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Abstract—Craig interpolation has become a powerful and
universal tool in the formal verification domain, where it is used
not only for Boolean systems, but also for timed systems, hybrid
systems, and software programs. The latter systems demand
interpolation for fragments of first-order logic. When it comes
to model checking, the structural compactness of interpolants is
necessary for efficient algorithms. In this paper, we present a
method to reduce the size of interpolants derived from proofs of
unsatisfiability produced by SMT (Satisfiability Modulo Theory)
solvers. Our novel method uses structural arguments to modify
the proof in a way, that the resulting interpolant is guaranteed
to have smaller size. To show the effectiveness of our approach,
we apply it to an extensive set of formulas from symbolic hybrid
model checking.

I. INTRODUCTION

For mutually unsatisfiable formulas A and B, a Craig
Interpolant is a formula I , such that I is implied by A, I and
B are mutually unsatisfiable, and I refers only to uninterpreted
symbols common to A and B. Or interpreted in the set-domain:
I is an over-approximation of A which does not intersect with
B. Interpolation has become – in addition to SAT- and SMT-
solving – an universal workhorse in the domain of formal
verification.

For purely Boolean systems, interpolation is used in many
applications: McMillan introduced interpolation for the first
time into the verification domain [1]. In [1] interpolants are
used as overapproximations of reachable state sets; their use
turns bounded model-checking into a complete method. The
idea of [1] was picked up and refined by numerous researchers,
e.g. in [2], [3], [4]. Logic synthesis for Boolean circuits [5] is
another field of application.

Interpolants for several fragments of first-order logic have
been successfully applied in software verification using pred-
icate abstraction and refinement [6], [7], [8], [9], [10]. More-
over, for the verification of hybrid systems such interpolants
have been used to optimize symbolic state set representations
[11], [12]. Interpolants play another role in the verification of
timed and hybrid systems, when bounded model checking for
those systems [13], [14], [15] is combined with the ideas from
[1], [16].

Especially when interpolants are used as symbolic state set
predicates, not only their logical strength, but also their size has
an essential impact on the efficiency of the overall verification
algorithm. For instance, intensive compaction efforts to avoid
exploding state set representations has turned out to be the key
ingredient for approaches like [12].
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For Boolean systems, there are several methods in the
literature that deal with the optimization of interpolants and
proofs:

The authors of [17] check if intermediate clauses in the
resolution proof are implied only by A or B, and then treat
these clauses as parts of A or B. As a result, some parts
of the proof can be ignored when computing an interpolant.
In [18], the authors propose two methods to restructure a
given resolution proof such that the proof becomes smaller;
the proof minimization is motivated by the goals of smaller
interpolants and smaller unsatisfiable cores. [19] introduces a
method to detect and merge shared subproofs, [20] presents
a set of local rewriting rules for proof graphs. The former
two methods are justified by the need for small proofs in
practical applications. In [21] and [22], proof transformations
are discussed which influence the strength (in a logical sense)
of interpolants; the structural compactness of interpolants is not
considered. Moreover, [22] proposes a general interpolation
system allowing for the production of interpolants of different
logical strengths, again without considering compactness of
interpolants.

In this paper we consider interpolants for first-order for-
mulas. We present a novel method for reducing the structural
size of interpolants for first-order formulas, which heavily
relies on resolution proofs generated by SMT-solvers. We show
how properties of the proofs can be exploited to avoid the
computation of local interpolants for lemmata in the proof,
resulting in interpolants of smaller size. Our method is based
on enlarging theory lemmata which has the effect that local
theory interpolants may be replaced by constants ‘true’ or
‘false’. At first sight this approach seems to be counterintuitive,
since modern SMT(T )-solvers proceed exactly the other way
round by minimizing theory lemmata in order to prune the
search space in a DPLL-style search procedure. However, our
method is used after the DPLL-style search as a postprocessing
step to an existing proof. During postprocessing we always
take care of preserving the complete structure and the validity
of the original proof.

Interpolants produced by our prototype implementation
on top of the MathSAT [23] SMT solver are significantly
more compact than interpolants generated by a traditional
interpolation algorithm, with only a slightly increased run-
time.

This paper is structured as follows. In Sect. II we give
a short introduction to SMT solving, resolutions proofs, and
interpolation. Sect. III introduces our novel method for re-
ducing the size of interpolants. This method is extensively
evaluated in Sect. IV. Finally, we discuss further improvements
and applications areas in Sect. V.
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A : x ≤ 0A : y ≤ 0

B : 2x+ y ≥ 2 ∨ y ≥ 2

¬η1 : ¬(x ≤ 0) ∨ ¬(y ≤ 0) ∨ ¬(2x+ y ≥ 2)

¬η2 : ¬(y ≤ 0) ∨ ¬(y ≥ 2)

¬(y ≤ 0) ∨ ¬(2x+ y ≥ 2)

¬(2x+ y ≥ 2)

y ≥ 2

¬(y ≤ 0)

∅

Fig. 1. A proof

⊥⊥

>

2x+ y ≤ 0
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Fig. 2. An interpolant

II. PRELIMINARIES

A signature Σ is a collection of function symbols and
predicate symbols. A theory T gives interpretations to a subset
of the symbols occuring in Σ. These symbols are called
T -symbols, symbols without interpretations are are called
uninterpreted. A term is a first-order term built from the
function symbols of Σ. For terms t1, . . . , tn and an n-ary
predicate p, p(t1, . . . , tn) is an atom. A 0-ary atom is called
proposition or Boolean variable. A (quantifier-free) formula is
a Boolean combination of atoms.

A literal is either an atom or the negation of an atom. A
literal built from an n-ary atom with n > 0 is called T -literal.
A clause is a disjunction of literals; for a clause l1∨. . .∨ln we
also use the set-notation {l1, . . . , ln}. An empty clause, which
is equivalent to ⊥, is denoted with ∅. A clause, which contains
a literal l and its negation ¬l, is called tautologic clause, since
it is equivalent to >. In this paper we only consider non-
tautologic clauses.

Let C be a clause and φ be a formula. With C \ φ, we
denote the clause that is created from C by removing all atoms
occurring in φ; C ↓ φ denotes the clause that is created from
C by removing all atoms that are not occurring in φ.

A formula is T -satisfiable if it is satisfiable in T , i.e., if
there is a model for the formula where the T -symbols are
interpreted according to the theory T . If a formula φ logically
implies a formula ψ in all models of T , we write φ |=T ψ.

Satisfiability Modulo Theory T (SMT(T )) is the problem
of deciding the T -satisfiability of a formula φ.

Typical SMT(T )-solvers combine DPLL-style SAT-solving
[24] with a separate decision procedure for reasoning on T
[25]. Such a solver treats all atomic predicates in a formula φ
as free Boolean variables. Once the DPLL-part of the solver
finds a satisfying assignment, e. g. l1∧. . .∧ln, to this ‘Boolean
abstraction’, it passes the atomic predicates corresponding to
the assignment to a decision procedure for T , which then
checks whether the assignment is feasible when interpreted
in the theory T .1 If the assignment is feasible, the solver
terminates since a satisfying assignment to the formula φ
has been found. If the assignment is infeasible in T , the
decision procedure derives a cause for the infeasibility of the
assignment, say η = m1 ∧ . . . ∧mk, where {m1, . . . ,mk} ⊆
{l1, . . . , ln}. We call the cause η a T -conflict, since η |=T ⊥.
The SMT(T )-solver then adds the negation of the cause,
¬η = {¬m1, . . . ,¬mk}, which we call T -lemma, to its
set of clauses and starts backtracking. The added T -lemma
prevents the DPLL-procedure from selecting the same invalid
assignment again.

1This review describes the lazy SMT approach. Eager variants already check
partial assignments to Boolean abstraction variables for consistency with the
theory.

One can extend an SMT(T )-solver of this style in a
straightforward way to produce proofs for the unsatisfiability
of formulas [16], [26].

Definition 1 (T -Proof) Let S = {c1, . . . , cn} be a set of non-
tautologic clauses and C a clause.

A DAG P is a resolution proof for the deduction of∧
ci |=T C, if

1) each leaf n ∈ P is associated with a clause ncl; ncl
is either a clause of S or a T -lemma (ncl = ¬η for
some T -conflict η);

2) each non-leaf n ∈ P has exactly two parents nL

and nR, and is associated with the clause ncl which
is derived from nLcl and nRcl by resolution, i. e. the
parents’ clauses share a common variable (the pivot)
np such that np ∈ nLcl and ¬np ∈ nRcl, and ncl =
nLcl \{np}∪nRcl \{¬np}; ncl (the resolvent) must not
be a tautology;

3) there is exactly one root node r ∈ P ; r is associated
with clause C; rcl = C.

Intuitively, a resolution proof provides a means to derive a
clause C from the set of clauses S and some additional facts
of the theory T . If C is the empty clause, P is a proving the
T -unsatisfiability of S.

Fig. 1 shows a resolution proof for the unsatisfiability of
S = (x ≤ 0) ∧ (y ≤ 0) ∧ (2x+ y ≥ 2 ∨ y ≥ 2). To prove the
unsatisfiability, the solver added two T -lemmata ¬η1 = ¬(x ≤
0)∨¬(y ≤ 0)∨¬(2x+y ≥ 2) and ¬η2 = ¬(y ≤ 0)∨¬(y ≥ 2).

Definition 2 (Craig Interpolant) [27] Let A and B be two
formulas, such that A ∧ B |=T ⊥. A Craig interpolant I is a
formula such that

1) A |=T I ,
2) B ∧ I |=T ⊥,
3) the variables and uninterpreted symbols in I occur

both in A and B.

Given a T -unsatisfiable set of clauses S = {c1, . . . , cn},
(A,B) a disjoint partition of S, and P a proof for the T -
unsatisfiability of S, an interpolant for (A,B) can be con-
structed by the following procedure [16]:

1) For every leaf n ∈ P associated with a clause ncl ∈
S, set nI = ncl ↓ B if ncl ∈ A, and set nI = > if
ncl ∈ B.

2) For every leaf n ∈ P associated with a T -lemma ¬η
(ncl = ¬η), set nI = T -INTERPOLANT(η \ B, η ↓
B).



3) For every non-leaf node n ∈ P , set nI = nLI ∨ nRI if
np /∈ B, and set nI = nLI ∧ nRI if np ∈ B.

4) Let r ∈ P be the root node of P associated with the
empty clause rcl = ∅. rI is the interpolant of A and
B.

Note that the interpolation procedure differs from pure
Boolean interpolation [1] only in the handling of T -lemmata.
T -INTERPOLANT(A,B) produces an interpolant for an unsat-
isfiable pair of conjunctions of T -literals. In [26], the authors
list interpolation algorithms for several theories.

Fig. 2 shows a Craig interpolant resulting from the proof
in Fig. 1, when partitioning S into (A,B) with A = (x ≤
0) ∧ (y ≤ 0) and B = (2x + y ≥ 2 ∨ y ≥ 2). Propagating
constants, the result becomes (2x + y ≤ 0) ∨ (y ≤ 0).
The T -interpolant for the T -conflict η1 is a positive linear-
combination of η1’s A-literals2, which is conflicting with
a positive linear-combination of the remaining literals, e. g.
2 · (x ≤ 0) + 1 · (y ≤ 0) ≡ (2x + y ≤ 0) is conflicting with
1 · (2x+ y ≥ 2). The same holds for the T -interpolant of η2.

III. LEMMA LOCALIZATION

We base our optimization technique on the following
lemma:

Lemma 1 Let ¬η be a T -lemma and (A,B) a pair of
formulas;

1) if η \B is a T -conflict, then ⊥ is a valid interpolant
for (η \B, η ↓ B),

2) if η ↓ B is a T -conflict, then > is a valid interpolant
for (η \B, η ↓ B).

In case (1) we call ¬η an A-local lemma, in case (2) a
B-local lemma, otherwise ¬η is a non-local lemma.

Proof:

• Assume η \B is a T -conflict, i. e. (η \B) |=T ⊥, and
(η ↓ B) ∧ ⊥ |=T ⊥. Furthermore, no uninterpreted
symbols occur in ⊥. So ⊥ is a valid interpolant for
(η \B, η ↓ B).

• Assume η ↓ B is a T -conflict, i. e. (η ↓ B) |=T ⊥.
(η\B) |=T > and ((η ↓ B)∧>) |=T (⊥∧>) |=T ⊥.
Furthermore, no uninterpreted symbols occur in >. So
> is a valid interpolant for (η \B, η ↓ B).

Lemma 1 gives us a means to reduce the size of an
interpolant for a given proof of unsatisfiability: assume a
proof with a set of non-local T -lemmata. When building an
interpolant for this proof, each non-local lemma produces
a possibly new T -literal as a local interpolant (by nI :=
T − INTERPOLANT(η \ B, η ↓ B)). If we had a way to
add redundant T -literals to these non-local lemmata, such that
some lemmata became local and thus would have ⊥ or > as
interpolants instead of new T -literals, the resulting interpolant
would have a reduced size due to constant propagation.

At first sight, our method seems to contradict the stan-
dard approach used in SMT(T )-solvers which typically makes
use of minimal infeasible assignments (and thus minimal T -
conflicts) produced by a theory solver in order to prune the

2Note that in the case of linear inequations an appropriate linear-
combination can be computed by linear programming [28].

n : (a ∨ b)

n1 : (a ∨ c©) n2 : (b ∨ c©) n3 : (a ∨ c©∨ e)

(¬b ∨ c) (¬a ∨ c) (¬b ∨ c ∨ e)

n : (a ∨ b ∨ c©)

n1 : (a ∨ c) n2 : (b ∨ c) n3 : (a ∨ c ∨ e)

(¬b ∨ c) (¬a ∨ c) (¬b ∨ c ∨ e)
⇓

P :

P ′ :

Fig. 3. Pushing-up literals

search space of the DPLL-based solver as much as possible,
leading to smaller proofs. However, we add redundant T -
literals to non-local lemmata only as a postprocessing step
to an existing proof. In doing so we take care of preserving
the validity of the original proof. By Fig. 3 we explain the
basic idea: The upper part of Fig. 3 shows a detail of a bigger
resolution proof P : the node n has three children n1, n2, and
n3, whose clauses are derived from their parents by resolution.
The clauses of all three children contain the literal c. n’s clause,
however, does not contain the literal c. ‘Pushing up’ c from
n1, n2, and n3 to n (i. e. adding c to n’s clause), creates a
modified graph P ′ (shown in the lower part of Fig. 3), in which
the resolutions at n’s children n1, n2, and n3 are still valid.
If, on the other hand, one child’s clause did not contain the
literal c (e. g. n3’s clause), and we pushed up c to n’s clause,
the resolution at this child would not be valid anymore (the
resolvent would then contain c but the original clauses did not).
Furthermore, one must not push a literal into a node’s clause
if the literal matches the node’s pivot, since the resolvent of
two clauses can not contain the pivot variable.

In general, one can ‘push up’ literals to a node’s clause
that are (1) in the intersection of all of its children’s clauses,
and (2) do not match the node’s pivot.

This procedure can be applied recursively to n’s parents
until the leaves of the proof are reached.

Alg. 1 gives an implementation of this idea.

Algorithm 1: PushUp
Input : Proof P
Output: Modified proof
// step 1: push up T -literals

1 for n ∈ P in reverse topological order do
2 if n is a non-leaf or ncl is a T -lemma then
3 L :=

⋂
n′∈children(n) n

′
cl;

4 L := L ∩ {l|l is a T -literal};
5 if n is a non-leaf then L := L \ {np,¬np};
6 ncl := ncl ∪ L
// step 2: rebuild resolutions

7 for n ∈ P in topological order do
8 if n is a non-leaf then ncl := res(nLcl, n

R
cl)

9 return P ;

The algorithm traverses the proof in reverse topological
order starting at the root node and finally ending at the leaf
nodes. At a non-leaf node n the procedure computes the
intersection L of T -literals in the clauses of n’s children
(which have been processed before), removes n’s pivot variable
from L, and inserts the resulting set to n’s clause. For leaves
associated with T -lemmata, the same procedure is applied,
except for the removal of pivot variables. Leaves not associated
with T -lemmata are not modified.



At this stage the proof may no longer be a legal resolution
proof, since some literals that have been pushed-up in the proof
may have ‘got stuck’ and thus did not reach any leaves.

To turn the proof into a legal proof again, we reconstruct
the resolutions by traversing the graph in topological order
starting at the leaves and recomputing the non-leaves’ clauses
by resolution using the original pivots.

We now show in a two-step proof, that the PushUp-
operation, given a valid resolution proof for the T -
unsatisfiability of a clause set S, produces a valid resolution
proof.

Lemma 2 Let S = {c1, . . . , cn} be a set of clauses, P be a
resolution proof of the T -unsatisfiability of S, and let P ′ be
the result of Step 1 of the PushUp-operation on P .

For node n′ ∈ P ′ and the corresponding node n ∈ P , it
holds that n′cl ≥ ncl and n′cl is not a tautology.

Proof: The first part (n′cl ≥ ncl) is obvious, since
the operation only adds new literals to a clause but does
not remove any literals. The second part can be proven by
induction over the node’s distance to the root node.

In the base case the distance is 0, and thus n′ ∈ P ′ and
n ∈ P are the root nodes of P ′ and P . P is a proof of
unsatisfiability, so ncl is the empty clause by definition. No
literals are added to ncl (n has no children), resulting in n′cl =
∅, which is clearly not a tautology.

In the inductive step, we are looking at a node n′ ∈ P ′

with at least one child. We assume that n′cl is a tautology,
i. e. there is a literal l, with l ∈ n′cl and ¬l ∈ n′cl. Since all
clauses occurring in P are either clauses of S, T -lemmata, or
produced by resolution, they are all non-tautological. For the
corresponding node n ∈ P it holds that l /∈ ncl or ¬l /∈ ncl.

Case 1: l /∈ ncl and ¬l /∈ ncl. l and ¬l must have
been added to n′cl by the PushUp-operation, i. e. for all
c′ ∈ children(n′) it must hold that l ∈ c′cl, ¬l ∈ c′cl, which is
a contradiction to the induction hypothesis.

Case 2: l /∈ ncl and ¬l ∈ ncl. l must have been
added to n′cl by the PushUp-operation, i. e. for all children
c′ ∈ children(n′) it must hold that l ∈ c′cl (*). l ∈ c′cl implies
that l ∈ ccl or l is added to ccl by the PushUp-operation. In
both cases it follows cp 6= l. For all children c ∈ children(n)
¬l ∈ ncl and cp 6= l implies that ¬l ∈ ccl which in turn implies
¬l ∈ c′cl (**). (*) and (**) contradict the induction hypothesis.

Case 3: l ∈ ncl and ¬l /∈ ncl. Similar to Case 2.

This lemma states that the same resolutions are possible in
P and the result P ′ of Step 1 of the PushUp-operation on P .
This allows for a successful rebuilding of the resolutions by
Step 2 of the PushUp-operation.

Theorem 1 Let S = {c1, . . . , cn} be a set of clauses, P be a
resolution proof of the T -unsatisfiability of S, and let P ′ be
the result of the PushUp-operation on P .

P ′ is a resolution proof of the T -unsatisfiability of S.

Proof:

1) Let n′ be a leaf node of P ′ and n be the correspond-
ing leaf node of P . Case (a) ncl ∈ S: ncl is not mod-
ified by PushUp and thus n′cl ∈ S. Case (b) ncl = ¬η

for some T -lemma ¬η = {l1, . . . , lk}: The clause n′cl
of the corresponding node n′ ∈ P ′ is created from
ncl by adding some set of T -literals {l′1, . . . , l′m}.
Since l1 ∨ . . . ∨ lk |=T > (definition of a T -lemma),
it holds that l1 ∨ . . . ∨ lk ∨ l′1 ∨ . . . ∨ l′m |=T >. So
n′cl is a T -lemma, too.

2) Let n′ be a non-leaf node of P ′. By construction it
holds that n′cl = res(n′lcl, n

′r
cl).

3) Let r′ be the root node of P ′. Assume that r′cl is
not the empty clause, w. l. o. g. l ∈ r′cl for some T -
literal l. l must have been added to some T -lemma
of a leaf node n in the first part of PushUp. It is
easy to see from Alg. 1 that this can only happen if
every path π from the root node r ∈ P to the leaf n
contains a non-leaf node m with l ∈ mcl; since rcl is
the empty clause in the original proof, l must vanish
by resolution with pivot l on the sub-path π′ from r
to m. All pivots remain unchanged in the modified
proof, so l is eliminated by resolution on any path to
r′. l /∈ r′cl, which is a contradiction to the assumption.

Using the PushUp-operation and Lemma 1, we define
a modified interpolation algorithm (Alg. 2), which we call
interpolation with lemma localization.

Algorithm 2: Interpolation with Lemma Localization
Input : Set of clauses S with S |=T ⊥ and disjoint

partition (A,B) of S
Output: Interpolant for (A,B)

1 P := ComputeProof(A, B);
2 P ′ := PushUp(P);
3 for leaf n ∈ P ′ with ncl ∈ S do
4 if ncl ∈ A then nI := ncl ↓ B;
5 else nI := >;
6 for leaf n ∈ P ′ with ncl = ¬η and ¬η is T -lem. do
7 if η \B is T -unsat. then nI := ⊥;
8 else if η ↓ B is T -unsat. then nI := >;
9 else nI := T -INTERPOLANT(η \B, η ↓ B);

10 for non-leaf n ∈ P ′ in topolocical order do
11 if np /∈ B then nI := nLI ∨ nRI ;
12 else nI := nLI ∧ nRI ;
13 return rI , where r is the root node of P ′;

The algorithm differs from the original interpolation algo-
rithm in two places: In line 2 the PushUp-operation is called
to insert T -literals into the T -lemmata of the proof’s leaves.
In lines 7–8 Lemma 1 is applied to discover local lemmata;
if a local lemma is found, the interpolant is set to > or ⊥,
otherwise the algorithm falls back to standard T -interpolation.

The interpolant computed by Alg. 2 differs from the
original interpolant constructed by the procedure from [16]
only by the fact that some interpolants for unsatisfiable pairs
of conjunctions of T -literals are replaced by constants > or
⊥. Apart from that the interpolants are structurally equivalent.
Our interpolant can be simplified by constant propagation such
that our interpolant is guaranteed to have smaller or equal size
as the original interpolant.

IV. EXPERIMENTAL RESULTS

To show the effectiveness of our approach, we have im-
plemented a prototype for the interpolation of formulas over
LA(Q) (linear inequations over the rationals with rational
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Fig. 5. Results of interpolation

coefficients) closely following Alg. 2. The initial proof of un-
satisfiability for a given formula is computed using MathSAT’s
proof API3 [23], the checks for A/B-locality of lemmata (lines
8 and 9 in the algorithm) are conducted with MathSAT4, the
interpolants for non-local lemmata (line 10 of the algorithm)
are taken from the initial proof.

As benchmarks for our implementation we chose interme-
diate state sets produced by the symbolic model-checker FOMC
[12] for hybrid systems; these state sets are represented with
LinAIGs, which basically are arbitrary Boolean combinations
of Boolean variables and linear inequations over Q, and thus
are formulas over LA(Q). Given such a state set φ, we produce
a bloated version φ′ = BLOAT(φ, ε) by pushing all inequations
‘outwards’ by a positive distance ε. Fig. 4 sketches a 2-
dimensional state set φ with its bloating φ′. An interpolant of
(φ,¬φ′) is an over-approximation of φ which does not deviate
from φ by more than the distance ε. Increasing the distance
ε gives the interpolation algorithm more freedom, and thus
may produce an interpolant with a smaller representation, but
on the other hand increases the over-approximation. Given a
state set and a fixed ε, the goal is to find an interpolant whose
representation is as small as possible.

ε

ε

ε

φ

φ′

Fig. 4. Bloated state set

We have taken several inter-
mediate state sets from model-
checker runs on different models
(a total of 188 state sets). In these
models a variable range for each
rational variable is given. We ap-
plied bloating to the state sets
with distances ε corresponding to
1%, 5%, 10%, 50% and 100% of
the variable ranges (resulting in a
total amount of 940 benchmarks).
The original state sets contain up
to 7 rational variables, up to 591
inequations, up to 28 additional

Boolean variables, and up to 18000 binary Boolean connec-
tives.

All experiments were conducted on one core of an Intel
Xeon machine with 3.0GHz and a memory limit of 4GB RAM.

We first take a look at the largest state set. Fig. 5 compares
the original interpolation method (black bars) and our novel
technique (light grey bars) described in Alg. 2 for several

3MathSAT 5, version 5.1.10
4For the sake of simplicity we are using a full-blown SMT solver, although

an LP solver would suffice for performing the necessary checks.

bloating distances ε. The upper chart shows the number of non-
local lemmata in the original proof and in the modified proof
produced by Alg. 2. For the 1% bloating, the number of non-
local lemmata drops from 3212 in the original proof to 1959
in the modified proof - about 39% of the non-local lemmata
in the proof become local due to pushing literals from the
resolution proof into the lemmata. As an effect the number of
inequations in the computed interpolant drops from 599 to 451
(in both cases after constant propagation). This corresponds
to a decrease of about 24%. This comes at a cost: the total
computation time (including generation of the original proof
and building the final interpolant) slightly rises from 26.5 to
32.4 seconds (increase by 22%); the additional time is spent
for the PushUp-operation and the additional locality checks for
all lemmata. Moreover, Fig. 5 shows for increasing bloating
distances that all numbers (non-local lemmata, inequations in
interpolants, run-times) decrease due to increased degrees of
freedom for the interpolation.

We now use the complete benchmark set to quantitatively
compare the original interpolation scheme with our modified
technique.

Fig. 6 shows scatter charts depicting the numbers of inequa-
tions in the resulting interpolants for the original interpolation
scheme (x-axis) and the modified scheme (y-axis) – one for
those formulas where the number of inequations in the original
interpolant is < 100 and one for ≥ 100. A point in one of
the charts corresponds to one state set with a specific ε5; the
x-value of such a point gives the number of inequations in
the resulting interpolant for the original scheme, the y-value
gives the number of inequations for the modified scheme. If a
point lies below the black diagonal line, the modified method
resulted in a lower number of inequations.6

In 65% of the benchmarks we can observe a reduction
in the number of inequations by ≤ 10% due to our proposed
method, for 23% of the benchmarks the improvement is > 10%
and ≤ 20%, for 6% of the benchmarks the improvement is
> 20% and ≤ 30%, for the remaining 6% of the benchmarks
the number of inequations is reduced by more than 30%. Due
to the nature of our method, the number of inequations can
never increase.

Fig. 7 shows a similar scatter chart for the total run-time
(including the computation of the initial proof, performing
pushup and lemma localization, and building the final inter-
polant). 7

As expected, the time consumption of our proposed method
is slightly larger that the original method (the points lie above
the black diagonal) due to the extra work done by the PushUp-
operation and lemma localization. For 38% of the benchmarks
the increase in runtime is ≤ 10%, for 55% the increase is >
10% and ≤ 20%, for the remaining 7% of the benchmarks the
increase in run-time is > 20% and ≤ 30%; we never observed
an increase in run-time by more than 30%8.

A break down of algorithm 2 reveals that the additional
time needed for interpolation when using lemma localization
on average divides about in half into the the PushUp-operation
and the detection of local lemmata via SMT-calls.

5Due to chart scaling issues we omit the five data points corresponding to
the state set already discussed in Fig. 5

6The gray lines correspond to 10%, 20%, and 30% improvement.
7The gray lines correspond to 10%, 20%, and 30% increase in run-time.
8Since small run-times are relatively unstable, we restrict the previous

evaluation to benchmarks with relevant run-times ≥ 0.5s.
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Fig. 6. All benchmarks, inequations in resulting interpolant
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Altogether, we can observe significant improvements by
interpolation with lemma localization on the benchmark set.
These improvements could be achieved without relevant run-
time penalties.

V. CONCLUSIONS

In the previous section we have presented interpolation
with lemma localization, a modified interpolation algorithm
for formulas over T , which modifies a given resolution proof
by pushing up T -literals to the T -lemmata, without actually
changing the structure and the validity of the proof. Extending
the T -lemmata by T -literals possibly creates local lemmata
with trivial interpolants, and thus reduces the size of the
final interpolant. We have also shown the effectiveness of this
approach on a large set of real-world benchmarks from hybrid
model-checking.

Our approach seems to be completely orthogonal to purely
propositional approaches for proof restructuring and inter-
polant compaction, such as [17], [18], [19], [20], as well
as to other methods which optimize already existing state
set predicates, such as [11]. It may be combined with these
techniques yielding even smaller interpolants.

We have shown the effectiveness of our method on single
state sets from a hybrid model checker. For the future we
plan to provide an extended hybrid model checker using over-
approximated state sets based on the computed interpolants (in
combination with a counterexample-guided refinement proce-
dure).
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