equivalent DQBF.

– Case 2: Neither x nor ¬x are contained in C:
First we prove that k may be added to C in C[1/x]. We begin with the
special case k = ¬x. In that case we can safely add k to C, since C[1/x] and
(C ∪ {¬x})[1/x] are identical.
Since x ∈ depψ(`), ` is replaced by the copied variable `′ in (∗∗). All resolution
candidates for C[1/x] in Rψ̃(C[1/x], `) contain ¬`, are included in (∗), and
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have the form C ′[1/x]. Now we consider an arbitrary resolution candidate
C ′[1/x] ∈ Rψ̃(C[1/x], `) and we prove that C ′ ∈ Rψ(C, `). We assume the
contrary, i. e., C ′ /∈ Rψ(C, `). Then there exists a literal m with m ∈ C ′, ¬m ∈
C and it holds depψ(m) ⊆ depψ(`). m /∈ {x,¬x} due to case assumption
x /∈ C and ¬x /∈ C. Therefore m ∈ C ′[1/x] and ¬m ∈ C[1/x]. Exactly as in
Case 1 we can conclude that depψ(m) ⊆ depψ(`) implies depψ̃(m) ⊆ depψ̃(`).
Altogether we have m ∈ C ′[1/x], ¬m ∈ C[1/x], and depψ̃(m) ⊆ depψ̃(`)
which is a contradiction to C[1/x] ∈ Rψ̃(C[1/x], `). Thus the assumption
C ′ /∈ Rψ(C, `) was wrong.
Since k is a covered literal for C w. r. t. `, we then have k ∈ C ′ and depψ(k) ⊆
depψ(`). Therefore k ∈ C ′[1/x]. In the case k = x we then observe that
C ′[1/x] is satisfied, removed from (∗) and thus C ′[1/x] /∈ Rψ̃(C[1/x], `). This
means that Rψ̃(C[1/x], `) = ∅. Rψ̃(C[1/x], `) = ∅ implies that C[1/x] is a
blocked clause with blocking literal `. This in turn implies that (C∪{k})[1/x]
is blocked as well with blocking literal `. Thus we can remove C[1/x] from
ψ̃ and add (C ∪ {k})[1/x] resulting in an equivalent formula. In the case
k /∈ {x,¬x} we have depψ̃(k) ⊆ depψ̃(`) (with the same arguments as for
depψ̃(m) and depψ̃(`) given above). Since k is contained in every C ′[1/x] ∈
Rψ̃(C[1/x], `) and depψ̃(k) ⊆ depψ̃(`), k is a covered literal for C[1/x]. Since
depψ̃(`) contains one variable less than depψ(`), we can apply the induction

assumption and conclude that we can replace C[1/x] in ψ̃ by (C ∪ {k})[1/x]
resulting in an equivalent DQBF.

The proof that k may be added to C in C[0/x][y′/y . . .] is analogous. It
starts with the special case k = x where k can be safely added to C, since
C[0/x][y′/y . . .] and (C ∪ {x})[0/x][y′/y . . .] are identical. For the case k 6=
x we observe that Rψ̃(C[0/x][y′/y . . .], `′) = ∅, both C[0/x][y′/y . . .] and
(C ∪ {x})[0/x][y′/y . . .] are blocked with blocking literal `′, i. e., we can
remove C[0/x][y′/y . . .] from ψ̃ and add (C ∪ {x})[0/x][y′/y . . .] resulting in
an equivalent formula. In the case k /∈ {x,¬x} we conclude that k̃ is a covered
literal for C[0/x][y′/y . . .] and we apply the induction assumption.

– Case 3: ¬x ∈ C:
This case is analogous to the first one. ut

A.5 Structure Extraction

Theorem 10. Let ψ = Q : ϕ be a DQBF, ϕf ⊆ ϕ the defining clauses for the
relationship y ≡ f(`1, . . . , `k). Then ψ is equivalent to

Q \ {y} : (ϕ \ ϕf )[f(`1, . . . , `k)/y]

if the following conditions are satisfied:

1. y ∈ V ψ∃ ,
2. for i = 1, . . . , k we have depψ(`i) ⊆ depψ(y).

Proof. We set ψ′ := Q \ {y} : (ϕ \ ϕf )[f(`1, . . . , `k)/y] and show that ψ and ψ′

are equivalent.
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First assume that ψ is unsatisfiable. Then there is no set of Skolem functions
which turns ϕ into a tautology. In particular sets of Skolem functions for which
sy = f(`1, . . . , `k)[sy′/y

′ for y′ ∈ {var(`1), . . . , var(`k)} ∩ V ψ∃ ] holds do not turn
ϕ into a tautology. (Note that sy defined in that way is an admissible Skolem
function due to condition (2) in the theorem.) Hence, Q \ {y} : ϕ[f(`1, . . . , `k)/y]
is unsatisfiable. Since ϕf is equivalent to y ≡ f(`1, . . . , `k), ϕf [f(`1, . . . , `k)/y]
is a tautology. Therefore ϕ[f(`1, . . . , `k)/y] and (ϕ \ ϕf )[f(`1, . . . , `k)/y] are
equivalent. This shows that ψ′ is unsatisfiable.

Now assume that ψ is satisfiable. This implies that there are Skolem func-
tions sy1 , . . . , sym for y1, . . . , ym. Because of the defining clauses that encode
y ≡ f(`1, . . . , `k), the Skolem function sy for y satisfies the relationship sy =

f(`1, . . . , `k)[sy′/y
′ for y′ ∈ V ψ∃ \ {y}]. Thus {sy1 , . . . , sym}\{sy} is a set of Skolem

functions forQ\{y} : ϕ[f(`1, . . . , `k)/y]. This means thatQ\{y} : ϕ[f(`1, . . . , `k)/y]
is satisfiable. Satisfiability of Q \ {y} : ϕ[f(`1, . . . , `k)/y] implies satisfiability of
Q \ {y} : (ϕ \ ϕf )[f(`1, . . . , `k)/y]. ut
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