
Fully Symbolic Model Checking
for Incomplete Systems of Timed Automata

Georges Morbé and Christoph Scholl
Albert-Ludwigs-Universität Freiburg, Institut für Informatik,

D-79110 Freiburg im Breisgau, Germany
Email:{morbe, scholl}@informatik.uni-freiburg.de

Abstract

In this paper we present a fully symbolic backward model checking algorithm able to prove unrealizability
for incomplete timed systems, i.e. the algorithm is able to prove that a (safety) property is violated regardless
of the implementation of unknown components in the system. The algorithm works on a symbolic model
for timed systems, called finite state machine with time (FSMT), and makes use of fully symbolic state set
representations containing both the clock values and the state variables. In order to handle incomplete timed
systems our model checking algorithm has to deal with different communication methods between the system
and its unknown components, e.g. shared integer variables and urgent and non-urgent synchronization. We
demonstrate that a reduction to well-known controller synthesis approaches fails to solve the unrealizability
question in this context. Moreover, we show that fading out complete components of a system dramatically
reduces the complexity of the system and thus the effort for verification. For cases of proven unrealizability
we present an interactive counter example generator which is able to produce an error path depending on the
output signals of the unknown components (which are provided by the user).

I. INTRODUCTION

In the last decades the application area of real-time systems has grown with an enormous speed and
along with that their complexity is growing as well as the damage caused by their failure. These reasons
make verification of such systems crucial. Timed Automata (TAs) [2], [1] have become a standard for
modeling real-time systems. They extend finite automata to the real-time domain by adding real-valued
clock variables. All clock variables evolve over time with the same rate. During a discrete step which
happens in zero-time a clock variable may be reset.

Model checking approaches for TAs based on reachability analysis can be classified into semi
symbolic and fully symbolic approaches. Semi-symbolic approaches represent discrete locations of
TAs explicitly whereas sets of clock valuations are represented symbolically e.g. by unions of clock
zones. Clock zones are convex regions which result from an intersection of clock constraints of the
form xi − xj ∼ d where d ∈ Q, ∼ ∈ {<,≤,=,≥, >} and xi, xj are clock variables.

UPPAAL [10], [5], the probably most prominent semi-symbolic approach, represents clock zones by
so-called difference bound matrices (DBMs) and provides efficient methods for manipulating DBMs.

In [16] we presented a fully symbolic model checking algorithm based on finite state machines with
time (FSMTs) and LinAIGs (‘And-Inverter-Graphs with linear constraints’) [7], [22], [6]. An FSMT is
a formal model to represent real-time systems using transition functions and reset functions, which is
especially suited for symbolic verification algorithms. Timed Automata may be translated into FSMTs.
LinAIGs provide a fully symbolic representation both for the continuous part (i.e. the clock values)
and the discrete part (i.e. the state variables). For the quantification of real-valued variables (which is
needed for time evolution), LinAIGs make use of the Weispfenning–Loos test point method [11] which
is especially suitable for LinAIG representations. Other operations like subsumption checks which are
needed during model checking are reduced to LinAIG operations. A review of a number of alternative

This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center
“Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

scholl
Textfeld
Preprint from Proceedings of MBMV, Kaiserslautern, Germany, March 2012

data structures for a fully symbolic representation of timed systems as well as their comparison to
LinAIG representations can be found in [16], too.

Despite all attempts of getting a compact representation of the state sets, verification reaches its
limits pretty fast once the system is too complex. One possibility to face this problem is abstracting
parts of the system and just considering relevant components. The “unknown” (abstracted) part of the
real-time system is then called Black Box (BB) whereas the “known” (still considered) part is called
White Box (WB). Finding an error path in the WB for any possible BB-implementation proves that the
property at hand is unrealizable and thus not valid for the concrete real-time system. The abstraction
may reduce the sizes of the state sets and thus the verification effort dramatically. Other applications of
(un)realizability checks are error diagnosis / error correction and early error detection for incomplete
(i.e. not yet fully specified) systems. In the discrete domain this topic has been explored in [18], [19],
[20], e.g..

In this paper we show how the fully symbolic model checking algorithm from [16] can be extended
to such incomplete systems, leading to an exact algorithm for deciding realizability. The time step
and the discrete step of the model checking algorithm have to be adapted to deal with the different
communication methods between the WB and the BB in order to compute a predecessor in the WB
for any possible BB-implementation.

The realizability problem is strongly connected to the controller synthesis problem [12], [3], where a
system interacts with an unknown controller. In the real-time domain the controller synthesis problem
is modeled as a timed two-player game [4], [9], [21], where the controller (BB) tries to fulfill the safety
property and plays against the WB (who tries to violate it). In Sect. III we will show in detail why
this approach is not able to solve the realizability problem in our context of compositional reasoning.

Incomplete networks of Timed Automata with Black Boxes and White Boxes have also been
considered in [14], [15]. This approach is based on Bounded Model Checking (BMC), i.e., it checks
whether there is an error path up to a given length, irrespective of the behavior of the Black Boxes.
In our current approach (un)realizability is decided without giving an upper bound on the length of
the potential error paths. In contrast to our current approach, the approach from [14], [15] is restricted
to timed systems without urgent communication (see Sect. II-A). Moreover, if Timed Automata with
location invariants (see Sect. III) are allowed in [14], [15], then this approach is not able to prove
unrealizability, but only the weaker statement that the (safety) property can not by guaranteed by any
Black Box whose initial location does not contain an invariant. Our current approach does not have
such a restriction.

If a given safety property is unrealizable, then there exists an error-path regardless of the BB-
implementation. In order to identify such an error path, we present an interactive counter example
generator. Here the user specifies signals sent by the BB and the system computes a corresponding
error path for each given BB behavior.

The paper is organized as follows. In Sect. II we give a brief review of Timed Automata (TAs) and
our fully symbolic representation for real-time systems, the finite state machines with time (FSMT). In
Sect. III we review the role of invariants and urgency in connection with controller synthesis approaches.
Our model checking algorithm for incomplete systems is shown in Sect. IV. Sect. V is dedicated to
the interactive counter example generator. We conclude the paper in Sect. VII after presenting first
experimental results in Sect. VI.

II. PRELIMINARIES

A. Timed Automata
Real-time systems are often represented as Timed Automata (TAs) [1], [2]. TAs use real-valued

clock variables X := {x1, . . . , xn} to represent time. The set of clock constraints C(X) contains
atomic constraints of the form (xi ∼ d) and (xi − xj ∼ d) with d ∈ Q and ∼ ∈ {<,≤,=,≥, >}. Let

Cc(X) be the set of conjunctions over clock constraints. c ∈ Cc(X) describes a subset of Rn, namely
the set of all valuations of variables in X which evaluate c to true.

We consider TAs extended with integer variables. Let Int := {int1, . . . , intm} be a set of bounded
integer variables. lb : Int → Z and ub : Int → Z assign lower and upper bounds to inti ∈ Int
(lb (inti) ≤ ub (inti)). Let Assign (Int) be the set of assignments to integer variables. The right-hand
side of an assignment to an integer variable inti may be an integer arithmetic expression over integer
variables and integer constants.

Let C(Int) be a set of constraints of the form (inti ∼ d) and (inti ∼ intj) with d ∈ Z, ∼ ∈
{<,≤,=,≥, >} and inti, intj ∈ Int. Let Cc(X, Int) be the set of conjunctions of clock constraints
and constraints from C(Int).

In general, transitions in TAs are labeled with guards, (synchronization) actions, assignments to
integers and resets of clocks. Guards are restricted to conjunctions of clock constraints and constraints
on integers. Actions from Act := {a1, . . . , ak} are used for synchronization between different TAs. For
our purposes they do not have a special meaning when considering one timed automaton in isolation.
Transitions in different automata labeled with the same actions are taken simultaneously. If a transition
in a TA is not labeled with an action, then this transition can only be taken, if all other TAs stay in
their current location. Resets are assignments to clock variables of the form xi := 0.

A transition in a TA may be declared as urgent. Whenever an urgent transition in the system is
enabled, the current location must be left without any delay. Just like transitions, actions may be
declared as urgent which means that there must not be any time delay before taking a transition
whenever a transition synchronizing over an urgent action is enabled.

Timed Automata are formally defined as follows:

Definition 1 (Timed Automaton) A Timed Automaton (TA) is a tuple 〈L, l0, X,Act, Int, lb, ub, E〉
where L is a finite set of locations, l0 ∈ L is an initial location, X = {x1, . . . , xn} is a finite set
of real-valued clock variables, Act = Actnu ∪ Actu with Actnu ∩ Actu = ∅, Actnu is a finite set of
non-urgent actions and Actu is a finite set of urgent actions, Int = {int1, . . . , intm} is a finite set of
integer variables. lb : Int→ Z and ub : Int→ Z assign lower and upper bounds to each inti ∈ Int
with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ m, E ⊆ L×Cc(X, Int)× (Act∪{εu, εnu})×2X×2Assign(Int)×L
is a set of transitions with E = Enu ∪ Eu. Enu = {(l, ge, a, re, assigne, l

′) ∈ E | a ∈ Actnu ∪ {εnu}}
is the set of non-urgent transitions and Eu = {(l, ge, a, re, assigne, l

′) ∈ E | a ∈ Actu ∪ {εu}} is the
set of urgent transitions. If for e = (l, ge, a, re, assigne, l

′) ∈ E it holds that a ∈ Act, then we call e
a transition with an (urgent or non-urgent) synchronizing action, if a ∈ {εu, εnu} then we call e an
(urgent or non-urgent) transition without synchronizing action.

Definition 2 (Semantics of a Timed Automaton) Let TA = 〈L, l0, X,Act, Int, lb, ub, E〉 be a Timed
Automaton. A state of TA is a combination of a location and a valuation of the clock variables and
integer variables.
• There is a continuous transition from state s = (l, xv1, . . . , x

v
n, int

v
1, . . . , int

v
m) to state s′ =

(l, xw1 , . . . , x
w
n , int

v
1, . . . , int

v
m) (s →c s′) iff lb(inti) ≤ intvi ≤ ub(inti) ∀1 ≤ i ≤ m, xvi ≥ 0

∀1 ≤ i ≤ n, there is t ∈ R+
0 with ∀1 ≤ j ≤ n : xwj = xvj + t, and ∀0 ≤ t′ < t @e =

(l, ge, a, re, assigne, l
′) ∈ Eu with (xv1 + t′, . . . , xvn + t′, intv1, . . . , int

v
m) fulfills the guard ge.

• There is a discrete transition from state s = (l, xv1, . . . , x
v
n, int

v
1, . . . , int

v
m) to state s′ = (l′, xw1 , . . . ,

xwn , int
w
1 , . . . , int

w
m) (s→d s′) iff lb(inti) ≤ intvi , int

w
i ≤ ub(inti), ∀1 ≤ i ≤ m, xvi ≥ 0 ∀1 ≤ i ≤

n, and ∃e = (l, ge, a, re, assigne, l
′) ∈ E with a ∈ Act∪{εu, εnu} and (xv1, . . . , x

v
n, int

v
1, . . . , int

v
m)

fulfills the guard ge, xwi = 0 for xi ∈ re, xwi = xvi for xi /∈ re, the values intw1 , . . . , int
w
m result

from intv1, . . . , int
v
m by applying the assignments in assigne.

• →=→d ∪ →c is the transition relation of a TA. A trajectory of a TA is a finite or infinite
sequence of states (sj)j≥0 with s0 = (l0, 0, . . . , 0, lb(int1), . . . , lb(intm)) and sj−1 → sj for each
j > 0. A state is reachable, if there is a trajectory ending in that state.

A timed system is a system of p Timed Automata {TA1, . . . , TAp}. A timed system has an
interleaving semantics, i.e., transitions in different Timed Automata may not be taken simultaneously
unless they synchronize over non-urgent or urgent actions. For simplicity, we assume that only two
timed automata are able to synchronize over a (binary) synchronization action, i.e., we restrict ourselves
to timed systems where an action may only synchronize two different TAs. The composition of p timed
automata is again a timed automaton:

Definition 3 Let TA1, . . . , TAp be a timed system with TAi = 〈L(i), l
(i)
0 , X,Act, Int, lb, ub, E

(i)〉. Let
A(a) = {TAi | ∃e = (l, ge, a, re, assigne, l

′) ∈ E(i)} for each a ∈ Act. We assume that |A(a)| ≤ 2 for
each a ∈ Act. The composition of TA1, . . . , TAp is TA =

〈 (
L(1) × . . .× L(p)

)
,
(
l
(1)
0 , . . . , l

(p)
0

)
, X,

Act, Int, lb, ub, E
〉

where E is the smallest set with the following property:

• If for 1 ≤ i ≤ p ∃e = (li, ge, a, re, assigne, l
′
i) ∈ E(i), a = εu, a = εnu or |A(a)| = 1, then

((l1, . . . , li, . . . , lp), ge, a, re, assigne, (l1, . . . , l
′
i, . . . , lp)) ∈ E.

• If for 1 ≤ i, j ≤ p with i 6= j: ∃ei = (li, gei , a, rei , assignei , l
′
i) ∈ E(i), ∃ej = (lj, gej , a, rej ,

assignej , l
′
j) ∈ E(j), a ∈ Act, then ((l1, . . . , li, . . . , lj, . . . , lp), gei ∧ gej , a, rei ∪ rej , assignei ∪

assignej , (l1, . . . , l
′
i, . . . , l

′
j, . . . , lp)) ∈ E.

Remark 1 A timed system TA1, . . . , TAp is called well-formed, if for each integer inti there is a
unique TA TAj that is allowed to have transitions with synchronizing actions and assignments to inti.
In well-formed systems write-conflicts on integers cannot occur. We only consider well-formed timed
systems.

In this paper we deal with incomplete networks of Timed Automata. In such a system not all
components are known in detail. Some components are modeled by a Black Box (BB) whose behavior
is unknown. The remaining system is called White Box (WB). The BB is a part of the system and like
all other components it interacts with the rest of the system. There are several types of communication
between the BB and the WB, namely (1) shared bounded integer variables, (2) non-urgent and (3)
urgent synchronization actions.
(1) Def. 3 allows communication via shared bounded integer variables which may be written by

assignments in one component of the timed system and read in guards of other components. With
a shared bounded integer variable a numerical value within the integer bounds can be passed from
one TA to another. In an incomplete system the BB is allowed to update certain shared integer
variables. The exact value after the update is then unknown to the WB.

(2) Two enabled transitions synchronizing over a common non-urgent action have to be taken in
parallel. If only one of the transitions is enabled, synchronization cannot take place and none of
the two transitions can be taken. The problem of a synchronization between the WB and the BB
consists in the fact that it is unclear, when the BB sends a synchronization action.

(3) As for non-urgent actions, transitions synchronizing over urgent actions have to be taken in parallel,
but additionally a discrete transition must be taken without any delay, when the synchronizing
transitions are enabled. So in case of synchronization over urgent actions between the WB and
the BB there are two difficulties. When the BB synchronizes over the urgent action, this may
enable a transition in the WB “waiting for synchronization” and additionally there must not be
any delay before taking a transition.

With these three types of communication in a timed system the BB is not only able to affect the
discrete behavior of the WB but, because of urgency, the timing behavior of the WB may also be
influenced.

Remark 2 Note that — in contrast to the general Def. 3 — we do not allow communication via shared
clock variables in the rest of the paper. This means that we assume local clocks of the WB and the BB
components. In particular, clocks which are written (i.e., reset) in the Black Box are not allowed to be
used in guards of WB components. We make the (realistic) assumption that only discrete information
can be communicated from one component to the other. This assumption allows us to provide an exact
solution to the realizability question in Sect. IV.

B. Finite State Machine with Time
In TAs locations are represented explicitly. By parallel composition of several TAs the number of

locations may explode. For that reason we considered FSMTs for symbolic representations in [16].
FSMTs do not define explicit representations of locations and thus, they are better suited for fully
symbolic algorithms. An FSMT is basically an extension of finite state machines by real-valued clock
variables.

Let X := {x1, . . . , xn} be the set of real-valued clock variables, Y := {y1, . . . , yl} a set of (binary)
state variables, I := {i1, . . . , ih} a set of (binary) input variables. Let Cb(X) be the set of arbitrary
boolean combinations of clock constraints and Cb(X, Y) be the set of arbitrary boolean combinations
of clock constraints and state variables (similarly for Cb(X, Y, I)). As usual, c ∈ Cb(X, Y) describes a
subset of Rn × {0, 1}l, namely the set of all valuations of variables in X and Y which evaluate c to
true. An FSMT is defined as follows:

Definition 4 (FSMT) A finite state machine with time (FSMT) is a tuple 〈X, Y, I, init, (δ1, . . . , δl),
(resetx1 , . . . , resetxn), urgent〉 where X := {x1, . . . , xn} is a set of clock variables, Y := {y1, . . . , yl}
is a set of state variables, I := {i1, . . . , ih} is a set of input variables, init : (R+

0)n×{0, 1}l → {0, 1}
is a predicate describing the set of initial states, δi : (R+

0)n × {0, 1}l × {0, 1}h → {0, 1} (1 ≤ i ≤ l)
are transition functions, resetxj

: (R+
0)n × {0, 1}l × {0, 1}h → {0, 1} (1 ≤ j ≤ n) are reset functions,

urgent : (R+
0)n × {0, 1}l × {0, 1}h → {0, 1} is a predicate indicating when an urgent transition

is enabled. The functions δi, resetxj
and urgent can be represented by boolean combinations from

Cb(X, Y, I), init can be represented by a boolean combination from Cb(X, Y).

A state of an FSMT is a valuation s = (xv1, . . . , x
v
n, y

v
1 , . . . , y

v
l) ∈ (R+

0)n × {0, 1}l of the clock
variables and the state variables. A valuation (yv1 , . . . , y

v
l) is also called a location of the FSMT.

Trajectories of an FSMT always start in states fulfilling init. An FSMT may perform discrete steps
which are defined by transition functions δi based on the valuations of clocks, state variables, and
inputs. When performing a discrete step, the state variable yi is set to 0 (1) iff δi evaluates to 0 (1)
and a clock xi is reset to 0 iff resetxi

evaluates to 1. Moreover an FSMT may perform continuous
steps (or time steps) where it stays in the same location, but lets time pass. This means that all clocks
are increased by the same constant as long as the predicate urgent does not evaluate to 1.

We consider systems of FSMTs {F1, . . . , Fp}, where the components are running in parallel. Com-
munication in such a system is realized just as for communicating FSMs. FSMTs communicate by
reading each other’s state variables, clocks, and shared input variables. A system of FSMTs therefore
is again an FSMT.

In [16] timed systems of several TAs are translated into FSMTs. The state bits y1, . . . , yl result
from logarithmic encodings of locations and integer variables of the TAs. The transition functions δi
represent transitions in the TAs and the reset functions are computed based on clock resets on these
transitions. In order to obtain deterministic transition functions, self loops have to be added before

x ≤ 5

x ≤ 5

x ≤ 5
x = 5

TA TA′

(a) urgent transitions

x ≤ 5

x ≤ 5

x ≤ 5
x = 5

TA TA′

a

au

a

(b) urgent synchroniztation

Fig. 1. Urgency caused by invariants

the transformation and the decision between non-deterministic transitions is resolved by additional
(pseudo-)inputs. Additional input variables are used for the selection between different interleaved
TAs (in case of the so-called “pure interleaving behavior”) and for resolving read-/write-conflicts on
integers and clocks (in case of the so-called “parallelized interleaving behavior”). Altogether we arrive
at a set of inputs {i1, . . . , ih}.

In the following we abbreviate x1, . . . , xn by ~x, y1, . . . , yl by ~y, i1, . . . , ih by ~i etc..
For ease of exposition we assume that there is a one-to-one relation between the integer values in

the allowed range and the assignments to the state bits corresponding to these integers. We omit easy
but slightly tedious technical details due to invalid codes.

III. INVARIANTS AND CONTROLLER SYNTHESIS

In many definitions for Timed Automata found in the literature (e.g. [10], [16]) locations are
connected with so-called invariants. Invariants in TAs are conjunctions of clock constraints. A TA
is only allowed to stay in a location as long as the location invariant is not violated. In some sense
invariants are a means to define urgency implicitly: If a location l0 has the invariant x <= 5 and
for instance one outgoing transition (synchronizing or non-synchronizing), then the outgoing transition
becomes urgent as soon as the clock value of x equals 5. Especially for synchronizations we prefer to
make explicit whether they are urgent (i.e. require a transition without letting time pass) or not. For
that reason we do not allow invariants in this paper.

This is not a real restriction, since for each TA with closed location invariants there is a TA without
invariants which is semantically equivalent (i.e. allows the same trajectories) and uses urgency only
explicitly:

Lemma 1 For each TA without urgency and with closed location invariants there exists an semantically
equivalent TA with urgency and without invariants.

Consider a location l in Timed Automaton TA with an invariant of the form x ≤ n with n ∈ Q
and x is a clock variable. When transforming TA into a semantically equivalent TA TA′, l is copied
into an equivalent location l′ without invariant. For each incoming transition of l′ in the copy an
additional guard of the form x ≤ n is added to guarantee that l′ cannot be entered with a clock
value x > n. For each outgoing non-synchronizing (and non-urgent) transition e of l with a guard
g, g ∧ (x ≤ n) 6= 0, there are two edges in the copy: One non-urgent transition with all original
labels and one urgent transition with the additional guard x = n corresponding to the boundary of the
invariant. This has the effect that whenever in l′ the value of x is n a discrete transition must be taken
to leave the location. For a transition leaving l labeled with a synchronizing (and non-urgent) action
a, there are two transitions in TA′ as well: The original transition and an additional transition with
identical labels, apart from the additional guard (x = n) and an urgent action au replacing the original
action a. (In other components composed in parallel, transitions which were originally labeled by a are
also duplicated into two edges, one with the non-urgent action a and one with the urgent action au.)
Figures 1(a) and 1(b) illustrate these transformations. New urgent transitions (resp. transitions with
urgent synchronization) are represented by dashed arrows.

unsafe

a

BB
a

WB
x := 0

x ≥ 6

Fig. 2. Black Box example

Now we can illustrate by Fig. 2 that controller synthesis approaches
like [4], [9], [21] are not able to solve our problem. The figure shows
a small WB with an initial state on the left hand side, two additional
states and two transitions labeled with the non-urgent action a and the
clock condition x ≥ 6, respectively. The state on the lower right hand
side of the WB is considered to be unsafe and the task is to implement
the BB in such a way that the unsafe state cannot be reached. Since the
synchronization action a is non-urgent, it is not possible to define such
an implementation for the BB, since time is allowed to pass until x = 6
and the transition to the unsafe state can be taken even if the BB is
always in a state with an enabled outgoing transition labeled by a. However, the mentioned controller
synthesis approaches lead to the result that the property is realizable, i.e. it is possible to replace the
BB by a controller such that the unsafe state can not be reached. This is due to the fact that these
approaches assume that the controller is able to make transitions urgent (either explicitly or implicitly
by invariants in the controller). This clearly gives the controller more power than allowed in our model.
If parts of an already existing timed system which do not include invariants and communicate with their
environment by non-urgent synchronization actions are abstracted away into a BB, then our approach
may prove unrealizability (which means that the safety property is not valid for the original design)
in cases when controller synthesis classifies the problem as realizable, since it gives the BB too much
power. Sect. VI gives results for such an example.

IV. MODEL CHECKING OF INCOMPLETE SYSTEMS OF TIMED AUTOMATA

A. Modeling incomplete systems
Now we give a sketch of how to extend the translation of TAs into FSMTs to incomplete systems.

For our model checking algorithm the communication between the BB and the WB is of particular
importance. We distinguish between four different types of transitions in the WB.
(1) non-urgent transitions without synchronization with the BB, called nu-transitions in the following
(2) urgent transitions without synchronization with the BB, called u-transitions
(3) transitions with a non-urgent synchronization with the BB, called nu-sync-transitions
(4) transitions with an urgent synchronization with the BB, called u-sync-transitions
In our algorithm we do not work with one transition (reset) function for the incomplete system at
hand, but with different transition (reset) functions for different types of transitions.

First, we consider only the transitions in the TAs which do not synchronize with the BB at all (i.e.
only nu-transitions and u-transitions) and apply the transformation from [16] (including addition of
self loops etc.) resulting in transition functions δno−synci (~x, ~y,~i). The functions δno−synci do not depend
on the behavior of the BB.

Secondly, we consider only u-sync-transitions, leading to transition functions δu−synci . According to
Remark 1, for each integer intj either the WB or the BB is allowed to update intj on synchronizing
transitions. If the BB has this permission for intj , then we define δu−synci (~x, ~y,~i) = Zm with a unique
new free input variable Zm for each state bit yi corresponding to integer intj . Zm accounts for the
fact that the BB is allowed to write an arbitrary unknown value to intj when a u-sync-transition is
taken. We assume that ~Z = (Z1, . . . , Zb) represents all new free variables needed. For the remaining
state bits yk the transition functions δu−synck are computed by the transformation from [16] restricted
to u-sync-transitions.

Similarly we compute two reset functions for each clock variable xi ∈ X , one for the resets on the nu-
transitions and u-transitions (resetno−syncxi

(~x, ~y,~i)) and a second for u-sync-transitions (resetu−syncxi
(~x, ~y,

~i)). Finally, we need two additional urgency predicates in our algorithm in Sect. IV-B: uno−sync(~x, ~y)

is a predicate evaluating to 1, if a u-transition is enabled in state (~x, ~y) and uu−sync(~x, ~y) is a predicate
evaluating to 1, if a u-sync-transition is enabled in state (~x, ~y).

B. Model checking algorithm
Now we show how to do fully symbolic backward model checking for incomplete real-time systems

modeled as incomplete FSMTs. The algorithm decides the realizability of safety properties.
Starting from the set of unsafe states the algorithm computes (step by step) more and more states

from which the unsafe states may be reached independently from the implementation of the BB. The
safety property is realizable iff the set of all these states does not contain any initial state. The algorithm
alternates between discrete steps and time steps until a fixed point is reached or until some initial state
is reached. Discrete and time steps are described in the following.

C. Discrete step
Starting with a state set Φ(~x, ~y) the discrete (backward) step computes all predecessors from which

Φ can be reached over a discrete transition in the WB, independently from the implementation of the
BB.

Since it is possible that the BB does not synchronize with the WB at all, we consider only u-
transitions and nu-transitions which are described by the functions δno−synci . Each state variable yi is
replaced by δno−synci :

yi ← δno−synci (~x, ~y,~i) (1)

The reset function resetno−syncxi
determines when the clock variable xi is reset on a u-transition or a

nu-transition. Each constraint (xi − xj ∼ d) in Φ is replaced by

(xi − xj ∼ d)← ((resetno−syncxi
∧ resetno−syncxj

∧ (0 ∼ d))∨
(resetno−syncxi ∧ resetno−syncxj

∧ (xi ∼ d))∨
(resetno−syncxi

∧ resetno−syncxj ∧ (−xj ∼ d))∨
(resetno−syncxi ∧ resetno−syncxj ∧ (xi − xj ∼ d))) (2)

Now Φ′(~x, ~y,~i) is obtained from Φ(~x, ~y) by substituting all state variables as shown in Eqn. (1) and
all clock constraints as shown in Eqn. (2) simultaneously.

The second part consists of an existential quantification of the boolean input variables ~i:

Pred(Φ)(~x, ~y) = ∃~iΦ′(~x, ~y,~i) (3)

Lemma 2 The resulting state set Pred(Φ)(~x, ~y) contains all states from which Φ(~x, ~y) is reachable
by a discrete transition in the WB independently from any BB behavior.

Proof: (Sketch) We have to consider any possible implementation of the BB, especially a BB
implementation BBno−sync never synchronizing with the WB. In a system with BBno−sync only u-
transitions and nu-transitions in the WB are enabled. Thus, discrete steps which reach Φ independently
from the BB use only u-transitions and nu-transitions. Adding transitions to BBno−sync which syn-
chronize with the WB cannot disable discrete transitions in the WB due to the interleaving semantics
of TAs; the u-transitions and nu-transitions considered above for BBno−sync can still be taken. So the
restriction to u-transitions and nu-transitions is justified.

D. Time step
Starting with a state set Φ(~x, ~y) the time step computes all predecessors reached through time passing.

Because of urgent synchronization, the BB can affect the timing behavior. The continuous step for
incomplete FSMTs can be described by

Prec(Φ)(~x, ~y) =
[
∧ni=1 (xi ≥ 0)

]
∧(

¬uno−sync(~x, ~y) ∧
[
uu−sync(~x, ~y) =⇒ ∀~Z∀~i Preu−syncd (Φ)(~x, ~y, ~Z,~i)

])
∧

∃λ
[

(λ > 0) ∧ ∀~yBB

(
Φ(~x+ ~λ, ~y) ∧

{
∀λ′(0 < λ′ < λ) =⇒

(
¬uno−sync(~x+ ~λ′, ~y) ∧

[
uu−sync(~x+ ~λ′, ~y) =⇒ ∀~Z∀~i Preu−syncd (Φ)(~x+ ~λ′, ~y, ~Z,~i)

])})]
(4)

with ~x+~λ abbreviated for (x1 +λ, . . . , x1 +λ) for a scalar λ, Preu−syncd (Φ)(~x, ~y, ~Z,~i) being obtained
from Φ(~x, ~y) by substituting all state variables with their transition functions δu−synci (~x, ~y,~i) and all
clock constraints with predicates composed as in Eqn.(2) using the reset functions resetu−syncxj

(~x, ~y,~i).
The subset ~yBB of the state variables ~y represents the state variables corresponding to shared integer
variables which are allowed to be written by the BB.

Lemma 3 The resulting state set Prec(Φ)(~x, ~y) contains all states from which some state s with one
of the following properties is reachable through time elapsing independently from the BB behavior: s
is in Φ or all possible u-sync-transitions from s lead to a state in Φ.

Proof: (Sketch) We know that Φ is the current set of the “definitely unsafe states”, i.e., the set of
the states from which there is a path to the unsafe states, independently from the BB behavior. (This
follows by an inductive argument. We start with Φ representing exactly the unsafe states.)

The basic idea of Eqn. (4) consists in performing a time step of length λ > 0 from a state (~x, ~y)
into a state (~x+~λ, ~y) satisfying Φ. However, this time evolution can be prevented by urgent transitions
which are enabled for some state (~x + ~λ′, ~y) (0 ≤ λ′ < λ) between (~x, ~y) and (~x + ~λ, ~y). Here both
u-transitions and u-sync-transitions play a role. The first condition ¬uno−sync(~x, ~y) in line 2 of Eqn. (4)
ensures that in the starting point (~x, ~y) of the time evolution no u-transition is enabled which would
stop the evolution immediately. Moreover, if a u-sync-transition is enabled in (~x, ~y), the BB could
activate this transition in order to impede a time evolution into the definitely unsafe states. However, if
all u-sync-transitions which are possible due to some BB behavior lead to a definitely unsafe state from
Φ (∀~Z∀~i Preu−syncd (Φ)(~x, ~y, ~Z,~i)), then such an activation cannot prevent (~x, ~y) from being included
into the set of definitely unsafe states.

This consideration has to be done not only for (~x, ~y), but also for the states (~x+ ~λ′, ~y) (0 < λ′ < λ)
between (~x, ~y) and (~x + ~λ, ~y) (lines 3 and 4 of Eqn. (4)). Here we have to consider the additional
complication that there may be urgent non-synchronizing transitions in the BB which do not allow the
time to pass until they have written an arbitrary value to the shared integers encoded by the ~yBB-bits.
To account for this we have to add the quantification ∀~yBB in line 3.

Using Lemmas 2 and 3 we can see that our overall algorithm (which alternates between time steps
and discrete steps in the WB) always computes definitely unsafe states. Moreover, if the fixed point
of the algorithm does not contain any initial state, then there is no error path to the unsafe states
independently from the BB. This follows from the fact that discrete non-synchronizing transitions of
the BB (which can change the values of the shared integers) need not be considered outside the time
step. This can be seen as follows: If for some values written by the BB to the shared integers there is

no definite error path from the resulting state, then — due to the interleaving semantics — this step
can be omitted when constructing a definite error path. If for all values there is a definite error path,
then there is also a definite error path for the case that the integer values are left unchanged (which
has the same effect as omitting the discrete step of the BB).

V. COUNTER EXAMPLE COMPUTATION

In Sect. IV we have seen how to prove unrealizability for an incomplete system. If unrealizability
is proven it would be interesting to identify an error path in the system. For that purpose we have
extended our prototype implementation with a counter example generator. As we consider incomplete
systems, different BB implementations can lead to different error paths, therefore an interaction with
the user is needed to define the signals provided by the BB.

Depending on the behavior of the BB, thus on the signals entered by the user, the discrete step is
either a step over u-transitions and nu-transitions or over u-sync-transitions. nu-sync-transitions have
not to be considered as they were also neglected in the computation of Sect. IV (since the BB can
disable them and since there is always a non-deterministic choice not to take these transitions). So we
need two different transition relations for the forward construction of the counterexample: ∆u−sync for
u-sync-transitions and ∆no−sync for u-transitions and nu-transitions. The transition relations can easily
be built from the transition functions. For every state variable yi we introduce a next state variable y′i
and for each clock variable xj a next state clock variable x′j . ∆no−sync is then defined as:

∆no−sync(~x, ~y,~i, ~x′, ~y′) =(
l∧

i=1

(
δno−synci ≡ y′i

)
∧

n∧
j=1

(
(resetno−syncxj

∧ (x′j = 0)) ∨ (¬resetno−syncxj
∧ (x′j = xj))

))
(5)

Analogously, ∆u−sync(~x, ~y, ~Z,~i, ~x′, ~y′) is build using δu−sync and resetu−sync. (Note that ∆u−sync

contains the Zi-variables as they are present in δu−sync.) The discrete forward step is computed for
a state set Φ(~x, ~y) (which is always a singleton during counter example computation). The discrete
step over u-sync-transitions is based on fixed values ψ = (~Zfix) (provided by the user) which the BB
attempts to write to the shared integers. The result Imgu−syncd (Φ, ψ) of the discrete forward step is

Imgu−syncd (Φ, ψ)(~i, ~x′, ~y′) = ∃~x, ~y
(

Φ(~x, ~y) ∧ ∆u−sync(~x, ~y, ~Zfix,~i, ~x′, ~y′)
)

(6)

Analogously Imgno−syncd (Φ) can be computed using ∆no−sync for a discrete step over nu-transitions
or u-transitions. (Note that Imgno−syncd (Φ) is does not depend on Zi-variables.)

For the forward time step the user has to enter values ψ = ~yBB
fix :

Imgc(Φ, ψ) (λ, ~x, ~y) = (λ > 0) ∧ Φ(~x− ~λ, ~y) ∧ (~yBB = ~yBB
fix)

∧ ∀λ′
{

(0 < λ′ ≤ λ) =⇒
[
¬
(
uno−sync(~x− ~λ′, ~y,~i)

)
∧ ¬

(
uu−sync(~x− ~λ′, ~y,~i)

)]}
(7)

Our algorithm, terminating after r steps, provides the state sets Φalg
i with 0 ≤ i ≤ r which were

computed by discrete or time steps. The counter example generator uses these sets to find an error
path. The last set Φalg

r has a non-empty intersection with the initial states init. By using an SMT
solver (e.g. Yices [8]) we compute a satisfying assignment φ0 of init ∧Φalg

r which is the first state of
the counter example. W.l.o.g. assume that the algorithm has reached the initial states after a time step.
Then the user has to provide values ψ for the ~yBB-variables and we compute Φ0 = Imgc(P (φ0), ψ)
for the predicate P (φ0) representing the state φ0. If Φ1 = Φ0 ∧ Φalg

r−1 6= 0, then we have reached
the previous state set provided by the algorithm. We extract a satisfying assignment from Φ1. This

satisfying assignment provides the length λ of the time step and the next state φ1 reached by it. We
continue with the next step. But if Φ1 = 0 then a u-sync-transition must have been enabled during the
time step and Φ2 = Φ0 ∧ uu−sync 6= 0. We extract a satisfying assignment from Φ2 and thus obtain the
next state φ1 of the counter example. Then the user has to be asked whether a u-sync-transition has
to be taken or not. If not, the user is asked for new values ψ′ for the ~yBB-variables and we continue
with another time step from P (φ1) until we reach Φalg

r−1 or there is another u-sync-transition where the
user has to be asked again to take it or not. If the user decides to take a u-sync-transition, he has to
provide values ψ′′ for the Zi-variables and we compute Φ3 = Imgu−syncd (P (φ1), ψ

′′). (To decide for a
certain synchronizing action the user potentially has to fix inputs.) Then we search for a state set Φalg

i

provided by the algorithm with Φ4 = Φ3 ∧ Φalg
i 6= 0. A satisfying assignment is extracted from Φ4.

The satisfying assignment provides the next state φ2.
If a state set Φalg

i provided by the algorithm was computed by a discrete step, then Imgno−syncd has
to be used. Suppose we start from state φk. Imgno−syncd (P (φk)) ∧ Φalg

i−1 is computed and a satisfying
assignment is extracted. The satisfying assignment provides the next state φk+1 as well as an assignment
to the inputs leading to φk+1.

When the unsafe states (Φalg
0) are finally reached, then a counter example leading from the initial

states to the unsafe states has been computed.

VI. EXPERIMENTS

5 10 15 20 25 30

10−1

100

101

102

103

Arbiter [processes]

Ti
m

e
[s

ec
]

BB-fsmtMC
WB-fsmtMC
BB-BMC
WB-BMC
Uppaal

Fig. 3. Results

Figure 3 shows very first results of our prototype model
checking algorithm, proving unrealizability for an arbiter
benchmark [17] where multiple processes are controlled by
a distributed arbiter. All experiments have been performed
on one core of an AMD Opteron with 2.3 GHz with a
time limit of 1 CPU hour and a memory limit of 2 GB.
(Note that all results of our algorithm include the time
needed to convert the timed system into an FSMT.) We
have compared our fully symbolic approach to the forward
model checker Uppaal (v 4.1) which is based on DBMs
and to a BMC algorithm for (incomplete) systems of timed
automata [13]. Analyzing the complete system our model
checking algorithm (WB-fsmtMC) [17], [16] can solve up
to 16 processes as the BMC algorithm (WB-BMC) whereas Uppaal (breadth first search) reaches a
timeout with 7 processes. The property (“at most one process is in its critical region”) is violated
in all cases due to an erroneous implementation of the distributed arbiter. When we abstract all but
two processes by a BB while leaving the distributed arbiter unchanged in the system, our model
checking algorithm (BB-fsmtMC) can prove unrealizability for the incomplete system with originally
30 processes within 191.99 seconds (2 time steps, 66 discrete steps, 33MB of memory). In comparison
the computation of the benchmark with originally 5 processes needs 10.19 seconds (2 time steps, 16
discrete steps, 19MB of memory). (The complexity increases with an increasing number of n processes,
since the distributed arbiter itself – which is in the White Box – contains n + 1 components.) The
BMC algorithm (BB-BMC) reaches a timeout on an incomplete system with originally 25 processes.
Note that controller synthesis tools such as Uppaal Tiga [4] are unable to show unrealizability, since
they do not respect the non-urgent communication with the BB.

VII. CONCLUSION AND FUTURE WORK

We presented a fully symbolic backward model checking algorithm for FSMTs able to handle
incomplete systems. We showed how the computation of the discrete step and the time step has to

be adapted to prove unrealizability for incomplete FSMTs communicating with the BB over shared
integer and urgent and non-urgent synchronization. For cases of proven unrealizability we presented
an interactive counter example generator to identify an error path leading to given unsafe states. The
signals of the BB are provided by the user simulating the BB behavior. Our prototype implementation
shows that fading out complete components of a timed system dramatically reduces the complexity of
the system and the verification effort. Based on the same algorithmic framework we plan to develop
a model checker supporting forward or combined forward / backward model checking for incomplete
systems as well. Moreover we plan to make use of the full power of our symbolic approach by allowing
more general TCTL properties instead of safety properties. Amongst others this easily allows to solve
validity questions (“Is a property satisfied for all possible replacements of the Black Box”) as well,
since validity of a property and non-realizability of the negated property are equivalent and TCTL is
closed under negation.

REFERENCES

[1] R. Alur. Timed automata. Theoretical Computer Science, 126:183–235, 1999.
[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.
[3] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata, 1998.
[4] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and L. Didier. Uppaal-tiga: time for playing games! In Proceedings

of the 19th international conference on Computer aided verification, Berlin, Heidelberg, 2007, CAV’07, pp. 121–125. Springer-
Verlag.

[5] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In SFM, 2004, pp. 200–236.
[6] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz. Exact and fully symbolic

verification of linear hybrid automata with large discrete state spaces. Science of Computer Programming, 2011. to appear.
[7] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz. Exact state set representations

in the verification of linear hybrid systems with large discrete state space. In Automated Technology for Verification and Analysis,
Berlin / Heidelberg, 2007, LNCS 4762, pp. 425–440. Springer.

[8] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV, 2006, LNCS 4144, pp. 81–94. Springer.
[9] R. Ehlers, R. Mattmüller, and H.-J. Peter. Combining symbolic representations for solving timed games. In K. Chatterjee and T. A.

Henzinger, eds., Proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2010), Berlin Heidelberg, 2010, LNCS 6246, pp. 107–121. Springer-Verlag.

[10] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. STTT, 1(1-2):134–152, 1997.
[11] R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput. J., 36(5):450–462, 1993.
[12] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems. In STACS, 1995, LNCS 900, pp.

229–242. Springer.
[13] C. Miller, K. Gitina, and B. Becker. Bounded model checking of incomplete real-time systems using quantified smt formulas. In

Proc. of Microprocessor Test and Verification Workshop (MTV), Austin (TX), USA, December 2011. IEEE Computer Society. to
appear.

[14] C. Miller, K. Gitina, C. Scholl, and B. Becker. Bounded model checking of incomplete networks of timed automata. In Proc. of
Microprocessor Test and Verification Workshop (MTV), Austin (TX), USA, December 2010. IEEE Computer Society.

[15] C. Miller, C. Scholl, and B. Becker. Verifying incomplete networks of timed automata. In GI/ITG/GMM Workshop“Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen”, February 2011, vol. 14.

[16] G. Morbé, F. Pigorsch, and C. Scholl. Fully symbolic model checking for timed automata. In G. Gopalakrishnan and S. Qadeer,
eds., Computer Aided Verification, 2011, LNCS 6806, pp. 616–632. Springer.

[17] G. Morbé and C. Scholl. Fully symbolic model checking for timed automata. In F. Oppenheimer, ed., GI/ITG/GMM
Workshop“Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen”, 2011, pp.
9–18. OFFIS.

[18] T. Nopper and C. Scholl. Approximate symbolic model checking for incomplete designs. In FMCAD, Austin, Texas, November
2004, LNCS 3312, pp. 290–305. Springer Verlag.

[19] T. Nopper and C. Scholl. Flexible modeling of unknowns in model checking for incomplete designs. In GI/ITG/GMM
Workshop“Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen”, April 2005.

[20] T. Nopper, C. Scholl, and B. Becker. Computation of minimal counterexamples by using black box techniques and symbolic
methods. In IEEE Int’l Conf. on Computer-Aided Design, San Jose, 2007. IEEE Computer Society Press.

[21] H.-J. Peter, R. Ehlers, and R. Mattmüller. Synthia: Verification and synthesis for timed automata. In G. Gopalakrishnan and
S. Qadeer, eds., Proceedings of the 23rd International Conference on Computer Aided Verification (CAV), 2011, LNCS 6806, pp.
649–655. Springer-Verlag.

[22] C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Computing optimized representations for non-convex polyhedra by detection
and removal of redundant linear constraints. In Tools and Algorithms for the Construction and Analysis of Systems, March 2009,
LNCS 5505, pp. 383–397. Springer.

