
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Fully Symbolic TCTL Model Checking for

Complete and Incomplete Real-Time Systems

by
Georges Morbé and Christoph Scholl

AVACS Technical Report No. 104
September 2014
ISSN: 1860-9821



Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle,
Ernst-Rüdiger Olderog, Andreas Podelski

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© September 2014 by the author(s)

Author(s) contact: Christoph Scholl (cs@avacs.org).



Fully Symbolic TCTL Model Checking for

Complete and Incomplete Real-Time Systems ∗†

Georges Morbé and Christoph Scholl
{morbe,scholl}@informatik.uni-freiburg.de

Department of Computer Science
Georges–Köhler–Allee 51, 79110 Freiburg i. Br., Germany

September 20, 2014

Abstract

In this paper we introduce a new formal model, called finite state ma-
chines with time (FSMT), to represent real-time systems. We present
a model checking algorithm for FSMTs, which works on fully symbolic
state sets containing both the clock values and the state variables. Be-
sides complete networks of FSMTs our algorithm can verify incomplete
real-time systems in form of incomplete FSMTs, and is able to prove that
a TCTL property is violated or satisfied regardless of the implementation
of unknown components in the system. For that purpose the algorithm
computes over-approximations of sets of states fulfilling a TCTL property
Φ for at least one implementation of the unknown components and under-
approximations of sets of states fulfilling Φ for all possible implementa-
tions of the unknown components. In order to verify timed automata
with our model checking algorithm, we present two different methods to
convert timed automata to FSMTs. In addition to pure interleaving se-
mantics we can convert timed automata to FSMTs having a parallelized
interleaving behaviour which allows parallelism of transitions causing no
conflicts. This can dramatically reduce the number of steps during veri-
fication. In our experimental results on complete systems our prototype
implementation outperforms the state-of-the-art model checkers UPPAAL
and RED, and on incomplete systems our tool is able to prove interesting
properties at early stages of the design when parts of the overall system
may not yet be finished. Additionally, fading out components of a large
system may dramatically reduce the complexity of the system and thus
the effort for verification.

∗This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).
†Parts of the article have been presented at CAV 2011 [1] and AVOCS 2013 [2].

1



1 Introduction

Both the application areas and the complexity of real-time systems have grown
with an enormous speed during the last decades. Moreover, in many applica-
tions the correct operation of real-time systems is safety-critical. These reasons
make verification of such systems crucial. Timed automata [3, 4] have become
a standard for modelling real-time systems. They extend finite automata to
the real-time domain by adding real-valued clock variables. All clock variables
evolve over time with the same rate. During a discrete step that happens in
zero-time a clock variable may be reset. Verifying safety properties of timed
automata can be reduced to the computation of all states reachable from the
initial states and checking whether an unsafe state can be reached (forward
model checking). Equivalently the problem can be reduced to the computation
of all states from which unsafe states can be reached and checking whether some
initial states are included in this set of states (backward model checking).

Model checking approaches for timed automata based on reachability anal-
ysis can be classified into semi-symbolic and fully symbolic approaches. Semi-
symbolic approaches represent discrete locations of timed automata explicitly
whereas sets of clock valuations are represented symbolically e.g. by unions of
clock zones. Clock zones are convex regions that result from an intersection of
clock constraints of the form xi− xj ∼ d where d ∈ Q, ∼ ∈ {<,≤,=,≥, >} and
xi, xj are clock variables. Fully symbolic approaches represent the complete
state set (including valuations of both clocks and discrete variables) by a single
data structure.

Uppaal [5, 6], the probably most prominent semi-symbolic approach, repre-
sents clock zones by so-called difference bound matrices (DBMs) and provides
efficient methods for manipulating DBMs. Other symbolic representations are
given by CDDs [7], CRDs, CRD+BDDs [8], DDDs [9], CMDs [10], e.g., see
Sect. 3 for a more detailed review of data structures for symbolic representation
of timed systems.

In this paper we first introduce a new formal model for real-time systems,
called finite state machines with time (FSMT), which represents real-time sys-
tems by transition functions and reset conditions.

We present a fully symbolic model checking algorithm for FSMTs. In order
to verify timed automata (with additional integer variables in the state space)
we present a method to convert a timed automaton into an FSMT. In addi-
tion to normal interleaving semantics (i.e. asynchronous semantics) of timed
automata we give a symbolic representation of an FSMT simulating a ‘paral-
lelized interleaving’ behaviour, which allows parallelism of transitions causing
no conflicts. This parallelized interleaving behaviour can dramatically reduce
the number of steps during verification.

Our model checking algorithm uses LinAIGs (‘And-Inverter-Graphs with
linear constraints’) [11, 12, 13] to describe the state space. LinAIGs provide a
fully symbolic representation both for the continuous part (i.e. the clock values)
and the discrete part (i.e. the state variables). For state space compaction
LinAIGs profit to a large extent from the enormous progress made in the area

2



of SAT and SMT (SAT modulo Theories) solving [14, 15]. For the quantification
of real-valued variables, LinAIGs make use of the Weispfenning–Loos test point
method [16] which is especially suitable for LinAIG representations.

In the second part of the paper we extend our consideration to the verifi-
cation of incomplete timed systems, i.e., timed systems that contain unknown
components. Unknown components are called ‘Black Boxes’, whereas all known
components are combined into the so-called ‘White Box’. Our verification algo-
rithm deals with different communication methods between the white box and
the black box, namely shared integer variables and urgent and non-urgent syn-
chronisation. Here we address two interesting questions: The question whether
there exists a replacement of the black box such that a given property is sat-
isfied (‘realisability’) and the question whether the property is satisfied for all
possible replacements (‘validity’).

The verification of incomplete timed systems can provide three major ben-
efits: First of all, certain verification steps can be performed at early stages of
the design of a timed system, when parts of the overall system may not yet be
finished, so that errors can be detected as early as possible. Second, complex
parts of a complete timed system can be abstracted away and just the relevant
components for verifying a certain property are considered. Finally, the location
of design errors in timed systems not satisfying some property can be narrowed
down by iteratively masking potentially erroneous components.

Our approach is not restricted to the verification of safety properties, but
provides fully symbolic methods to do full TCTL model checking both for
complete and incomplete timed systems. For incomplete systems we use over-
approximations of the set of states satisfying the given TCTL property Φ for at
least one implementation of the black box and we use under-approximations of
set of states satisfying Φ for all black box implementations. Using these sets,
we provide sound proofs of validity and non-realisability.

The paper is organised as follows. In Sect. 2 we give a brief review of timed
automata and TCTL model checking. In Sect. 3 we compare our approach
to related work. Then we introduce finite state machines with time (FSMT)
in Sect. 4. We introduce a new optimised parallelized interleaving semantics in
Sect.5 for accelerating state space traversal. For a translation of timed automata
into FSMTs (Sect. 6) we propose two options: the parallelized interleaving
semantics and the pure interleaving semantics which corresponds to the standard
asynchronous interleaving of several components. Our model checking algorithm
for complete systems is given in Sect. 7. After introducing incomplete real-time
systems in Sect. 8, we present a model checking approach for incomplete systems
in Sect. 9, including a conversion of incomplete timed systems into incomplete
FSMTs. We conclude the paper in Sect. 11 after presenting experimental results
in Sect. 10.

3



2 Preliminaries

2.1 Timed Automata

Real-time systems are often represented as timed automata [3, 4] which use
clock variables X := {x1, . . . , xn} to represent time. The set of clock constraints
C(X) contains atomic constraints of the form (xi ∼ d) and (xi − xj ∼ d) with
d ∈ Q and ∼ ∈ {<,≤,=,≥, >}. Let Cc(X) be the set of conjunctions over clock
constraints. c ∈ Cc(X) describes a subset of Rn, namely the set of all valuations
of variables in X which evaluate c to true.

We consider timed automata extended with bounded integer variables Int :=
{int1, . . . , intr}. lb : Int → Z and ub : Int → Z assign lower and upper bounds
to int i ∈ Int (lb (int i) ≤ ub (int i)). Let Assign(Int) be the set of assignments
to integer variables. The right-hand side of an assignment to an integer vari-
able int i may be an integer arithmetic expression over integer variables and
integer constants. Let C (Int) be a set of constraints of the form (int i ∼ d)
and (int i ∼ intj) with d ∈ Z, ∼ ∈ {<,≤,=,≥, >} and int i, intj ∈ Int . Let
C c(X, Int) be the set of conjunctions over clock constraints and constraints
from C (Int).

In general, transitions in timed automata are labelled with guards, syn-
chronisation actions, assignments to integers and resets of clocks. Guards are
restricted to conjunctions of clock constraints and constraints on integers. Ac-
tions from Act := {a1, . . . , ak} are used for synchronisation between different
timed automata. For our purposes they do not have a special meaning when
considering one timed automaton in isolation. However, in a network of timed
automata, transitions in different components labelled with the same action are
taken simultaneously. If a transition in a timed automaton is not labelled by
any action, it can only be taken, if all other timed automata stay in their current
location. Resets are assignments to clock variables of the form xi := 0.

A transition in a timed automaton may be declared as urgent. Whenever
an urgent transition in the system is enabled, the current location must be left
without any delay. Just like transitions, actions may be declared as urgent. Let
au be an urgent action. If several timed automata are composed in parallel
and in all components containing au-transitions a transition labelled with au

is enabled, then there must not be any time delay before taking a transition.
Timed automata are formally defined as follows:

Definition 1 (Timed Automaton). A timed automaton TA is a tuple 〈L, l0, X,
Act , Int , lb, ub, E〉, where L is a finite set of locations, l0 ∈ L is an initial lo-
cation, X := {x1, . . . , xn} is a finite set of real-valued clock variables, Act =
Actnu ∪ Actu, with Actnu ∩ Actu = ∅. Actnu is a finite set of non-urgent syn-
chronisation actions and Actu is a finite set of urgent synchronisation actions.
Int = {int1, . . . , intm} is a finite set of bounded integer variables, lb : Int → Z
assigns a lower bound to each int i ∈ Int, for 1 ≤ i ≤ m and ub : Int → Z as-
signs an upper bound to each int i ∈ Int, with lb(int i) ≤ ub(int i) for 1 ≤ i ≤ m.
E ⊆ L×Cc(X, Int)×(Act∪{εu, εnu})×2X×2Assign(Int)×L is a set of transitions,
with E = Enu∪Eu. Enu = {(l, ge, act , re, assigne, l

′) ∈ E | act ∈ Actnu∪{εnu}}

4



is the set of non-urgent transitions from source location l to destination loca-
tion l′ labelled with guard ge, action act, resets re and assignments to integers
assigne, and Eu = {(l, ge, act , re, assigne, l

′) ∈ E | act ∈ Actu ∪ {εu}} is the
set of urgent transitions from source location l to destination location l′ labelled
with guard ge, action act, resets re and assignments to integers assigne. If for
e = (l, ge, act , re, assigne, l

′) ∈ E it holds that act ∈ Act, then we call e a tran-
sition with a (non-urgent or urgent) synchronisation action, if act ∈ {εnu, εu}
then we call e a (non-urgent or urgent) transition without synchronisation ac-
tion.

r0
i = 2

a

i := 2

a

x1 ≤ 5

x0 ≥ 6
au

x0 := 0

r1 r2

l0 l1 l2

au

x1 := 0

a aui

p0

p1

Figure 1: Timed System

A state s = 〈l, η, µ〉 in a timed automa-
ton consists of a location l, a clock valuation
η, which assigns a real value to each clock
variable x ∈ X, and an integer valuation µ,
which assigns an integer value to each integer
variable int ∈ Int . For a clock valuation η
and λ ∈ R≥0, η+λ means the clock valuation
η′ with η′(x) = η(x) + λ for each x ∈ X.

Definition 2 (Semantics of a Timed Au-
tomaton). Let TA = 〈L, l0, X,Act , Int ,
lb, ub, E〉 be a timed automaton.

• There is a continuous transition s
λ−→c s

′ of length λ from source state
s = 〈l, η, µ〉 to successor state s′ = 〈l, η′, µ〉 iff lb(int i) ≤ µ(int i) ≤
ub(int i)∀1 ≤ i ≤ m, ∃λ ∈ R≥0 with η′ = η + λ, and ∀0 ≤ λ′ < λ @e =
(l, ge, act , re, assigne, l

′) ∈ Eu with (η + λ′, µ) satisfies guard ge.

• There is a discrete transition s
act−→d s

′ over action act from source state
s = 〈l, η, µ〉 to successor state s′ = 〈l′, η′, µ′〉 iff lb(int i) ≤ µ(int i), µ

′(int i) ≤
ub(int i)∀1 ≤ i ≤ m, ∃e = (l, ge, act , re, assigne, l

′) ∈ E with act ∈
Act ∪ {εu, εnu} and (η, µ) fulfills the guard ge, η

′(xi) = 0 for xi ∈ re
and η′(xi) = η(xi) for xi /∈ re, and µ′ results from µ by applying the
assignments in assigne.

• →=
λ−→c ∪ act−→d, with λ ∈ R≥0 and act ∈ Act ∪ {εu, εnu}

is the transition relation of a timed automaton. A trajectory of a timed
automaton is a finite or infinite sequence of states (sj)j≥0, with sj−1 →
sj for each j > 0, starting in a state s0 = 〈l0, η0, µ0〉, with η0 being a
clock valuation assigning 0 to each clock variable and µ0 being an integer
valuation assigning lb(int i) to each int i ∈ Int. A state is reachable, if
there is a trajectory ending in that state.

A timed system is a system of p timed automata {TA1, . . . , TAp}, and has an
interleaving semantics, i.e., transitions in different timed automata may not be
taken simultaneously unless they synchronise over non-urgent or urgent actions.
For simplicity, we assume that only two timed automata are able to synchronise

5



over a binary synchronisation channel. As usual, the composition of p timed
automata is again a timed automaton.

Definition 3 (Timed System). Let TA1, . . . , TAp be a timed system with TAi =

〈L(i), l
(i)
0 , X(i), Act , Int , lb, ub, E(i)〉. Let A(act) = {TAi | ∃e = (l, ge, act , re,

assigne, l
′) ∈ E(i)} for each act ∈ Act. We assume that |A(act)| ≤ 2 for each

act ∈ Act. The composition of TA1, . . . ,TAp is TA =
〈
(L(1) × . . .× L(p)),

(l
(1)
0 , . . . , l

(p)
0 ), X(1) ∪ . . . ∪X(p),Act , Int , lb, ub, E

〉
where E is the smallest set

with the following property:

• If for 1 ≤ i ≤ p ∃e = (li, ge, act , re, assigne, l
′
i) ∈ E(i), act ∈ {εu, εnu} or

|A(act)| = 1, then ((l1, . . . , li, . . . , lp), ge, act , re, assigne, (l1, . . . , l
′
i, . . . , lp))

∈ E.

• If for 1 ≤ i, j ≤ p with i 6= j: ∃ei = (li, gei , act , rei , assignei , l
′
i) ∈ E(i),

∃ej = (lj , gej , act , rej , assignej , l
′
j) ∈ E(j), act ∈ Act, then ((l1, . . . , li, . . . ,

lj , . . . , lp), gei∧gej , act , rei∪rej , assignei∪assignej , (l1, . . . , l
′
i, . . . , l

′
j , . . . , lp))

∈ E.

Remark 1. A timed system TA1, . . . , TAp is called well-formed, if for each
integer int and each synchronising action act there is a unique timed automaton
TAi that is allowed to have transitions which are labelled by act and perform
assignments to int. In well-formed systems write-conflicts on integers cannot
occur. We only consider well-formed timed systems.

Example 1. Fig. 1 shows a timed system with two timed automata p0 and p1.
Each timed automaton has three locations, p0 has clock variable x0, p1 has clock
variable x1. The bounded integer i is used to pass numerical information from
one timed automaton to the other. Initially, the timed system is in locations l0
and r0 with clock values η(x0) = 0 and η(x1) = 0 and integer value µ(i) = 0.
When – starting from the initial state – time passes for 4.6 time units, e.g., the
state 〈l0, r0, η(x0) = 4.6, η(x1) = 4.6, µ(i) = 0〉 is reached. The guards are used
to enable transitions, for example the transition from l0 to l1 is only enabled
when x0 has a value higher or equal than 6. With the assignment i := 2 on
this transition, integer i is set to 2. In p1, i is read in the guard i = 2 on the
transition from r1 to r2. Clock variable x0 is reset on the transition from l2 to
l0 in p0, x1 is reset on the transition from r2 to r0 in p1. Both timed automata
synchronise over the non-urgent action a and the urgent action au. Because of a
the two transitions from l2 to l0 and from r2 to r0 can only be taken in parallel.
Similarly, the transitions from l1 to l2 and from r1 to r2 synchronise over the
action au. Since au is an urgent action, when p0 is in l1, p1 is in r1, and i has
a value of 2, time is not allowed to pass until both transitions have been taken
(in parallel).

In many definitions for timed automata found in the literature (e.g. [5])
locations are connected with so-called invariants as an alternative to urgent
transitions and urgent actions. Invariants in timed automata are conjunctions

6



of clock constraints of the form xi ∼ d with ∼∈ {<,≤}, d ∈ Q+. A timed au-
tomaton is only allowed to stay in a location as long as the location invariant is
not violated. In some sense invariants are a means to define urgency implicitly:
If a location l0 has the invariant x ≤ 5 and for instance one outgoing transition
(synchronising or non-synchronising), then the outgoing transition becomes ur-
gent as soon as the clock value of x equals 5. Especially for synchronisations
between different components we prefer to make it explicit whether they are
urgent (i.e. require a transition without letting time pass) or not. For that
reason we do not allow invariants in this paper. This is not a real restriction,
because it is easy to see that for each timed automaton with closed location
invariants there is a timed automaton without invariants which is semantically
equivalent (i.e. allows the same trajectories) and uses urgency only explicitly.

x ≤ 5

x ≤ 5

x = 5
TA TA′

x := 0 x := 0

(a) urgent transitions

x ≤ 5

x ≤ 5

x := 0
x = 5

TA TA′

a

au

a

x := 0

(b) urgent synchroniztation

Figure 2: Urgency caused by invariants

Lemma 1. For each timed automaton without urgency and with closed location
invariants there exists a semantically equivalent timed automaton with urgency
and without invariants.

Consider a location l in timed automaton TA with an invariant of the form
x ≤ n with n ∈ Q and x is a clock variable. When transforming TA into a
semantically equivalent timed automaton TA′, l is copied into an equivalent
location l′ without invariant. For each incoming transition of l′ without reset
on x in the copy an additional guard of the form x ≤ n is added to guarantee
that l′ cannot be entered with a clock value x > n. For each outgoing non-
synchronising (and non-urgent) transition e of l with a guard g, g∧(x = n) 6= 0,
there are two edges in the copy: One non-urgent transition with all original
labels and one urgent transition with the additional guard x = n corresponding
to the boundary of the invariant. This has the effect that whenever in l′ the
value of x is n a discrete transition must be taken to leave the location. For
a transition leaving l labelled with a synchronising (and non-urgent) action a,
there are two transitions in TA′ as well: The original transition and an addi-
tional transition with identical labels, apart from the additional guard (x = n)
and an urgent action au replacing the original action a. (In other components
composed in parallel, transitions which were originally labelled by a are also

7



duplicated into two edges, one with the non-urgent action a and one with the
urgent action au.) Figs. 2(a) and 2(b) illustrate these transformations. New ur-
gent transitions (resp. transitions with urgent synchronisation) are represented
by dashed arrows.

A similar technique is used in the context of timed games where “forced
transitions” labelled with upper limits of invariants are added in order to pre-
vent one player from forcing the system into a timelock [17]. The connection
of urgency and invariants has already been studied by Bornot et al. in [18],
introducing timed automata with deadlines which provide a general model for
enforcing time progress conditions. In this model, transitions may be associated
with deadlines and time progress is stopped whenever the deadline of such an
transition is reached. Urgent Transitions are called eager transitions in [18],
non-urgent transitions are called lazy transitions. According to [18] any timed
automaton with deadlines may be transformed into a timed automaton using
only eager and lazy transitions.

2.2 Timed Computation Tree Logic

Timed CTL [19, 20, 21] is an extension of the temporal logic CTL [22] used
to express properties for real-time systems. As usual, Eϕ holds in a state
s when there exists a path which starts in s, and satisfies the path formula
ϕ. Aϕ holds in a state s when ϕ is satisfied on all paths starting in s. A
path formula is defined by ϕ ::= Φ UJΨ where J ⊆ R≥0 is an interval of real

numbers. Intuitively, a path satisfies Φ UJΨ whenever at some point in J , a
state satisfying Ψ is reached and at all previous time instants Φ∨Ψ holds. Timed
variants of the modal operators F (eventually) and G (always) can be derived
as follows: F JΦ = true UJΦ, AGJΦ = ¬EF J¬Φ, and EGJΦ = ¬AF J¬Φ.

A path formula with J = [0,∞) may be considered as a CTL formula and can
be verified using normal CTL model checking algorithms. Any other intervals
J 6= [0,∞) in a TCTL formula can be handled as follows: For J 6= [0,∞) a new
clock variable xnew is introduced which is neither used in the timed automaton
nor in the formula Φ. The variable xnew is used to measure the elapsed time
until a certain property holds. A TCTL formula EF JΦ holds in a state s, e.g.,
iff the formula EF (Φ ∧ xnew ∈ J) holds in (s, xnew = 0). Model checking of a
TCTL formula Φ uses a recursive method to compute for all subformulas Ψ the
sets of states Sat(Ψ) for which Ψ is satisfied (similar to CTL model checking).
If Ψ = EF JΨ1, J 6= [0,∞), e.g., then Sat(EF JΨ1) is computed by a fixed point
iteration starting from Sat(Ψ1 ∧ xnew ∈ J) using the predecessor operation Pre
which computes for a state set S the set of all states s′ with s′ → s, s ∈ S.
Pre is repeatedly applied until the fixed point is reached. Sat(EF JΨ1) simply
results by fixing xnew to 0 in resulting fixed point.

As usual, we say that a timed automaton fulfills a property Φ, if all initial
states are included in Sat(Φ) (similar to CTL model checking). A complete
exposition of TCTL model checking can be found in [21],e.g..

8



3 Related Work

Our approach is based on finite state machines with time (FSMTs) as a new
formal model for real-time systems and on LinAIGs (‘And-Inverter-Graphs with
linear constraints’) [11, 12, 13] as a fully symbolic representation of FSMTs.
Related approaches model real-time systems by timed automata [3, 4] and use
either semi-symbolic or fully symbolic state set representations.

Semi-symbolic approaches like UPPAAL [5, 6] represent discrete locations
of timed automata explicitly whereas sets of clock valuations are represented
symbolically e.g. by unions of clock zones. In UPPAAL clock zones in turn
are represented by so-called difference bound matrices (DBMs) which are ma-
nipulated by efficient methods. These techniques are well-suited when the sizes
of the discrete state space and the numbers of different clock regions per loca-
tion remain moderate. CDDs [7] make the attempt to represent unions of clock
zones more compactly. CDDs are BDD-like data structures where nodes are
labelled by clock differences xi−xj and the outgoing edges of nodes are labelled
by (disjoint) intervals of rational numbers. CRDs [8] are a variant of CDDs
where outgoing edges of nodes are labelled by upper bounds for clock differ-
ences instead of disjoint intervals. CRDs were combined with BDDs (leading to
CRD+BDDs) to provide a fully symbolic representation of the state space in the
tool RED [8]. Another fully symbolic representation has been given by difference
decision diagrams (DDDs) [9] which are basically BDD representations where
the decision variables are boolean abstractions of clock constraints xi − xj ∼ d.
Computing all states reachable by evolution of time amounts to the existential
quantification of a real-valued variable. Both for CRD+BDDs and DDDs this
quantification is performed based on the classical Fourier–Motzkin technique
which requires enumerating all paths in the diagram. Restricted to a path rep-
resenting a conjunction of clock constraints, the Fourier-Motzkin technique is
strongly related to quantifier elimination in DBMs by the shortest-path closure
[23]. As in DDDs, Seshia and Bryant [24] consider BDD representations using
boolean abstractions of clock constraints, however they reduce real-valued quan-
tifier elimination to adding so–called transitivity constraints followed by a series
of quantifications for boolean variables. As another data structure Clock Ma-
trix Diagrams (CMDs) have been introduced [10]. CMDs basically correspond
to CRD+BDDs where sequences of edges representing convex constraints are
collapsed into single edges labeled by DBMs and boolean variables are restricted
to the lowest levels in the variable orders.

The LinAIG data structure used in this paper provides compact state set
representations by making profit from the enormous progress made in the area
of SAT and SMT (SAT modulo Theories) solving [14, 15]. For the quantification
of real-valued variables, LinAIGs make use of the Weispfenning–Loos test point
method [16] which is especially suitable for LinAIG representations.

Our translation of timed automata into FSMTs uses ‘parallelized interleav-
ing’ as an alternative to ‘normal interleaving’. Normal interleaving directly
corresponds to the asynchronous semantics of timed automata whereas paral-
lelized interleaving allows parallelism of transitions causing no conflicts and thus

9



can dramatically reduce the number of steps during verification. Parallelized in-
terleaving is related to partial-order reduction (e.g. [25, 26]) and path reduction
[27]:

In contrast to partial-order reduction (e.g. [25, 26]) which reduces the num-
ber of states to be considered during model checking, parallelized interleaving
does not avoid certain computation paths or states, but combines their traversal
into one symbolic step and thus accelerates state space traversal. Consider a
timed system TS composed from n components TA1, . . . ,TAn and suppose –
for simplicity – that the local discrete transitions of the components are inde-
pendent, i.e., they are neither related through read or write conflicts nor they
synchronise over actions. According to the semantics of the concurrent asyn-
chronous system TS , a discrete step of TS consists in a discrete step of some
component TAi. For the concurrent execution of one discrete step per com-
ponent, there are n! different sequences and 2n different states (one state for
each subset of executed components). If the specification does not distinguish
between these sequences, partial-order reduction can reduce n! sequences to
one representative sequence consisting of n transitions. Symbolic model check-
ers without partial-order reduction already compute a symbolic representation
of all 2n states visited on n! sequences by n symbolic steps. Symbolic model
checking with parallelized interleaving assumes that each component TAi may
or may not take a transition, considers all possible combinations in parallel, and
computes a symbolic representation for all these 2n states by one single step.
Of course, for the general case we have to analyse which components may run
in parallel without changing the semantics.

Path reduction [27] provides an alternative possibility for mitigating negative
effects of pure interleaving. Path reduction analyzes components and replaces
certain computation paths by single transitions. In that way, computation paths
of components are compressed, leading to a reduced number of possible inter-
leavings of different components. Path reduction is orthogonal to our technique,
since it preprocesses components, whereas parallelized interleaving improves the
parallel execution of several components by combining computation paths re-
sulting from different interleavings into one symbolic step.

Our approach for verification of incomplete timed systems shares ideas with
Modal Transition Systems (MTSs) [28, 29] (and their successors like Partial
Kripke Structures (PKSs) [30] and Kripke Modal Transition Systems (KMTSs)
[31]) which exhibit must- and may-transitions between states. In our context
must-transitions are transitions between states that exist for all possible black
box implementations. May-transitions are transitions that may exist for at least
one possible black box implementation. In that sense our method is strongly
related to 3-valued model checking [31] and its extensions using symbolic repre-
sentations [32, 33, 34]. The approaches mentioned above were given for discrete
systems, whereas we extend and adapt these ideas to timed systems and prop-
erties in TCTL (Timed Computation Tree Logic) [19, 20, 21].

The module checking problem [35] may be seen as a validity problem (‘is a
given property satisfied for all possible replacements of the black box’) confined
to a single black box (which models the environment behavior). Kupferman,

10



Vardi and Wolper use tree automata techniques to solve the module check-
ing problem for discrete systems specified by branching time properties (CTL,
CTL*) [35].

unsafe

a

BB
a

WB

x := 0

x ≥ 6

l0

l1

l2

Figure 3: Black Box example

The realisability problem (‘does a re-
placement of the black box exist, so that a
given property is satisfied?’) is strongly con-
nected to the controller synthesis problem
[36, 37], where a system interacts with an
unknown controller. In the real-time domain
the controller synthesis problem is modelled
as a timed two-player game [38, 39, 40],
where the controller (black box) tries to sat-
isfy a safety property and plays against the white box (who tries to violate
it).

By Fig. 3 we illustrate that these approaches with their ‘classical notion’ of
controller synthesis are not able to decide the realizability question for safety
properties as defined in our context. The figure shows a small white box with
an initial location l0, two additional locations and two transitions labelled with
the non-urgent action a and the guard x ≥ 6, respectively. The location l2 is
considered to be unsafe and the task is to implement the black box in such a way
that the unsafe location cannot be reached. The interface between the white
box and the black box is given by a non-urgent synchronisation action a. Since
the synchronisation action a is non-urgent, it is not possible to define such an
implementation for the black box, since time is allowed to pass until x = 6 and
the transition to the unsafe location can be taken even if the black box is always
in a location with an enabled outgoing transition labelled by a. However, the
mentioned controller synthesis approaches lead to the result that the property
is realisable, i.e., it is possible to replace the black box by a controller such
that the unsafe location cannot be reached. This is due to the fact that these
approaches assume that the controller is able to make transitions urgent (either
explicitly or implicitly by invariants in the controller). This clearly gives the
controller more power than allowed in our model where the black box and the
white box are components with equal rights, that have to respect urgency or
non-urgency of synchronisation actions in the interface. If parts of an existing
timed system that do not include invariants and communicate with their envi-
ronment by non-urgent synchronisation actions are abstracted away into a black
box, then our approach may prove unrealisability (which means that the safety
property is not valid for the original design) in cases when controller synthesis
classifies the problem as realisable, since it gives the black box too much power.
An example for such a case is given by the benchmark ‘arbiter error’ considered
in Sect. 10, where ‘classical’ controller synthesis cannot identify the error, which
is found with our TCTL model checking algorithm. Additionally, whereas ex-
isting controller synthesis tools like Uppaal-Tiga [38] consider only reachability
of safety properties, our algorithm goes beyond and is able to handle full TCTL
properties.

11



4 Finite State Machine with Time

δ1...
δl

resetx1

resetxn

I

Y

X

...

..

.

..

.

Figure 4: FSMT

Finite state machines with time (FSMT) [1] are a new for-
mal model to represent real-time systems, and are espe-
cially suited for being represented symbolically. An FSMT
is an extension of finite state machines by real-valued clock
variables. Later on, we will present a fully symbolic model
checking algorithm for complete and incomplete FSMTs
and then a translation from TAs into FSMTs.

Let X := {x1, . . . , xn} be the set of real-valued clock
variables, Y := {y1, . . . , yl} a set of (binary) state vari-
ables, I := {i1, . . . , ih} a set of (binary) input variables.
Let Cb(X) be the set of arbitrary boolean combinations
of clock constraints and Cb(X,Y ) be the set of arbitrary
boolean combinations of clock constraints and state vari-
ables (similarly for Cb(X,Y, I)). As usual, c ∈ Cb(X,Y )
describes a subset of Rn × {0, 1}l, namely the set of all valuations of variables
in X and Y which evaluate c to true. An FSMT is defined as follows (see Fig. 4
for an illustration):

Definition 4 (FSMT). A finite state machine with time (FSMT) is a tuple
〈X,Y, I, init , (δ1, . . . , δl), (resetx1 , . . . , resetxn), urgent〉 where X := {x1, . . . , xn}
is a set of clock variables, Y := {y1, . . . , yl} is a set of state variables, I :=
{i1, . . . , ih} is a set of input variables, init : (R+

0 )n × {0, 1}l → {0, 1} is a pred-
icate describing the set of initial states, δi : (R+

0 )n × {0, 1}l × {0, 1}h → {0, 1}
(1 ≤ i ≤ l) are transition functions, resetxj

: (R+
0 )n × {0, 1}l × {0, 1}h → {0, 1}

(1 ≤ j ≤ n) are reset functions, and urgent : (R≥0)n×{0, 1}l×{0, 1}h → {0, 1}
is a predicate indicating when an urgent transition is enabled. The functions δi,
the conditions resetxj

, and the predicate urgent can be represented by boolean
combinations from Cb(X,Y, I), init can be represented by a boolean combination
from Cb(X,Y ).

A state s = (γ, η) ∈ {0, 1}l × (R+
0 )n of an FSMT includes a valuation γ of

the state variables, which is also called location, and a valuation η of the clock
variables. Trajectories of an FSMT always start in states fulfilling init. An
FSMT may perform discrete steps which are defined by transition functions δi
based on the valuations of clocks, state variables, and inputs. When performing
a discrete step, a clock xi is reset to 0 iff resetxi

evaluates to 1. Moreover,
an FSMT may perform continuous steps (or time steps) where it stays in the
same location and lets time pass. This means that all clocks may be increased
by the same constant as long as urgent evaluates to false. More formally, the
semantics of FMSTs is defined as follows:

Definition 5 (Semantics of an FSMT). Let F = 〈X,Y, I, init , (δ1, . . . , δl),
(resetx1

, . . . , resetxn
), urgent〉 be an FSMT.

• There is a continuous transition from state s = (γ, η) to state s′ = (γ′, η′)
(s −→c s

′) iff there is λ ∈ R+
0 with η′ = η + λ, and ∀ 0 ≤ λ′ < λ it holds

12



that for all valuations ι of the input variables, in each state d′′ = (γ, η+λ′),
the predicate urgent evaluates to false.

• There is a discrete transition from state s = (γ, η) to state s′ = (γ′, η′)
(s −→d s

′) iff there is a valuation ι of the input variables with

∀1 ≤ i ≤ l : γ′(yi) = δi(γ, η, ι)

∀1 ≤ j ≤ n : η′(xj) =

{
η(xj), if resetxj (γ, η, ι) = 0
0, if resetxj (γ, η, ι) = 1.

• →=−→d ∪ −→c is the transition relation of F . A trajectory of F is a finite
or infinite sequence of states (sj)j≥0 with init(s0) = 1 and sj−1 → sj for
each j > 0. A state is reachable, if there is a trajectory ending in that
state.

We consider systems of FSMTs {F1, . . . , Fp}, where the components are
running in parallel. Communication in such a system is realized just as for
communicating FSMs. FSMTs communicate by reading each other’s state vari-
ables, clocks, and shared input variables. Thus, composition of FSMTs is done
just by replacing input variables of the components by state variables of other
components or by inputs of the overall system. The composition of p FSMTs
F1, . . . , Fp is again an FSMT:

Definition 6 (System of FSMTs). Let F1, . . . , Fp be FSMTs with Fi = 〈X,Y (i),

I(i), init (i), δ(i), (reset
(i)
x1 , . . . , reset

(i)
xn), urgent (i)〉, Y (i) = {y(i)

1 , . . . , y
(i)
li
}, I(i) =

{i(i)1 , . . . , i
(i)
hi
}. Let all sets Y (1), . . . , Y (p) be pairwise disjoint and disjoint from

I(1), . . . , I(p), let

map :

p⋃
i=1

I(i) → (I ∪
p⋃
i=1

Y (i))

be a mapping for the inputs of components F1, . . . , Fp, and let I = {i1, . . . , ih}
be the set of (global) inputs. Then the composition of F1, . . . , Fp wrt. map is an

FSMT F with F = 〈X,⋃pi=1 Y
(i), I,

∧p
i=1 init (i), (δ̃(1), . . . , δ̃(p)), (

∨p
i=1 reset

(i)
x1 ,

. . . ,
∨p
i=1 reset

(i)
xn),

∨p
i=1 ũrgent

(i)
〉 and δ̃(i)(x1, . . . , xn, y

(i)
1 , . . . , y

(i)
li
, i1, . . . , ih) =

δ(i)(x1, . . . , xn, y
(i)
1 , . . . , y

(i)
li
,map(i

(i)
1 ), . . . ,map(i

(i)
hi

)), ũrgent
(i)

(x1, . . . , xn, y
(i)
1 ,

. . . , y
(i)
li
, i1, . . . , ih) = urgent (i)(x1, . . . , xn, y

(i)
1 , . . . , y

(i)
li
,map(i

(i)
1 ), . . . ,map(i

(i)
hi

)).

5 Pure Interleaving vs. Parallelized Interleav-
ing

In contrast to normal interleaving semantics (i.e. asynchronous semantics) of
timed automata, FSMTs have a synchronous semantics, such that in each dis-
crete step each component takes a transition. This allows us to give a symbolic

13



representation of an FSMT simulating a ‘parallelized interleaving’ behaviour [1],
which allows parallelism of conflict-free transitions. This parallelized interleav-
ing behaviour can dramatically reduce the number of steps during verification.

l0

l2

l1

l3

x2 ≤ 1

x1 ≤ 1

reset(x2)

reset(x1)

x1 > 5
reset(x2)

x2 > 5
reset(x1)

TA1

TA2

(a) Read/write problem on clocks

l0

l2

l1

l3

i = 0

j := 1

j = 0

i := 1

TA3

TA4

(b) Read/write problem on inte-
gers

Figure 5: Conflicts caused by parallel behavior

Discrete transitions are independent (conflict-free) if the execution of one
transition does not influence the execution of the others. In the following, we
describe potential conflicts which affect the independence of transitions in timed
systems:

1. Using parallelized interleaving semantics, read/write-conflicts on clock
variables can occur, when a clock is reset on one transition and read by an
other transition. Consider the timed system shown in Figure 5(a), which
consists of the timed automata TA0 and TA1. Allowing parallel execution
of transitions, the state 〈l1, l3, η(x1) = 0, η(x2) = 0〉 is reached from state
〈l0, l2, η(x1) = 6, η(x2) = 6〉 by taking the transitions from l0 to l1 and
from l2 to l3. However, according to interleaving semantics, this state is
unreachable. Taking the transition from l0 to l1 in TA0, the clock variable
x2 is reset and will never take a value greater than 1. Thus, TA1 will
never be able to take the transition from l2 to l3 and stays in its initial
location forever. Taking the transition from l2 to l3 in TA1 leads to an
analogues behaviour. Thus, for transitions with read/write-conflicts on
clocks, parallelized interleaving behaviour is not allowed.

2. A similar read/write-conflict may occur for integer variables. Figure 5(b)
shows an example for this kind of conflict. In TA3, the integer variable
i is read and the integer variable j is updated when taking the discrete
transition. The same holds for TA4 with i and j switched. State s = 〈l1, l3〉
is not reachable when using interleaving semantics, however, taking both
transitions in parallel, state s can be reached.

3. It is clear that transitions causing a write/write-conflict on integers must
not be taken in parallel.

Write/write-conflicts on clock variables do not exist as clock variables can
only be reset to 0, and thus, no concurrent writing of different values to the same
clock variable is possible. Transitions without any conflicts described above are
independent and parallelized interleaving behaviour is allowed.

14



6 From complete Timed Automata into com-
plete FSMTs

In order to be able to verify systems of timed automata using our framework, we
present how to convert a timed system into FSMTs with either pure interleaving
semantics or with parallelized interleaving semantics. At first, in Sect. 6.2, we
show how to transform a timed system into an FSMT keeping its pure interleav-
ing behaviour. Then, in Sect. 6.3, we present how to convert a timed system into
an FSMT with a parallelized interleaving behaviour, which allows parallelism for
conflict-free transitions. The motivation for the parallelized interleaving variant
consists in an accelerated state space traversal.

6.1 First Steps of Translation

We consider a system of p timed automata {TA1, . . . ,TAp}. The locations of

timed automaton TAq = 〈L(q), l
(q)
0 , X(q),Act , Int , lb, ub, E(q)〉 (1 ≤ q ≤ p) are

encoded with boolean state variables y
(q)
1 , . . . , y

(q)
lq

(the location bits) for which

we use a logarithmic encoding with lq =
⌈
log(|L(q)|)

⌉
. The sets of location bits

of two different timed automata are disjoint. The integer variable int i with
(1 ≤ i ≤ r) occurring in the timed system is replaced by a binary encoding of

boolean state variables b
(i)
1 , . . . , b

(i)
fi

(the integer bits). As lb(int i) and ub(int i)
are known for all 1 ≤ i ≤ r, the number of integer bits fi needed to represent
int i is also known.1 The location bits and the integer bits together form the set
of state variables {y1, . . . , yl}.

A timed automaton TAq has a total of mq := |E(q)| transitions. Assume that

transition i in TAq is a transition with the discrete location (ε
(i,s)
1 , . . . , ε

(i,s)
lq

) as

source and the discrete location (ε
(i,d)
1 , . . . , ε

(i,d)
lq

) as destination. Let the transi-

tion i be labelled with a guard g
(q)
i and a reset set r

(q)
i ∈ 2{x1,...,xn}. In order to

make things easier in Sect. 6.2 and Sect. 6.3, the guard g
(q)
i is extended by the

constraint that the source of its corresponding edge is location (ε
(i,s)
1 , . . . , ε

(i,s)
lq

),

i.e., it is changed to the new guard g
′(q)
i := g

(q)
i ∧

(
(y

(q)
1 )ε

(i,s)
1 ∧ . . . ∧ (y

(q)
lq

)
ε
(i,s)
lq

)
.2

Moreover, a transition i in TAq may be labelled with a synchronisation
action aq,i. How to treat these actions is shown in Sect. 6.2 for interleaving
behaviour and in Sect. 6.3 for parallelized interleaving behaviour.

6.2 Modifications for Pure Interleaving Behaviour

In order to produce FSMTs with pure interleaving behaviour, it has to be as-
sured that at any time only one timed automaton may take a non-synchronising
transition while the others remain in their current location. For non-synchronising

1For simplicity we omit technical details due to unused codes in the integer representation.
2As usual, for a boolean variable y, y1 = y and y0 = ¬y.

15



transitions of two different timed automata it has to be ensured that they are not
enabled at the same time. For this we use new input variables {el−1, . . . , e0},
l = dlog(p)e in a system of p timed automata and we add different assign-
ments for these new input variables to the guards of such transitions: For each
non-synchronising transition i in a timed automaton TAq we add these input

variables to the guard g
′(q)
i and obtain a new guard g

′′(q)
i = g

′(q)
i ∧(e

ql−1

l−1 ∧. . .∧e
q0
0 )

with bin(q) = (ql−1, . . . , q0). (bin(q) is the binary representation of q.)
FSMTs consist of deterministic transition functions, and thus, we have to

exclude non-deterministic behaviour (as allowed for timed automata). When
more than one transition is enabled in a timed automaton at the same time it is
chosen non-deterministically which one is taken. To establish determinism for
FSMTs we add different assignments of new input variables to the non-disjoint
guards of transitions with the same source. The question how many additional
input variables are needed in order to make guards non-disjoint is reduced to
a colouring problem. For a set of t transitions with the same source we build
a graph with one node for each transition and we add an edge between two
transitions e1 and e2 iff e1 and e2 are non-disjoint. On the resulting graph we
apply a colouring algorithm [41]. If col is the number of colours needed for
colouring, then we need dlog(col)e input variables to make the guards disjoint.
These input variables can be shared within a timed automaton but must not
be shared among different timed automata. A timed automaton TAq requires

t(q) = dlog(col (q)
max )e input variables to guarantee determinism, where col (q)

max is
the maximum number of colours occurring for transitions with the same source.
Adding assignments to new input variables as sketched above leads to new

guards g
′′′(q)
i for transitions i in TAs TAq.

In order to allow synchronisation without actions in the FSMT, we have to
guarantee that transitions, labelled with the same synchronisation action, are
enabled at the same time while all other transitions are disabled. Let us as-
sume that transition i in TAq and transition j in TAk are labelled with the
same action a{(q,i),(k,j)}. To assure synchronisation without the use of ac-
tions we extend the guards of the synchronising transitions. The new guard

of transition i in TAq and of transition j in TAk is g
′′′′(q)
i = g

′′′′(k)
j := g

′′′(q)
i ∧

g
′′′(k)
j ∧

((
e
ql−1

l−1 ∧ . . . ∧ e
q0
0

)
∨
(
e
kl−1

l−1 ∧ . . . ∧ ek00

))
, with bin(k) = (kl−1, . . . , k0)

and bin(q) = (ql−1, . . . , q0). This allows us to realise synchronisation without
using actions simply by the fact that one component may read the state bits
and inputs of the other component.

Since for an FSMT we have to define transition functions, we have to avoid
the case that there is a state where no transition into a successor state is en-
abled. For this reason we introduce a self loop to every location in each timed
automaton TAq. The self loop of a location li gets as guard the conjunction of
the negated guards of all outgoing transitions, thus the self loop of a location is
enabled whenever no other outgoing transition is enabled.

After these transformations we can build the transition functions, reset con-
ditions and urgency predicate to get an FSMT representation of the timed

16



system with pure interleaving behaviour. This is shown in Sect. 6.4.

6.3 Modifications for Parallelized Interleaving Behaviour

In the previous section we have seen which modifications have to be done to
convert a timed system into an FSMT with pure interleaving behaviour. In
this section we will show the modifications to get an FSMT with parallelized
interleaving behaviour.

In a parallelized interleaving run there may be conflicts caused by resets of
clock variables (see Section 5). To avoid the problem of reaching more states
than allowed by the semantics of interleaving, we force the timed system to
simulate a pure interleaving behaviour in such cases by adding read/write-enable
numbers for clock variables. Assume q timed automata TAi1 , . . . ,TAiq having
transitions which both read and reset a clock variable xi at the same time. Then
we need dlog(q + 2)e additional input variables to encode read/write-enable
numbers rwxi . With the following approach these read/write-enable numbers
inhibit that transitions reading xi and transitions resetting xi are enabled at
the same time: Each guard of a transition in TAik (1 ≤ k ≤ q) with transitions
reading and resetting xi is extended by ‘rwxi = bin(k + 1)’. The guard of each
transition in some TA from TA1, . . . ,TAp that only reads xi (only resets xi)
is extended by ‘rwxi = bin(0)’ (‘rwxi = bin(1)’). Note that enabling parallel
transitions only reading xi or enabling parallel transitions only writing xi does
not cause a problem. (All writes set the clock value to the same value 0.)

Another conflict of the same type may occur with integers (see Section 5).
Just as for the read/write conflict for clock variables we force the timed system
to take an interleaving behaviour for transitions causing conflicts on integer
variables. For each integer int i we introduce a read/write-enable number rw inti .
The guard of each transition reading and not writing the value of integer int i
is extended by ‘rw inti = bin(0)’. Assume q timed automata TAi1 , . . . ,TAiq

updating int i. Each guard of a transition in TAik (1 ≤ k ≤ q) which updates
int i is extended by ‘rw inti = bin(k)’. This makes it impossible that two timed
automata write int i at the same time, since the corresponding guards cannot
be enabled at the same time. Equally it is impossible that in the same step one
timed automaton reads an integer and another one writes on it.

Parallelized interleaving is introduced to accelerate model checking runs by
reaching certain states faster. But of course, we should not lose intermediate
states of interleaved executions. For that reason we give each component the
non-deterministic choice to stay in its current location during a discrete step. For
this we introduce a self loop with guard ‘true’ to every location in the automaton.
By taking this transition the automaton does not leave the current location
and does no assignments to clocks or integer variables. Then, to introduce
determinism we do the same modifications using input variables as we have
done for pure interleaving behaviour in Sect. 6.2.

The synchronisation is handled in a similar way as we have seen in Sect. 6.2
for pure interleaving behaviour. Let us assume that transition i in TAq and tran-
sition j in TAk are labelled with the same synchronisation action a{(q,i),(k,j)}.

17



Then the guards of both transitions are changed to g
′′′(q)
i = g

′′′(k)
j := g

′′(q)
i ∧g′′(k)

j ,
where g′′ is a guard already extended with the location encoding of the corre-
sponding source, the assignments of the inputs used to solve conflicts on clocks
and integers, and the assignments of the inputs used to guarantee determinism.
The action a{(q,i),(k,j)} is no longer needed to synchronise the transitions. Both
components in the system synchronise by reading each others state bits and
inputs.

The modifications to ensure completeness of the transition functions of re-
sulting FSMTs are equivalent to Sect. 6.2.

The resulting system is deterministic and has a parallelized interleaving be-
haviour. In the following section we show how to compute transition functions,
reset conditions and a global invariant.

6.4 Computation of a Symbolic Representation

The set of clock variables X = {x1, . . . , xn} of the FSMT is identical to the
set of clock variables in underlying timed system. The set of state variables
Y = {y1, . . . , yl} includes the variables used for location encoding and for inte-
ger encoding. In the pure interleaving case, the input variables I = {i1, . . . , ih}
contain the variables used to ensure interleaving behaviour and the variables
resolving non-determinism. In the parallelized interleaving case, the input vari-
ables consist of the variables solving conflicts on integer and clock variables and
the variables guaranteeing determinism.

Let g
(q)
i be the new extended guards for transitions i of TAq (from (ε

(i,s)
1 , . . . ,

ε
(i,s)
lq

) to (ε
(i,d)
1 , . . . , ε

(i,d)
lq

)), which contain the location encoding, the assignments
of the inputs used for interleaving behaviour, determinism and synchronisation,
in the pure interleaving case as computed in Sect. 6.2, or which contain the
location encoding, the assignments of the inputs used for solving integer conflicts
and clock conflicts, determinism and the synchronisation, in the parallelized

interleaving case, as computed in Sect. 6.3. Based on the these guards g
(q)
i it

is easy to compute the transition functions for state bits encoding locations of
TAq. We have to consider m′q transitions for TAq (including new self loops added
in Sect. 6.2 or 6.3). W.l.o.g. let y1, . . . , yk, with k ≤ l, be the state variables
used for location encoding (location bits) and in a system which includes integer
variables yk+1, . . . , yl be the state variables used for integer encoding (integer

bits). The transition function δ
(q)
j (1 ≤ j ≤ k) computes when the location bit j

in the modified automaton TAq is set to true. (Assume that the set of all input
variables we have added according to Sect. 6.2 or 6.3 is {i1, . . . , ih}.)

δ
(q)
j (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨

1≤i≤m′q

ε
(i,d)
j =1

g
(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (1)

18



Transition function δr (k+1 ≤ r ≤ l) defines the value an integer bit r (inte-
ger bit) is updated to, and is defined for the complete system, as an integer vari-
able may be updated in each component. When taking a transition, an integer
intj is assigned to an arbitrary arithmetic expression over integer variables and
integer constants, or it remains unchanged. W.l.o.g. let e1, . . . , esq (sq ≤ m′q)
be the transitions in TAq which update integer intj , and esq+1, . . . , em′q be the
transitions in TAq with no updates on intj .

W.l.o.g. let yr be the ith encoding variable of integer intj , and icrt be the
predicate, state variable yr is updated to, on transition et. If intj is updated
to an integer constant, icrt is a boolean value. If an arithmetic expression is
assigned to intj , icrt is the ith bit of the right-hand side of the assignment.

δr(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =
p∨
q=1

∨
1≤t≤sq

(gqt (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) ∧ icrt ) ∨

p∧
q=1

∨
(sq+1)≤t≤m′q

(gqt (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) ∧ yr) (2)

Besides the transition functions we need the reset functions for clocks. The
following function indicates when the clock variable xi is reset in TAq:

reset (q)
xi

(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨
1≤i≤m′q

xi∈r(q)i

g
(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (3)

As given by Def. 6, the overall reset function for a clock xi is computed by

resetxi
= ∨pq=1reset

(q)
xi .

The predicate init describing the initial states is a conjunction of the encod-
ings of the initial states in the system, constraints setting the clock valuation to
0, and the encoding of the integer valuations setting all integers to their lower
bounds. As a last component of the FSMT computed from a system of timed au-
tomata TA1, . . . ,TAP , we compute the urgent-predicate which is a conjunction
of the extended guards of urgent transitions.

All components together provide a fully symbolic representation of the cor-
responding FSMT. Our model checking algorithm uses this representation to
perform fully symbolic model checking.

19



7 Model Checking for Complete Real-Time Sys-
tems

TCTL model checking for complete timed systems is based on the computation
of a set Sat(Φ)3 of all states satisfying a TCTL formula Φ, followed by checking
whether all initial states are included in this set (see also Sect. 2.2). The most
important ingredient of TCTL model checking is the predecessor operation Pre.

Definition 7 (Pre(Φ)). Let Φ be a state set in an FSMT F . A state s′ is
included in Pre(Φ), iff there exists a transition s′ → s in F with s ∈ Φ.

The computation of the predecessor state set Pre(Φ) consists of a continuous
step (Prec(Φ)) and a discrete step (Pred(Φ)) [1].

7.1 Prec(Φ) – Continuous Step for Pre(Φ)

Let Φ be a state set of our model checking algorithm. Then the state set
reachable by a (backward) continuous step (letting time pass) can be described
by

Prec(Φ)(~x, ~y) =

n∧
j=1

(xj ≥ 0) ∧ ∃λ
[
(λ > 0) ∧ φ(~x+ ~λ, ~y)∧

∀λ′
(

(0 ≤ λ′ < λ) =⇒ ∀~i ¬ urgent(~x+ ~λ′, ~y,~i)
) ]

(4)

To enhance the readability of the formulas, we abbreviate x1, . . . , xn by ~x,
y1, . . . , yl by ~y and i1, . . . , ih by ~i. Let ~x + ~λ be the abbreviation for (x1 +
λ, . . . , xn + λ) for a scalar λ.

Lemma 2 (State Set Prec(Φ)). Prec(Φ)(~x, ~y) contains all states from which
Φ(~x, ~y) is reachable by a continuous transition in the FSMT.

Proof 1 (sketch). Lemma 2 follows directly from the semantics of the contin-
uous step of FSMTs (Definition 5). The first line of Equation 4 describes the

basic time step of length λ > 0 from a state (~x, ~y) into a state (~x + ~λ, ~y). The
intersection with

∧n
j=1(xj ≥ 0) guarantees that all clock variables have positive

values. The second line of Equation 4 asserts that time evolution from state
(~x, ~y) to state (~x + ~λ, ~y) is not interrupted by any urgent discrete transition,

which is enabled for some state (~x + ~λ′, ~y) with (0 ≤ λ′ < λ). The predicate
urgent determines when an urgent transition is enabled.

3If clear from the context, we do not always differentiate between sets like Sat(Φ) and
predicates describing these sets.

20



7.2 Pred(Φ) – Discrete Step for Pre(Φ)

State set Pred(Φ) contains all predecessors of Φ from which Φ can be reached
by a discrete transition in the FSMT. The first part of the discrete step is
a substitution of the state variables and the clock constraints in the current
state set representation Φ. (Note that as an invariant of our model checking
algorithm all computed state set representations are in Cb(X,Y ), i.e., they are
boolean combinations of boolean variables and clock constraints.) Each state
variable yi is substituted with its transition function δi:

yi ← δi

(
~x, ~y,~i

)
(5)

Consider a clock constraint of the form (xi − xj ∼ d) with xi, xj ∈ X, ∼
∈ {<,≤,=,≥, >} and d ∈ Q. There are only four possible cases how a clock
constraint can be changed due to resets executed during a transition: (1) xi
and xj are reset, (2) only xi is reset, (3) only xj is reset or (4) none of the
clock variables in the constraint is reset. We use the reset conditions resetxi

to determine when a clock variable xi is reset. The substitution for each clock
constraint of the form (xi − xj ∼ d) in the state set is then

(xi − xj ∼ d)← ( ( resetxi(~x, ~y,~i) ∧ resetxj (~x, ~y,~i) ∧ (0 ∼ d) )∨
( resetxi(~x, ~y,~i) ∧ resetxj (~x, ~y,~i) ∧ (xi ∼ d) )∨
( resetxi(~x, ~y,~i) ∧ resetxj (~x, ~y,~i) ∧ (−xj ∼ d) )∨
( resetxi(~x, ~y,~i) ∧ resetxj (~x, ~y,~i) ∧ (xi − xj ∼ d) ) ) (6)

(Of course, (0 ∼ d) reduces to constant 0 or 1.)
Φ′(~x, ~y,~i) is obtained from Φ(~x, ~y,~i) by substituting all state variables as

shown in Eqn. (5) and all clock constraints as shown in Eqn. (6) simultaneously.
The second part of the discrete step is a quantification of the boolean input

variables ~i in Φ′.
Pred(Φ)(~x, ~y) = ∃~i Φ′(~x, ~y,~i) (7)

Lemma 3 (State Set Pred(Φ)). Pred(Φ)(~x, ~y) includes all states from which
Φ(~x, ~y) is reachable by a discrete transition in the FSMT.

Proof 2 (Sketch). Lemma 3 follows directly from the semantics of the discrete
step of FSMTs (Definition 5). The substitution of the state variables with the
corresponding transition functions (Equation 5), and the quantification of the
input variables (Equation 7) represents the changing of the locations through
discrete transitions. The resets on discrete transitions are represented by the
substitution of the clock constraints according to Equation 6.

8 Incomplete Real-Time Systems

When the overall design is not finished yet, or a system is too large for being ver-
ified in its entirety, we consider incomplete real-time systems which contain un-

21



known components, called black box. The system includes several components
which are known in detail (white box) and an interface to the black boxes.

Remark 2. Note that we do not allow communication via shared clock variables
in the following, i.e., we assume local clock variables of the white box and the
black box components. In particular, clock variables which are reset in the black
box, are not allowed to be read in the guards of the white box components. This
is justified by the realistic assumption that only discrete information may be
transferred from one component to another. In the following we begin with the
definition of incomplete timed systems and then define incomplete FSMTs.

Remark 3. Furthermore, we restrict our consideration to BBs that cannot en-
able infinitely many non-synchronizing urgent transitions during a finite amount
of time. We call those BBs ‘non-Zeno’ BBs. Other BBs are not interesting for
us, because they can stop time evolution without any interaction with the WB
components and thus do not model a realistic system behaviour.

8.1 Incomplete Timed System

An incomplete timed system [2] which contains several unknown components
uses different types of communication channels between the black box and the
white box:

• Let IntBB be a set of shared bounded integer variables which can be read
and updated by the complete system, including black box and white box.
Integers from IntBB are used to pass numerical values, within the integer
bounds, from one component to another. When updated by the black box
the value of these integers is unknown.

• Non-urgent actions from ActBB
nu synchronise the black box with the white

box. Since the details of the black box implementation are unknown, the
particular time of synchronisation is unclear. This gives the black box
the power of enabling and disabling synchronising transitions in the white
box.

• Urgent actions from ActBB
u synchronise the black box with the white box

via urgent transitions. By synchronising over an urgent action the black
box stops time evolution, and thus, the black box can influence both, the
discrete and the timing behaviour of the system.

Remember that parallel composition of different components is done accord-
ing to Def. 3.

Example 2. Fig. 6 shows the timed system from Example 1 where the timed
automaton p1 is put into a black box, which communicates with the white box
via the shared integer i and the non-urgent and urgent synchronisation actions
a and au. By sending or not sending the action a the black box can enable or
disable the transition from l2 to l0. When the white box is located in location l1,

22



the black box can enable the transition from l1 to l2 by sending the urgent action
au, however, by doing so, time evolution is blocked and the transition has to be
taken without any delay.

8.2 Incomplete FSMT

r0
i = 2

a

i := 2

a

x1 ≤ 5

x0 ≥ 6
au

x0 := 0

r1 r2

l0 l1 l2

au

x1 := 0

a aui

p0

p1

Black Box

Figure 6: Incomplete Timed System

An incomplete FSMT [2] is a fully
symbolic representation of incomplete
real-time systems. Just as incomplete
timed systems, an incomplete FSMT
consists of several known components
(white box), several unknown compo-
nents (black box), and an interface of
the black box with the white box.

FSMTs do not contain any inte-
gers or synchronisation actions and
communicate by reading each others
state variables, and thus, the interface
of the black box with the white box consists of state bits which can be written
by the black box. In Sect. 9.1 we will see how to translate an incomplete timed
system into an incomplete FSMT, which can be verified by our model checking
algorithms.

9 Model Checking for Incomplete Real-Time Sys-
tems

TCTL model checking for complete timed system consists in the computation of
Sat(Φ) and a check whether all initial states are included in this set. The situa-
tion becomes more complex, if we consider incomplete timed systems, since for
each implementation of the black box we may have different state sets satisfying
Φ.

For that reason we do not compute the set Sat(Φ), but two sets Sat∃(Φ) and
Sat∀(Φ): Sat∃(Φ) contains all states, for which there is at least one black box
implementation such that Φ is satisfied. In a similar manner, Sat∀(Φ) contains
all states, for which Φ is satisfied for all possible black box implementations. It
is easy to see that the following holds:

• A property Φ is valid for an incomplete timed system (i.e. for all black box
implementations the property is satisfied), if all initial states are included
in Sat∀(Φ).

• A property Φ is not realisable for an incomplete timed system (i.e. there
is no black box implementation which satisfies Φ), if there is an initial
state which does not belong to Sat∃(Φ).

23



In order to obtain sound results for validity resp. non-realisability, it is
enough to compute approximations for Sat∃(Φ) and Sat∀(Φ). If we replace
Sat∀(Φ) by an under-approximation Satappr∀ (Φ) ⊆ Sat∀(Φ) and Sat∃(Φ) by an
over-approximation Satappr∃ (Φ) ⊇ Sat∃(Φ), then the statements made above
certainly remain correct. (An initial state which is in Satappr∀ (Φ) is certainly in
Sat∀(Φ) as well; an initial state which is not in Satappr∃ (Φ) is not in Sat∃(Φ)
either.)

In the following we show how to compute such sets. In order to simplify
notations we write Sat∃(Φ) and Sat∀(Φ), even if the computed sets are approx-
imations. In the next section we start with transformations needed to compute
fully symbolic representations of sets Sat∃(Φ) and Sat∀(Φ).

9.1 Modelling Incomplete Systems

More precisely, we begin with a sketch of how to extend the translation of
timed automata into FSMTs (see Sect. 6) for incomplete systems. For our
model checking algorithm the communication between the black box and the
white box is of particular importance. We distinguish between four different
types of transitions in the white box:

(1) any transitions without synchronisation with the black box, called no-
sync-transitions in the following

(2) urgent transitions without synchronisation with the black box, called u-
transitions

(3) transitions with a non-urgent synchronisation with the black box, called
nu-sync-transitions

(4) transitions with an urgent synchronisation with the BB, called u-sync-
transitions

In our algorithm we do not work with one transition (reset) function for the
incomplete system at hand, but with different transition (reset) functions for
different types of transitions.

First, we consider only the transitions in timed automata that do not syn-
chronise with the black box at all (i.e. only no-sync-transitions) and use our
converter from Sect. 6, resulting in transition functions δno−synci (~x, ~y,~iWB ). Let
~iWB be the input variables of the white box generated by the converter. δno−synci

are used in the computation of Sat∀(Φ).
Secondly, we have to consider only u-sync-transitions. For computing Sat∀(Φ)

and Sat∃(Φ), we need a modified version of the u-sync-transitions where cer-
tain integer values may be replaced by arbitrary values. In the following we
give a brief sketch of how this replacement works: Remember that we consider
well-formed timed automata (see Remark 1), i.e., for each integer int i and each
synchronising action act either the white box or the black box is allowed to
have u-sync-transitions which are labelled by act and contain assignments to

24



int i. If only the black box is allowed to write to int i on u-sync-transitions la-
belled by act , then we have to account for the fact that the black box may write
an arbitrary value to int i when taking such a u-sync-transition. This is realised
by introducing a set of additional inputs (iint1 , . . . , iintfi ) for int i (fi is the number

of bits in the encoding of int i) and by adding ‘int i := (iint1 , . . . , iintfi )’ to u-sync-
transitions labelled by act . We use our converter from Sect. 6 to compute tran-

sition functions δu−syncr (~x, ~y,~iWB ,~iBB , ~iint) for each bit of the integer encoding
for int i. Again,~iWB are the input variables generated by the converter. Let~iBB

be input variables used to encode the urgent synchronisation actions. By using
different encodings of these variables (~iBB ) for different urgent actions, it is pos-
sible to differentiate between the urgent actions. (In doing so, the contribution of
such a modified u-sync-transition to the the symbolic representation of δu−syncr

according to Eqn. (2) is of the form ‘(gqt (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)∧ iintr )’.
The input variables i1, . . . , ih contain both, the ~iWB -variables and the ~iBB -
variables.)

To compute Sat∃(Φ), a third transition function is needed. Here, actions
used for communication with the black box on nu-sync-transitions and u-sync-
transitions can be omitted, because there can always be a black box implementa-
tion sending the requested action, such that synchronising transitions are always
enabled. Nevertheless, before removing actions, the u-sync-transitions are modi-
fied as described above using new inputs~iint . The functions δalli (~x, ~y,~iWB ,~iint)4

for the state bits yi are then computed by the converter considering all transi-
tions in the white box.

Besides the transition functions, the converter provides three different re-
set conditions for each clock variable xi ∈ X. Two reset conditions are used
for the computation of Sat∀(Φ), one describing the resets on the no-sync-
transitions (resetno−syncxi

(~x, ~y,~iWB )) and a second describing the resets on u-

sync-transitions (resetu−syncxi
(~x, ~y,~iWB ,~iBB , ~iint)). In order to compute Sat∃(Φ),

a third reset condition (resetallxi
(~x, ~y,~iWB ,~iint)), for all transitions in the white

box (with omitted synchronisation actions with the black box), is needed.
Finally, our model checking algorithm (Sect. 9.2) requires two additional

urgency predicates provided by the converter: urgentno−sync(~x, ~y,~iWB ) is a
predicate evaluating to 1, if for input ~iWB the transition from state (~x, ~y) is

a u-transition and urgentu−sync(~x, ~y,~iWB ,~iBB , ~iint) is a predicate evaluating

to 1, if for the inputs ~iWB ,~iBB and ~iint the transition from state (~x, ~y) is a u-
sync-transition. Additionally, for technical reasons, the computation of Sat∀(Φ)
needs a predicate nte(~x, ~y,~iWB ,~iBB ) evaluating to true whenever no transition
is enabled. This predicate can be extracted form the guards of the self-loops
introduced by the converter.

4Note that the δalli do not depend on ~iBB -variables, since all actions (including urgent
actions) have been removed before applying the converter.

25



9.2 Model checking algorithm

Now, we show how to do fully symbolic TCTL model checking for incomplete
real-time systems modelled as incomplete FSMTs by computing fully symbolic
representations of the sets Sat∃(Φ) and Sat∀(Φ) as defined above. The most
important ingredient of TCTL model checking is the predecessor operation Pre,
and thus, the essential contribution is how to define two variants of Pre for
computing Sat∃ and Sat∀.

Definition 8 (Pre∃(S), Pre∀(S)). If for at least one black box implementation
there is a transition s′ → s with s ∈ S, then s′ is included into Pre∃(S). (This
transition can be regarded as a may transition following the notion from [28]).
If a state s′ is included in Pre∀(S), then for all black box implementations there
is a transition s′ → s with s ∈ S. (The transition is a must transition.)

For formulas like Φ = EFΨ whose evaluation needs a fixed point iteration we
make use of Pre∃ to compute Sat∃(Φ) (instead of Pre which is used for complete
systems). In the special case Φ = EFΨ we start with the set Sat∃(Ψ) (which at
least includes the set of states which may satisfy Ψ depending on the concrete
black box implementation) and we use Pre∃ to compute the set of states which
can reach Sat∃(Ψ) via one ‘may transition’. By iteratively applying Pre∃ we
obtain Sat∃(EFΨ) which includes all states from which there is a computation
path to a state from Sat∃(Ψ) for at least one black box implementation.

Likewise for Sat∀(Φ) we replace Pre by Pre∀. In the special case Φ = EFΨ
we start with the set Sat∀(Ψ) (which at most includes the set of states which
definitely satisfy Ψ independently from the black box implementation) and we
use Pre∀ to compute the set of states which can reach Sat∀(Ψ) via one ‘must
transition’, i.e. independently from the black box implementation. Again, we
obtain Sat∀(EFΨ) by iteratively applying Pre∀.

The remaining operations are more or less straightforward. It is easy to
see that Sat∀(¬Φ) = ¬Sat∃(Φ), Sat∃(¬Φ) = ¬Sat∀(Φ), i.e., negation plays
a special role here, since it turns ‘existential quantification of BBs into uni-
versal quantification’ and over-approximation into under-approximation (and
vice-versa). Moreover, it holds Sat∀(Φ1 ∧ Φ2) = Sat∀(Φ1) ∧ Sat∀(Φ2) and
Sat∃(Φ1 ∧ Φ2) ⊆ Sat∃(Φ1) ∧ Sat∃(Φ2). In the second case we only have ‘⊆’
instead of ‘=’, since a certain state may fulfill Φ1∧¬Φ2 for certain black box im-
plementations and ¬Φ1∧Φ2 for all others, thus it belongs to Sat∃(Φ1)∧Sat∃(Φ2),
but not to Sat∃(Φ1∧Φ2). For approximations we overapproximate by identifying
Satappr∃ (Φ1 ∧ Φ2) with Satappr∃ (Φ1) ∧ Satappr∃ (Φ2). A second source of approx-
imation stems from the fact that we assume that the BB can make different
decisions based on the current state of the WB, i.e., the BB ‘can read the state
bits of the WB’. (Note that the same assumption is implicitly made in classical
controller synthesis approaches for safety properties as well [38, 39, 40].)

The evaluation of general TCTL formulas needs both Pre∀ and Pre∃. In the
following we describe the computation of Pre∀(Φ) and Pre∃(Φ) separately for
discrete steps and time steps.

26



9.3 Pred∀(Φ) – Discrete step for Pre∀(Φ)

Starting with a state set Φ(~x, ~y) the discrete (backward) step needed for Pre∀(Φ)
computes only predecessors from which Φ can be reached over a discrete tran-
sition in the white box, independently from the implementation of the black
box.

Since it is possible that the black box does not synchronise with the white box
at all, we consider only no-sync-transitions which are described by the functions
δno−synci . The discrete step can then be computed just as Pred(Φ) (Sect. 7.2).
Each state variable yj in Φ is substituted with its corresponding transition
function δno-syncj , and each clock constraint is substituted by a predicate, formed
with the corresponding reset conditions resetno-syncxj

. These substitutions are

followed by an existential quantification of the input variables ~iWB .

Lemma 4. The resulting state set Pred∀(Φ)(~x, ~y) contains only states from
which Φ(~x, ~y) is reachable by a discrete transition in the white box independently
from any black box behaviour.

The proof of the lemma is straightforward, since due to the interleaving
semantics of timed automata, the no-sync-transitions can always be taken in-
dependently from the implementation of the black box. On the other hand,
discrete steps that reach Φ independently from the black box use only no-sync-
transitions. This is easy to see by considering a special black box implementation
BBno-sync which never synchronises with the white box, and thus, disables all
nu-sync-transitions and u-sync-transitions.

9.4 Prec∀(Φ) – Continuous Step for Pre∀(Φ)

l0

i = 1
au
i = 0

au

x = 5

x = 6

x = 7

au

i

BB

l1

l2

l3i = 1
au

x = 6

Figure 7: Time Step Example

Starting with a state set Φ(~x, ~y) the
time step for Pre∀(Φ) computes only
predecessors from which Φ(~x, ~y) can
be reached through time passing, in-
dependently from the black box im-
plementation. Because of urgent syn-
chronisation, the black box can affect
the timing behaviour in the white box
by enabling a u-sync-transition, and
thus, stopping time evolution. Addi-
tionally, the black box can take inter-
nal urgent transitions which do not
synchronise with the white box and
update the shared integer variables to unknown values. To illustrate the pecu-
liarities of the continuous predecessor computation with intervention of a black
box, consider the following example:

Example 3. Fig. 7 shows a small extract of an incomplete timed system where
the white box consists of three u-sync-transitions (dashed arrows), which are

27



labelled with clock constraints and integer constraints as guards, and one no-
sync-transition, which is labelled with a clock constraint as guard. The white
box communicates with the black box via an urgent synchronisation action au,
and a shared integer variable i, with i ∈ {0, 1}. We assume that, using our model
checking algorithm, a state set Φ, containing the states 〈l0, η(x) = 7, µ(i) = 0〉
and 〈l0, η(x) = 7, µ(i) = 1〉 has already been computed. We ask whether s =
〈l0, η(x) = 0, µ(i) = 0〉 can be included in Prec∀(Φ), that is, a state in Φ is
reachable from s, regardless of the black box behaviour.

If the black box would never synchronise over au, then no u-sync-transition
would be enabled, and thus, time is allowed to pass starting in s. However, time
evolution could be interrupted by internal urgent non-synchronising transitions
of the black box, which possibly update integer i, such that, after the continuous
evolution the value of i is unknown to the white box. Hence, after 7 time units,
state 〈l0, η(x) = 7, µ(i) = 0〉 ∈ Φ or 〈l0, η(x) = 7, µ(i) = 1〉 ∈ Φ would be
reached.

(Note that the black box can interrupt the time evolution only for a finite
number of times during 7 time units, since we restrict our consideration to non–
Zeno black boxes, see Remark 3. Thus, the black box can not prevent reaching
the clock value of 7 by infinitely many interrupts.)

However, all possible black box implementations have to be considered, in-
cluding a black box replacement, which synchronises via au, and thus, blocks
time evolution. Considering well-formed timed systems (Remark 1), there exist
two different cases:

Case 1: The black box is not allowed to update integer i on transitions which syn-
chronise via au, because i is updated on such transitions in the white box.

Then, the black box cannot change i when taking the u-sync-transitions in
Fig. 7. (Of course, the black box still may switch the valuation of i between
µ(i) = 0 and µ(i) = 1 on internal urgent non-synchronising transitions
which interrupt the time evolution.) Then, we can only guarantee that
there is no black box implementation which prevents Φ from being reached
starting from s, if Φ additionally includes the state 〈l1, η(x) = 5, µ(i) = 0〉
and one of the following states, 〈l2, η(x) = 6, µ(i) = 1〉 or 〈l3, η(x) =
6, µ(i) = 1〉. This can be seen as follows:

Starting in s = 〈l0, η(x) = 0, µ(i) = 0〉, the clock value η(x) = 5 is defi-
nitely reached by time evolution (since the clock x is local to the white box,
see Remark 2). Depending on the behaviour of the black box, the u-sync-
transition from l0 to l1 may be enabled, such that the black box can enforce
the run to arrive at 〈l1, η(x) = 5, µ(i) = 0〉. Thus, 〈l1, η(x) = 5, µ(i) = 0〉
has to be in Φ in order to be sure that Φ is reached independently from the
black box behaviour.

If the black box does not enable the u-sync-transition at that moment,
time evolution continues until η(x) = 6. Presumed that the black box
has previously set the value of i to 1, it has the possibility to synchronise
over au. In state 〈l0, η(x) = 6, µ(i) = 1〉, when the black box tries to

28



synchronise over au, there are two u-sync-transitions enabled (l0 to l2
and l0 to l3), among which the white box can choose, which one to take.
When the white box chooses to take the u-sync-transition from l0 to l2,
the state 〈l2, η(x) = 6, µ(i) = 1〉 is reached. On the other hand, if the
white box chooses to take the u-sync-transition from l0 to l3, the state
〈l3, η(x) = 6, µ(i) = 1〉 will be reached. So, if either 〈l2, η(x) = 6, µ(i) = 1〉
or 〈l3, η(x) = 6, µ(i) = 1〉 is in Φ, the black box cannot empede the white
box, which can choose freely which transition to take, from reaching Φ.

If the black box does not enforce (by synchronising via au) any of the tran-
sitions discussed above, time evolution continues to 〈l0, η(x) = 7, µ(i) =
0〉 ∈ Φ or 〈l0, η(x) = 7, µ(i) = 1〉 ∈ Φ. Altogether, Φ is reached from s,
independently from the behaviour of the black box.

Case 2: The black box is allowed to update integer i on transitions which synchro-
nise with the white box via au.

Thus, while synchronising with the white box, the black box may change
the valuation of i. Compared to Case 1, Φ has to additionally include
〈l1, η(x) = 5, µ(i) = 1〉 and, if Φ includes 〈l2, η(x) = 6, µ(i) = 1〉 it
has to additionally include 〈l2, η(x) = 6, µ(i) = 0〉, or otherwise if Φ
includes 〈l3, η(x) = 6, µ(i) = 1〉 it has to additionally include 〈l3, η(x) =
6, µ(i) = 0〉. With these states additionally included in Φ, it is guaranteed
that the black box is not able to prevent a path from s into Φ. When
η(x) = 5 and the black box enforces taking the u-sync-transition from l0
to l1, it can update integer i to 1, and thus, the run is forced into state
〈l1, η(x) = 5, µ(i) = 1〉. If 〈l1, η(x) = 5, µ(i) = 1〉 /∈ Φ, the black box
could prevent Φ from being reached. With an analogous argumentation, Φ
is not reached from s for a certain black box implementation when neither
{〈l2, η(x) = 6, µ(i) = 0〉, 〈l2, η(x) = 6, µ(i) = 1〉} ⊂ Φ nor {〈l3, η(x) =
6, µ(i) = 0〉, 〈l3, η(x) = 6, µ(i) = 1〉} ⊂ Φ.

Eqn. (8) defines the computation of Prec∀(Φ) for a state set Φ(~x, ~y). Again,
we use the vector representation for sets of variables. Let ~yBB ⊆ ~y be the shared
state variables which can be updated by the white box and the black box, cor-
responding to (a subset of) the integer variables. Let ~iint be the set of new
input variables (see Sect. 9.1) which indicate the (arbitrary) values which may
be assigned by the black box to integer bits on urgent transitions synchronising
with the white box (see also Case 2 of Ex. 3). Let ~iBB be the input variables
introduced to differentiate between the urgent actions and ~iWB be the input
variables of the white box. Predu-sync(Φ)(~x, ~y,~iWB ,~iBB ,~iint) is obtained from
Φ(~x, ~y) by substituting the state variables and clock constraints by transition
functions δu-synci (~x, ~y,~iWB ,~iBB ,~iint) and predicates formed using reset condi-

tions resetu-syncxj
(~x, ~y,~iWB ,~iBB ,~iint), reasoning only over u-transitions.5

5Similar to Sect. 7.2, but with the difference that the inputs are not yet quantified after
substitutions of state variables and clock constraints.

29



Prec∀(Φ)(~x, ~y) =
[ n∧
j=1

(xj ≥ 0)
]
∧
(

(¬∃~iWB urgentno-sync(~x, ~y,~iWB ))∧

[
(∃~iWB∃~iBB∃~iinturgentu-sync(~x, ~y,~iWB ,~iBB ,~iint )) =⇒ ∀~iBB{(∀~iWBnte(~x, ~y,~iWB ,~iBB ))

∨ ∃~iWB∀~iintPredu-sync(Φ)(~x, ~y,~iWB ,~iBB ,~iint )}
])
∧

∃λ
[
(λ > 0)∧∀~yBB

〈
Φ(~x+~λ, ~y)∧

{
∀λ′(0 < λ′ < λ) =⇒

(
(¬∃~iWBurgentno-sync(~x+ ~λ′, ~y,~iWB ))

∧
[
(∃~iWB∃~iBB∃~iinturgentu-sync(~x+ ~λ′, ~y,~iWB ,~iBB ,~iint )) =⇒

∀~iBB{(∀~iWBnte(~x+~λ′, ~y,~iWB ,~iBB ))∨∃~iWB∀~iintPredu-sync(Φ)(~x+~λ′, ~y,~iWB ,~iBB ,~iint )}
])}〉]

(8)

Lemma 5 (State Set Prec∀(Φ)). The resulting state set Prec∀(Φ)(~x, ~y) contains
only states from which states from Φ can be reached (via time evolution and/or
via u-sync-transitions), independently from the black box behaviour.

Proof 3 (Sketch). The basic idea of Eqn. (8) consists in performing a time step

of length λ > 0 from a state (~x, ~y) into a state (~x+~λ, ~y) satisfying Φ. However,
this time evolution may be interrupted by u-sync-transitions or u-transitions,
which are enabled for some state (~x + ~λ′, ~y) (0 ≤ λ′ < λ) between (~x, ~y) and

(~x+ ~λ, ~y).
The condition ¬∃~iWB urgentno−sync(~x, ~y,~iWB ) (Line 1) guarantees that in

the starting point (~x, ~y) no u-transition is enabled, which would stop time evo-
lution immediately. Additionally, time evolution may be blocked by a u-sync-
transition which is enabled in state (~x, ~y). However, if for each urgent syn-
chronisation action au (encoded with ~iBB - variables), which can be used by the
black box to block time evolution, the white box can choose (by setting its ~iWB -
variables) a u-sync-transition, which is synchronising via au and is leading to
states in Φ (Line 2 and 3), then the black box may stop time evolution, but
cannot hinder the white box from reaching Φ.

The usage of ∀~iWBnte(~x, ~y,~iWB ,~iBB ,~iint) (Line 2) checks whether for a
given synchronisation action (∀~iBB) there is no enabled transition labelled with
this action. In that case, the black box is not able to stop time evolution by
this urgent synchronisation action, otherwise the white box has to synchronise
by choosing a u-sync-transition.

In lines 4 to 6 of Eqn. (8), this consideration is transferred to all states

(~x + ~λ′, ~y) (0 < λ′ < λ) between (~x, ~y) and (~x + ~λ, ~y). This is the actual time
evolution, starting in state (~x, ~y). During this time evolution, the black box
may change the valuation of its state variables through internal urgent non-
synchronising transitions, which have to be taken, and thus, the valuation of
the state variables ~yBB is unknown. To account for this, the ~yBB -variables are
universally quantified (line 4).

When considering timed automata with only local integers, which are not

30



shared between the white box and the black box6, Eqn. (8) can be simplified to:

Prec∀(Φ)(~x, ~y) =
[ n∧
j=1

(xj ≥ 0)
]
∧

∃λ
[
(λ > 0) ∧

〈
Φ(~x+ ~λ, ~y) ∧

{
∀λ′(0 ≤ λ′ < λ) =⇒

(
(¬∃~iWBurgentno-sync(~x+ ~λ′, ~y,~iWB ))

∧
[
(∃~iWB∃~iBBurgentu-sync(~x+ ~λ′, ~y,~iWB ,~iBB )) =⇒

∀~iBB{(∀~iWBnte(~x+ ~λ′, ~y,~iWB ,~iBB )) ∨ ∃~iWBPredu-sync(Φ)(~x+ ~λ′, ~y,~iWB ,~iBB )}
])}〉]

(9)

Compared to Eqn. (8), Eqn. (9) does neither contain any ~iint -variables nor
~yBB -variables, which are used to express the communication of the black box
with the white box via shared integer variables.

9.5 Pred∃(Φ) – Discrete Step for Pre∃(Φ)

Pred∃(Φ)(~x, ~y,~iWB ,~iint) includes all states from which a state in Φ is reach-
able via a discrete transition for at least one black box implementation. Con-
sider a certain black box implementation which always synchronises with the
white box when possible, and thus, does not disable any discrete transition.
To express the interaction with such a black box, we use the transition func-
tions δall(~x, ~y,~iWB ,~iint) and reset conditions resetall(~x, ~y,~iWB ,~iint) to compute
Pred∃(Φ). Pred∃(Φ) is computed as in Sect. 7.2 by a substitution of the state
variables and clock constraints in Φ, followed by an existential quantification of
the input variables ~iint and ~iWB .

Lemma 6. The resulting state set Pred∃(Φ)(~x, ~y) contains only states for which
there exists a black box implementation, such that, Φ(~x, ~y) is reachable by a
discrete transition in the white box.

The proof follows from the following argument: The result corresponds to
a backwards evaluation of discrete white box transitions of any kind (no-sync-
transitions, u-sync-transitions, nu-sync-transitions). By existentially quantify-
ing~iint , we account for all possible integer assignments by the black box in case
of u-sync-transitions. Of course, more transitions can never be enabled in the
white box, not even by a black box implementation which always provides all
synchronisation actions needed to enable synchronising transitions in the white
box.

9.6 Prec∃(Φ) – Continuous Step for Pre∃(Φ)

Prec∃(Φ) includes only states from which a state in Φ is reachable through time
evolution for at least one black box implementation. This can be a black box im-
plementation which never synchronises via an urgent action during the time step,

6Communication between the white box and the black box is restricted to (non-urgent and
urgent) synchronisation actions

31



and thus, no u-sync-transition has to be considered. Furthermore, the black box
can update shared integer variables on internal urgent non-synchronising tran-
sitions. Eqn. (10) defines the computation of Prec∃(Φ).

Prec∃(Φ)(~x, ~y) =
[ n∧
j=1

(xj ≥ 0)
]
∧

(¬∃~iWBurgentno-sync(~x, ~y,~iWB )) ∧ ∃λ
[
(λ > 0) ∧

(
(∃~yBB Φ(~x+ ~λ, ~y))∧{

∀λ′(0 < λ′ < λ) =⇒
(
∃~yBB (¬∃~iWBurgentno-sync(~x+ ~λ′, ~y,~iWB ))

)})]
(10)

Lemma 7. The resulting state set Prec∃(Φ)(~x, ~y) contains only states for which
there exists a black box implementation,, such that, Φ(~x, ~y) is reachable through
time elapsing.

Proof 4 (Sketch). The correctness of Lemma 7 follows from the following facts:
There may be a time evolution of length λ > 0 from a state (~x, ~y) to a state

(~x+ ~λ, ~y′) ∈ Φ, if

• ~y′ results from ~y by changing the state variables ~yBB . During time evo-
lution, the black box has the ability to change the valuation of the shared
state variables ~yBB on finitely many internal urgent non-synchronising
transitions, changing ~y to ~y′. For every value for the state variables ~yBB

there is a black box implementation which assigns this value to ~yBB . This
explains the existential quantification of ~yBB in line 2 of Eqn. (10).

• time evolution is not stopped by any u-transition. In the starting state
(~x, ~y), this is ensured by condition ¬∃~iWBurgentno-sync(~x, ~y,~iWB ) (Line 2
of Eqn. (10)). Furthermore, during the time evolution, there must not be

any u-transition enabled in any state (~x+~λ′, ~y), for each λ′ between 0 and
λ. Since during time evolution, the black box can arbitrarily update the
shared state variables on internal urgent non-synchronising transitions, it
is sufficient that for at least one valuation of the shared state variables ~yBB

each u-transition is disabled. This situation is taken into account by the
condition ∃~yBB (¬∃~iWB urgentno-sync(~x+~λ′, ~y,~iWB )) (line 3 in Eqn. (10)).

In a timed system without shared integers, which are accessible to the white
box and the black black, Eqn. (10) can be simplified by just omitting the exis-
tential quantification of the ~yBB -variables (Line 3).

9.7 Discrete and Time Steps Together

In our implementation we apply alternating discrete steps and time steps for
the operations Pre∃ and Pre∀. For Pre∃ we additionally apply an existential
quantification of the shared integer variables ~yBB after each application of Pred∃
and Prec∃. This existential quantification corresponds to an interleaving with a

32



potential discrete backwards step of the black box. Since we have to consider
all possible black box implementations for Pre∃, we have to assume that the
shared integers can be set to arbitrary values in this step. Since, for Pre∀, we
only have to consider effects shared by all possible black box implementations
and there are certainly black box implementations which do not write shared
integers at all, we completely omit potential discrete black box backward steps
(and thus the existential quantification of ~yBB) for Pre∀.

10 Experimental Results

nbr. upp. red fsmtmc conv.
inter para

to
y

3 0.1 0.1 0.5 0.4 0.2
8 0.1 10.2 5.8 1.5 1.1

14 140.4 - 232.2 2.4 2.6
15 - - 445.8 2.6 2.9
16 - - 1295.0 2.9 3.3
50 - - - 20.1 28.4

fi
sc

h
e
r

2 0.0 0.1 0.3 0.7 0.2
7 0.1 16.9 7.0 12.5 1.0
8 0.3 - 18.1 21.0 1.2

13 369.3 - 200.4 829.0 3.0
16 - - 829.9 2547.6 4.4
20 - - 4545.0 - 6.7

fi
sc

h
e
r

sy
n
c
. 2 0.0 0.1 0.7 0.7 0.5

7 0.1 18.8 8.8 8.5 4.7
8 0.4 - 17.7 15.2 6.4

13 387.4 - 2895.1 251.1 16.6
14 - - 574.1 338.8 19.0
20 - - 6659.8 7927.1 45.4

G
P

S

10 0.1 0.6 5.5 5.9 8.3
18 167.4 4.1 24.0 21.6 25.4
19 - 5.0 26.3 25.1 28.0
39 - 3186.6 254.0 165.3 114.8
40 - - 251.4 192.3 122.0
50 - - 510.9 458.1 190.6

Table 1: Complete Reachability Analysis

We implemented the TCTL model checking algorithms for complete and in-
complete timed systems in the prototype model checker FSMT-MC [1, 2] and
analysed our approach on several parameterized benchmarks with parameter
n = {3 − 50} (Column ’nbr.’). Parameterized benchmarks made it easy for us
to generate sets of increasingly complex benchmarks for comparison. Actually
we do not consider parameterized benchmarks as the main field of application
for our algorithm and thus we did not make use of symmetry reduction, nei-
ther within our tool nor within any competitor. We compare the results to
the state-of-the-art model checkers Uppaal v.4 (UPP.), RED 8 and Kronos 2.5
(KRO.). Uppaal performs a forward analysis and RED does a backward traver-
sal. Both can only be used for checking safety properties whereas Kronos can
also be used for full TCTL model checking, but cannot handle benchmarks con-
taining integer variables (like ‘arbiter’ and ‘leader’). Tab. 1 gives the runtime
of our approach (FSMTMC) on complete FSMTs with pure interleaving be-
haviour (inter) and parallelized interleaving behaviour (para). Tab. 2 shows the

33



results of our tool checking safety properties by backward reachability analy-
sis for benchmarks modelled as complete FSMTs (comp.) and as incomplete
FSMTs (inc.) with pure interleaving (FSMTMC-INTER) or with parallelized
interleaving (FSMTMC-PARA). Finally, Tab. 3 gives the runtimes of our ap-
proach verifying properties which require full TCTL model checking. All bench-
marks were originally modelled as TAs and were automatically translated into
FSMTs. We give the CPU times of the (un-optimized) translator for the pure
interleaving case (CONV.), the times for the parallelized interleaving case are of
similar magnitude, and in all cases when the model checker did not timeout, the
sum of translation times and model checking times did not exceed the timeout
either. The experiments have been conducted on an Intel Xeon with 3.3 Ghz
with a time limit of 8000 CPU seconds and a memory limit of 2 GB.

10.1 Verification of Complete Real-Time Systems

nbr. upp. red fsmtmc-inter fsmtmc-para conv.
comp. inc. comp. inc.

a
rb

it
e
r

3 0.0 0.4 6.5 3.8 3.5 2.1 5.2
6 3529.8 39.6 60.6 7.9 35.2 4.3 12.6
7 - - 91.8 10.2 36.1 5.2 17.7

15 - - 1971.6 57.6 2812.3 24.5 66.9
19 - - 6858.2 100.9 - 40.0 104.8
50 - - - 1296.3 - 598.8 712.9

a
rb

it
e
r

e
rr

o
r 3 0.0 0.6 0.7 0.9 0.8 0.9 5.2

5 39.2 24.8 2.0 1.2 1.7 1.6 10.0
6 5228.8 - 2.9 1.5 2.2 1.5 12.6
7 - - 2.7 1.6 2.8 1.7 17.7

30 - - 59.5 8.3 92.2 10.0 255.5
50 - - 547.3 17.5 636.0 22.7 712.9

le
a
d
e
r

3 0.0 0.5 557.3 21.9 120.2 30.5 9.8
5 0.4 18.3 - 38.8 - 29.4 22.8
6 2.3 - - 33.0 - 37.2 30.8

10 2960.7 - - 91.7 - 56.8 89.2
11 - - - 60.1 - 90.2 107.2
50 - - - 383.6 - 593.3 3169.7

C
P

P
re

a
ch

3 0.0 17.4 2.1 1.3 1.6 0.9 5.6
4 0.0 - 3.2 0.8 2.4 0.8 7.1

31 703.2 - 3733.2 4.2 1767.0 4.2 284.9
37 - - 7482.0 5.2 5528.7 5.1 407.9
38 - - - 5.5 5627.0 5.3 426.6
50 - - - 7.7 - 7.6 742.2

Table 2: Complete and Incomplete Reachability Analysis

The toy example [1] (’toy’ in Tab. 1) models n timed automata which com-
municate via a shared integer variable. When performing a reachability analysis
on this benchmark we can observe an enormous performance gain for parallelized
interleaving due to a reduction of the number of steps in state space traversal.
Our algorithm with parallelized interleaving behaviour can finish state space
traversal just after one step, whereas a pure interleaving computation needs n
steps to reach the property. Uppaal performs much worse on this example, since
it works on an explicit representation of locations and it computes all possible
permutations of enabled transitions step by step. Our approach clearly outper-
forms RED as well which is based on a different fully symbolic representation

34



and performs only pure interleaving.
As property for Fischer’s mutual exclusion protocol [42] (’fischer’ in Tab. 1),

we verify if it is possible that all components are in the critical region at the same
time. We have two versions of this benchmark, one uses a shared integer for
communication while the other uses synchronisation actions for interaction be-
tween the components. On the original model (fischer) our algorithm on FSMTs
with pure interleaving achieves better results than on FSMTs with parallelized
interleaving. This is caused by the fact that the Fischer protocol does not allow
parallel behaviour, which is realised by additional input variables in the paral-
lelized interleaving case. However, in both configurations for pure interleaving
and for parallelized interleaving behaviour our symbolic model checking algo-
rithm can solve systems with a lot more processes than Uppaal and RED. On
the synchronising Fischer protocol (’fischer sync.’ in Tab. 1) results on FSMTs
with pure interleaving and with parallelized interleaving are quite similar, since
parallelism is guaranteed by synchronisation and does not need any supplemen-
tary input variables.

The case study gear production stack (’GPS’ in Tab. 1) [43] models an indus-
trial workflow, and demonstrates the strength of symbolic methods, such that
RED (n = 39) achieves better results than the semi-symbolic model checker
Uppaal (n = 18). However, our new symbolic approach can solve the complete
benchmark set with up to n = 50 in reasonable amount of time.

10.2 Verification of Incomplete Real-Time Systems

nbr. kro. fsmtmc-inter fsmtmc-para conv.
comp. inc. comp. inc.

C
P

P
z
e
n
o

3 0.5 31.7 2.7 67.4 2.1 5.6
4 - 258.1 3.4 273.2 2.8 7.1
5 - - 2.6 - 2.1 9.7

20 - - 4.4 - 4.2 120.2
40 - - 7.8 - 7.3 474.7
50 - - 9.8 - 9.4 742.2

C
S
M

A
z
e
n
o 3 0.1 - 11.4 - 16.7 4.0

7 0.4 - 3.5 - 37.3 9.4
8 - - 5.2 - 10.0 11.5

20 - - 13.9 - 21.2 52.2
40 - - 10.3 - 24.9 185.8
50 - - 7.8 - 12.5 285.6

Table 3: Complete and Incomplete TCTL Model Checking

The arbiter example [1, 2] models a system of n processes controlled by a
distributed arbiter which asserts that a critical resource can only be used by
one component at a time. We have two versions of this benchmark, one correct
(’arbiter’ in Tab. 2), where a safety property can be proven, and one erroneous
version (’arbiter error’ in Tab. 2), where several processes can access the critical
resource at the same time, and thus, the safety property is falsified. Both
versions can be modelled as incomplete systems where n − 2 processes are put
into a black box. The complexity of the incomplete distributed arbiter, however,

35



increases with increasing n. It can be seen that our model checker (para. n = 15
and inter. n = 19 ) outperforms the reference tools Uppaal (n = 6) and RED
(n = 6) on complete systems. Considering incomplete systems, our tool FSMT-
MC is able to prove validity of the property for the correct version and non-
realisability for the erroneous version for the complete benchmark set (up to
n = 50) in appropriate time.

On the leader election benchmark [10] (’leader’ in Tab. 2), which models
a timed leader election in a ring protocol, we check whether a leader is found
within a given time limit. This is not the case, such that the property is falsified.
Uppaal (up to n = 10) and RED (up to n = 5) are able to solve larger systems
than FSMT-MC which can only solve systems with n = 3 processes. By putting
n − 3 processes into a black box, we abstracted the complete system into an
incomplete one, however, we are able to prove non-realisability of the safety
property. (Nevertheless, the complexity of the white box increases with n.)
Now FSMT-MC is able to finish the verification runs for all instances of the
benchmark set.

The communicating parallel processes [2] includes n processes which syn-
chronise via actions. On this system we perform a backward reachability anal-
ysis verifying a safety property (’CPP reach’ in Tab. 2) and full TCTL model
checking (’CPP zeno’ in Tab. 3). For the reachability analysis on the com-
plete systems, parallelized interleaving semantics enhances the performance of
our tool which can solve more benchmarks than the competitors. The incom-
plete CPP benchmarks can all be solved by our model checker. Additionally
to checking a safety property, we check freedom of zeno behaviour with the
property ΦNZ = AG(EF {=1}true) which requires full TCTL and thus, can
be verified neither with Uppaal nor with RED. Compared to the tool Kronos,
which explicitly computes the product automaton, we can solve more instances
of the complete system (n = 4 instead of n = 3) and for the incomplete systems
our tool has no difficulties in proving non-realisability of ΦNZ for the complete
benchmark set.

The CSMA benchmark [44] (’CSMA zeno’ in Tab. 3) is a system with several
senders trying to access a single multi-access bus and is tested for freedom of
zeno behaviour with the property ΦNZ . Here on the complete system our tool
cannot solve any instance, however on the incomplete system, where n−2 sender
are put into a black box (the complexity of the bus increases with n), we can
prove non-realisability of the property on all benchmarks.

11 Conclusions

We introduced a new formal model to represent real-time systems, the finite
state machine with time, which is well-suited for fully symbolic verification al-
gorithms. We presented a backward model checking algorithm to verify complete
FSMTs and incomplete FSMTs where some part of the system is unknown and
communicates with the known system over shared integers and urgent and non-
urgent synchronisation. For a given TCTL property and an incomplete FSMT

36



our model checking algorithm can prove non-realisability (there is no BB im-
plementation such that the property is satisfied) and validity (the property is
satisfied for all possible BB implementations). In order to verify TAs with our
algorithm we presented two different methods to convert TAs into FSMTs. The
resulting FSMT has either a pure interleaving behaviour or a parallelized in-
terleaving behaviour. The experimental results on complete systems show that
our approach outperforms other state-of-the-art model checkers due to its fully
symbolic data structure and the usage of parallelized interleaving. On incom-
plete systems we are able to prove interesting properties early when parts of the
overall system may not yet be finished. Additionally, the results demonstrate
that fading out complete components of a timed system dramatically reduces
the complexity of the system, and thus, the verification effort.

Bibliography

References

[1] G. Morbé, F. Pigorsch, C. Scholl, Fully symbolic model checking for timed
automata, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided Ver-
ification (CAV), Vol. 6806 of Lecture Notes in Computer Science, Springer,
2011, pp. 616–632.

[2] G. Morbé, C. Scholl, Fully symbolic tctl model checking for incomplete
timed systems, in: H. Treharne, S. Schneider (Eds.), Automated Verifica-
tion of Critical Systems 2013 (AVoCS), Vol. 66, EASST, Guildford, Surrey,
United Kingdom, 2013.

[3] R. Alur, Timed automata, in: Proceedings of the 11th International Con-
ference on Computer Aided Verification (CAV’99), 1999, pp. 8–22.

[4] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (2) (1994) 183–235.

[5] K. G. Larsen, P. Pettersson, W. Yi, Uppaal in a Nutshell, Int. Journal on
Software Tools for Technology Transfer 1 (1–2) (1997) 134–152.

[6] G. Behrmann, A. David, K. G. Larsen, A tutorial on uppaal, in:
M. Bernardo, F. Corradini (Eds.), International School on Formal Meth-
ods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004. Revised Lectures, Vol. 3185 of Lecture Notes in Computer
Science, Springer Verlag, 2004, pp. 200–237.

[7] K. G. Larsen, J. Pearson, C. Weise, W. Yi, Clock difference diagrams,
Nordic J. of Computing 6 (1999) 271–298.

[8] F. Wang, Efficient verification of timed automata with BDD-like data struc-
tures, Int. J. Softw. Tools Technol. Transf. 6 (2004) 77–97.

37



[9] J. Møller, J. Lichtenberg, H. R. Andersen, H. Hulgaard, Difference decision
diagrams, in: Computer Science Logic, The IT University of Copenhagen,
Denmark, 1999.

[10] R. Ehlers, D. Fass, M. Gerke, H.-J. Peter, Fully symbolic timed model
checking using constraint matrix diagrams, in: RTSS, 2010, pp. 360 –371.

[11] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl,
U. Waldmann, B. Wirtz, Exact state set representations in the verification
of linear hybrid systems with large discrete state space, in: Proc. of ATVA,
Vol. 4762 of LNCS, Springer, Berlin / Heidelberg, 2007, pp. 425–440.

[12] C. Scholl, S. Disch, F. Pigorsch, S. Kupferschmid, Computing optimized
representations for non-convex polyhedra by detection and removal of re-
dundant linear constraints, in: Tools and Algorithms for the Construction
and Analysis of Systems, Vol. 5505 of LNCS, Springer, 2009, pp. 383–397.

[13] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl,
U. Waldmann, B. Wirtz, Exact and fully symbolic verification of linear hy-
brid automata with large discrete state spaces, Science of Computer Pro-
gramming 77 (10-11) (2012) 1122–1150.

[14] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum,
S. Schulz, R. Sebastiani, MathSAT: Tight integration of SAT and mathe-
matical decision procedures, J. Autom. Reasoning 35 (1-3) (2005) 265–293.

[15] B. Dutertre, L. de Moura, A fast linear-arithmetic solver for DPLL(T),
in: T. Ball, R. Jones (Eds.), CAV, Vol. 4144 of LNCS, Springer Berlin /
Heidelberg, 2006, pp. 81–94.

[16] R. Loos, V. Weispfenning, Applying linear quantifier elimination, Comput.
J. 36 (5) (1993) 450–462.

[17] G. Behrmann, A. Cougnard, R. David, E. Fleury, K. G. Larsen, D. Lime,
Uppaal tiga user-manual.

[18] S. Bornot, J. Sifakis, S. Tripakis, Modeling urgency in timed systems, in:
COMPOS, Vol. 1536 of LNCS, Springer, 1997, pp. 103–129.

[19] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, In-
formation and Computation 104 (1993) 2–34.

[20] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking
for real-time systems, Information and Computation 111 (1992) 394–406.

[21] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and
Mind Series), The MIT Press, 2008.

[22] E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization
skeletons using branching-time temporal logic, in: Logic of Programs, 1982,
pp. 52–71.

38



[23] K. G. Larsen, F. Larsson, P. Pettersson, W. Yi, Efficient verification of
real-time systems: compact data structure and state-space reduction, in:
Proceedings of the 18th IEEE Real-Time Systems Symposium, RTSS ’97,
IEEE Computer Society, Washington, DC, USA, 1997, pp. 14–.

[24] S. A. Seshia, R. E. Bryant, Unbounded, fully symbolic model checking
of timed automata using boolean methods, in: W. A. H. Jr., F. Somenzi
(Eds.), Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, Vol. 2725 of Lecture
Notes in Computer Science, Springer, 2003, pp. 154–166.

[25] A. W. Mazurkiewicz, Basic notions of trace theory, in: REX Workshop,
Vol. 354 of LNCS, 1988, pp. 285–363.

[26] D. Peled, All from one, one for all: on model checking using representatives,
in: CAV, Vol. 697 of LNCS, Springer, 1993, pp. 409–423.

[27] K. Yorav, O. Grumberg, Static analysis for state-space reductions preserv-
ing temporal logics, Formal Methods in System Design 25 (2004) 67–96.

[28] K. G. Larsen, B. Thomsen, A modal process logic, in: LICS, 1988, pp.
203–210.

[29] K. G. Larsen, L. Xinxin, Equation solving using modal transition systems,
in: LICS, 1990, pp. 108–117.

[30] G. Bruns, P. Godefroid, Model checking partial state spaces with 3-valued
temporal logics, in: CAV, 1999, pp. 274–287.

[31] M. Huth, R. Jagadeesan, D. Schmidt, Modal transition systems: A founda-
tion for three-valued program analysis, in: Europ. Symp. on Programming,
Vol. 2028, Springer, 2001, pp. 155+.

[32] M. Chechik, B. Devereux, S. M. Easterbrook, A. Gurfinkel, Multi-valued
symbolic model-checking, ACM Trans. Softw. Eng. Methodol. 12 (4) (2003)
371–408.

[33] T. Nopper, C. Scholl, Approximate symbolic model checking for incomplete
designs, in: FMCAD, Vol. 3312 of LNCS, Springer Verlag, 2004, pp. 290–
305.

[34] T. Nopper, C. Scholl, Symbolic model checking for incomplete designs with
flexible modeling of unknowns, IEEE Transactions on Computers 62 (6)
(2013) 1234–1254.

[35] O. Kupferman, M. Y. Vardi, P. Wolper, Module checking, Inf. Comput.
164 (2) (2001) 322–344.

[36] E. Asarin, O. Maler, A. Pnueli, J. Sifakis, Controller synthesis for timed
automata, in: Proceedings of the 5th IFAC Conference on System Structure
and Control (SSC’98), Elsevier Science, 1998, pp. 469–474.

39



[37] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for
timed systems, in: STACS, Vol. 900 of LNCS, Springer, 1995, pp. 229–242.

[38] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, L. D.,
Uppaal-tiga: time for playing games!, in: Proc. of CAV, CAV’07, Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 121–125.
URL http://dl.acm.org/citation.cfm?id=1770351.1770370

[39] R. Ehlers, R. Mattmüller, H.-J. Peter, Combining symbolic representations
for solving timed games, in: K. Chatterjee, T. A. Henzinger (Eds.), Proc.
of FORMATS, Vol. 6246 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg, 2010, pp. 107–121.

[40] H.-J. Peter, R. Ehlers, R. Mattmüller, Synthia: Verification and synthesis
for timed automata, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proc. of
CAV, Vol. 6806 of Lecture Notes in Computer Science, Springer, 2011, pp.
649–655.

[41] W. Klotz, Graph coloring algorithms, Tech. rep., TU Clausthal, Institute
for Mathematics (2002).

[42] J. J. Vereijken, Fischer’s protocol in timed process algebra (1994).

[43] H.-J. Peter, R. Mattmüller, Component-based abstraction refinement for
timed controller synthesis, in: T. Baker (Ed.), Proceedings of the 30th
IEEE Real-Time Systems Symposium (RTSS 2009), December 1 - Decem-
ber 4, 2009, Washington, D.C., USA, IEEE Computer Society, Los Alami-
tos, CA, USA, 2009, pp. 364–374.

[44] S. Yovine, Kronos: A verification tool for real-time systems., Journal on
Software Tools for Technology Transfer 1 (1997) 123–133.

40


