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Abstract. We present a hybrid model checking algorithm for incom-
plete timed systems where parts of the system are unspecified (so-called
black boxes). Here, we answer the question of unrealisability, i.e., “Is
there a path violating a safety property regardless of the implemen-
tation of the black boxes?” Existing bounded model checking (BMC)
approaches for incomplete timed systems exploit the power of modern
SMT solvers, but might be too coarse as an abstraction for certain prob-
lem instances. On the other hand, symbolic model checking (SMC) for
incomplete timed systems is more accurate, but may fail due to the size
of the explored state space. In this work, we propose a tight integration
of a backward SMC routine with a forward BMC procedure leveraging
the strengths of both worlds. The symbolic model checker is hereby used
to compute an enlarged target which we then try to hit using BMC. We
use learning strategies to guide the SMT solver’s search into the right
direction and manipulate the enlarged target to improve the overall accu-
racy of the current verification run. Our experimental results show that
the hybrid approach is able to verify incomplete timed systems which
are out of the scope for BMC and can neither be solved in reasonable
time using SMC. Furthermore, our approach compares favourably with
UPPAAL-TIGA when considering timed games as a special case of the
unrealisability problem.

1 Introduction
Real-time systems appear in many areas of life, such as time-critical communica-
tion protocols or embedded controllers for automobiles. Here, in addition to the
logical result, the time when the result is produced is relevant. The correctness
of timing constraints is even more important for medical devices or for safety-
critical systems as they appear in the transportation domain. For this reason it
is crucial to perform formal verification of safety-critical systems. Moreover, as
these systems steadily grow in complexity, verifying their correctness becomes
harder and increasingly more important. Nowadays, timed automata (TAs) [2,1],
which are an extension of conventional discrete automata by real-valued clock
variables, are a common model for real-time systems and have become a standard
in industry.
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In this work, we focus on the verification of incomplete timed systems, i.e.,
timed systems that contain unknown components (so-called black boxes). The
purpose is to add a layer of abstraction if a design is too large to verify in
its entirety, or to allow to start the verification process earlier when certain
components of the design are only partially completed. Here, we aim to refute
the realisability of a property, that is, we tell the designer, no matter how you
implement the unknown parts of the system, the property will always fail. To put
it in other words, the error is already in the implemented system. More formally,
we prove, given an incomplete system T and a safety property φ (unsafe states
are not reachable), that no matter what the black box BB looks like, the parallel
composition of T and BB cannot satify φ. If this is the case, then we call the
property unrealisable.

The unrealisability problem generalises the controller synthesis problem
[14,4,11]. Here, the system communicates with an unknown controller which
is more powerful than the remaining system in the sense that it may always
enforce an immediate interaction with the system. In contrast to the controller
synthesis problem, our scenario defines the black box as an equitable part of the
system having the same impact as the implemented components. (However, we
will see later, that it is also possible to define special black boxes having the
same power as the unknown controller in timed games.)

Whereas some approaches to controller synthesis look into properties like LTL
[12], TCTL [13] or MTL [6], we restrict our attention to safety properties which
state the unreachability of certain discrete states in a timed system (as already
mentioned above).

One possible method to prove unrealisability of properties in incomplete timed
systems is bounded model checking (BMC). Generally, BMC starts with the
initial state, iteratively unfolds the system k times, adds the negated property,
and converts the BMC instance into a satisfiability problem which is solved
by an appropriate solver. If the k-th instance is satisfiable, a path of length k
violating the property has been found. BMC instances for real-time systems are
typically encoded into so-called SAT-Modulo-Theory (SMT) formulas, since they
are augmented with continuous time constraints over real-valued variables. BMC
for incomplete timed systems is studied in [16,17,15]. In this paper, we use their
encoding where the verification problem is limited to those transitions which are
independent of the behaviour of the black boxes. This approach still yields SMT
formulas which typically are easy to solve, however, due to its approximative
nature this encoding limits the class of problems which can be verified. A second
option for solving the unrealisability problem is symbolic model checking (SMC)
for incomplete timed systems. In general, beginning with those states directly
violating the property, SMC performs a backwards traversal of the state space
using adequate data structures for the symbolic representation and manipulation
of the state space and the transition functions. If at some point, the so far
explored states include the initial state, there exists a path leading to an unsafe
state. For our work, we use the symbolic model checking algorithm presented
in [19]. It verifies incomplete finite state machines with time (FSMT) [20,18],
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which is a formal model to represent incomplete real-time systems1. State sets
and transition functions are represented using so-called LinAIGs [9,22,8], a data
structure which can hold arbitrary Boolean combinations of Boolean variables
and linear constraints over real-valued variables. SMC for incomplete FSMTs is
more accurate than BMC for incomplete timed systems, however, it often fails
due to the size of the state sets which are generated along the verification task.

In this paper, we adopt the idea of combining BMC and SMC for incomplete
discrete systems [21] to the timed world. In the timed world the main challenge is
that various (known and unknown) components of the system can influence the
time evolution by enforcing and/or preventing certain discrete steps. We present
a verification algorithm where we use SMC for incomplete FSMTs to compute
an enlarged target which we then try to hit using BMC. This tight integration
in combination with learning strategies and on-the-fly manipulations of the en-
larged target makes it possible to verify incomplete timed systems, which are out
of reach for BMC respectively SMC alone. In other words, our approach makes
BMC for incomplete timed systems more accurate and prevents SMC for in-
complete timed systems from exploring state sets which are too big to verify. To
show the efficacy of our hybrid verification technique, we give preliminary exper-
imental results using multiple parameterized timed benchmarks. Furthermore,
our results show that we are able to outperform the state-of-the-art controller
synthesis tool UPPAAL-TIGA, when considering timed games as a special case
of the unrealisability problem.

The paper is structured as follows. In Section 2, we review incomplete net-
works of timed automata and BMC on the one hand, and FSMT-based SMC
on the other hand. Our novel method is given in Section 3. After presenting
experimental results in Section 4 we conclude the paper in Section 5.

2 Preliminaries

2.1 Timed Automata

Real-time systems are often modelled using timed automata (TAs) [1,2], an
extension of conventional automata by a set X of real-valued clock variables to
represent the continuous time. The set of clock constraints C(X) contains atomic
constraints of the form (xi ∼ d) and (xi − xj ∼ d) with d ∈ Q, xi, xj ∈ X and
∼ ∈ {<,≤,=,≥, >}. We consider TAs extended with bounded integer variables.
Let Int be a set of bounded integer variables each having a fixed lower and
upper bound. Let Assign (Int) be the set of assignments to integer variables. Let
C(Int) be a set of constraints of the form (inti ∼ d) and (inti ∼ intj) with d ∈ Z,
∼ ∈ {<,≤,≥, >} and inti, intj ∈ Int. Let Cc(X, Int) be the set of conjunctions
over clock constraints and constraints from C(Int). Using this information we
define a timed automaton as follows:

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple
〈L, l0, X,Act, Int, lb, ub, E〉 where L is a finite set of locations, l0 ∈ L is an

1 Note that networks of timed automata can easily be transformed into FSMTs.
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initial location, X = {x1, . . . , xn} is a finite set of real-valued clock variables,
Act = Actnu ∪ Actu with Actnu ∩ Actu = ∅, Actnu is a finite set of non-urgent
actions and Actu is a finite set of urgent actions, Int = {int1, . . . , intm} is a
finite set of integer variables, lb : Int → Z and ub : Int → Z assign lower
and upper bounds to each inti ∈ Int with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ m,
E ⊆ L×Cc(X, Int)×(Act∪{εu, εnu})×2X×2Assign(Int)×L is a set of transitions
with E = Enu ∪ Eu. Enu = {(l, ge, a, re, Assigne, l

′) ∈ E | a ∈ Actnu ∪ {εnu}}
is the set of non-urgent transitions and Eu = {(l, ge, a, re, Assigne, l

′) ∈ E | a ∈
Actu∪{εu}} is the set of urgent transitions. If for e = (l, ge, a, re, Assigne, l

′) ∈ E
it holds that a ∈ Act, then we call e a transition with an (urgent or non-urgent)
synchronising action, if a ∈ {εu, εnu} then we call e an (urgent or non-urgent)
transition without synchronising action.

A state si = 〈li, νi, μi〉 of a TA is a combination of a location li and a valu-
ation νi of the clock variables and a valuation μi of the integer variables. A TA
may perform a continuous transition, that is, all clock variables evolve over time
with the same rate and neither the location nor the values of the integer variables
change. Discrete transitions describe the change of the location. A discrete transi-
tion happens instantaneously and can only be taken, if its guard is satisfied, that
is, if the transition is enabled. We consider networks of timed automata having an
interleaving semantics, however, transitions labelled with the same action have to
be taken simultaneously. If several transitions without action are enabled at the
same time it is chosen non-deterministically which one is taken.

A discrete transition may be declared as urgent. Whenever an urgent transi-
tion labelled by εu is enabled, the current state must be left without any time
delay. Analogously, whenever in all components containing au-transitions with
au ∈ Actu a transition labelled with au is enabled, then there must not be any
time delay before taking any transition. In literature, location invariants are used
to enforce discrete transitions. However, in [18,19] the authors showed that TAs
having closed invariants can be converted into semantically equivalent TAs using
urgency. The translation consists in adding a supplementary urgent transition
once the upper limit of the invariant is reached. A similar technique is used in
the context of timed games where “forced transitions” labelled with upper limits
of invariants are added in order to prevent one player from forcing the system
into a timelock [3].

2.2 Incomplete Networks of Timed Automata

x ≥ 5 anu

au

au
x ≥ 3
x ≤ 4

anu

l1

l2

l0 BBl3

Fig. 1. Incomplete Timed System

In this paper, we focus on incomplete net-
works of TAs where parts of the system are
not specified (black box (BB)), however, the
interface to the remaining system (white box
(WB)) is defined. Here, we aim to prove the
unrealisability of a safety property. We call
a property unrealisable if there exists no re-
placement of the BB such that the property
holds for the resulting overall design.
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The interface of BB components and WB components consists of non-urgent
and urgent synchronisation actions. Since the behaviour of the BB is unknown
it is unclear when the BB is ready to synchronise. In fact, in case of an urgent
action, the BB is even able to stop time evolution of the whole system until the
synchronisation takes place or until the conditions enabling the synchronising
transition are not fulfilled anymore. In other words, allowing the above men-
tioned communication methods to define the interface of the BB, the unknown
parts are able to affect the discrete behaviour of the WB and, in case of urgency,
also may influence their timing behaviour. In the following, we distinguish three
kinds of discrete transitions: f-transitions (also referred to as fixed transitions)
are not labelled with any action synchronising with the BB, nu-transitions are
labelled with a non-urgent action synchronising with the BB, and u-transitions
are labelled with an urgent action synchronising with the BB.

Example 1. Consider the incomplete timed system shown in Fig. 1. The BB
uses a non-urgent action anu and an urgent action au to interact with the imple-
mented system. The nu-transition from l2 to l1 can only be taken if it synchro-
nises with the BB via anu, and thus, the BB is able to influence the behaviour
of the system in that way. Being in location l0, the BB has the power to enforce
the u-transition labelled with au leading to l2 (dashed arrow) when 3 ≤ x ≤ 4.
In that case, time evolution is stopped and a discrete transition has to be taken,
instantaneously. All remaining transitions in the system are f-transitions which
can not be affected through the BBs behaviour.

2.3 Bounded Model Checking of Incomplete Networks of Timed
Automata

Generally, the BMC procedure [5,7] starts with the initial state I0 (superscript
numeral denotes the unfolding depth), iteratively unfolds a system k times by
adding a conjunction of transition relations T i,i+1, and connects the negated
property ¬P k. Finally, the BMC instance is converted into a satisfiability prob-
lem. If an appropriate solver finds the k-th problem instance satisfiable, a path
of length k violating the property has been found.

When proving unrealisability using BMC, the unknown behaviour of the BB
needs an adequate modelling. Taking incomplete networks of TAs into account,
BMC based on fixed transitions [16,17] is one option to solve the unrealisability
problem as long as the system does not contain any u-transitions. The idea is that
the BB can prevent the system from taking the nu-transitions on a path to an
error state (by disabling those transitions). Thus, nu-transitions are omitted in
the search for an error path, which does not depend on the BB behaviour, and the
transition relation is reduced to f-transitions. To encode the transition relation,
we differentiate between a discrete step T i,i+1

jump , which describes all possibilities

of changing a location via f-transitions, and a continuous step T i,i+1
flow , where all

subautomata stay in their locations, and time passes equally for all clocks (for
a detailed description of the BMC encoding please refer to [16,17]). Finally, the
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k-th BMC instance is constructed as follows

BMC (k) := I0 ∧
k−1∧

i=0

{
T i,i+1
jump if i is even,

T i,i+1
flow otherwise

∧ ¬P k (1)

using an alternation of discrete and continuous steps and then passed to an
arbitrary SMT solver, which supports the theory of linear arithmetic for integers
and reals. If BMC (k) is satisfiable, there is a run r = 〈s0, s1, . . . , sk〉 of length k
with si = 〈li, νi, μi〉, 0 ≤ i ≤ k and li being a location, νi a clock valuation, and
μi being an integer valuation which does not depend on the BB behaviour and
leads to a state sk that violates the property P .

Whereas this encoding yields easy-to-solve SMT formulas in many cases, the
model in [16] assumes that the BB may only enable and disable transitions in the
WB, but never may enforce transitions in the WB. Thus the BB may not syn-
chronise over urgent actions, i.e., the implemented system may not contain any
u-transitions. This is a really strong restriction and limits the class of problems
that can be verified.

Example 2. In this example, we show that unrealisability proofs based on f-
transitions may be wrong, if u-transitions are present in the WB. We consider
the incomplete timed system given in Fig. 1 and the property that the location
l1 can never be reached. The BMC procedure as defined above confines the
consideration to f-transitions and it would find a path leading to l1 (e.g. 〈l0, x =
0〉 → 〈l0, x = 5〉 → 〈l1, x = 5〉). However, due to the u-transition which is enabled
in location l0 once x reaches the value 3, this error path is not valid for all possible
black box implementations, since the BB may stop time evolution and force the
network to synchronise via au. If afterwards, the BB never synchronises via anu,
then l1 can never be reached, i.e., there is a BB-implementation which fulfills
the property and unrealisability does not hold.

2.4 Symbolic Backward Model Checking Based on FSMTs

The symbolic methods we will use are based on finite state machines with time
(FSMTs) [20,18] which are symbolic representations of networks of TAs well
suited for fully symbolic model checking algorithms. Basically, an FSMT consists
of a set of Boolean location variables Y , a set of real-valued clock variables
X , a set of Boolean input variables I, a predicate init describing the set of
initial states, and a predicate urgent indicating when an urgent transition is
enabled. Each location variable yi ∈ Y is determined by a transition function
δi, and reset conditions resetxi , which deterimine when each clock variable xi is
reset. A state of an FSMT is a valuation of the clock variables and the location
variables. An FSMT performs a discrete step depending on the current state and
the input variables. Here, the location variable yi is set to 0 (1) iff δi evaluates
to 0 (1) and the clock xi is reset iff resetxi evaluates to 1. In a continuous step
time may pass unless the urgent predicate evaluates to 1. FSMTs communicate
by reading each other’s location variables, clock variables, and shared input
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variables. In [20] the authors show how to translate timed systems into FSMTs
(integer communication is encoded using Boolean variables which are included
into Y ). In [18,19] this translation is extended to incomplete timed systems.
Here, we additionally define a predicate urgentBB , which evaluates to 1 if any
u-transition is enabled.

The symbolic backward model checking algorithm for incomplete timed sys-
tems presented in [19] starts with the negation of a given safety property and
computes predecessor state sets until the initial state is reached. The generated
state sets contain those states from which the negated property is reachable
regardless of the behaviour of the BB. Similarly to BMC, we define two kinds
of predecessor operators. Starting from a state set φ the discrete predecessor
operator computes a state set Pred(φ) containing only states from which φ is
reachable taking a discrete transition in the WB independently from any BB
behaviour. The BB can not prevent the WB from taking f-transitions and thus,
only those are considered for the computation of the discrete predecessor (u-
transitions and nu-transitions can be blocked when the BB is not sending the
appropriate synchronisation action). The continuous predecessor operator com-
putes a state set Prec(φ), which contains only states from which φ is reachable
regardless of the behaviour of the BB when performing continuous transitions.
A state s is added to Prec(φ) if it is possible to reach φ from s through time
evolution which may not be blocked by the BB. Here we have to account for the
fact that the BB is able to influence the timing behaviour of the WB by sending
urgent actions and thus enabling u-transitions which stop time evolution. Con-
sider the case that a state sφ in φ is reachable through time evolution starting in
s, but there is another state t on the way between s and sφ which is the source
of an enabled u-transition labelled with the urgent action au. Now we have to
consider two cases in order to decide whether s can be included into Prec(φ):

(1) Assume that all enabled u-transitions labelled with au and starting from t
lead to some state which is not in φ. By sending the action au the BB can
cause time evolution to stop and it can impede the WB from reaching φ
starting in s. Thus we may not include s into Prec(φ).

(2) Assume that there is some enabled u-transition that starts in t, is labelled
with au, and leads to a state t′′ ∈ φ. In that case, the choice of the BB
is irrelevant, since in both cases (synchronising via au gives the WB the
opportunity to move to t′′ ∈ φ, not synchronising leads to φ through time
evolution) the resulting state is included in φ. Thus, in this case, and if there
is no other state t̃ on the way from s to sφ fulfilling the condition of case
(1), we may include s into Prec(φ) and, since we are only interested in the
question from which states we may reach φ regardless of the BB behaviour
(and not how), we do not need to consider stopping time evolution at t due
to urgent synchronisation with the BB.

In order to know whether the WB is able to force u-transitions into some state
in φ or not, which is crucial for the continuous predecessor operator, SMC has
to be able to compute a special discrete predecessor state set of φ only over u-
transitions (in the following named pre-urgent (PU) respectively Preud(φ)). Put
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in other words, a state s is included into Preud(φ) if for all urgent actions on
enabled outgoing transitions from s, there is at least one enabled u-transition
in the WB synchronising over this action, which leads to φ. For details on the
exact computation of Pred(φ), Prec(φ), and Preud(φ) we refer to [19].

Example 3. As an example consider again the incomplete timed system of Fig. 1
and a state set φ1 with 〈l1, x ≥ 0〉 ∈ φ1. Then the state s1 = 〈l2, x ≥ 0〉 is no
discrete predecessor of φ1, s1 /∈ Pred(φ1), since it is backwards reachable from φ1

only over the nu-transition (l2, l1), which can be disabled by the BB not sending
the action anu. State s2 = 〈l0, x ≥ 5〉, reachable via the f-transition (l0, l1) is the
only discrete predecessor of φ1, Pred(φ1) = {s2}, as it is the only state reachable
over f-transitions.

Consider now another state set φ2 with 〈l2, x ≥ 0〉 ∈ φ2 and 〈l0, x ≥ 5〉 ∈ φ2.
We ask the question whether the state s0 = 〈l0, x = 0〉 can be included into
Prec(φ2). When the BB does not interfere by sending the urgent action au,
〈l0, x ≥ 5〉 and thus φ2 is reachable from s0 through normal time passing. By
sending au in any state s3 = 〈l0, x = c〉 with 3 ≤ c ≤ 4, the BB can stop time
evolution. However, in that case the WB can take the enabled u-transition (l0, l2)
leading to the state 〈l2, x = c〉 which is in φ2 (since 〈l2, x = c〉 ∈ φ2, s3 is in
pre-urgent of φ2, i.e., s3 ∈ Preud(φ2)). Hence state set φ2 is reachable starting in
s0 independently from the BB behaviour and thus, s0 ∈ Prec(φ2).

3 Hybrid Verification of Incomplete Real-Time Systems

In this section we present a hybrid BMC/SMC algorithm to prove unrealisability
in incomplete networks of TAs which (1) makes it possible for BMC to handle
u-transitions and (2) avoids full SMC runs possibly exceeding resources.

To this end, we extend the BMC encoding given in Section 2.3 by the possibil-
ity to handle urgency. We modified the initial state and the transition relations
in a way that time evolution is blocked immediately (i.e. the length of the time
evolution is enforced to be 0) whenever either an urgent transition is enabled or
an urgent synchronisation within WB components can take place. We call such
a state where time evolution has to be blocked immediately an urgent state. Fur-
thermore, time evolution started in a non-urgent state is stopped when an urgent
state is reached.2 BMC as defined above computes a path based on f-transitions
without considering the timing constraints imposed by u-transitions. In that way,
BMC over-approximates the set of possible runs leading to an error state, however,
our novel approach excludes spurious error paths by using SMC methods.

The idea of the overall algorithm combining BMC and SMC is as follows:
We use SMC to compute an enlarged target, that is a symbolic representation
of states from which there exists a path to the negated property no matter
how the BB is implemented. We then try to hit this target by searching a path
via f-transitions which starts in the initial state of the incomplete network and

2 Since we need a well-defined starting point in time for the urgent state, we forbid
constraints with ‘>’ instead of ‘≥’ guarding any urgent transition.
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finally ends in one of the states of the enlarged target. Whenever along this path
there is a state s with an enabled u-transition, we additionally test whether for
all urgent actions on enabled outgoing transitions from s, there is at least one
enabled u-transition in the WB, synchronising over this action, which leads to
the enlarged target. In this case we say “the WB can force the u-transitions into
the enlarged target”. Then the decision of the BB is irrelevant and the error
state is reached in every case. If not, we have to extend the BMC problem by
additional information learnt from SMC.

In the following, we describe the algorithm in general and then give a detailed
description of the interaction with the enlarged target and the pre-urgent state
set, respectively.

3.1 Overall Algorithm

Algorithm 1 shows the procedure to prove unrealisability of a property in an
incomplete network of TAs, and consists of two steps, in the first step (lines 5 to
17) BMC is used to search for a fixed path, reaching ET, based on f-transitions,
and in the second step, using SMC methods, it is checked whether the WB can
force all enabled u-transitions along this error path candidate into ET (lines 20
to 31). To this end, we compute the set Preud(ET ) of all states which have the
property that the WB can force all outgoing u-transitions into the enlarged target
and check whether all states on the error path candidate, which have enabled
u-transitions, are included in Preud(ET ). We call this test the “PU inclusion
check”. The enlargement of ET and the necessitated manipulations of the SMT
solver are described in Algorithm 2.

We introduce a set ΠET holding the conflict clauses, which are generated
after an unsuccessful inclusion check of the enlarged target. Next, we store in
a set ΠPU additional constraints resulting from the PU inclusion check, which
restrict the continuous transitions of future BMC runs. Furthermore, let BMC
be an SMT formula representing the current BMC instance and nr of fixed paths
a counter, storing the number of so far explored paths based on f-transitions.
Lastly, we use a predefined number K which limits the number of BMC steps.
In informal words, K defines the influence of BMC in the combined approach.
As a special case consider K = 0 where a pure SMC run is performed.

After initialising the procedure (lines 1–2), the enlarged target (ET) is com-
puted (line 3) by performing a predefined number (#stepsinit) of continuous and
discrete backward steps (Prec and Pred) as described in Section 2.4, using the
negated property as a starting point. In lines 5 to 17 the algorithm searches
for a path based on f-transitions. When constructing the BMC formula we omit
the negated property, and thus, the pure BMC instance (i.e. the BMC instance
without any additional conflict clauses) is naturally satisfiable. The state (as-
signment to location variables, clocks variables and integer variables) computed
by the SMT solver at the end of the last unfolding is checked for inclusion in ET
(line 8). If this check is successful, a path based on f-transitions has been found
and we continue with the next step of the algorithm. However, in the negative
case a conflict clause, which forbids the current assignment to the state variables
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Algorithm 1. Hybrid Algorithm BMC–SMC

1: ΠET = ∅; ΠPU = ∅; k = 0; BMC = I0; nr of fixed paths = 0;
2: add transition relation to BMC();
3: compute ET(#stepsinit);
4: while true do
5: fixed path found = false;
6: while !fixed path found do
7: if SMT solve(BMC ) == SAT then
8: if is in ET(state vars(k)) then
9: fixed path found := true; nr of fixed paths++;
10: else
11: π = generate ET cc; ΠET = ΠET ∪ π; add to solver(π, k);

12: else
13: k = k + 1;
14: if k < K then
15: add transition relation to BMC();
16: remove from solver(ΠET , k − 1); add to solver(ΠET , k);
17: if k is continuous transition then add to solver(ΠPU , k);

18: else
19: enlarge ET and reset(#steps);

20: fixed path valid = true;
21: while fixed path valid && untested continuous transition si → si+1 exists

along fixed path do
22: if !check PU(si, si+1) then
23: fixed path valid = false;
24: if nr of fixed paths < max fixed paths then
25: π = generate PU constraint;
26: for j=0. . . k do
27: if j is continuous transition then
28: add to solver(π, j);

29: ΠPU = ΠPU ∪ π;
30: else
31: enlarge ET and reset(#steps);

32: if fixed path valid then return Unrealisability proven

at the end of the last unfolding is generated, added to the BMC problem and
thus, prevents the solver to explore the same path of length k again (see Sec-
tion 3.2 for details). The solver is invoked again and the new solution for the
state variables of the last unfolding is tested, etc.. This procedure is repeated
until either a path of length k leading into ET has been found, or the BMC
instance including all generated conflict clauses gets unsatisfiable. In the latter
case, there exists no path of length k into ET and we continue the search for
k + 1. The generated conflict clauses exclude states which are not part of ET,
and thus, they contain valuable information for future unfolding depths. Since
the index of the last unfolding has increased by 1, prior to the new search, we
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Algorithm 2. enlarge ET and reset(#steps)

1: enlarge ET(#steps);
2: if I ∩ET �= ∅ then return Unrealisability proven

3: else if fixed point(ET ) then return Unrealisability not proven

4: reduce k = min(#steps− 1, k); k = k − reduce k;
5: remove transition relations( reduce k );
6: update ET cc(ΠET ); add to solver(ΠET , k);
7: remove PU constraints from solver(); ΠPU = ∅;
8: nr of fixed paths=0;

remove all conflict clauses having time index k and add them again with the
incremented time index k + 1 (line 16).

If it is not possible to find a fixed path within K steps (line 18), the en-
larged target is further extended by ’#steps’ backward steps and the combined
procedure is reset (see line 19 and Algorithm 2).

Once a fixed path leading to ET is found (line 9), Algorithm 1 continues to
check whether the BB is able to force the implemented system to leave that
path by sending urgent actions (lines 20 to 31). That is, for each continuous
transition along the path, we test whether there is any u-transition enabled
during this time step, and – in a positive case – whether the WB can force all
enabled u-transitions into ET (see Section 3.3 for details on the interaction with
this state set). If this test is successful for all continuous transitions, the current
fixed error path is valid and unrealisability of the system has been proven. Once
this test fails for some continuous transition (line 22), the BB is able to enforce
a transition leaving the current fixed error path. To avoid this situation in the
future, a constraint is generated and added to ΠPU (lines 25 to 29). Since the
current fixed error path is not valid, the algorithm starts searching for a new
fixed path taking all conflict clauses included in ΠET and all constraints in ΠPU

into account.
It may be the case that the current ET is too small to lead to a result (if

the BB is able to enforce transitions leaving the current fixed error path into
states not in ET). Therefore from time to time (when a predefined amount of
fixed paths using the same ET has been explored) we enlarge the target further
(line 31). In that case, the overall accuracy is increased by expanding the ET
which in turn necessitates a restart of the procedure.

Algorithm 2 performs a target enlargement (line 1) followed by necessary
manipulations of the BMC instance. After the target enlargement we check in
line 2 whether the new ET already contains some initial states which proves
unrealisability (line 2). A fixed point check determines whether new states could
be added to the enlarged target. If not, it is clear that we will never be able
to prove unrealisability (line 3). However, in case new states could be added,
the algorithm is restarted using the new ET as a basis after removing the last
#steps− 1 transition relations from the BMC problem in lines 4–5 (since it has
been proven that there exists no fixed paths at previous unfolding depths). In
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order to keep as much learnt information as possible for the next search of a fixed
path, we update ΠET in update ET cc() as follows: For each conflict clause in
ΠET (which describes a state set not belonging to the old ET) we test whether
it still describes a state set not belonging to the extended ET. If the outcome
of the test is negative, we have to remove the conflict clause from ΠET . At
the end, the updated ET conflict clauses again describe state sets which should
be excluded from the solvers search and the conflict clauses are added to the
last time frame k (line 6). In contrast, the so far generated PU constraints limit
the timing behaviour of continuous transitions in BMC based on the old ET and
thus, they might prevent the solver from finding valid error paths in future runs
(after extending ET). Hence, we remove all PU constraints from the solver and
set ΠPU = ∅ (line 7).

3.2 Enlarged Target Inclusion Check and Conflict Clause
Generation

One connection point of BMC and SMC is a test whether a state sk = 〈lk, νk, μk〉
of the last BMC unfolding is included in ET (line 8 of Algorithm 1). If the test
fails, a conflict clause is generated and passed to the SMT solver to prevent
the search from exploring the same branch again. The inclusion check and the
conflict clause generation is performed in three steps: First, we test whether
there exists any state in ET having location lk. This can be reduced to an SMT
check fixing in ET the location variables y1, . . . , yl to the valuation ξk, which
represents lk. If not, it is clear that sk cannot be part of ET as well and another
possible error path has to be found. As a conflict clause, it would be sufficient to
exclude only ξk, however, we can exclude a larger part of the search space when
lifting the location variables y1, . . . , yl: A location variable yi can be removed
from the conflict clause if the assignment to yi is irrelevant for the SMT check.
As a result, the conflict clause contains only those location variables which are
essential to exclude lk and additionally excludes further states which are not part
of ET. However, if ET contains states having the location lk, the second step
tests for the integer valuation μk. In a negative case, the conflict clause forbids
〈lk, μk〉. Otherwise, a third test includes the valuation νk of the clock variables.
If this SMT check succeeds as well, sk is part of ET and a fixed error path hitting
ET has been found. If not, instead of sk, we can exclude 〈lk, Z, μk〉 /∈ ET with
Z being a clock zone which contains νk. We obtain Z by a conjunction of all
linear clock constraints of ET which are satisfied by νk and the negations of all
clock constraints which are not satisfied by νk.

3.3 Pre-Urgent Inclusion Check and Conflict Constraint Generation

In contrast to the ET inclusion check, where one specific state sk = 〈lk, νk, μk〉
was considered, the check whether a u-transition leads to ET needs to be per-
formed for all states in which a u-transition is enabled. The PU inclusion check
takes as an input a complete continuous BMC step of length λ from the state
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si = 〈l, ν, μ〉 to its successor state si+1 = 〈l, ν + λ, μ〉 along the current path
based on f-transitions. Using the urgentBB predicate of the incomplete FSMT,

x ≥ 5 anu

au

au
x ≥ 3
x ≤ 4

anu

l1

l2

l0

ET1

BB

ET0

l3

Fig. 2. Example

SMC computes the set of states φu in which
a u-transition is enabled along this continu-
ous transition. If φu is empty, the BB is not
able to enforce the WB to leave this path, and
the procedure simply returns true. If not, the
procedure checks whether φu is completely
included in Preud(ET ), that is, the WB is able
to force all u-transitions emerging from states
in φu into ET. In a positive case the pro-
cedure returns true and continues with the
succeeding continuous transition of the can-
didate error path. However, if there is some
state s in φu, such that the WB is not able to force the u-transitions starting
in s into ET, we generate a constraint which prevents the SMT solver to take
the same continuous transition in future BMC runs. To this purpose, through
SMT solving, we pick one single state s̃ ∈ φu \ Preud(ET ), and similarly to the

ET conflict clause generation, we compute a state set φ̃ with φ̃∩Preud(ET ) = ∅,
and furthermore restrict this set to states which are source of a u-transition by
using the urgentBB predicate again. In this way, we obtain a critical state set

〈l,
n∧

i=1

(ai ≤ xi ≤ bi), μ〉 which must be avoided in future continuous steps. To

avoid the critical state set, we add to each continuous time frame of the BMC
problem a constraint which is a conjunction of the following two conditions:
(a) If we are in location l with integer valuation μ and the valuation of at least

one clock variable xj of the starting point of a continuous transition is lower
than aj , then time passing has to be stopped before all clock variables xk

obtain valuations greater than ak. In this way, reaching the critical state set
through time evolution is prevented.

[
(si = l) ∧ (inti = μ) ∧ ( n∨

j=1

(xi
j < aj)

)]
=⇒ ( n∨

j=1

(xi+1
j ≤ aj)

)

(b) It might be possible that a state of the critical state set is reached through
a discrete transition. In this case, we have to ensure that time must not
proceed, that is, another discrete transition must be taken immediately.

[
(si = l) ∧ (inti = μ) ∧ ( n∧

j=1

(aj ≤ xi
j ≤ bj)

)]
=⇒ ( n∧

j=1

(xi+1
j = xi

j)
)

We consider the example shown in Figure 2 and the property that location l3
can never be reached. Assume that initially the enlarged target (ET0) contains
only the location l3. Next, BMC finds a path based on f-transitions leading into
ET0 as follows:

pfix0 = 〈l0, x = 0〉 → 〈l0, x = 5〉 → 〈l1, x = 5〉 → ET0
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During the time step, the BB may enforce the u-transition eu from l0 to l2 when
x has a value between 3 and 4. To check whether pfix0 is still valid in this situation
we perform the PU inclusion check for the time step 〈l0, x = 0〉 → 〈l0, x = 5〉
which tests whether 〈l0, 3 ≤ x ≤ 4〉 is included in Preud(ET0) = ∅. Obviously,
this is not the case. To prevent time steps from touching 〈l0, 3 ≤ x ≤ 4〉, we add
the constraint
[
(si = l0)∧(xi < 3) =⇒ (xi+1 ≤ 3)

]
∧
[
(si = l0)∧(3 ≤ xi ≤ 4) =⇒ (xi+1 = xi)

]

to the time step of any BMC unfolding depth. However, using these constraints,
BMC is not able to find another fixed path leading to ET0 and thus, the proce-
dure is rerun using the expanded enlarged target ET1, containing l1, l2, and l3.
The new fixed path found by the SMT-solver is

pfix1 = 〈l0, x = 0〉 → 〈l0, x = 5〉 → ET1

Again, being in location l0 with x = 3 there is a u-transition eu which the BB can
enforce to be taken. However, using ET1, the pre-urgent inclusion check succeeds
since 〈l0, 3 ≤ x ≤ 4〉 is included in Preud(ET1) = {〈l0, 3 ≤ x ≤ 4〉}. To put it
in words, no matter whether the BB synchronises on au or not, the enlarged
target can always be reached either using pfix1 or eu and, as a consequence, the
unrealisability has been proven.

Theorem 1. An error path π found by Algorithm 1 is valid for all possible BB
implementations.

Proof (sketch). π is based on fixed transitions and each u-transition along π is
leading to ET. Assume that the SMC methods are correct [19], then ET contains
only states which lead to states violating the property for all implementations
of the BB. The BB cannot influence fixed transitions, and thus, the only way
the BB can enforce the system to leave π is by synchronising over u-transitions.
However, since the WB can force all u-transitions which are enabled along π into
ET, a state violating the property is reached regardless of the behaviour of the
BB, and thus, the property is unrealisable.

Thrm. 1 proves the soundness of the approach. Note that Algorithm 1 is only
complete, if we assume that (1) the safety property does not contain disjunctions
and (2) the BB has the ability to make different decisions depending on the state
of the WB. For this the BB has to be able to read the state of the WB or to infer
the state of the WB (e.g. by reading synchronization actions which are internal
to the WB). (This assumption is implicitly made in classical controller synthesis
approaches as well [4,11].)

4 Experiments

To evaluate our hybrid approach for the unrealisability proof in incomplete timed
systems we combined the BMC tool timemachine [16,15] which uses Yices [10]
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as underlying SMT solver and the SMC tool fsmtMC [20,19] which is based on
LinAIGs [9,22,8] as the core data structure. We extended timemachine by the
encoding of urgency and implemented the ET and PU routines using the methods
provided by fsmtMC.

We use extended versions of the parameterizable arbiter [20,19] and cpp [19]
benchmarks. The arbiter benchmark models n processes which try to access
a shared resource and are controlled by an erroneous distributed arbiter and
one counter module yielding 2n+ 1 components in total. We model all but two
processes as a BB and prove the unrealisability of the property that the two
processes cannot access the shared resource at the same time. The cpp bench-
mark models a ring of n parallel processes where each component communicates
with its neighbours. We model 1

2n successive components as a BB and prove
the unrealisability of the property that the first two components never enter an
unsafe location at the same time.

Table 1. Results

fsmtMC hyVer

TA time time BMC SMC ET/CC PU/C

o
ri
g
.
A
rb

it
e
r 5 161.0 53.9 3 10 34/28 5/5

10 2064.5 55.3 3 10 42/36 5/5
12 5932.3 26.6 7 8 33/28 5/4
13 - 32.0 7 8 32/27 5/4
15 - 28.3 7 8 32/27 5/4
25 - 75.4 3 10 40/34 5/5
30 - 87.9 3 10 39/33 5/5

C
P
P

4 3.0 1.3 5 2 7/5 1/1
5 - 2.4 5 2 7/5 1/1
6 232.6 3.5 5 2 7/5 1/1
7 - 5.5 5 2 7/5 1/1

23 - 156.8 5 2 7/5 1/1
24 - 372.1 5 2 6/4 1/1

We compare our hybrid approach
with pure SMC. Since all tested
benchmarks use urgent synchroni-
sation in their BB interface,
timemachine was not able to prove
the unrealisability of any benchmark
instance. It is neither possible to
solve the unrealisability problem of
our benchmark set using controller
synthesis methods, since timed games
are a special case of our scenario
where the unknown controller has
more power than the remaining com-
ponents. However, we are able to
modify the arbiter benchmark (by
changing the power of the individual components within the network) making it
possible to construct a semantically equivalent timed game. Using this modified
benchmark, we are able to compare the results of our combined method to those
obtained using the state-of-the-art controller synthesis tool UPPAAL-TIGA.

To test our prototype implementation we used an AMD Opteron processor
running on 2.3 GHz and having 64 GB RAM. We put a time limit of 2 CPU
hours and a memory limit of 2 GB.

Table 1 compares the runtime of pure SMC (fsmtMC) with our hybrid ap-
proach (hyVer). The number of instantiated components of the respective bench-
mark is given in Column 1 (TA) followed by the runtime of fsmtMC in Column
2. Additionally to the runtime of hyVer (time), we report the number of forward
steps (BMC) and backward steps (SMC) in order to successfully find an error
path which proves the unrealisability. Furthermore, the table gives the number
of ET inclusion checks and the resulting conflict clauses (ET/CC), analogously
we give the number of PU inclusion checks and resulting constraints (PU/C).
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The hybrid approach outperforms pure SMC for both the orig. arbiter and
the cpp benchmark sets. Using SMC methods, the arbiter benchmark ran into
timeouts for 13 processes and beyond, however hyVer was able to complete
the verification task for up to 30 processes in a reasonable amount of time. A
similar picture is valid for the cpp benchmark set. Here, SMC fails to prove
unrealisability for instances having more than 6 processes whereas hyVer is able
to complete the task within the given timeout for up to 24 processes.

In this setting, we used the negated property as the initial ET (that is,
#stepsinit = 0). Later on, ET is always expanded by one discrete symbolic
step followed by one continuous symbolic step (#steps = 2). max fixed paths
is set to 1. We pick out three examples to explain the detailed results of our
combined approach. First, consider the arbiter benchmark with 5 instantiated
components. For this example, 5 fixed paths are discarded, since a continuous
transition on the fixed path passes through a state in which a u-transition not
leading to ET is enabled. The sixth candidate path is a valid error path, since it
does not contain any state which is the source of a u-transition. In total, 28 ET
conflict clauses are needed to find the candidate paths (6 ET inclusion checks are
successful). The length of the valid path is the sum of the number of BMC steps
and the number of SMC steps (in this example the length is 13). For the original
arbiter benchmark having 12 instantiated components, the algorithm discards
only 4 fixed paths and the fifth PU inclusion check is successful. In this case the
final path contains a state which is the source of a u-transition, but using SMC
it is proved that this transition leads into the ET.

For the cpp benchmark all paths found by BMC do not contain any states
which are sources of a u-transition, i.e., the effect of u-transitions is handled by
SMC only. Two additional SMC backward steps (discrete and continuous) are
enough to find a valid fixed error path.

Table 2. Modified Arbiter Benchmark

fsmtMC TIGA hyVer

TA BB time time time BMC SMC ET/CC PU/C

5 3 1052.1 0.1 1.0 0 12 1/0 0/0
5 2 - 0.2 1.4 3 8 2/1 0/0
5 1 - 4.1 2.8 3 12 2/1 0/0

6 4 1707.6 0.1 1.3 0 14 1/0 0/0
6 3 - 0.2 1.5 3 8 2/1 0/0
6 2 - 4.3 4.7 0 20 1/0 0/0
6 1 - 761.3 7.4 0 20 1/0 0/0

7 5 1502.9 0.1 2.5 0 22 1/0 0/0
7 4 - 0.2 2.2 0 16 1/0 0/0
7 3 - 4.4 2.4 5 10 11/10 0/0
7 2 - 901.9 25.5 5 8 28/26 1/1
7 1 - - 149.6 5 10 12/12 1/1

8 6 2952.9 0.1 2.1 6 22 12/11 1/0
8 5 - 0.2 2.9 0 22 1/0 0/0
8 4 - 4.6 2.6 5 10 11/10 0/0
8 3 - 1010.1 41.9 7 8 194/192 1/1
8 2 - - 127.7 3 10 125/123 1/1
8 1 - - 1280.1 15 10 234/231 2/2

Table 2 shows the re-
sults of the modified ar-
biter benchmark when
using fsmtMC, TIGA,
and hyVer. Again, TA
denotes the number of
instantiated components,
however, in this set-
ting we vary the num-
ber of black boxed com-
ponents (BB). Column
TIGA reports the run-
time of UPPAAL-TIGA,
the remaining columns of
the table are structured
as before. We slightly
changed the setting for
this set of experiments.
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In particular, as a further optimisation in the initial target enlargement pro-
cedure, we only perform continuous steps, if performing discrete steps does not
add new states to ET. In that way, for many instances the paths found by BMC
do not contain any states which are sources of a u-transition. fsmtMC is only
able to solve benchmarks where the maximum number of components (that is,
all but 2) is abstracted. TIGA can solve more benchmarks than fsmtMC, how-
ever, the runtime increases dramatically for more than 4 WB components. hyVer
is the only tool which is able to solve the whole benchmark set within the given
timeout. It also completes the verification task in significant less time than TIGA
for benchmarks which are solvable by both tools.

We also implemented a version of hyVer where ET is converted into an SMT
formula and then directly connected to the BMC formula to avoid possibly mul-
tiple inclusion checks in order to generate one fixed error path. However, this
version was not competitive compared to the procedure depicted in Algorithm 1
and justifies to perform inclusion checks and the usage of conflict clauses.

5 Conclusion

We presented a hybrid model checking algorithm to prove unrealisability for
incomplete real-time systems. We use backward SMC methods to compute an
enlarged target which we then try to hit using SMT-based forward BMC proce-
dures. In order to accelerate the verification process we apply learning strategies
and manipulate the enlarged target along the verification run to improve the
overall accuracy. Our combined approach makes it possible to verify incomplete
timed systems, which can neither be solved using pure BMC due to its inaccu-
racy nor using pure SMC due to the state space explosion problem. Finally, we
showed the efficacy using parameterized incomplete timed benchmark sets. Our
results show advantages compared to UPPAAL-TIGA when we consider timed
games as a special case of the unrealisability problem.
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