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Abstract

In this paper we present a novel QBF solving technique which is based on the integration
of a search based (DPLL) and a rewriting based approach: While traversing the search space
in a DPLL manner, we iteratively generate many sub-problems, which are handed over to the
rewriting method one by one. Instead of just communicating back satisfiability results of the
individual sub-problems, we collect as many constraints derived by the rewriting based solver
as possible, and transfer them back to the search based solver. This allows not only to prune
the current branch, but also to avoid the unnecessary traversal of search paths in different
regions of the search tree. We also discuss heuristics to determine suitable switching points
between these two methods. We present first promising results that underline the potential of
our approach.

1. Introduction

Quantified Boolean Formulas (QBF) are an extension of propositional formulas obtained by adding
existential and universal quantifiers. They allow for a compact encoding of many problems, e. g.,
from verification [1, 2, 3] and planning [4]. The decision problem for QBF is PSPACE complete [5]
and is assumed to be harder to solve than the SAT problem, which is NP complete [6].
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Many QBF solvers with different solving techniques have been developed in the last years: DPLL-
based approaches [7, 8, 9], as well as several rewriting-based approaches, such as resolution and
expansion [10], symbolic skolemization [11], and symbolic quantifier elimination using AIGs [12].
The last QBF solver evaluation [13] has shown that no single solution technique is superior for
all classes of QBF problems. One technique works well in one class of QBF problems, while a
different class needs a different approach. This observation shows that solvers combining different
solving techniques are the way to go.
We propose a novel combined approach, which starts the solution process with a search based
solver that traverses the search tree in the order given by the quantifier prefix. At suitable points
during the traversal, the search is stopped and sub-problems are generated by projecting the QBF
instance to the variable assignments induced by the current search paths. These sub-problems
are then given to a rewriting based solver, which solves them and returns sub-results along with
additional constraints learned about the sub-problems to the search procedure. This allows the
search not only to finish the current branch and backtrack to lower levels of the tree but also to prune
unexplored parts of the search tree due to additional constraints returned by rewriting. In this paper,
we present adaptive heuristics that determine suitable points to switch from search to rewriting, and
we explore means of deriving and extracting constraints from the runs of the rewriting based solver
that support the search process. We present first promising results on QBF instances used in the
QBF evaluation that demonstrate the potential of our approach and that most notably show that our
combined approach is superior to the two single solution techniques involved.
There is some related work on integrating and combining different solution techniques in the QBF
domain:
One approach [14] first runs a rewriting based solver, taking snapshots of the intermediate results
of the solver, and hands over completely to search when the progress of rewriting based solving
significantly degrades. There are two main differences to our new approach: (1) the order of search
and rewriting is reversed, and (2) they only perform one switch and thus do not transfer knowledge
gained by the secondary solver to the first.
The closest relation to this work is given in [15, 16]. The authors apply online switching policies
to alternate between search and resolution [17].
There are portfolio approaches, e. g. the multi-solver engine AQME [18], which selects the ‘best’
solver for a given instance from a set of solvers by machine-learning techniques. In contrast to
our approach, the different techniques are strictly separated and no information is shared when
switching to a different engine.
In [19, 20] a combined technique for propositional SAT formulas has been presented. The authors
combine SAT and BDDs by decomposing the formula with DPLL and hand over sub-problems
to BDDs [21]. However this approach until now in this form is not applicable to formulas with
quantifiers.
The remainder of this paper is structured as follows: In Section 2 we give a short introduction to
QBF. Furthermore, we outline the algorithmic structure of search based and rewriting based QBF
solving. In Section 3 we present the details of our integration. In Section 4 we present experimental
results obtained by our prototype implementation. Finally, we summarize our results in Section 5
and briefly discuss future work.



2. Preliminaries

2.1. Quantified Boolean Formulas

A quantified Boolean formula ψ = Q1X1 . . . QnXn.φ(X) in prenex conjunctive normal form
(PCNF) is composed of a prefix Q1X1 . . . QnXn, where Qi ∈ {∃, ∀} are existential and universal
quantifiers,X1, . . . , Xn are pairwise disjoint and non-empty sets of Boolean variables, and the ma-
trix φ(X) is a propositional formula over the set of variables X =

⋃n
i=1 Xi represented as a CNF.

A CNF is a conjunction of clauses and a clause is a disjunction of literals. A literal l is a variable
either in positive or negative (l̄) occurrence. Instead of l and l̄ we also write l0 and l1 respectively.
For the ease of presentation, we will consider clauses as sets of literals. W.l.o.g., we restrict the
prefix to a sequence of alternating quantifiers, such that Qi 6= Qi+1, ∀i ∈ {1, . . . , n − 1}. The
quantification level of a variable x ∈ Xi is implicitly given by i.

Consider a QBF ψ, its matrix φ, a variable v ∈ Xi, i ∈ {1, . . . n} and its corresponding literal l.
A QBF ψl is a formula whose prefix results from eliminating the variable v: Q1X1 . . . Qi(Xi \
v) . . . QnXn. Furthermore any occurrence of l (l̄) in φ is substituted by TRUE (FALSE) – anal-
ogous for ψl̄, where any occurrence of l (l̄) in φ is substituted by FALSE (TRUE). Consider a
sequence of literals σ = lk11 , l

k2
2 , . . . , l

km
m with kj ∈ {0, 1} , j ∈ {1, . . . ,m}. A QBF ψσ is given as

(. . . ((ψ
l
k1
1

)
l
k2
2

) . . .)lkmm . We write Σ for the set of all variables which are included in the sequence
σ. Note, that we also allow empty sequences.

A unit clause is a clause which contains only one literal. If the literal l of the unit clause is
universally quantified, the formula is unsatisfiable, since we can not satisfy the formula for both
polarities of l. Otherwise l can be directly assigned to TRUE, since this is the only possible way to
satisfy the unit clause.

2.2. QBF solving techniques

Our integrated approach uses a prototype search based QBF solver, based on the SAT solver AN-
TOM [22] and the rewriting based solver AIGsolve [12, 23]. We will review both approaches briefly
in this section.

A search based QBF solver chooses an unassigned variable x ∈ Xr, where r is the lowest quan-
tification level with an unassigned variable (branch or decision). Afterwards, the CNF is updated
with the chosen value and its implications until a fixed point is reached (bound or deduction). If
we obtain a conflict/solution from this step, a reason for unsatisfiability/satisfiability is calculated
and the solver backtracks to the last decision. Every partial assignment of the literal leads to a new
sub-problem ψσ, where σ is the assignment of all literals so far. In contrast to the SAT problem both
assignments of a universally quantified literal must lead to a satisfying result, i. e. both branches
of this literal have to be traversed. The whole procedure is repeated until a conflict/solution on
branching level 0 is produced.
In the past many techniques have been developed improving the basic algorithm (mostly adopted
from SAT), such as non-chronological backtracking, pure literal detection, restarts, conflict clause
/ solution term minimization (see [24] for an overview). We briefly introduce the conflict clause /



solution term generation and minimization below.
A reason for an unsatisfiable matrix is an empty clause. A constraint is generated by traversing the
implication graph and performing resolution steps on the involved clauses [25]. In addition to the
SAT case we have to treat carefully the universally quantified variables [26].
A reason for a satisfiable matrix is an assignment of all variables in X , such that every clause
is satisfied. To improve this reason we are looking for a subset of assignments to variables in
X which is necessary to satisfy all clauses in the original matrix. Therefore, we primarily try to
eliminate variables with a universal quantifier from the reason, since the less universal variables
occur in the reason the more is pruned from the search space. Consider a literal xkuu . To eliminate
this literal from the solution term we look at any clause which contains xkuu , searching for another
literal that also satisfies the clause.
In both cases we are able to extract a new constraint from the generated and minimized reason,
which prunes the search space. These constraints are finally added to the QBF ψ.

A rewriting based QBF solver eliminates variables until the formula (respectively the symbolic
representation of the formula) is trivially unsatisfiable/satisfiable. We will give a brief introduction
to the symbolic quantifier elimination with AIGs used in the QBF solver AIGsolve.
After preprocessing the initial QBF instance (see Section 2.3 for further details), AIGsolve scans
the QBF for sets of clauses establishing functional definitions of variables, e. g. (y ∨ x1), . . . , (y ∨
xn), (y∨x1∨. . .∨xn), which defines y ≡ x1∧. . .∧xn. Then a circuit-like, non-CNF representation
of the QBF is created [12], instead of substituting variables (e.g. y) with definitions in the QBF by
their corresponding definitions (e.g. x1 ∧ . . . ∧ xn).
Next, quantifiers from the linear prefix are distributed into the non-CNF representation of the QBF
(this construction is also called QTREE, see [14] for further details), reducing the scope of the
individual quantifiers. For the internal representation of the propositional formulas, AIGsolve uses
And-Inverter Graphs (AIGs) [27] which are Boolean circuits composed of two-input AND gates
and inverters. In contrast to BDDs, AIGs are non-canonical, i. e. for each propositional formula
there exist many structurally different AIG representations. This allows them to be potentially more
compact than BDDs.
In its main routine, AIGsolve traverses the QTREE, removing leaves from the tree by eliminating the
corresponding quantifiers of the leaf node using symbolic quantification methods on AIGs. Once
all quantifiers/nodes are eliminated from the QTREE, the procedure terminates, leading either to an
AIG which is constant 0 (unsatisfiable) or 1 (satisfiable). In case of a satisfiable instance with an
existential outermost quantifier level, AIGsolve provides a model for the variables of the outermost
quantification level. A literal in the model is either assigned to a certain value or marked as „don’t
care“, i. e. this literal is not responsible for the satisfiablity of the QBF.
AIGsolve uses a sophisticated algorithm [23] for quantifier elimination, which heuristically com-
bines cofactor-based quantifier elimination with quantification using BDDs and thus benefits from
the strengths of both data structures.

2.3. Preprocessing QBF

Many QBF instances can be reduced in size of the variables and/or clauses in the CNF by more
or less complex preprocessing steps. Many of these techniques are adopted from SAT, such as
(self)subsumption, equivalence reduction, variable elimination, etc. In addition there are several



techniques specifically dedicated to the case of QBF, such as universal reduction. These techniques
are described in [28] and are beyond the scope of this paper.
As a preprocessor for our front-end solver we use sQueezeBF [28], since it is one of the most
powerful preprocessors for search based QBF solvers. In addition, we apply a light version of the
AIGsolve preprocessor [23] for obtaining additional constraints as described in Section 3.3. This
preprocessor runs on the intermediate sub-problems, which are handed over from the search based
solver to the rewriting based solver. We use two different preprocessors, since AIGsolve needs
dedicated methods (e. g. gate detection) and also suffers from some of the techniques used in
sQueezeBF (e. g. variable elimination).

3. Integration

As described in the last section, a search based QBF solver decomposes the original formula into
many disjunctive sub-problems ψσ until a conflict in the formula occurs or a solution is found for
a certain assignment. One can observe that there are many QBF instances which tend to explore
almost the whole search space until a conflict/solution on decision level 0 occurs.
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Figure 1: Decomposition into sub-problems

Figure 1 shows the basic idea of our integration. The approach is able to interrupt the search proce-
dure and transfer the resulting sub-problem ψσi to the rewriting based solver AIGsolve. First these
sub-problems are handed over to a preprocessor ( filled triangle) producing additional constraints,
which can prune paths in different parts of the search tree.
The lowest quantification level of the remaining QBF ψσ after a series of variable decisions is
indicated by e , e ≥ 1 such that ψσ = QeX ′

e, . . . ,QnX ′
nφ

′(X ′
e, . . . X

′
n), where X ′

i = Xi \ Σ ,∀i ∈
{e, . . . , n}. Note that – although a search based algorithm only assigns variables in order of the
quantification levels – also variables from other levels can be assigned, due to the implications
resulting from the bound (deduction) phase. After transferring the remaining QBF ψσ to AIGsolve,



AIGsolve will return an additional constraint, cutting the search space w. r. t. the current literal
sequence σ.
In the following sections we present the steps of the integration, in particular: (1) how to partition
the overall problem into different sub-problems, (2) how to learn from the rewriting based solver,
and (3) how to gain additional constraints from the intermediate preprocessor.

3.1. Choosing suitable switching points

The longer the sequence σ the potentially easier is the sub-problem ψσ for AIGsolve, but the more
often we have to call the back-end solver. Moreover the pruned sub-problems are quite small. If we
call AIGsolve on shorter sequences, the sub-problems are more similar to the orginal instance and
thus harder to solve. But if AIGsolve succeeds, we would prune large parts of the search tree. The
goal is to find a trade-off between less sub-problems that are hard to solve and many sub-problems
that are easy to solve.
We implement a dynamic heuristic based on the computation time t of AIGsolve for a sub-problem.
Initially we call the back-end solver when all variables in X1 are assigned. In this moment the
amount of assigned variables so far α = |Σ| is stored as a reference point. We heuristically define
two thresholds of the computation time tfast and tslow. If t ≤ tfast (t ≥ tslow) holds, α is decreased
(increased) supposing that the sub-problem is too easy (hard) for the back-end solver. From now
on we switch to AIGsolve whenever α (or more) variables are assigned – α is updated after every
call of AIGsolve. Additionally we define an upper limit ttimeout ≥ tslow. Reaching this limit, the
AIGsolve instance will be terminated with an unknown result and the front-end solver resumes on
current sub-problem. Apart from that, this case is treated the same way as “t ≥ tslow”. In our
experiments we force a strict timeout threshold (2 seconds), otherwise the back-end solver would
spend to much time for potentially hard sub-problems.
Since we prefer branching heuristics that treat variables which reduce the sub-problem size as
soon as possible, we choose the DCLS heuristic [29], which selects the variable that occurs most
frequently in not assigned clauses. For this heuristic we focus only on the original clause set – and
not the additional learned constraints – to avoid a large overhead in the calculation.
To prevent bad switching points, i. e. the value of α is over-trained to a certain part of the search
space, a reset on α is performed after every internal restart of the search based solver.

3.2. Learning constraints from AIG-based solution

In this section we discuss how to learn additional constraints for the search based solver from the
AIG based solver. We have to differentiate between a satisfiable and unsatisfiable sub-problem.
In both cases a reason for (un)satisfiability is needed which has to be used during the backtrack
procedure. For both cases there exist several approaches to improve the reason, including the one
described in Section 2.2.
Existing methods for minimizing conflict clauses and solution terms are CNF-based and can not
be adopted directly to AIG-based approaches, since the CNF representation of the original sub-
problem is lost, when we process the sub-problem by AIGsolve. However, in the following we
describe a method to derive small constraints from the back-end solver which are used for pruning
the search space of the search-based solver.



First, we consider the case of a satisfiable sub-problem. The set of assignments to variables Σ,
which represents the path to the sub-problem ψσ, provides a reason. This reason only contains
variables x ∈ Σ, so that the related constraint is in many cases not reducible. Then we obtain a
new learned constraint that only prunes one certain path in the search tree.
Thus, we want to improve the learned constraints. To do so, we exploit the set of satisfying assign-
ments which is provided by AIGsolve iff Qe = ∃. The reason of the sub-problem can be extended
by one of these satisfying assignments to variables Xe. Now the extended reason can be mini-
mized by the method described in Section 2.2. Since it can be seen that the variables from Xe can
be eliminated anyway from the reason after the minimization (see [24] for details), the number of
variables in the resulting constraint is guaranteed to be less or equal to the number of variables in
the original one.

A reason for an unsatisfiable matrix is a clause where every literal is assigned to false. Unfortu-
nately AIGsolve is not able to provide any proof of unsatisfiability, i. e. we can not offer a more
dedicated reason for an unsatisfiable sub-problem, yet. The least we can provide is a subset of
Σ, in particular all literals which are assigned by a branch of the search based solver. A further
minimization will be definitely a big issue for future work on this topic.

Note that we only hand over the original clause set to AIGsolve and not the learned constraints
since we want to avoid a potential blow-up of AIGsolve’s internal symbolic representation of the
formula.

3.3. Learning constraints from CNF-based preprocessor

Before AIGsolve starts the main solving routine we are using a preprocessor to simplify the given
sub-problem. This is motivated by two observations: a.) the main AIGsolve routine benefits from
the simplification of the formula w. r. t. the computation time, b.) the preprocessor is able to learn
additional constraints. These constraints can be used to prune different parts of the search space.

Consider a QBF ψ and a sequence of assignments σ. We have to transfer the remaining sub-problem
to a preprocessor, which provides the techniques mentioned in Section 2.3. For each new learned
clause ξ in the preprocessor, we memorize the set of clauses Cξ, which are required to produce this
clause. Moreover, for each clause cσ in ψσ we consider the subset of assignments from σ which
are needed to turn the original clause c in ψ into cσ. This subset of assignments can be viewed
as a set λcσ of literals. We define λξ =

⋃
cσ∈Cξ λcσ . Now we know the following: Assuming the

assignments from λξ we can derive the clause ξ from the original clauses in ψ, i.e., we can learn
the constraint

∧
l∈λξ l⇒ ξ or equivalently the clause cnew :=

∨
l∈λξ l ∨ ξ.

If we kept every learned clause, we would learn many redundant constraints, which will slow
down the search process. So, instead of transferring every cnew, we just focus on the constraints
with |ξ| = 1, i. e. unit clauses of the preprocessor.

Example 1 Consider a QBF ψ = ∃a∀b∃c d e f .{a, c, d̄} ∧ {b̄, c̄, d} ∧ {e, c, f} ∧ {e, d̄}. Let
σ = ā, b, f̄ a sequence of assignments, done by a search based solver. Then, we will obtain as ψσ:

∃a∀b∃c d e f .{a, c, d̄}ā,b,f̄ ∧ {b̄, c̄, d}ā,b,f̄ ∧ {e, c, f}ā,b,f̄ ∧ {e, d̄}ā,b,f̄ =



∃c d e .{c, d̄} ∧ {c̄, d} ∧ {e, c} ∧ {e, d̄}

We denote {c, d̄} by c1, {c̄, d} by c2, {e, c} by c3, and {e, d̄} by c4.
Assume, that we switch to AIGsolve in this moment, starting with preprocessing the formula. First
of all, we compute for every clause the set of literals, which are responsible for the clause, namely:
λc1 = {ā}, λc2 = {b}, λc3 = {f̄}, λc4 = ∅. The equivalence reduction routine will identify that
c ≡ d holds (from c1 and c2), resulting in a matrix where every occurrence of d is replaced by c (in
addition c1 and c2 will be deleted). Note, that this equivalence does not hold for ψ, but for ψσ. We
obtain the following QBF:

∃c e .{e, c} ∧ {e, c̄}

For c5 := {e, c̄} we have Cc5 = {c1, c2} and λc5 = λc1 ∪ λc2 = {ā, b}.
Consider q-resolution as the next preprocessing step. This method will resolve c3 and c5 to c6 :=
{e} with Cc6 = {c1, c2, c3}, and λc6 = λc1 ∪λc2 ∪λc3 = {ā, b, f̄}. At this moment we have learned
a unit clause within the preprocessor, which will be transferred back to the search based front-end.
The resulting constraint is cnew =

∧
l∈λc6 l⇒ c6 =

∨
l∈λc6 l̄ ∨ c6 = {a, b̄, f, e}. This constraint can

be interpreted as follows: Whenever we have a sequence of assignments with σ = ā, b, f̄ we are
allowed to assign e with TRUE.

4. Experimental results

We have developed a prototype implementation for our approach. The experiments were run on a
Intel Core 2 Quad with 2.66 GHz and 8 GB of memory. We used a memory limit of 4 GB and a
time limit of 1200 CPU seconds. We focus on 4 benchmark classes from the QBFLIB [30] prob-
lem suite.

Table 1 shows the result of a few selected benchmarks from the mqm-Umbrella family:

rewriting search integration
benchmark result time branches result time branches sc. cons. result time
Umbrella_tbm_14.tex.moduleQ2.1S.000812 unknown TIMEOUT 1 685 099 UNSAT 321.29 134 300 21 86 UNSAT 35.37
Umbrella_tbm_21.tex.module.000029 unknown TIMEOUT 1 006 878 unknown TIMEOUT 234 854 55 5 UNSAT 199.97
Umbrella_tbm_23.tex.moduleQ1.2S.000001 unknown TIMEOUT 924 719 SAT 110.76 253 252 151 409 SAT 782.03
Umbrella_tbm_25.tex.moduleQ3.2S.000063 unknown TIMEOUT 2 180 296 unknown TIMEOUT 253 952 21 57 UNSAT 72.53
Umbrella_tbm_26.tex.module.000004 unknown TIMEOUT 94 415 UNSAT 14.52 40 1 0 UNSAT 13.74
Umbrella_tbm_26.tex.moduleQ3.2S.000014 unknown TIMEOUT 1 166 263 unknown TIMEOUT 260 609 26 5 UNSAT 151.82
Umbrella_tbm_29.tex.module.000078 SAT 20.35 749 406 unknown TIMEOUT 265 607 86 3 SAT 217.30

Table 1: mqm-Umbrella family

In this table we compare the search based and rewriting based solver, which are involved in the
integration with our approach. For all solvers we indicate the result and the runtime in seconds.
For the search based solver we added the number of branches and for the integrated approach
we also indicate the number of successful AIGsolve calls (sc.), i. e. the runtime t is below our
given ttimeout and the number of learned constraints (cons.), which are produced by the constraint
learning routine from Section 3.3. Note, that according to Section 3.2 every result of the back-end
solver produces also a constraint, which prunes the related sub-problem.
One can observe that the number of branches is significantly decreased using our approach. On
the other hand the back-end solver produces an overhead of additional computation time. In most



cases this overhead is compensated by the reduction of the traversed search space. We are also able
to learn constraints from the rewriting based solver, which can be reused later in the search process.

In Table 2 we give an overview for the 4 benchmark families we used:

rewrite search integration
family # solved time solved time solved time
mqm-Core 63 3 20.34 26 12.56 26 12.68
mqm-Umbrella 73 19 18.40 28 16.47 36 13.30
nusmv.guidance 34 17 5.94 1 11.07 9 8.38
scholl-becker 64 50 4.74 34 10.19 38 9.53
total 234 89 49.49 89 50.29 109 43.93

Table 2: Results for different benchmark families

In this table we show for the search based solver, AIGsolve and its integrated approach for every
family how many instances are solved and the amount of time (in hours) was needed. One can
see that we are able to conserve the strength of the front-end solver in general. The integration is
able to solve additional benchmarks, which are more dedicated for a rewriting approach using the
results of the sub-problems as well as benchmarks which are hard to solve for both solvers alone
(see also Table 1).

However, the results also show, that our approach is not competitive in all cases. There are sev-
eral promising ideas for improvement, which are outlined in Section 5. However, the first result
indicate, that our approach works in general and has a high potential.

5. Conclusions and future work

In this paper, we presented an integration of two orthogonal QBF solving techniques, namely
searching and rewriting. We show that this approach reduces the number of branches made by
DPLL algorithm and therewith the solution space that has to be traversed.
As future work we consider to look for better decision heuristics for the switching point between
the two solution methods. To do this we investigate in machine learning approaches for automati-
cally determined switching point.
There is also the need for tuning the involved solvers w. r. t. the integration, e. g. incremental usage
of AIGsolve and its preprocessor. We also investigate a even more integrated approach in the case
AIGsolve fails for a certain sub-problem. If so we may hand over the remaining sub-problem to
another instance of a search based solver to preserve the work AIGsolve has done so far.
We will also investigate in further mechanism to obtain constraints, both from AIGsolve and the
preprocessor. In this context we will analyze how many constraints we want to obtain from the
back-end solver in general and how adding (some of) the learned constraints from the front-end
can be beneficial for the solving process of the back-end solver.
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