
Guaranteeing termination of fully symbolic timed
forward model checking

Georges Morbé
University of Freiburg,

Department of Computer Science
morbe@informatik.uni-freiburg.com

Christoph Scholl
University of Freiburg,

Department of Computer Science
scholl@informatik.uni-freiburg.com

Abstract—In this paper we present a normalization tech-
nique to guarantee termination of fully symbolic forward model
checking for timed automata. Whereas for semi-symbolic model
checkers based on convex clock zones there exist methods in
the literature to solve this problem, our normalization algorithm
can be applied to fully symbolic model checkers representing
arbitrary symbolic (convex and non-convex) state sets. Our
method is based on a projection of region-equivalent clock
valuations to the same area within their equivalence class.
In a first approach we present a normalization algorithm for
diagonal-free timed automata. Then we generalize the approach
to timed automata with diagonal constraints. We show that
our normalization technique enables termination of the fixed
point iteration in a prototype forward model checker using fully
symbolic state set representations.

I. INTRODUCTION

The application area of real-time systems grows with an
enormous speed and along with that grows their complexity
as well as the damage caused by their failure. For these
reasons verification of such systems becomes more and more
important. Timed automata (TAs) [1], [2] turned out to be
an adequate formalism for modelling and verifying real-time
systems. TAs generalize finite automata by adding real-valued
clock variables. All clock variables evolve over time with the
same rate and they can be reset during discrete steps which
in turn happen in zero-time. Verifying safety properties of
TAs can be reduced to the computation of all states from
which unsafe states can be reached and checking whether some
initial states are included in this set of states (backward model
checking). Equivalently the problem can be reduced to the
computation of all states reachable from the initial states and
checking whether one of the reached states is unsafe (forward
model checking).

Alur and Dill have shown that the model checking problem
on TAs is decidable [1], [2]. They introduced equivalence
classes for clock valuations, which are called clock regions.
A clock region combines infinitely many region-equivalent
clock valuations. This concept allows to reduce the model
checking problem on TAs to a reachability problem on a region
graph with finitely many clock regions. Based on their work a
lot of model checking approaches considering reachability for
TAs have been developed. They can be classified into semi-
symbolic and fully symbolic approaches. Semi-symbolic ap-
proaches represent discrete locations of TAs explicitly whereas
sets of clock valuations are represented symbolically e.g. by
unions of clock zones. Clock zones are convex state sets which
result from an intersection of clock constraints of the form
xi ∼ d and xi − xj ∼ d where d ∈ Z, ∼ ∈ {<,≤,≥, >} and
xi, xj are clock variables. UPPAAL [3], [4], the probably

most prominent semi-symbolic approach, represents clock
zones by so-called difference bound matrices (DBMs) and
provides efficient methods for manipulating DBMs. These
techniques are well-suited when the sizes of the discrete state
space and the numbers of different clock regions per location
remain moderate. CDDs [5] make the attempt to represent
unions of clock zones more compactly. CDDs are BDD-like
data structures where nodes are labelled by clock differences
xi−xj . CRDs [6] are a variant of CDDs where outgoing edges
of nodes are labelled by upper bounds for clock differences
instead of disjoint intervals of rational numbers. CRDs were
combined with BDDs (leading to CRD+BDDs) to provide a
fully symbolic representation of the state space in the tool
RED [6]. Another fully symbolic representation has been
given by difference decision diagrams (DDDs) [7] which are
basically BDD representations where the decision variables
are boolean abstractions of clock constraints xi − xj ∼ d.
Computing all states reachable by evolution of time amounts to
the existential quantification of a real-valued variable. Both for
CRD+BDDs and DDDs this quantification is performed based
on the classical Fourier–Motzkin technique which requires
enumerating all paths in the diagram. As in DDDs, Seshia
and Bryant [8] consider BDD representations using boolean
abstractions of clock constraints, however they reduce real-
valued quantifier elimination to adding so–called transitivity
constraints followed by a series of quantifications for boolean
variables. Another fully symbolic representation is given by
Clock Matrix Diagrams (CMDs) [9]. CMDs basically corre-
spond to CRD+BDDs where sequences of edges representing
convex constraints are collapsed into single edges labelled
by DBMs and boolean variables are restricted to the lowest
levels in the variable orders. In [10] finite state machines
with time (FSMTs) have been introduced. An FSMT is a
formal model to represent real-time systems using transition
functions and reset functions which is especially suited for
fully symbolic verification algorithms. The FSMT model
checking algorithm from [10] uses LinAIGs (‘And-Inverter-
Graphs with linear constraints’) [11]–[13] as symbolic data
structure, which provide a fully symbolic representation both
for the continuous part (i.e. the clock values) and the discrete
part (i.e. the state variables). For the quantification of real-
valued variables, LinAIGs make use of the Weispfenning–
Loos test point method [14] which is especially suitable for
LinAIG representations.

In this paper we consider the problem that the basic forward
reachability analysis on TAs is not guaranteed to terminate.
Due to the lack of global upper bounds for clock variables,
the clock values can rise ad infinitum during time evolution.

2012 13th International Workshop on Microprocessor Test and Verification

1550-4093/12 $26.00 © 2012 IEEE

DOI 10.1109/MTV.2012.22

35

This can have the effect that during forward traversal the state
set is infinitely often enlarged such that a fixed point will
never be reached. 1 As already mentioned, on the other hand
Alur and Dill [1], [2] proved that model checking of timed
automata can be reduced to a finite problem by introducing a
finite number of clock regions, i.e. equivalence classes of clock
valuations wrt. reachability. Clock regions have the following
property: Let S be a state set containing a clock valuation
u, and let u be in the clock region Ru. If we change S
by (1) including another v1 ∈ Ru (v1 6= u) into S, by (2)
removing some v2 ∈ Ru (v2 6= u) from S or by (3) replacing
u by some v3 ∈ Ru (v3 6= u), then the locations of the TA
which are reachable from S do not change. Thus, we have the
potential to enhance the basic forward reachability analysis by
normalization techniques using operations (1) – (3) in order
to reach the goal of termination guarantees for forward model
checking.

For semi-symbolic model checking based on convex clock
zones such a normalization technique has been introduced
which relies on operation (1): If some u ∈ Ru is included
in a clock zone, the clock zone is transformed into a larger
one including the complete set Ru. Using this normalization
the fixed point iteration is guaranteed to terminate. [15], [16]
presents an appropriate normalization algorithm for UPPAAL
based on efficient DBM operations just removing or replacing
clock constraints.

Adequate normalization algorithms providing termination
guarantees for fully symbolic forward model checking did not
exist so far (apart from simple approaches which transform
non-convex state sets into (potentially large) unions of convex
clock zones and normalize each convex clock zone by the
method mentioned above). The goal of this paper is to provide
a fully symbolic normalization algorithm which handles whole
state sets at once. These possibly non-convex state sets are
represented by symbolic formulas with discrete variables (en-
coding discrete locations) and continuous clock variables. In
contrast to the algorithms for semi-symbolic model checking,
where convex clock zones are enlarged, our normalization
algorithm uses operation (3) mentioned above. It projects clock
valuations onto ‘representative clock valuations’ from the same
clock region and thus enables a fully symbolic forward model
checker to reach a fixed point after a finite number of steps.

At first, we confine our consideration to TAs without
diagonal constraints of the form xi − xj ∼ d and present a
solution for this special case. Then we generalize to approach
to TAs with such diagonal constraints appearing in guards.
As done in [15], [16] for convex zones, we split all state
sets along diagonal constraints in a preprocessing step. After
the preprocessing step, we process the split state sets by a
projection algorithm which is modified wrt. the presence of
diagonal constraints.

The paper is organized as follows. In Sect. II we give a
brief review of timed automata and we will define region-
equivalence which our normalization technique is based on.
In Sect. III we introduce our normalization technique for fully
symbolic state sets in TAs without diagonal constraints. The
problem with such diagonal constraints and the modification of
our normalization algorithm to deal with it is given in Sect. IV.

1Note that the situation is different in backward model checking: Here the
(backward) time evolution is bounded, since clock values are always non-
negative.

After giving some experimental results in Sect. V we conclude
the paper in Sect. VI.

II. PRELIMINARIES

Real-time systems are often represented as timed automata
(TAs) [1], [2]. TAs use clock variables X := {x1, . . . , xn}
to represent time. The set C(X) is the set of atomic clock
constraints, containing simple boundary constraints of the form
(xi ∼ d) and diagonal constraints of the form (xi − xj ∼ d)
with d ∈ Z and ∼ ∈ {<,≤,≥, >}. Let Cdf (X) ⊆ C(X)
contain only boundary constraints. Let Cc(X) be the set of
conjunctions over clock constraints and similarly Cdfc (X) be
the set of conjunctions over boundary constraints. An element
c ∈ Cc(X) is called clock zone and describes a subset of
Rn, namely the set of all valuations of variables in X which
evaluate c to true.

In general, transitions in TAs are labelled with guards and
resets of clocks (see Fig. 2 for an example). Guards are
restricted to conjunctions of clock constraints. A transition can
only be taken, if its guard is satisfied. Resets are assignments
to clock variables of the form x := 0. Invariants in TAs are
conjunctions of clock constraints assigned to locations. A TA
may stay in a location as long as the location invariant is not
violated. Timed automata are formally defined as follows:

Definition 1 (Timed Automaton): A timed automaton (TA)
is a tuple 〈L, l0, X,E, Inv〉 where L is a finite set of locations,
l0 ∈ L is an initial location, X = {x1, . . . , xn} is a finite set
of real-valued clock variables, E ⊆ L × Cc(X) × 2X × L
is a set of transitions and the function Inv : L → Cdfc (X)
assigns a conjunction of boundary constraints as invariant to
each location.

Definition 2 (Diagonal-free Timed Automaton): In a diago-
nal-free timed automaton the set of transitions E ⊆ L ×
Cdf

c (X) × 2X × L is restricted to transitions labelled with
guards without diagonal constraints.

Definition 3 (Semantics of Timed Automata): Let T =
〈L, l0, X,E, Inv〉 be a timed automaton. A state of T is
a combination of a location and a valuation of the clock
variables.
• There is a continuous transition (s →c s′) from state
s = (l, xv1, . . . , x

v
n) to state s′ = (l, xw1 , . . . , x

w
n) iff

(xv1, . . . , x
v
n) and (xw1 , . . . , x

w
n) satisfy Inv(l), and there

is t ∈ R+
0 with ∀1 ≤ j ≤ n : xwj = xvj + t.

• There is a discrete transition (s →d s′) from state
s = (l, xv1, . . . , x

v
n) to state s′ = (l′, xw1 , . . . , x

w
n)

iff (xv1, . . . , x
v
n) satisfies Inv(l), (xw1 , . . . , x

w
n) satisfies

Inv(l′), and ∃e = (l, ge, re, l
′) ∈ E with (xv1, . . . , x

v
n)

satisfies the guard ge, xwi = 0 for xi ∈ re, xwi = xvi for
xi /∈ re.

• →=→d ∪ →c is the transition relation of T . A trajectory
of T is a finite or infinite sequence of states (sj)j≥0 with
s0 = (l0, 0, . . . , 0) and sj−1 → sj for each j > 0. A
state is reachable, if there is a trajectory ending in that
state.

The normalization technique we present in this paper is
based on region-equivalence [1], [2]. We start our consider-
ation with region-equivalence for diagonal-free TAs.

The idea of region-equivalence is as follows [17]:
If two states, which correspond to the same location of the

timed automaton T , agree on the integral parts of all clock
values and also on the ordering of the fractional parts of all

36

clocks, then the states will behave in the same manner. The
integral parts of the clock values determine whether a clock
constraint in the invariant of the location or in the guard of
a transition is satisfied or not. The ordering of the fractional
parts of the clock values determines which clock will change
its integral part first. This is because clock constraints can
involve only integers, and all clocks increase at the same rate.
(Consider e.g. a TA T with two clock variables x1 and x2.
Let l be a location of T and e an outgoing transition from l
to l′ with guard ge = x1 ≥ 5 ∧ x2 ≥ 4. Then it is easy to see
that if (l, 3.2, 1.1) eventually satisfies the guard, then so will
(l, 3.9, 1.3).)

Moreover, whenever a clock value exceeds a certain upper
limit, then the exact value of the clock is not important: If the
clock xi is never compared to a constant greater than cdf (xi)
in the TA T , then the exact value of the clock will have no
effect on the satisfiability of the clock constraints within T and
thus no effect on the computation of T once it exceeds cdf (xi).
With the knowledge that the value of xi is greater than cdf (xi)
the satisfiability of each boundary constraint containing xi can
be decided. (Consider e.g. a TA T with clock variable xi which
is never compared to a constant greater than cdf (xi) = 5 in T .
For the behavior of T it is irrelevant whether the value of xi
is 6 or 600. With both clock valuations the same constraints
in T are satisfied or not.)

This motivates the definition of a clock ceiling function for
every clock xi ∈ X:

Definition 4 (Diagonal-free clock ceiling function): Let T
be a diagonal-free timed automaton and X a set of clock
variables. A clock ceiling function cdf : X → N assigns a
natural number as ceiling to each clock variable. cdf (xi) :=
max {kxi

|xi ∼ kxi
is a subformula of a clock constraint in

T }. The natural number cdf (xi) is then the clock ceiling of
the variable xi ∈ X .

Based on the clock ceiling function region-equivalence of
clock valuations allowing a finite representation for the infinite
state space can be defined.

Definition 5 (Region-equivalence): For any s ∈ R, fr(s)
denotes the fractional part of s and bsc denotes the integral
part of s such that s = bsc + fr(s). Two clock valuations
u = (xu1 , . . . , x

u
n) and v = (xv1, . . . , x

v
n) are region-equivalent

u ≡df v in a TA, iff
1) for each clock variable xi, either bxui c = bxvi c or both

xui and xvi are greater than cdf (xi), and
2) for each clock xi, xj if xui ≤ cdf (xi) and xvi ≤ cdf (xi)

then
• fr(xui) = 0 iff fr(xvi) = 0 and
• fr(xui) ≤ fr(xuj) iff fr(xvi) ≤ fr(xvj)

The equivalence classes of ≡df are called clock regions. The
following Theorem 1 is shown in [1], [2] by Alur and Dill.

Theorem 1: Consider two states s1 = (l, u) and s2 =
(l, v) in a diagonal-free TA with the region-equivalent clock
valuations u = (xu1 , . . . , x

u
n), v = (xv1, . . . , x

v
n). Then for

every successor s′1 = (l′, u′) of s1 there exists a successor
s′2 = (l′, v′) of s2 with u′ ≡df v′ and vice versa.

From Theorem 1 it follows that two region-equivalent states
in a diagonal-free TA can reach exactly the same locations.
Let us consider w.l.o.g. only TAs where the safety property
is encoded into the TA, i.e., the verification problem consists
in the question whether an explicit error location is reachable.
Then the verification result does not change, if we replace

clock valuations with region-equivalent variants or add region-
equivalent variants during reachability analysis.

x2

x1

cdf (x2)

cdf (x1)

g
u1 u2

ru1
x2 ru2

x2

(a) Error after reset

x2

x1

cd(x2)

cd(x1)

g
u1 u2

ru1
x2 ru2

x2

(b) Refined clock ceiling
Fig. 1. reset may cause error

When we consider TAs with diagonal constraints, Def. 5
may cause problems, as can be seen in Fig. 1(a). Here ui
with i ∈ {1, 2} are clock valuations, rui

x2
are the respective

successors after a reset of the clock x2 and g is a diagonal
constraint in the TA. u1 and u2 are region-equivalent according
to Def. 5.

However, after a reset of x2 the successors ru1
x2

and ru2
x2

are no longer equivalent as ru1
x2

and ru2
x2

are on different sides
of g. If there is a diagonal constraint in a guard of a TA,
then Theorem 1 no longer holds. To define a notion of region-
equivalence which is suited for TAs with diagonal constraints
the clock ceiling function (Def. 4) and the definition of region-
equivalence (Def. 5) must be adapted. The clock ceiling
function must not only consider boundary constraints on clock
variables but also diagonal constraints appearing in the guards
of a TA [16].

Definition 6 (Refined clock ceiling function): Let T be a
TA with diagonal constraints and X a set of clock variables.
The clock ceiling function cd : X → N is defined as
cd(xi) := max {kxi

|x ∼ kxi
or x− y ∼ kxi

is a subformula
of a clock constraint in T }. The natural number cd(xi) is then
the clock ceiling of the variable xi.

The definition of region-equivalence in TAs with diagonal
constraints uses the refined clock ceiling function of Def. 6
and has to ensure that two region-equivalent clock valuations
are also equivalent with regard to the diagonal constraints in
the TA [16].

Definition 7 (Refined region-equivalence): Let T be a TA
with diagonal constraints and CdT (X) the set of diagonal
constraints in T . Two clock valuations u = (xu1 , . . . , x

u
n) and

v = (xv1, . . . , x
v
n) are region-equivalent u ≡d v in T , iff

u ≡df v with usage of the ceiling function of Def. 6 and
∀g ∈ CdT (X) it holds u ∈ g ⇔ v ∈ g.2

As the number of clock regions defined by ≡df is finite and
there are only finitely many diagonal constraints in a TA, the
number of clock regions defined by ≡d is also finite. Using
Def. 7 we see that ru1

x2
and ru2

x2
in Fig. 1(b) are not region-

equivalent. In contrast to Def. 5, we can also see that u1 and
u2 are identified as non-equivalent due to the adaptation of
the clock ceiling function.

III. NORMALIZATION FOR DIAGONAL-FREE TIMED
AUTOMATA

In this section we will see how an arbitrary (possibly non-
convex) state set in a diagonal-free TA can be normalized
to guarantee termination of a fully symbolic forward model
checking algorithm. Such a state set is given by a formula rep-
resenting an arbitrary boolean combination of clock constraints
and boolean variables (boolean variables encode locations in

2for a clock valuation u and a clock constraint g we write u ∈ g if the
valuation u satisfies the constraint g.

37

the TA). The state sets represented by such a symbolic formula
can have an arbitrary shape.

start
loop

end

x1 := 0

x2 := 0
x1 ≤ 10

x1 ≥ 10

x2 ≥ 20

x1 := 0

Fig. 2. Diagonal-free timed automaton

To illustrate the prob-
lem for which we need
normalization, we con-
sider the TA from [15]
shown in Fig. 2. During
forward traversal of the
TA the location loop is

reached with a clock zone z1 = (x1 ≤ 10)∧(x2 ≤ 10)∧(x1 =
x2). After taking the transition loop→ loop a state (loop, z2)
with z2 = (x1 ≤ 10) ∧ (10 ≤ x2 ≤ 20) ∧ (x2 − x1 = 10)
is reached. A second loop will add (loop, z3) to the state set
with z3 = (x1 ≤ 10)∧ (20 ≤ x2 ≤ 30)∧ (x2−x1 = 20). The
loop can be taken infinitely often enlarging the state set such
that a fixed point will never be reached. This is caused by the
fact that during forward traversal there are no global bounds
preventing clock variables to grow ad infinitum. Normalization
is used to identify different but region-equivalent states as
equivalent and allows the forward traversal to reach a fixed
point.

Based on region-equivalence (Def. 5) we will define a global
upper bound for each clock variable. All valuation above these
global constraints are region-equivalent.

Definition 8 (Global constraints): Let T be a TA and xi a
clock variable in T . The global constraint of xi is a boundary
constraint which determines the relevant area of xi in T .

GC (xi) := (xi ≤ c̃(xi)) (1)

with c̃(xi) = (cdf (xi) + ε), ε ∈ R+.
In a diagonal-free TA with n clock variables a =∧n
i=1(xi ≤ cdf (xi)) determines the area above which the

exact value of clock variables is irrelevant according to region-
equivalence. Using the global constraints we define an area
ã =

∧n
i=1GC(xi) which completely covers a. Our normaliza-

tion technique is based on a projection of all clock valuations
above ã onto the borders of ã; all clock valuations within ã
remain untouched.

Let z be an arbitrary state set in a diagonal-free TA with n
clock variables. The projection of z over a clock variable xi
is defined as

projdfxi
(z) := (z ∧GC(xi))∨(

(xi = c̃(xi))∃xi
(
z ∧GC(xi)

))
(2)

It is easy to see that Lemma 1 holds:
Lemma 1: Let xi be a clock variable, let z, z1, and z2 be

state sets of a diagonal-free TA with z = z1 ∨ z2, then
projdfxi

(z) = projdfxi
(z1) ∨ projdfxi

(z2) (3)

Lemma 1 gives us a means to simplify proofs by considering
single states (l, xu1 , . . . , x

u
n) to be projected instead of state

sets z. Since the projection of Eqn. (2) does not change
locations, we even omit l and consider only projections of
clock valuations u = (xu1 , . . . , x

u
n) (symbolically represented

by formulas ∧ni=1(xi = xui)) in our proofs.
In a TA with several clock variables a projection of a clock

zone has to be done over all these variables. This can be done
for all clocks separately with no concern of the order.

Lemma 2: Let xi, xj be two clock variables and z a state
set, then

projdfxi
(projdfxj

(z)) = projdfxj
(projdfxi

(z)) (4)

Proof: (Sketch) As mentioned above, we can consider
only a single clock valuation u instead of the state set z in
order to keep the proof simple. There are 4 cases to consider:
(1) u ∈ GC(xi)∧GC(xj), (2) u ∈ GC(xi)∧GC(xj), (3) u ∈
GC(xi) ∧ GC(xj) and (4) u ∈ GC(xi) ∧ GC(xj). In every
case Lemma 2 can be proven by inserting Eq. (2) into Eq. (4)
followed by easy formula manipulations.

x2

x1

c̃df (x2)

c̃df (x1)

u1 u2

Fig. 3. Normalization

The diagonal-free normalization
normdf (z) of a state set z is the
consecutive projection over all clock
variables in the TA.

Fig. 3 shows two examples of our
normalization technique based on pro-
jection. Consider the clock valuation
u1 = (xu1

1 , xu1
2). During projection

only the value xu1
2 changes to c̃(x2), since u1 ∈ (GC(x1) ∧

GC(x2)). The result is a region-equivalent clock-valuation.
Projecting u2 = (xu2

1 , xu2
2) will change the values of both

variables resulting in (c̃(x1), c̃(x2)), since u2 ∈ (GC(x1) ∧
GC(x2)). Normalization results in a region-equivalent clock
valuation for u2, too.

We have seen how a state set z in a diagonal-free TA
can be projected to another state set z′ = normdf (z). This
projection is an adequate normalization technique for fully
symbolic state sets in diagonal-free TA, if for all u ∈ z it
holds u ≡df normdf (u).

Theorem 2: Let T be a diagonal-free TA with X =
{x1, . . . , xn}, u a clock valuation, xi ∈ X an arbitrary clock
variable and v = projdfxi

(u) the projection of u over xi. Then
u ≡df v.

Proof: (Sketch) Let u = (xu1 , . . . , x
u
n), v = (xv1, . . . , x

v
n).

We distinguish 2 cases, (1) u ∈ GC(xi) and (2) u ∈ GC(xi).
(1) It holds v = u and then of course also v ≡df u.
(2) v is symbolically represented by (xi = c̃(xi))∃xi ∧ni=1

(xi = xui), i.e., v = (xu1 , . . . , x
u
i−1, c̃(xi), x

u
i+1, . . . , x

u
n).

As u ∈ GC(xi) it follows xui > c̃(xi) > c(xi).
Because of xvi = c̃(xi) it holds xvi > c(xi) as well.
As the projection only affects the valuation of variable
xi, v ≡df u according to Def. 5.

Since our normalization technique relies on a series of
projections, which only replace clock valuations by region-
equivalent ones according to Theorem 2, it follows that the
normalization does not change the set of reachable locations
in the TA. Moreover, normalization ensures that the number
of steps needed for symbolic forward reachability analysis of
TAs remains finite.

IV. NORMALIZATION FOR TIMED AUTOMATA WITH
DIAGONAL CONSTRAINTS

In Sec. III we have seen a new normalization technique for
diagonal-free timed automata based on the projection of sets
of states. But in a timed automaton with diagonal constraints
the projection using Eq. (2) can lead to false results.

Consider the clock valuation u shown in Fig. 4(a). During
normalization u is projected across the diagonal constraint g
resulting in a clock valuation v which is not region-equivalent
to u. This can of course lead to errors during forward model
checking.

38

x2

x1

c̃df (x2)

c̃df (x1)

u g

v

(a) Diagonal constraints

x2

x1

cd(x2)

c̃d(x1)

u g

c̃d(x2)

(b) Usage of local constraints
Fig. 4. normalization with diagonal constraints

A similar observation can be made for a slightly modified
version of an example from [16] shown in Fig. 5. In the
location loop we have a similar situation as in the TA shown in
Fig. 2 with a clock x3 rising ad infinitum, preventing a forward
model checking algorithm to reach a fixed point and terminate.
Additionally this TA has diagonal constraints on the transition
loop → end. During forward traversal the location loop is
reached with a clock zone z = (x1 > 2) ∧ (x3 ≤ 3) ∧ (x2 ≤
x3 < x1)∧ (x1 − x2 > 2). From the two diagonal constraints
x1−x3 < 1 and x3−x2 < 1 on the transition loop→ end the
condition x1−x2 < 2 can be inferred, such that this transition
is disabled for zone z. During a continuous step the values of
x1 and x2 evolve but the difference x1−x2 remains the same
such that the transition loop → end remains disabled. But
normalizing the clock zone z using the technique presented in
Sec. III will do a projection across the diagonal constraint and
enable the transition. The location end will become reachable
by mistake.

node
loop

end

x3 := 0

x3 := 0 x3 ≤ 3

x3 ≥ 3

x1 − x3 < 1
x2 := 0

startstart
x2 > 2

x3 − x2 < 1

Fig. 5. Timed automaton with diagonal constraints

This problem also occurs during basic normalization for
semi-symbolic model checkers and has been solved in [16]
by an extended normalization algorithm which respects equiv-
alence classes generated by difference constraints. In this
section we will show how our normalization technique can
be adapted to deal with diagonal constraints.

In a first step we consider diagonal constraints which go
through a state set and divide it into two. Two clock valuations
on different sides of a diagonal constraint are not region-
equivalent according to Def. 7 and can not be projected to the
same clock valuation. Let T be a TA with diagonal constraints,
X the set of clock variables, CdT (X) = {g1, . . . gm} the set of
diagonal constraints in T and z the state set which has to be
normalized. Then for every diagonal constraint gi ∈ CdT (X)
with z ∧ gi 6= ∅ and z ∧ gi 6= ∅, z is split along gi,
resulting in two state sets z1 = z ∧ gi and z2 = z ∧ gi.
This splitting is done for all gi ∈ CdT (X). The resulting state
sets are no longer divided by any diagonal constraint and
can be normalized separately. This preprocessing step is also
done in the normalization algorithms for semi-symbolic model
checkers [16].

As already shown by the example from Fig. 4(a), it
does not help only to split state sets according to diagonal
constraints and to project all clock values outside the area
ã =

∧n
i=1GC(xi) onto the border of ã. Nevertheless, we will

derive a similar projection method here, which will just use
another area ẽ =

∧n
i=1 LC(xi) for projection. (LC(xi) are

boundary constraints and are called ‘local constraints’.). The

question which area has to be used for projection is decided
by the information which diagonal constraints gi ∈ CdT (X)
are satisfied in the state set z to be projected. After our
preprocessing step we can assume that for all gi ∈ CdT (X)
either gi is satisfied for all states in z or not satisfied for
all states in z. W.l.o.g. we assume in the following that all
g1, . . . , gm are satisfied for the states in z.

In order to compute the local constraints, we consider the
clock region R = (

∧m
i=1 gi) ∧

∧n
i=1(xi > cd(xi)) at first.

For the time being, we only ensure that a certain subset
of the states which lie both in R and z are projected to a
region-equivalent state. Other states will be considered later
in Theorem 3.

In principle, it would be sufficient to fix an arbitrary
clock valuation (c̃d(x1), . . . , c̃

d(xn)) inside the clock region
R = (

∧m
i=1 gi) ∧

∧n
i=1(xi > cd(xi)) and project all

clock valuations of states in z ∧ R to (c̃d(x1), . . . , c̃
d(xn)).

By definition (c̃d(x1), . . . , c̃
d(xn)) is region-equivalent to all

clock valuations of states in z ∧ R. In order to determine
(c̃d(x1), . . . , c̃

d(xn)), we proceed as follows: We consider the
clock region R (which is a special convex zone) and compute
the closure of R [15]. Closure computation, which can be
reduced to a shortest path problem, provides all constraints
xi > bi or xi ≥ bi which define the exact boundaries of R.
Now we have to increase the values bi by small values εi ∈ R+

to ensure that (c̃d(x1), . . . , c̃d(xn)) with c̃d(xi) = bi + εi lies
inside R. 3

We define LC(xi) := (xi ≤ c̃d(xi)). As in Sect. III we
obtain a projection (now applied with ẽ =

∧n
i=1 LC(xi)

instead of ã =
∧n

i=1GC(xi)):

projdxi
(z) := (z ∧ LC(xi))∨((

xi = c̃d(xi)
)
∃xi

(
z ∧ LC(xi)

))
(5)

xi

xj

cd(xi)

c̃d(xj)

g

c̃d(xi)

1

23

4

Fig. 6. Four cases

As in Sect. III the normalization
normd(z) of the state set z is a con-
secutive projection for all clock vari-
ables. Note that normd(z) depends on
the diagonal constraints satisfied in z
(which we assumed to be g1, . . . gm
w.l.o.g.).

All clock valuations which are
inside the subset R̃ = (

∧m
i=1 gi) ∧

∧n
i=1 LC(xi) of

R are projected onto the region-equivalent valuation
(c̃d(x1), . . . , c̃

d(xn)).
As an example consider Fig. 4(b) where the grey shaded

triangular area containing u represents the clock region R.
The computed local constraints LC(x1) and LC(x2) are rep-
resented with the dashed lines and we see that the projection of
u using Eq. (5) results in an region-equivalent clock valuation.

It remains to show that the projection defined by Eq. (5)
also projects to region-equivalent clock valuations for clock
valuations which are outside R̃ (but still satisfy

∧m
i=1 gi).

Fortunately we are able to prove the following theorem:
Theorem 3: Let T be a TA with diagonal constraints and n

clock variables X := {x1, . . . , xn}. Let z be an arbitrary state
set satisfying g1, . . . , gm, let normd be the normalization for
the case that g1, . . . , gm are satisfied. Let u ∈ z be a clock

3The computation of εi is based on the fact that the diagonal constraints
have a fixed slope. It may be performed efficiently using the computation of
strongly connected components. Details are is omitted due to lack of space.

39

valuation, and v := normd(u) the normalization of u. Then
u ≡d v.

Proof: (Sketch) The proof is similar to the proof of
Theorem 2. The only additional fact we have to prove is
that v satisfies g1, . . . , gm as u does. Let u = (xu1 , . . . , x

u
n),

v = (xv1, . . . , x
v
n). Consider a fixed diagonal constraint gk =

(xj − xi ≺ d), ≺∈ {<,≤}. Then we have to distinguish four
cases as shown in Fig. 6:

1) Consider the case that u ∈ LC(xj) ∧ LC(xi). In this
case the projection does not change xuj and xui , i.e., v
satisfies gk as well.

2) Consider the case that u /∈ LC(xj) and u /∈
LC(xi). Then xvj = c̃d(xj) and xvi = c̃d(xi). Since
(c̃d(x1), . . . , c̃

d(xn)) satisfies g1, . . . , gm by construc-
tion, it holds c̃d(xj)− c̃d(xi) ≺ d, i.e., v satisfies gk.

3) Consider the case that u ∈ LC(xj) and u /∈ LC(xi).
Then xvj = xuj and xvi = c̃d(xi). Since c̃d(xj)−c̃d(xi) ≺
d (see previous case) and xuj ≤ c̃d(xj) (u ∈ LC(xj)),
it follows xuj − c̃d(xi) ≺ d, i.e., v satisfies gk.

4) Consider the case that u /∈ LC(xj) and u ∈ LC(xi).
Then xvj = c̃d(xj) and xvi = xui . Since xuj − xui ≺ d (u
satisfies gk) and xuj > c̃d(xj) (u /∈ LC(xj)), it follows
c̃d(xj)− xui ≺ d, i.e., v satisfies gk.

With Theorem 3 we have shown that we can normalize
an arbitrary state set z to a region-equivalent state set z′. As
in the case of diagonal-free TAs, normalization ensures that
the number of steps needed for symbolic forward reachability
analysis remains finite.

V. EXPERIMENTS

We have implemented a prototype version of our normaliza-
tion technique and integrated it into the FSMT model checker
[10] extended by a forward traversal. For first experimental
results we used the TAs from Figs. 2 and 5.

At first we consider the TA shown in Fig. 2 and check
whether it is possible to reach the location end with x1 = x2.
It turns out that this state set is not reachable. Without
normalization after 84 continuous steps and 83 discrete steps
the computation reaches a timeout of 7200 seconds. After
activating our normalization technique, executed after each
continuous step, the model checking algorithm detects un-
reachability after 7 continuous steps, 6 discrete steps and 3,2
seconds. The example shows that normalization is needed
during forward model checking and that our technique can
be used for fully symbolic model checking.

In the TA with diagonal constraints shown in Fig. 5, the
transition loop → loop prevents our prototype FSMT model
checking algorithm to reach a fixed point during forward
traversal without normalization. The algorithm runs into a
timeout of 7200 seconds after 67 continuous steps and 67
discrete steps. We have seen that the diagonal constraints
on the transition loop → end can provoke an error when
diagonal-free normalization is used. Using the normalization
technique presented in Sec. III our model checking algorithm
reaches the location end by mistake after 3 continuous steps,
3 discrete steps and 2,19 seconds. With the normalization
technique for TAs with diagonal constraints the forward model
checking algorithm reaches a fixed point after 5 continuous
steps, 4 discrete steps and 7,9 seconds. This shows that using

diagonal-free normalization in TAs with diagonal constraints
can lead to false results and that our refined technique can be
used for TAs with diagonal constraints.

VI. CONCLUSIONS

We have presented a normalization technique to guarantee
termination of fully symbolic forward model checking for TAs.
Our method is based on projection of region-equivalent clock
zones with regard to maximum constants appearing in clock
constraints. We have given two versions of our normalization
method, one for diagonal-free timed automata and a second to
handle diagonal constraints, which makes usage of a shortest
path algorithm to compute a suitable area where a clock
valuation can be projected to. We have proven that a clock
valuation and its normalized counterpart are region-equivalent.
In first experimental results we have shown that normalization
is needed for a forward traversal to reach a fixed point and
that our method is suited for fully symbolic model checking.

REFERENCES

[1] R. Alur, “Timed automata,” in CAV, ser. LNCS, N. Halbwachs and
D. Peled, Eds., vol. 1633. Springer, 1999, pp. 8–22.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[3] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” STTT,
vol. 1, no. 1-2, pp. 134–152, 1997.

[4] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal,”
in SFM, ser. LNCS, M. Bernardo and F. Corradini, Eds., vol. 3185.
Springer, 2004, pp. 200–236.

[5] K. G. Larsen, J. Pearson, C. Weise, and W. Yi, “Clock difference
diagrams,” Nordic J. of Computing, vol. 6, pp. 271–298, 1999.

[6] F. Wang, “Efficient verification of timed automata with BDD-like data
structures,” Int. J. Softw. Tools Technol. Transf., vol. 6, pp. 77–97, 2004.

[7] J. Møller, J. Lichtenberg, H. Andersen, and H. Hulgaard, “Difference
decision diagrams,” in CSL, ser. LNCS, J. Flum and M. Rodriguez-
Artalejo, Eds. Springer Berlin / Heidelberg, 1999, vol. 1683, pp. 826–
826.

[8] S. A. Seshia and R. E. Bryant, “Unbounded, fully symbolic model
checking of timed automata using boolean methods,” in CAV, ser. LNCS,
W. A. Hunt and F. Somenzi, Eds., vol. 2725. Springer, 2003, pp. 154–
166.

[9] R. Ehlers, D. Fass, M. Gerke, and H.-J. Peter, “Fully symbolic timed
model checking using constraint matrix diagrams,” in RTSS, 2010, pp.
360 –371.

[10] G. Morbé, F. Pigorsch, and C. Scholl, “Fully symbolic model checking
for timed automata,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 616–632.

[11] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch,
C. Scholl, U. Waldmann, and B. Wirtz, “Exact state set representations in
the verification of linear hybrid systems with large discrete state space,”
in ATVA, ser. LNCS, K. S. Namjoshi, T. Yoneda, T. Higashino, and
Y. Okamura, Eds., vol. 4762. Heidelberg: Springer, 2007, pp. 425–
440.

[12] C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid, “Comput-
ing optimized representations for non-convex polyhedra by detection
and removal of redundant linear constraints,” in TACAS, ser. LNCS,
S. Kowalewski and A. Philippou, Eds. Springer Berlin / Heidelberg,
2009, vol. 5505, pp. 383–397.

[13] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl,
U. Waldmann, and B. Wirtz, “Exact and fully symbolic verification of
linear hybrid automata with large discrete state spaces.” Sci. Comput.
Program., vol. 77, no. 10-11, pp. 1122–1150, 2012.

[14] R. Loos and V. Weispfenning, “Applying linear quantifier elimination,”
Comput. J., vol. 36, no. 5, pp. 450–462, 1993.

[15] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in In Lecture Notes on Concurrency and Petri Nets, ser. Lecture
Notes in Computer Science vol 3098, W. Reisig and G. Rozenberg, Eds.
Springer–Verlag, 2004.

[16] ——, “On clock difference constraints and termination in reachability
analysis of timed automata,” in Proc. of ICFEM’03, ser. Lecture Notes
in Computer Science, J. S. Dong and J. Woodcock, Eds., no. 2885.
Springer–Verlag, 2003.

[17] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

40

