
Improving Interpolants for Linear Arithmetic

Ernst Althaus1,2, Björn Beber1(B), Joschka Kupilas1,
and Christoph Scholl3

1 Max Planck Institute for Informatics, Campus E 14, 66123 Saarbrücken, Germany
bbeber@mpi-inf.mpg.de

2 Johannes Gutenberg University, Staudinger Weg 9, 55128 Mainz, Germany
3 Albert-Ludwigs-Universität, Georges Köhler Allee, Gebäude 51,

79110 Freiburg im Breisgau, Germany

Abstract. Craig interpolation for satisfiability modulo theory formulas
have come more into focus for applications of formal verification. In this
paper we, introduce a method to reduce the size of linear constraints
used in the description of already computed interpolant in the theory of
linear arithmetic with respect to the number of linear constraints. We
successfully improve interpolants by combining satisfiability modulo the-
ory and linear programming in a local search heuristic. Our experimental
results suggest a lower running time and a larger reduction compared to
other methods from the literature.

Keywords: Craig-interpolation · Linear arithmetic · Satisfiability
modulo theory · Linear programming

1 Introduction

First efficients methods were introduced for computing such interpolants for
Boolean systems out of the resolution proofs from DPLL-based SAT solvers
[1,2]. McMillan [2] introduced interpolants to formal verification as over-
approximations of state sets.

Due to the fact that such interpolants are in general not unique, many
researchers try to find good interpolants. The measurement for interpolants
differs depending on the context. In Boolean formulas it is often the size of
the representation of the interpolant, i.e. the size of the And-Inverter-Graph
representing the interpolant. In the theory of linear arithmetic with rational
coefficients LA(Q) the measurement of the number of linear constraints in the
representation is often used, e.g. in [3] the authors showed that this measure-
ment is beneficial for an improved generation of program invariants in software
verification. This measurement is motivated by the verification of hybrid systems
where operations are applied on state sets whose complexity strongly depends
on the number of linear constraints, e.g. quantifier elimination in the worst-case
leads to a quadratic blow-up of linear constraints after the elimination. Damm
et al. showed [4] that such a measurement is the key for avoiding an explosion
in the complexity of the state set representation.
c© Springer International Publishing Switzerland 2015
B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 48–63, 2015.
DOI: 10.1007/978-3-319-24953-7 5

scholl
Textfeld
Preprint from Proceedings of Fourth International Symposium on Automated Technology for Verification and Analysis, October 2006, Beijing, China 

scholl
Textfeld
Preprint from Proceedings of Fourth International Symposium on Automated Technology for Verification and Analysis, October 2006, Beijing, China 

scholl
Schreibmaschinentext
Preprint from Proceedings of 13th International Symposium onAutomated Technology for Verification and Analysis (ATVA),October 2015, Shanghai, China



Improving Interpolants for Linear Arithmetic 49

In this paper we will only consider interpolants for the theory LA(Q). There-
fore our measurement for good interpolants is the number of linear constraints.
The problem of finding the best interpolant in this sense is NP-hard, which can
be shown by a reduction from k-Polyhedral Separability [5], i.e. given two sets of
points P and Q and an integer k, recognize whether there exist k hyperplanes
that separate the sets P and Q through a Boolean formula. Therefore, we will
here present a heuristic approach that simplifies a given interpolant. Addition-
ally, there is no known algorithm that can compute reasonable lower bounds for
this problem to measure the quality of an interpolant, so benchmarks exist where
the initial interpolant is optimal, without a chance of verifying this situation.

Most approaches in this case were done by constructing an interpolant out
of the resolution proof and then simplifying the proof by removing or combining
theory lemmas [4,6], but maintaining the resolution proof correctly. Our app-
roach differs in the way that we do not try to maintain the resolution proof. In
fact, we only derive the set of linear constraints used in the interpolant by such
proofs and then try to reduce this set in a local search heuristic. The invariant
we preserve is based on an extension of Proposition 3 in [5], i.e. our set of inter-
polant constraints L fulfill that for every pair of points a ∈ A and b ∈ B, there
exists a linear constraint l ∈ L such that l separates the points a and b. The
proposition states that then there exists a Boolean formula, i.e. the interpolant,
that separates A and B.

The paper is structured as follows: In Sect. 2 we will briefly describe previous
methods to construct interpolants and the data-structure used in our bench-
marks. Then we present our approach in Sect. 3, and some optimizations in
Sect. 4. After that we present the evaluation of our method compared to three
different other approaches in Sect. 5.

2 Preliminaries

2.1 Notations

For a point p ∈ B
n × IRm, we denote the first n components, i.e. the Boolean

components, by pB and the last m, i.e. the real components, by pIR. We
describe a single linear constraint l by a formula dTx ≤ d0 with rational coef-
ficients d0, d1, . . . , dm ∈ Qm+1 over rational variables x1, . . . , xm. For a point
p ∈ B

n × IRm and a linear constraint l, we associate with l(p) the Boolean vari-
able that is true, if dT pIR ≤ d0 and false if dT pIR > d0. We write Dx ≤ d0 for
a conjunction of u linear constraints over rational variables (x1, . . . , xm)T = x
with D ∈ Qu×m and d0 ∈ Qu.

2.2 Computing Interpolants by Resolution Proofs

A (quantifier-free) formula F in the theory of linear arithmetic with rational
coefficients (LA(Q)) is a Boolean combination of atoms. Each atom is potentially
a linear constraint with rational coefficients d over a fixed set of rational variables



50 E. Althaus et al.

x1, . . . , xm, denoted by dTx ≤ d0, or a Boolean variable of a fixed set y1, . . . , yn.
A literal κ is either an atom or the negation of an atom. A clause is a disjunction
of literals κ1 ∨ · · · ∨ κs. For a set of literals C and a formula F , we denote by
C \ F the set containing the literals in C by removing all atoms occurring in
F , and by C ↓ F the set of literals created from C by removing all atoms not
occurring in F .

Definition 1 (Craig Interpolant [7]). Let A and B be two formulas, such
that A ∧ B � ⊥. A Craig interpolant I is a formula such that A � I, I ∧ B � ⊥
and the uninterpreted symbols in I occur both in A and B, the free variabels in
I can occur freely both in A and B.

Typically an SMT-Solver solves such formulas stepwise, first handling the non
Boolean atoms like Boolean variables and solving this formula with a SAT
approach. After finding a satisfiable assignment for the Boolean variables, e.g.
κ1 ∧ · · · ∧ κs, the solver starts a decision procedure for the rational variables,
i.e. computes if there exists one assignment of x such that all inequalities in the
assignment simultaneously imply their given Boolean assignment. If this is not
possible, we call η = {κ1, . . . , κs} a LA(Q)-conflict, the SMT-solver then adds a
subset of κ1,∧ · · · ∧ κs described as a clause called LA(Q)-lemma, to its set of
clauses and starts backtracking, this will provide the procedure from selecting
the invalid assignment again. These subsets are often called minimal infeasible
subsets and are optimized in the way that the number of literals is minimized
but still maintaining the LA(Q)-unsatisfiability.

Definition 2 (Resolution Proof). Let S = {c1, . . . , ct} be a set of clauses.
P = (VP , EP ) is a directed acyclic graph partitioned in inner nodes and leaves.
P is a resolution proof of the unsatisfiability of c1 ∧ · · · ∧ ct in LA(Q), if

1. each leaf in P is either a clause in S or a LA(Q)-lemma (corresponding to
some LA(Q)-conflict η);

2. each inner node v in P has exactly two parents vR and vL, such that vR and
vL share a common variable p (pivot variable) in the way that p ∈ vL and
¬p ∈ vR. We derive v by computing the conjunction of vR ∧ vL;

3. the unique root node r in P is the empty clause.

Let S = {c1, . . . , ct} be a LA(Q)-unsatisfiable set of clauses, (A,B) a disjoint
partition of S, and P a proof for the unsatisfiability of S in LA(Q). Then an
interpolant I for (A,B) can be constructed by the following procedure [8]:

Initiate I as a copy of P , we then change the association of the nodes
accordingly.

1. For every leaf vP ∈ P associated with a clause in S,
set vI = vP ↓ B, if vP ∈ A, and set vI = �, if vP ∈ B.

2. For every leaf vP ∈ P associated with a LA(Q)-conflict η,
set vI = Interpolant(η \ B, η ↓ B).

3. For every inner node vP ∈ P ,
set vI = vL

I ∨ vR
I if vP /∈ B, and set vI = vL

I ∧ vR
I if vP ∈ B.



Improving Interpolants for Linear Arithmetic 51

The unique root node rI then represents the formula of an interpolant of A
and B. Several methods are known to construct LA(Q)-interpolants, e.g. [9],
all have in common that they construct a single linear constraint based on the
convex regions given to the function. One basic idea is to use Farkas Lemma
to construct a linear constraint separating these convex regions computed by
linear programming. If those calls are handled separately, this will add for each
LA(Q)-conflict in the proof a linear constraint with a fixed normal [6] to the
interpolant, and therefore will lead to a substantial blow up in the complexity. To
find simpler interpolants the authors in [6] try to combine those calls by enlarging
their degrees of freedom, i.e. extending the LA(Q)-lemmas and relaxing specific
constraints in the linear program to find shared interpolants for different theory
lemmas in one proof.

2.3 Computing Interpolants by DC-Removability Checks

In the description of a formula F we could ask whether it is possible to remove
redundant constraints. This is not as straightforward as in the situation of convex
polyhedra. A linear constraint l is redundant for a formula F if there exists
a formula G that depends on the same linear constraints except of l and F
and G represents the same predicates. To achieve this we introduce a “don’t
care set” DC for F , which consists of all Boolean configurations which are not
LA(Q)-sufficient, and then efficiently construct G, which holds F = G for every
configuration not in DC. This method was introduced by [10] and expanded in
[11] to compute an interpolant of A and B. Assume we have two disjoint formulas
A,B, i.e. A∧B is unsatisfiable. We then set F = A and extend the set DC from
above by the set ¬A ∧ ¬B. By the usage of the same construction now the new
formula G can differ in all regions that are not specified by either A or B. This
turns the method of redundancy removal in a method of interpolation.

For both the basic approach of constructing an interpolant from a resolution
proof and the reduncancy removal, the fundamental problem is that there is no
freedom in the choice of linear constraints. The approach introduced in [6] is
more flexible, but lacks the fact that it does not notice if a linear constraint is
redundant.

2.4 Description of a State Set

A formula A can be interpreted as a specific subset of Bn × IRm, e.g. a represen-
tation of a state set. There are several possibilities to describe state sets, e.g. the
LinAIG data structure [11] where such formulas are saved as an extension of
a classical And-Inverter-Graph. An And-Inverter-Graphs is a directed, acyclic
graph partitioned in inner nodes and leaves. Each inner node has exactly two
predecessors, representing a logical conjunction. Each leaf represents a Boolean
variable y ∈ B

n or in LinAIGs a lesser-or-equal constraint over the rational vari-
ables x ∈ Qm. Additionally, the edges can contain markers indicating a logical
negation. The formula A is then the association of the unique root.

This representation is also often used as a data structure for resolution proofs.



52 E. Althaus et al.

Our method does not depend on the way the state sets are described, but
we assume that we can negate and intersect state sets and that we can compute
whether a state set is non-empty and if so, obtain a point within the state set.
All these operations are executable by common SMT solvers. Furthermore, we
can easily create a set of all linear constraints used in the description of the
state set.

Note that the state sets are not in disjunctive normal form, where convex
regions would be easily accessible, and a transformation would not be practicable
due to a potentially exponential blow-up in the description.

3 The General Algorithm

The problem we are solving can be briefly described as follows. Let two state
sets A,B and an interpolant of these be given. Try to minimize the number of
linear constraints used in the interpolant.

Example 1. Figure 1(a) shows two state sets A,B, with no Boolean complex-
ity, i.e. n = 0. One representation of those sets is A = (l1 ∧ l2) ∨ l3 ∨ l4 and
B = (l5 ∧ l6) ∨ (l7 ∧ l8). In this case, A itself is an interpolant of A and B.

Our algorithm is based on the following extension of Proposition 3 in [5].

Proposition 1. The set of (linear) constraints L = {L1, . . . , Lh} separates the
state sets A and B through some Boolean formula if and only if for every pair
of points p ∈ A and q ∈ B with pB = qB there exists an i (1 ≤ i ≤ h) such that
Li(p) 	= Li(q).

The proof of the extension is basically the same as the one given in [5] despite
two differences. Firstly, we have a finite set of (convex) regions instead of points.
But since we also used L to construct these regions they behave like points, i.e.
the points in such a (convex) region are constant under the associated Boolean
variables. Secondly, in the extension this only holds for pairs of points in the same
Boolean space, since we can distinguish the Boolean spaces by m other Boolean
variables easily in a formula easily. We use this proposition in our algorithm as
follows.

The algorithm iteratively improves the set L by replacing two linear con-
straints by one, while preserving the invariant that L satisfy Proposition 1. The
linear constraints in L are called interpolant constraints. Every new constraint
added to L can be described separately by a linear combination of constraints
in A and B. This lead to the fact that if the initial L only contains constraints
described over local variables of A and B, the output of our algorithm only con-
tains such constraints, for details we refer to the linear constraints of the LP
(4) and (5) in Sect. 3.4. Hence, our algorithm is a local search heuristic. In this
section, we describe the test whether two linear constraints can be replaced by
one and in Sect. 4, we describe some techniques to improve the performance.
In particular, we describe our approach to reduce the number of pairs of linear
constraints that are tested. Most approaches are of a heuristic nature.



Improving Interpolants for Linear Arithmetic 53

The interpolant itself is constructed by using the method described in
Sect. 2.3. We therefore deliver a sufficient set of constraints to construct the
interpolant, so in the constraint minimization the part of finding redundant
constraints can be skipped. This together with the fact that all interpolant con-
straints are defined over local variables of A and B lead to the fact that the
resulting interpolant is in fact an Craig-Interpolant.

A

B

l3 l2

l1

l4

l5 l7

l6

l8

(a)

a1

b1

l3

l4

l9

(b)

a1

b1

a2
b2

l3

l4

l10

(c)

Fig. 1. Running example for our algorithm

3.1 Test Whether One Additional Linear Constraint Is Sufficient

This is the core part of the heuristic, where we determine if we can reduce the
size of the interpolant. It will test if it is possible to substitute two given inter-
polant constraints by one new linear constraint l∗. Notice, that when removing
two interpolant constraints, there will be pairs a ∈ A, b ∈ B of points with
aB = bB that can not be distinguished by the remaining interpolant constraints
L, i.e. l(a) = l(b) for all l ∈ L. We will test whether all those pairs of points can
be distinguished by a single new linear constraint.

Basically, we iteratively collect such pairs of points and construct a linear
constraint l∗ separating all pairs of points already found, until either all pairs
of points can be distinguished with the additional help of l∗ or no such linear
constraint can be found. Figure 2 gives a sketch of the algorithm.

In order to guarantee termination, it does not satisfy to collect pairs of points,
as there can be an infinite number. Therefore, we construct convex regions Ca

and Cb around the points a and b described only by constraints known to the
system, i.e. for Ca we only use linear constraints used in the description of A and
additionally all remaining interpolant constraints. The convex sets are contained
in the respective sets, i.e. Ca ⊆ A and Cb ⊆ B. Since there are only a finite
number of linear constraints in the description of the state sets and interpolant
constraints, there are only a finite number of possible convex sets describable by
these constraints. This lead to a termination of this part of the algorithm in a
finite number of steps.

Hence, we need three sub-algorithms. One for finding pairs of points that can
not be distinguished, one for constructing the convex regions around them, and
one for constructing a linear constraint separating a given set of pairs of convex



54 E. Althaus et al.

regions. An algorithm for the first problem which is based on SMT is given in
Sect. 3.2. A simple solution for the second problem is given in Sect. 3.3. Finally,
we give a solution for the third problem based on linear programming (LP) in
Sect. 3.4.

separating
constraint
h found?

no success

LP
Problem

SMT
Problem

enlarge to
convex-
regions

found not
separated
points a,b?

success

No

Yes
ex

p
a
n
d

L
P

Yes

u
p
d
a
te

l
:=

h
No

remaining interpolant constraints

with additional inequality l

Fig. 2. Sketch of the core part of the heuristic

Example 2. As mentioned in the previous part the set of linear constraints
L = {l1, . . . , l4} of A is a valid set of interpolant constraints, i.e. satisfy
Proposition 1. Figure 1(b) and (c) show the solutions of the three sub-algorithms
from the test, whether l1 and l2 can be substituted by a single new constraint.
In the first iteration, shown in (b) we find a pair of points a1, b1 that are indistin-
guishable, once L = {l3, l4}, after that we compute convex regions around those
points, shown as highlighted areas, and finally compute a linear constraint l9
that separates this pair of convex regions. L ∪ {l9} do not satisfy Proposition 1,
therefore the algorithm starts a second iteration, shown in (c), and finally com-
putes a linear constraint l10, that simultaneously separates both pairs of convex
regions found in the first and the current iteration. Finally L ∪ {l10} satisfy
Proposition 1 and therefore one constraint less is needed in the interpolant.

3.2 Finding Pairs of Indistinguishable Points with SMT

Notice, that we are in the situation that we have to test whether our tentative
new linear constraints l∗ together with the remaining linear constraints L of the
interpolant satisfies to construct an interpolant between state sets A and B. The
linear constraints are not sufficient if and only if we can find points a ∈ A, b ∈ B
with aB = bB that are not distinguishable, i.e. for all l ∈ L ∪ {l∗}l(a) = l(b)
holds.

To solve this by an SMT solver we use the following formula:

(a ∈ A) ∧ (b ∈ B) ∧ (aB = bB) ∧
⎛
⎝ ∧

l∈L∪{l∗}
l(a) = l(b)

⎞
⎠ (1)



Improving Interpolants for Linear Arithmetic 55

Either we found a valid solution and therefore two points a, b that are not sepa-
rable by any linear constraint in L∪{l∗} or we found that L∪{l∗} is a valid set of
interpolant constraints. The problem has only minor changes in every iteration,
because we only substitute the old condition l∗(p) = l∗(q) with an updated linear
constraint l∗. This gives us the opportunity to use the advantage of incremental
SMT.

3.3 Enlarge Pairs of Indistinguishable Points to Convex Regions

If we have found a pair of points a, b as described in the previous section, we
want to find a set of points Ca ⊆ A around a that is preferably large, such that
no point in Ca can be distinguished from b and vice versa.

We achieve this by computing convex regions around a, such that all points
within Ca are equal with respect to all linear constraints in L\{l∗} and all linear
constraints used in the description of A.

For computing Ca test for every linear constraint l that is used in the descrip-
tion of A, if a satisfies this linear constraint, i.e. we compute l(a). We therefore
collect linear constraints in a set C. We add l to C when l(a) is true, or ¬ l if
l(a) is false. After evaluating that for every linear constraint in A, we compute
the same for every interpolant constraint. We do not use the current l∗ in the
description of the convex region, since we change this constraint in the next step,
where we search for a new candidate. Ca is then computed as a conjunction of
all constraints in C.

3.4 Finding a Linear Constraint Separating Pairs of Convex
Regions with LP

We try to find a solution to this problem by constructing a linear program whose
solution represents a separating linear constraint. The LP does not solve the
problem in general, as it will fix all convex regions of A on one side and the convex
regions of B on the other side, which is not necessarily required. Furthermore,
it assumes that all inequalities in A and B are non-strict, i.e. convex regions are
enlarged by their boundary. Both deficiencies are handled heuristically later. We
use an LP-solver that handles rational arithmetic as errors in the coefficients
prevent the algorithm from termination since we could be forced to separate the
same pair of convex region multiple times.

The construction of the LP is similar to the one that computes the linear
constraints in resolution proofs, hence based on Farkas’ Lemma. We expanded
the approach to separate multiple pairs of convex regions.

Therefore, we define the variables d ∈ Qm and d0 ∈ Q that describe the
new linear constraint l∗ in the form dTx ≤ d0. Pairs of convex sets (Ai, Bi)
for i ∈ {1, . . . , k}, which are present in the k-th iteration of the LP-problem for
finding a new constraint for one test described in Sect. 3.1, all constructed by
the enlargement of points to convex regions described in Sect. 3.3. The constraint
dTx ≤ d0 is implied by Ai, if there is a non-negative linear combination of the
inequalities of Ai leading to dTx ≤ d0. Similarly, the constraint aTx > b is



56 E. Althaus et al.

implied by Bi, if there is a positive ε such that there is a non-positive linear
combination of the inequalities of Bi leading to dTx ≥ d0 + ε. All constraints
can easily be formulated as linear constraints.

A detailed description of the LP is given in the appendix. If the LP is solvable
and ε > 0 the computed linear constraint l∗ separates each pair of convex regions.

Extension to Non-Closed Polyhedra. Obviously, the former statement is
also true in the case that some of the inequalities are strict. When the LP is
solvable but ε = 0, at least one of the convex regions of each set touches the
inequality if all inequalities are non-strict. Hence, the LP solution does not give
a linear constraint in this case, as the negation of the non-strict inequality is
not implied by one convex set of B and its strict version is not implied by one
convex set of A. If there are strict inequalities in the description of the convex
regions, we test whether the computed linear constraint still separates the convex
regions either in the non-strict or in the strict version. This is done by computing
if the non-strict or the strict version is a valid choice for each pair. Only if a
solution is valid for every pair it is a solution for the problem. Details are given
in Section B in the appendix. Alternatively, a linear program that is forced to
use a strict inequality of the right-hand side of the linear combination evaluates
if d0 can be used.

Greedy Approach. The LP is trying to separate all regions by always forcing
Ai on one side of l∗ and all Bi on the other side of l∗. This is more than we
actually need in order to satisfy Proposition 1. So we expand our LP problem
by a greedy approach as follows. Assume we find a linear constraint separating
the pairs

(
Ai, Bi

)
for the first k − 1 convex pairs, but the LP does not find a

solution when trying to set Ak on the one side and Bk on the other. Then we
try to switch the sides of Ak and Bk, i.e. we modify the variable bounds and
the constraints concerning the last added pair of regions, such that the convex
regions will change the sides on l∗.

This is a greedy approach, as we only change the positions of the convex
regions of the last iteration.

The LP and Proposition 2 given in Section B in the appendix can be adopted
easily for this greedy approach.

4 Optimizations

Our main goal with the optimizations is to reduce the number of tested pairs
of linear constraints to a reasonable amount. For this goal, we first introduce
the concept of Non-Redundancy-Certificate-points (NRC-points) for interpolant
constraints, which are then used to choose interesting candidates of pairs of lin-
ear constraints. The idea behind this heuristic is, that it is more likely to combine
constraints when they are needed to separate the same regions. There will be
situations where we will not choose the correct pair. To check the potency of the



Improving Interpolants for Linear Arithmetic 57

heuristic choice of specific pairs and the overall heuristical algorithm we com-
puted all benchmarks in Sect. 5 with the heuristical choice and by testing every
pair of interpolant constraints. Furthermore, we give some other optimizations
to the general approach.

NRC-Points. An NRC-Point (a, b) is a pair of points, where a ∈ A and b ∈ B
are only distinguishable by one interpolant constraint h and are indistinguishable
for every other interpolant constraint, we call (a, b) a NRC-point of h. Formally,
an NRC-point (a, b) of h is a solution of the formula

(a ∈ A) ∧ (b ∈ B) ∧ (aB = bB) ∧
⎛
⎝ ∧

l∈L\h
l(a) = l(b)

⎞
⎠ . (2)

Since there can be more than one NRC-point of h, we first solve (2), then we
compute convex regions Ca, Cb around a and b, with the method described in
Sect. 3.3. After this, we solve (2) with the additional conjunction, that (a /∈
Ca) ∧ (b /∈ Cb). This can be done multiple times, and with the advantage of an
incremental SMT since we only add clauses to the formula.

It is worth mentioning that the search for the NRC-points detects if an
interpolant constraint is redundant, i.e. it is not needed to fulfill Proposition 1.
This is the case, when (2) is not satisfiable in the first iteration. When this
occurs, we delete the inequality from the interpolant constraints. To keep the
computational effort low, we only compute a maximum of three NRC-points for
each interpolant constraint, this is motivated by experimental results.

Example 3. Consider Example 2, we want to compute all NRC-points for l3.
Therefore we search for points (a3, b3), that are a solution to the problem
(a3 ∈ A) ∧ (b3 ∈ B) ∧ (

∧
i∈{1,2,4} li(a3) = li(b3)). The pair (a3, b3) is shown in

Fig. 3(a). The highlighted areas are again the convex regions built around the
points a3, b3. There is no other solution that is not in the convex regions, there-
fore (a3, b3) is the only NRC-point for l3. Additionally it is easy to see in Fig. 1,
that the pair (a1, b1) is an NRC-point of l1, and (a2, b2) an NRC-point of l2.

The Choice of Interesting Pairs of Inequalities. After we calculated the
NRC-points for every interpolant constraint, we compare the constructed convex
regions around these points. A pair of inequalities (s, t) is chosen by our heuristic,
if there exist two NRC-points (as, bs) and (at, bt) for interpolant constraints s and
t, such that either as and at or bs and bt are equal in respect to all l ∈ L \ {s, t}.

In this case, our heuristic chooses the pair (s, t) as a pair that is promising,
and therefore will be tested by the method described in Sect. 3.1.

If it was possible to improve the interpolant by testing the pair (s, t), all other
constraints that where chosen to be tested with either s or t are then tested with
the newly found interpolant constraint.

Example 4. Consider Example 3, we already computed NRC-points for l1, l2
and l3. The heuristic for interesting pairs now compares these points, i.e. the



58 E. Althaus et al.

a3

b3

l3 l2

l1

l4

(a)

a1

b1

a2 b2

l3

l4

(b)

a1

b1

l3

l4

a3

b3

(c)

Fig. 3. Example of NRC-points and the heuristic choice of pairs.

convex regions around these points only build by interpolant constraints. In
Fig. 3(b), we see that the convex regions around a1 and a2 are the same, the
heuristic therefore chooses the pair l1, l2 as a promising candidate. The heuristic
does not choose the pair l1, l3 since none of the convex regions are equal as we
can see in Fig. 3(c).

Using NRC-Points to Save SMT-Calls. Assume we want to replace the
interpolant constraints l1 and l2 by a new linear constraint l∗. The algorithm in
Sect. 3.1 would first compute a pair of points, that is now not separable. With
the precomputation of NRC-points, we can skip this since we already have at
least two pairs of convex regions at hand that need to be distinguished by l∗.

5 Experimental Results

We implemented our algorithm in the C++ language, using Yices [12] to solve
the SMT problems and QSopt-Exact [13] to solve the rational LP problems. All
computations were done on a single core of an Intel I7 with 3.20 GHz, and a
memory limit of 2 GB. The maximal time used for a computation of a single
interpolant for a method was 1̃5minutes, the average overall was around 2 s.
The benchmarks are intermediate state sets of over 150 different model checker
runs, mainly two different categories of models. We tested 62 models of the
category Flap/Slat System (FS), during take-off (and landing) flaps and slats
of the aircraft are extended to generate more lift at low velocity and have to
be retracted in time as they are not robust enough for high velocities. The
models have different numbers of flaps/slats, explained in more detail in [15].
Another 90 models of the category of ACC, where a controllers objective is to
set the acceleration of the controlled car to make it reach the goal velocity in a
distance equal to or greater than the goal distance. Additionally, we tested 15
other models of other categories. Damm et al. [4] provided the model checker
and models, which created the intermediate state sets. Independent of the model
which is tested the intermediate state sets are divided in two different classes.
In the first class, formula A describes a state set and formula B describes the



Improving Interpolants for Linear Arithmetic 59

negation of a bloated version of A. This is used in the model checker, if the
descriptions of the state sets become too difficult. Hence, we look for a state set
with a simpler description that is slightly larger than the given state set. Due
to the bloating factor this will lead to different degrees of freedom. In all our
benchmarks the bloating factor for each linear constraint was set to 10%, so
every linear constraint of the bloated state set is pushed by 10% of the total
variable range of all variables used in the constraint, which is applicable, since
all benchmarks are bounded in every variable. The second class comes from the
so-called abstraction refinement, where specific points are excluded in a previous
computed interpolant computation. In this set of benchmarks the two state sets
A and B “touch” each other, i.e. they use the same linear constraint in different
orientations.

All benchmarks are compared with Constraint Minimization [4], which basi-
cally removes redundant constraints out of the description, a version of Simple
Interpolants [6], which creates shared constraints in the proof, and the standard
interpolation method of MathSat [14]. To compare the quality of the solutions
of Simple interpolants and MathSat we additionally executed a Constraint Min-
imization at the end of their computation. We were not able to compare our
approach with the method described in [3], as their description of the state sets
differs from ours.

We implemented four types of our approach. Approaches g all and n all test
all pairs of linear constraints, while g h and n h only test pairs of interpolant
constraints selected by our heuristic described in Sect. 3.4. Further g all and g h
use the greedy approach described in Sect. 3.4, while n all and n h do not use
it. A computed interpolant obtained by Constraint Minimization was used to
compute the initial set of interpolant constraints L.

Table 1 shows a comparison of gall, nall, gh, nhs, Simple Interpolants (SI),
MathSat (MS), and Constraint Minimization (CM).

The benchmarks are all sorted by categories (FS, ACC, other models) and
classes (bloated, refinement). The key specifics of each benchmarks are given
with the number instances, the number of Boolean variables n, and the num-
ber of real variables m in the table. To compare the approaches, we state the
average number of linear constraints (# LC) and its variance (var. # LC). Then
the relative size of the interpolant (rel. # LC) is compared to the approach of
Constraint Minimization, since this method only removes redundant constraints.
Additionally, we state the number of instances where the method improved the
interpolant (# better), again compared to the Constraint Minimization. In the
cell of the Constraint Minimization “# better” states the number of instances
where no method constructed an interpolant better than the one computed by
the Constraint Minimization. At last, the average runtime (time) of each method
is stated.

From the table we can see that most of the benchmarks in the refinement
context independent of the model could usually not be improved by any method.
The distinct test where this can be seen is ACC - refinement. In this set of bench-
marks for every of the 180 instances all methods computed an equal interpolant.
We assume that this is the result of the fact that the state sets “touch” each



60 E. Althaus et al.

Table 1. Experimental results

gall nall gh nh SI MS CM

FS - bloated (2255 instances, n ∈ {0, . . . , 34}, m ∈ {1, . . . , 3})
#LC 6.18 6.30 6.76 6.79 7.33 7.39 7.43

var. #LC 7.72 8.51 10.434 10.66 9.78 9.70 9.97

rel. #LC 0.83 0.85 0.90 0.90 0.99 1.00 1

#better 1533 1453 969 938 336 196 717

time 3.14 s 2.35 s 0.92 s 0.82 s 1.78 s 0.83 s 0.37 s

FS - refinement (915 instances, n ∈ {0, . . . , 36}, m ∈ {2, . . . , 3})
#LC 8.00 8.01 8.12 8.12 8.22 8.23 8.22

var. #LC 11.28 11.32 11.19 11.21 11.22 11.23 11.13

rel. #LC 0.97 0.97 0.98 0.99 1.00 1.00 1

#better 138 134 81 79 15 10 776

time 2.59 s 2.10 s 0.69 s 0.64 s 0.95 s 0.62 s 0.30 s

ACC - bloated (1575 instances, n ∈ {0, . . . , 7}, m ∈ {3, . . . , 5})
#LC 2.28 2.28 2.51 2.51 4.41 5.71 5.54

var. #LC 0.38 0.38 0.25 0.25 2.19 11.84 6.06

rel. #LC 0.51 0.51 0.55 0.55 0.87 1.01 1

#better 1305 1305 1305 1305 724 258 270

time 2.60 s 2.09 s 1.33 s 1.12 s 0.35 s 0.24 s 0.24 s

ACC - refinement (180 instances, n ∈ {4, . . . , 7}, m ∈ {7})
#LC 3 3 3 3 3 3 3

var. #LC 0 0 0 0 0 0 0

rel. #LC 1 1 1 1 1 1 1

#better 0 0 0 0 0 0 180

time 0.36 s 0.29 s 0.34 s 0.26 s 0.06 s 0.04 s 0.06 s

other models - bloated (740 instances, n ∈ {0, . . . , 31}, m ∈ {1, . . . , 5})
#LC 7.32 7.43 8.13 8.16 8.28 8.47 8.50

var. #LC 13.84 14.83 18.32 18.72 19.78 20.54 20.16

rel. #LC 0.87 0.88 0.95 0.95 1.00 1.00 1

#better 464 435 209 196 64 64 276

time 7.77 s 6.30 s 3.48 s 3.40 s 11.33 s 8.36 s 1.83 s

other models - refinement (96 instances, n ∈ {4, . . . , 24}, m ∈ {2, . . . , 3})
#LC 12.09 12.11 12.11 12.13 12.31 12.34 12.19

var. #LC 21.62 21.79 21.87 21.84 22.32 22.61 21.73

rel. #LC 0.99 0.99 0.99 0.99 1.01 1.01 1

#better 9 7 7 6 2 2 86

time 8.30 s 6.65 s 2.37 s 2.30 s 11.78 s 8.73 s 1.23 s



Improving Interpolants for Linear Arithmetic 61

other and therefore reduce the degree of freedom. On the other hand, all of our
algorithms were able to improve most of the bloated benchmarks. Again the
obvious test where this can be seen is in the ACC models. There, all of our
methods could improve 1305 of 1575 instances, with an overall relative improve-
ment of 49% for the algorithms that tested every pair of interpolant constraints,
and 45% for the two algorithms that tested only interesting pairs computed by
our heuristic.

The experiments also indicate that our greedy approach for the LP problem
is not often helpful in improving interpolants, i.e. there were only 162 of total
5761 instances where the greedy algorithm (gall, gtps) was better than the appro-
priate normal algorithm (nall, ntps). Overall, our algorithm ntps achieves the best
ratio in improving interpolants compared to the time effort, with a overall factor
of ∼4.71 in exceeded running time and an improvement of around 20%.

6 Conclusion and Further Research

In this paper, we showed how the number of linear constraints in interpolants for
linear arithmetic can be reduced by a fair amount. The experiments showed that
in the context of intermediate state sets in hybrid model checking the success of
our algorithm closely related to the model in which this problem occurs. Further,
we plan to improve our running times by replacing the rational LP solver by a
state of the art LP solver and use rational arithmetic only to verify the feasibility
of the solutions. Additionally, we want to improve our heuristic for the choice
of “interesting” pairs of interpolant constraints. Furthermore, we will try to
compute lower bounds for the amount of interpolant constraints needed in this
context.

Acknowledgment. The results presented in this paper were developed in the context
of the Transregional Collaborative Research Center ‘Automatic Verification and Analy-
sis of Complex Systems’ (SFB/TR 14 AVACS) supported by the German Research
Council (DFG). We worked in close coorperation with our colleagues from the ’First
Order Model Checking Team’ within the subproject H3 and we would like to thank W.
Damm, B. Wirtz, W. Hagemann, and A. Rakow from the University of Oldenburg, U.
Waldmann from the Max Planck Institute for Informatics at Saarbrücken and S. Disch
from the University of Freiburg for numerous ideas and discussions

A Detailed Description of the Linear Program

Recall the variables given in Sect. 3.4. Let Ai, Bi be the convex sets of the i-th
iteration, constructed by sAi , respectively sBi , conjunctions of linear constraints.
Then Ai is formally defined by Ai =

{
x ∈ R

m| Aix ≤ αi
}
, with Ai ∈ Qm×sAi

and Bi =
{
x ∈ R

m| Bix ≤ βi
}
, with Bi ∈ Qm×sBi . We additionally introduce

sAi variables λi and sBi variables μi for every iteration i ∈ {1, . . . , k}.
We look for an inequality that maximizes a simple measure of the distance

of the constructed inequality to the convex regions. We do this by subtracting



62 E. Althaus et al.

the ε to the positive convex combination of the inequalities from Ai for l, i.e. the
convex combination leads to dTx ≤ d0 − ε. As we can scale any LP-solution by
an arbitrary positive scalar so far, we have to normalize the solution. Therefore,
we restrict the linear combination of one region to be a convex combination.

Hence, we obtain the following LP, where all linear constraints except (6)
and (11) are introduced for all i ∈ {1, . . . , k}:

max ε (3)

s.t. (Ai)Tλi = d (4)

(Bi)Tμi = d (5)∑
λ1 = 1 (6)

(αi)Tλi ≤ d0 − ε (7)

(βi)Tμi ≥ d0 + ε (8)

λi ≥ 0 (9)

μi ≤ 0 (10)
ε ≥ 0 (11)

Constraints (4) and (5) force that the direction of the new constraint, described
by d, is representable by the linear constraint of the convex regions. Conditions
(7–11) verify that convex regions are on the right side of l∗. Condition (6) nor-
malizes the solutions.

B Detailed Distinction for Non-Closed Polyhedra

The following proposition states when we have found a separating constraint in
case of ε = 0.

Proposition 2. Assume the LP (4–11) has optimal value 0 and let (d̄, d̄0) be
the solution of the LP for the variables d and d0.

1. If for all i ∈ {1, . . . , k} either (βi)Tμi−d0 > 0 or there exists a strict inequality
s 	= 0 in Bi with variable (μi)s such that (μi)s < 0, then āTx ≤ d̄0 separates
the regions.

2. If for all i ∈ {1, . . . , k} either (αi)Tλi−d0 < 0 or there exists a strict inequal-
ity s 	= 0 in Ai with variable (λi)s such that (λi)s > 0, then āTx < d̄0
separates the regions.

The proof for this proposition is straight forward and will not be given in the
paper.



Improving Interpolants for Linear Arithmetic 63

References

1. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic 62(3), 981–998 (1997)

2. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

3. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)

4. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid
automata with large discrete state spaces. Sci. Comput. Program. 77(10–11), 1122–
1150 (2012)

5. Megiddo, N.: On the complexity of polyhedral separability. Discrete Comput.
Geom. 3(1), 325–337 (1988)

6. Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arith-
metic. In: Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, pp. 1–6. IEEE (2014)

7. William, C.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)

8. McMillan, K.L.: An interpolating theorem prover. Theoret. Comput. Sci. 345(1),
101–121 (2005)

9. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

10. Scholl, C., Disch, S., Pigorsch, F., Kupferschmid, S.: Using an SMT solver and
craig interpolation to detect and remove redundant linear constraints in repre-
sentations of non-convex polyhedra. In: Proceedings of the Joint Workshops of the
6th International Workshop on Satisfiability Modulo Theories and 1st International
Workshop on Bit-Precise Reasoning, pp. 18–26. ACM (2008)

11. Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440.
Springer, Heidelberg (2007)

12. Dutertre, B., De Moura, L.: The yices SMT solver (2006). http://yices.csl.sri.com/
tool-paper.pdf

13. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear
programming problems. Oper. Res. Lett. 35(6), 693–699 (2007)

14. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
JSAT 8, 1–27 (2012)

15. Rakow, A.: Flap/Slat System. http://www.avacs.org/fileadmin/Benchmarks/
Open/FlapSlatSystem.pdf

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://www.avacs.org/fileadmin/Benchmarks/Open/FlapSlatSystem.pdf
http://www.avacs.org/fileadmin/Benchmarks/Open/FlapSlatSystem.pdf

	Improving Interpolants for Linear Arithmetic
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Computing Interpolants by Resolution Proofs
	2.3 Computing Interpolants by DC-Removability Checks
	2.4 Description of a State Set

	3 The General Algorithm
	3.1 Test Whether One Additional Linear Constraint Is Sufficient
	3.2 Finding Pairs of Indistinguishable Points with SMT
	3.3 Enlarge Pairs of Indistinguishable Points to Convex Regions
	3.4 Finding a Linear Constraint Separating Pairs of Convex Regions with LP

	4 Optimizations
	5 Experimental Results
	6 Conclusion and Further Research
	References




