
Exploiting Structure in an AIG Based QBF Solver
Florian Pigorsch and Christoph Scholl

Albert-Ludwigs-Universität Freiburg, Institut für Informatik,
D-79110 Freiburg im Breisgau, Germany

{pigorsch, scholl}@informatik.uni-freiburg.de

Abstract—In this paper we present a procedure for solving
quantified boolean formulas (QBF), which uses And-Inverter
Graphs (AIGs) as the core data-structure. We make extensive
use of structural information extracted from the input formula
such as functional definitions of variables and non-linear quan-
tifier structures. We show how this information can directly
be exploited by the symbolic, AIG based representation. We
implemented a prototype QBF solver based on our ideas and
performed a number of experiments proving the effectiveness of
our approach, and moreover, showing that our method is able
to solve QBF instances on which state-of-the-art QBF solvers
known from literature fail.

I. INTRODUCTION

Quantified Boolean Formulas (QBF) are a powerful general-
ization of satisfiability formulas (SAT). In contrast to SAT, QBF
allows existentially as well as universally quantified variables,
which allows for exponentially more compact representations
of many problems compared to SAT, but comes at the price of
raising the decision complexity from NP-complete to PSPACE-
complete.

Many real world problems from various application do-
mains, such as formal verification and artificial intelligence,
can be compactly formulated as QBF, including the verification
of incomplete circuit designs [1], [2], conditional planning [3],
and nonmonotonic reasoning problems [4].

The common interchange format for QBF instances is the
prenex conjunctive normal form, which consists of a linear
quantifier prefix and a propositional part in CNF format.
General QBFs from the application domain are typically
transformed to the prenex format in a two staged process:
first, quantifiers are pushed outwards the formula, leaving an
arbitrarily shaped propositional part. In a second step, this
propositional part is encoded as a CNF formula.

However, previous work showed that QBF solving often
performs much better for non-prenex formats with quantifier
trees instead of linear quantifier prefixes at the beginning of
the formula [5], [6].

In this paper, we will show that it is also beneficial to extract
structural information from the CNF part of a prenex QBF
instance before the solving process. As we will see later on in
the paper, this is in particular true for our AIG based solver.
Irrespective of the question whether the CNF part originally
resulted from a structural circuit description or not – we try to
detect and extract clauses from the CNF part of a prenex QBF
instance, which establish functional definitions of variables.
Then we use these definitions to generate a non-CNF QBF
formula, and directly represent it by a symbolic data-structure

based on And-Inverter Graphs (AIGs) [7]. Finally, the actual
QBF solving process is performed by eliminating quantifiers
using specialized AIG operations.

The paper is organized as follows: Sect. II gives a short
introduction to QBF and the symbolic representation used
in our solver. Sect. III describes the components of our
approach in detail: i. e. the preprocessing in section III-A, the
structure extraction method in Sect. III-B, early quantification
in Sect. III-C, and finally the symbolic quantifier elimination
part in Sect. III-D. In Sect. IV we evaluate the effectiveness
of our approach, and conclude the paper in Sect. V.

Related Work

In the SAT domain, structure extraction and exploitation has
been successfully studied by several authors, e.g., [8], [9].
Since they are restricted to SAT problems, both approaches do
not consider quantification levels and quantifier types of the
involved variables which is needed for a correct extraction in
the QBF context. In [8] the authors propose a CNF preprocessor
that uses functional definitions to eliminate variables from the
CNF, but they still stick with a (potentially larger) CNF repre-
sentation after variable elimination. The authors of [9] extract
functional definitions, and generate a non-CNF representation
equivalent to the input CNF. During SAT solving the non-CNF
parts are used in order to reject satisfying assignments for the
CNF part which are not consistent with functional definitions.

To the best of our knowledge extraction and exploitation of
structural knowledge in the QBF solving domain has only been
considered by approaches working on CNF representations of
the QBF formula:

In [6] the authors present a CNF-based QBF solver dis-
covering non-linear quantifier structures from prenex QBF
instances and utilizing these structures in their solving algo-
rithm. Additionally functional definitions are used to support
the elimination of variables. The authors of [10] similarly
exploit functional definitions in their QBF preprocessor. Both
approaches rely on CNF representations, and thus suffer from
the potential increase of the CNF during the elimination steps.

The potential of non-CNF representations for QBF is demon-
strated in several works: In [11] the authors argue that CNF
representations are inherently limiting for the QBF solution
process and propose a search-based solver working on a
combination of CNF and DNF. The authors of [12] use tree-
shaped negation normal forms for QBF solving which allow a
more compact representation of the results of variable expan-
sion than CNF. In [13], [5] a procedure based on quantifier

scholl
Textfeld
Preprint from Proceedings of Design, Automation & Test in Europe (DATE), Nice, France, April 2009

tree reconstruction and symbolic skolemization is presented.
Intermediate skolem functions are represented using BDDs.
However, in all three approaches the possibility to benefit from
functional definitions is not considered.

In [14] a search-based method is presented to operate
directly on non-prenex CNF instances, but, again, functional
definitions are not exploited.

II. PRELIMINARIES

A. Quantified Boolean Formulas

In this work we deal with several types of Quantified
Boolean Formulas: (1) general QBF, (2) prenex QBF, and (3)
QCNF.

The least restricted type of QBF is the general QBF, which
is an arbitrary propositional formula consisting of Boolean
variables and Boolean operators, combined with existential
and universal quantifiers at arbitrary positions.

A specialization of the general QBF type is the prenex QBF,
which is of the form Q.φ, where φ is a propositional formula
over a set of variables V and Q = Q1V1Q2V2 . . .QnVn is
a sequence of alternating quantifiers, such that Qi ∈ {∀,∃},
Qi 6= Qi+1, Vi 6= ∅, V =

⋃n
i=1 Vi, and Vi ∩ Vj = ∅. Q is

called prefix and φ is called the matrix of the QBF. A variable
v ∈ Vi is existential (universal) if the Qi = ∃ (Qi = ∀). The
quantification level of a variable is λ(v) = i ⇔ v ∈ Vi.

If the matrix of a prenex QBF is in conjunctive normal form
(CNF), we are talking of a QCNF formula. Most QBF solvers
accept input in form of QCNF formulas and also use QCNF
like data structures for the internal representations.

B. And-Inverter Graphs

In our approach we are using And-Inverter Graphs (AIGs)
[7], or more precisely Functionally Reduced AIGs (FRAIGs)
[15], [16], as a compact symbolic representation for satisfy-
ing assignments of QBF formulas. AIGs are boolean circuits
composed solely of two-input AND gates and inverters. In
contrast to BDDs [17], they are not a canonical representa-
tion for boolean functions – for each boolean function there
exist many structurally different AIGs. Actually an AIG may
contain functionally redundant nodes, i. e., nodes which are
roots of structurally different subgraphs representing the same
functions. A restriction of general AIGs are FRAIGs, which
are ’semi-canonical’ by prohibiting nodes which represent
the same (or inverse) boolean functions. This property is
called ‘functional reduction property’. To achieve this property
several techniques like structural hashing, simulation and SAT
solving are used during FRAIG construction.

AIGs enjoy a widespread application in several areas of for-
mal verification, e. g. in combinational equivalence checking
[18]. In [16] FRAIGs were tailored towards the representation
and manipulation of sets of states in symbolic model checking
and replaced BDDs as a compact representation of large
discrete state spaces.

As we will show in section III-D, AIGs provide all necessary
operations to be used as a symbolic data structure for QBF
solving.

III. OUR APPROACH

We divide our approach into four phases: (1) The prepro-
cessing phase, in which techniques are applied to simplify
the input QCNF formula (most of them are known from
literature) (2) the structure extraction phase, where functional
definitions of variables are extracted from the QCNF resulting
in a structural, prenex QBF, (3) the early quantification phase,
where a non-linear quantifier structure is extracted from the
QBF yielding a tree-shaped general QBF formula, and (4)
the symbolic quantifier elimination phase, in which the QBF
formula is translated to a symbolic, AIG based representation,
allowing the application of AIG operations to eliminate the
quantifiers present in the formula.

A. Preprocessing

As shown in [19] simple QCNF preprocessing techniques
may boost the overall solving performance when being in-
voked prior to the actual QBF solver. We apply the following
preprocessing steps on the QCNF instance until we reach a
fixpoint:

Unit clause propagation [20], universal reduction [19],
elimination of pure literals [21], equivalence reduction [22],
[8] based on the detection of strongly connected components
(SCCs), removal of clauses subsumed [8] by binary clauses,
and finally, detection of implication chains of the form x →
. . . → x in the binary clause graph, resulting in a new unit
literal x.

Each of these simplification rules either detects
(un)satisfiability of the whole formula, leaves the formula
untouched or reduces the size of the QCNF. Directly after
preprocessing we check the resulting QCNF formula for
trivial truth and trivial falsity [21].

B. Structure Extraction

Often, QBF formulas are generated from circuit descrip-
tions such as netlists of standard logic gates. A commonly
used translation technique is the Tseitin encoding [23] that
introduces propositional variables for each circuit signal and
establishes the functional dependencies between the signal
variables by encoding the gates’ characteristic logic func-
tions by sets of clauses. For example an n-input AND-gate
y ↔ AND(x1, . . . , xn) has a Tseitin encoding consisting of
n + 1 clauses: (y ∨ x1), . . . , (y ∨ xn), (y ∨ x1 ∨ . . . ∨ xn).

Considering a functional definition y ↔ f(x1, . . . , xn), we
call y the defined variable, the function f is referred to as
the definition of y, and the set of clauses establishing the
functional definition is called the set of definition clauses.

Our aim is to extract definition clauses from a QBF instance
(irrespective of the question whether they were really intro-
duced originally by Tseitin transformation or not) and build
a structural, non-clausal QBF formula by (1) substituting the
defined variables with structural representations of their def-
initions, (2) removing the clauses representing the functional
definition from the CNF, and (3) removing the defined variable
from the quantifier prefix.

In a later step, this structural representation is directly
translated to a symbolic representation based on AIGs.

Several works considered the detection and exploitation of
definitions in CNF preprocessing for propositional SAT (e. g.
[8]). The authors make use of found definitions by substituting
them into the CNF, and then applying the distributive law to
produce a flat CNF representation. During this distribution step,
the CNF’s size may increase.

In QBF reasoning the exploitation of functional definitions
is applied in [6] and [10]. In both works, definitions are used
to eliminate variables from the CNF representing the QBF
formula. Like in the case of SAT the CNF’s size may increase
in this step.

We differ from these previous works in the following
substantial aspect: we are using a representation based on AIGs
instead of CNF, which lets us apply structural substitution. An
increase in size by applying the law of distributivity is avoided
in our approach.

In contrast to SAT we have to consider the quantifier level
and quantifier type (existential or universal) of variables which
occur in functional definitions. Functional definitions establish
a natural order on the involved variables, since the defined
(output) variable functionally depends on the definition’s in-
puts: If we assign values to the definition’s inputs first, then
a unique assignment to the output variable is implied. If the
quantifier prefix of the QBF respects this order, i.e., if the
quantification levels of the definition’s inputs are smaller or
equal to the level of the defined variable, we call the quantifier
order consistent with the functional definition, otherwise it is
called inconsistent.

We now have a look at all four possible combinations
of order consistency and the type of the defined variable’s
quantifier, and formally investigate whether a substitution is
possible, and what the result of a substitution is:

1) If the quantifier order is consistent with the functional
definition, and the defined variable is existential, then the
substitution is sound. Theorem 1 gives a formal proof.

2) If the quantifier order is inconsistent with the functional
definition, and the defined variable is existential, the
substitution is not sound, as one can see by the following
counter example: ∃z∀x∃a∀y.(z∨a)∧(a ↔ x∧y) is unsat-
isfiable, already ∃z∀x∃a∀y.(a ↔ x ∧ y) is unsatisfiable.
Substituting a by x∧ y, results in ∃z∀x∀y.(z ∨ (x∧ y)),
which is satisfiable.

3) If the quantifier order is consistent with the functional
definition, and the defined variable is universal, the sub-
stitution is sound, but then the instance is unsatisfiable,
as can be shown by a simple variation of Theorem 1.

4) If the quantifier order is inconsistent with the definition,
and the defined variable is universal, the substitution is
not sound, as we again can see by a simple counter
example: Consider the formula ∀a∃x∃y.(a ↔ x∧y)∧a. It
is unsatisfiable, since it contains the universal unit literal
a, but the substituted instance ∃x∃y.(x∧y) is satisfiable.

Theorem 1 (Substitution of Existential Definitions) Let
Q1∃yQ2.φ be a prenex QBF, where Q1 and Q2 are sequences
of quantifiers, a1, . . . , al are the variables quantified in
Q1, and b1, . . . , bk are the variables quantified in Q2,
{a1, . . . , al} ∩ {b1, . . . , bk} = ∅. Let φ be a conjunction
of a boolean formula φ′(a1, . . . , al, y, b1, . . . , bk) and the
definition clauses Gy for y ↔ f(x1, . . . , xn), let λ(xi) ≤ λ(y)
hold for all i ∈ {1, . . . , n}. Then

Q1∃yQ2.Gy ∧ φ′(a1, . . . , al, y, b1, . . . , bk)
is equivalent to

Q1Q2.φ
′(a1, . . . , al, f(x1, . . . , xn), b1, . . . , bk)

w. r. t. satisfiability.

Proof: According to the assumptions {x1, . . . , xn} ⊆
{a1, . . . , al} holds. Since Gy does not depend on any
variables of Q2, it can be pushed outwards until ∃y,
resulting in Q1∃y.(Gy ∧ (Q2.φ

′(a1, . . . , an, y, b1, . . . , bk))).
Replacing Gy by the equivalent characteristic function
y ↔ f(x1, . . . , xn) yields Q1∃y. [(y ↔ f(x1, . . . , xn))
∧(Q2.φ

′(a1, . . . , al, y, b1, . . . , bk))]. Now we eliminate the
existential quantifier by cofactoring and obtain the result
Q1.F with F = {[f(x1, . . . , xn) ∧ (Q2.φ

′(a1, . . . , al, 1,
b1, . . . , bk))] ∨ [f(x1, . . . , xn) ∧ (Q2.φ

′(a1, . . . , al, 0, b1,
. . . , bk))]}.

For an arbitrary, but fixed valuation of a1, . . . , al (and
thus x1, . . . , xn) f(x1, . . . , xn) also evaluates to a fixed
value. If f(x1, . . . , xn) evaluates to 1, F can be simplified
to (Q2.φ

′(a1, . . . , al, 1, b1, . . . , bk)), if it evaluates to 0, it
can be simplified to (Q2.φ

′(a1, . . . , al, 0, b1, . . . , bk)). Thus
we can equivalently transform Q1.F to Q1Q2.φ

′(a1, . . . , al,
f(x1, . . . , xn), b1, . . . , bk), which is the desired result.

In our implementation, the definition detection routine is
able to find definitions for (multi-input) AND gates, (multi-
input) OR gates, and two-input XOR-gates, all with arbitrarily
negated inputs. If multiple definitions for one variable are
found, we extract the one that depends on the most clauses.
The extraction of functional definitions leading to cyclic
dependencies of variables is omitted.

Notice, that we do not transform the result of a substitution
back to QCNF format by distribution. Instead we obtain a
QCNF where a subset of the variables is associated with
substitution instances. Iterative applications of substitutions
lead to substitution instances with a graph-like structure just
as a boolean circuit.

Example 1 As an example, consider the following QCNF:

∀a∃b∃c∀d∃e∃f.(a ∨ b) ∧ (a ∨ e) ∧ (c ∨ a) ∧ (c ∨ b)
∧(c ∨ a ∨ b) ∧ (c ∨ d ∨ f) ∧ (e ∨ b ∨ c) ∧ (c ∨ f)

We detect a definition for c: c ↔ a ∧ b using the definition
clauses (c∨a), (c∨ b), and (c∨a∨ b). According to Theorem
1, we remove the definition clauses and structurally replace c
by a ∧ b, leading to a representation like this:

∀a∃b∀d∃e∃f.(a ∨ b) ∧ (a ∨ e)

∧(c ∨ d ∨ f) ∧ (e ∨ b ∨ c) ∧ (c ∨ f)

a ∧ b

The connections from c to a∧b denote the association between
the variable and its definition.

C. Early Quantification

In [5] the authors propose a method to construct a tree-
shaped quantifier structure from a QCNF instance with linear
quantifier prefix, and show how to benefit from the structure
in the solving phase. We modified the quantifier tree algorithm
from [5] to be able to cope with our hybrid QBF formulas by
making it aware of functional definitions for CNF variables.

The result of the algorithm is a generalized quantifier tree.
Internal nodes are either quantifier nodes labelled with a
quantifier and a variable or conjunctive nodes, the leaves
contain sets of clauses with variables which may be associated
to definitions. The order of quantifiers along each path from
the root to a leaf is consistent with the original quantifier order.

Example 2 The following (generalized) quantifier tree results
for the QBF from Example 1:

(a ∨ b)

(c ∨ d ∨ f)

(c ∨ f)

(a ∨ e)
(e ∨ b ∨ c)

∃b

∀d

∃f

∃e

a ∧ b

∀a

∧

The variable c is linked to its definition a ∧ b.

D. Symbolic Quantifier Elimination

Given a QBF formula in form of a quantifier tree with
definitions, we use the AIG package from [16] to recursively
create AIGs for the formula’s nodes starting at the tree’s leaves.

The standard boolean operations (conjunction, disjunction,
negation, XOR) occurring in the structural QBF formula can
all be broken down to conjunction and negation, which can be
carried out on AIGs by adding AND nodes and inverters.

Quantifier elimination on AIGs is performed by cofactoring,
i. e.∃x.f = f |x=0 ∨ f |x=1, where f is a boolean function rep-
resented by an AIG, f |x=0 is the negative cofactor of f w. r. t.
the variable x, and f |x=1 is the positive cofactor. The cofactors
themselves are computed by structurally copying the original
AIG, while replacing the quantified variable by a constant
value. Quantifier elimination may in the worst case double
the AIGs size, an effect that is tackled by various methods: (1)

merging of equivalent nodes, (2) quantifier scheduling, and (3)
BDD based structure compaction.

While creating AIG nodes we maintain the functional reduc-
tion property [15], i. e. all nodes must represent unique boolean
functions, by merging equivalent nodes. Equivalent nodes are
found in a three staged process: first we apply structural
hashing to detect isomorphic nodes, secondly we select a set
of candidate nodes for equivalence by functional simulation,
the third step uses SAT to prove/disprove equivalence with
each candidate node. In case of an equivalence, the nodes are
immediately merged. Especially when eliminating quantifiers,
the functional reduction property leads to a significant reduc-
tion of size, since equivalent substructures of both cofactors
are merged.

Quantifier scheduling [16] is a heuristic approach, that is
used if a series of quantifiers with the same level is to be
eliminated: the size of each quantifier elimination result is
estimated, and the quantifier leading to the smallest increase
in size is eliminated first.

BDD sweeping [16] is used to compress the AIG represen-
tation of a function, if a BDD of reasonably small size can
be constructed for this function. If such a BDD is found, an
structurally equivalent AIG is built. Finally, the original AIG
is replaced by the equivalent, but smaller new AIG.

Another method for AIG compaction is AIG rewriting
[24], that iteratively replaces AIG subgraphs by smaller, pre-
computed subgraphs, preserving their functionality and de-
creasing the overall size of the AIG.

In our implementation, we first create AIG input nodes for
the QBF variables without definitions, then we recursively cre-
ate AIGs for the QBF variables that have functional definitions.
Finally, we apply Algorithm 1 CreateAIG to the root of the
quantifier tree, which traverses the tree in a depth-first manner
and creates AIGs for each node.

Input : Quantifier Tree node n
Output: AIG for n
begin

if n is a conjunctive node then
AIG t :=

∧
c∈children(n) CreateAIG(c);

return t
else if n is a universal node then

AIG t := CreateAIG(child(n));
return UniversalQ(t, variable of n)

else if n is a existential node then
AIG t := CreateAIG(child(n));
return ExistentialQ(t, variable of n)

else if n is clause node then
AIG t :=

∧
c∈clauses(n) CreateClauseAIG(c);

return t
end

Algorithm 1: CreateAIG

The subroutine CreateClauseAIG creates an AIG for a given
clause by computing the disjunction of the AIGs of the clause’s
literals. Note that the AIG for a literal may be different

from a variable or negated variable in case that the literal
corresponds to a variable that has a definition. UniversalQ
and ExistentialQ are the universal and existential quantifier
elimination routines of the AIG package, “

∧
” denotes the AND

operation on AIGs. After each quantifier elimination, we try to
compress the resulting representation using BDD sweeping and
AIG rewriting. When CreateAIG terminates, an AIG is present
for the root node. If this AIG is equivalent to 01 the QBF is
unsatisfiable, otherwise it is satisfiable.

IV. EXPERIMENTAL RESULTS

Based on the methods presented in this paper we imple-
mented a prototype QBF solver. In order to evaluate the overall
performance of our approach, we compared our solver with the
latest, publicly available versions of the following state-of-the-
art QBF solvers: Quantor v3.0 [6], QuBE 6.4 [25], and sKizzo
v0.8.2 [5]. This selection of solvers covers a broad spectrum
of decision techniques for QBF: Quantor uses resolution and
expansion based variable elimination, QuBE is a search based
solver, sKizzo applies quantifier tree reconstruction, symbolic
skolemization, and propositional ground reasoning. The ex-
periments were performed for the complete QBFEVAL’07[26]
benchmark set. All experiments were run on a dual AMD dual-
core Opteron machine with 2.8 GHz and 16 GB of memory
using a time limit of 600 seconds and a memory limit of 4
GB.

Table I shows the results for different benchmark families.
Column Family lists the names of the benchmark families,
column Inst. lists the number of instances of each family. For
each solver the columns S show the numbers of instances of
each family where the solver succeeded, and the column Time
lists the total solving time in CPU seconds for each instance2.
For our AIG based solver AIGsolve, we also listed the number
of instances that have been solved during the preprocessing
phase according to Sect. III-A (column P), and the total
percentages of variables for which functional definitions have
been extracted (column D), furthermore column U lists the
number of instances that AIGsolve was able to solve uniquely
among the tested solvers, column H7 (H8) lists the number
of hard instances, according to QBFEVAL’07 (QBFEVAL’08),
on which our solver succeeded. To support our claim that the
extraction of functional definitions is beneficial for the solving
algorithm, we also ran our solver with extraction of definitions
turned off. The group of columns labelled AIGsolve/nodef lists
the numbers of solved instances and the solving times for this
variant.

We can solve 157 out of 1136 instances just by preprocess-
ing and trivial satisfiability checks. The structure extraction
part of our approach is able to detect and extract functional
definitions for a total of 51.9% of the variables remaining after
preprocessing. Moreover, there are families where functional
definitions can be found for more than 90% of the variables:

1Due to the functional reduction property, this equivalence is automatically
detected when creating the AIG for the root node

2Failed instances (i. e. the solver violated the memory or time limit) are
considered to contribute 600 CPU seconds (the time limit)

bbox-01x-qbf, C+term1, tipdiam, tipfixpoint. This result lets
us conclude that most QBF benchmarks can significantly be
simplified by preprocessing and that there is a fair amount of
structure from which a QBF solver can profit during the actual
solving phase.

In total, our solver succeeds on 537 instances, a result
that clearly outperforms Quantor (422 solved instances), while
being slightly above the number of instances solved by sKizzo
(533 solved instances). Only QuBE, which currently is the
fastest solver according to QBFEVAL, is able to outperform
our approach with respect to the number of solved instances
(614 solved instances). Taking a closer look at the experi-
mental results, we observe that our solver is able to uniquely
solve 53 instances among the tested solvers, moreover it is
successful on 48 (51) instances that are marked as hard in
the QBFEVAL’07 (QBFEVAL’08), i. e. instances that no solver
participating in the competitive evaluations could solve within
the time limit of 600 seconds. Most of these instances are
from the tipdiam and tipfixpoint families, where our structure
extraction method detects a large number of definitions, and
thus optimally supports the solver’s AIG core. Without the
exploitation of functional definitions, our solver is only able
to solve 401 instances. This result clearly shows that extracting
functional definitions indeed is beneficial for our solver.

Our experimental results not only show the effectiveness of
our approach in general, but they also show that our solver has
strengths which are complementary to those of search based
solvers like QuBE. This gives a strong motivation for a future
integration of both concepts in a combined approach.

V. CONCLUSIONS

In this paper, we propose to extract structural information
from QBF formulas in form of functional definitions of vari-
ables, and tree-shaped quantifier structures. This information
is directly used to build a symbolic, AIG based representation
of the QBF formula, on which AIG operations are applied to
eliminate the quantifiers. Based on these ideas a prototype
QBF solver was implemented and evaluated on the complete
QBFEVAL’07 benchmark set. The experimental results show
that indeed a lot of structure can be extracted from the bench-
marks, allowing the prototype solver to compete successfully
with other state-of-the-art solvers, and to outperform the best
solvers by a number of – until then – unsolved instances. This
clearly demonstrates that the proposed methods are relevant for
QBF solving and that they are able to successfully complement
the decision procedures implemented by other QBF solvers.

REFERENCES

[1] C. Scholl and B. Becker, “Checking Equivalence for Partial Implemen-
tations,” in Proc. of the 38th Design Automation Conf. (DAC 2001).
ACM, 2001, pp. 238–243.

[2] M. Herbstritt and B. Becker, “On Combining 01X-Logic and QBF,”
in Proc. of the 11th Int. Conf. on Computer Aided Systems Theory
(EUROCAST 2007), 2007, pp. 531–538.

TABLE I
COMPARISON WITH OTHER SOLVERS

AIGsolve AIGsolve/nodef Quantor sKizzo QuBE
Family Inst. P D S Time U H7 H8 S Time S Time S Time S Time
Adder 11 0 0.0% 9 2268 1 0 0 9 2260 4 4248 8 2143 1 6001
bbox-01X-qbf 450 104 96.5% 173 169906 0 0 1 147 184492 130 192018 210 152761 290 100180
bbox design 28 0 89.0% 23 3790 0 0 0 18 11682 0 16800 1 16456 28 15
Blocks 6 0 36.8% 0 3600 0 0 0 0 3600 6 79 3 2045 2 2666
BMC 132 16 59.8% 30 62075 0 0 0 36 49429 113 13348 105 17954 56 47365
C+term1 12 0 92.8% 9 2328 0 1 0 4 5179 6 4195 5 4464 8 3039
Chain 2 2 - 2 0 0 0 0 2 0 2 0 2 0 2 0
conf planning 24 0 56.8% 1 13802 0 0 0 2 13207 14 6801 8 10029 6 11229
Connect4 1 0 0.9% 0 600 0 0 0 0 600 0 600 0 600 0 600
Counter 3 0 3.2% 2 904 0 0 0 3 77 3 15 3 5 0 1800
Debug 38 0 2.6% 0 22800 0 0 0 0 22800 29 8922 9 19233 0 22800
evader-pursuer 4 0 3.4% 0 2400 0 0 0 0 2400 0 2400 1 1802 0 2400
FPGA 1 0 0.0% 0 600 0 0 0 1 286 1 3 1 2 1 78
jmc quant 3 0 42.9% 2 1105 0 0 0 2 625 0 1800 1 1716 3 11
k 61 0 51.5% 56 4070 0 0 0 57 3207 38 13948 61 1479 23 24627
MutexP+Qshifter 8 0 0.0% 8 566 0 0 0 8 495 4 2417 8 4 3 3045
s 10 0 72.5% 10 229 0 0 0 9 1666 10 480 10 133 10 6
Sort networks 53 0 12.1% 0 31800 0 0 0 7 29575 27 16042 18 21853 19 21636
SzymanskiP 6 0 0.0% 0 3600 0 0 0 0 3600 0 3600 0 3600 6 134
tipdiam 85 0 96.0% 77 6556 16 15 19 38 32398 24 36699 50 24729 57 17887
tipfixpoint 196 35 95.2% 133 42138 36 32 31 56 88502 9 112333 27 102532 99 61620
Toilet 2 0 60.9% 2 137 0 0 0 2 145 2 1 2 1 0 1200
Total 1136 157 51.9% 537 375274 53 48 51 401 456225 422 436749 533 383541 614 328338

[3] J. Rintanen, “Constructing Conditional Plans by a Theorem-Prover,” J.
Artif. Intell. Res. (JAIR), vol. 10, pp. 323–352, 1999.

[4] U. Egly, T. Eiter, H. Tompits, and S. Woltran, “Solving Advanced
Reasoning Tasks Using Quantified Boolean Formulas,” in Proc. of the
17th Nat. Conf. on Artificial Intelligence and 12th Conf. on Innovative
Applications of Artificial Intelligence (AAAI/IAAI), 2000, pp. 417–422.

[5] M. Benedetti, “Quantifier Trees for QBFs,” in Proc. of the 8th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT 2005), 2005,
pp. 378–385.

[6] A. Biere, “Resolve and Expand,” in Proc. of Seventh Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT 2004), Selected Papers,
2004, pp. 59–70.

[7] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean
Reasoning,” in Proc. of the 38th Design Automation Conf. (DAC 2001),
2001, pp. 232–237.

[8] N. Eén and A. Biere, “Effective Preprocessing in SAT Through Variable
and Clause Elimination,” in Proc. of the 8th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2005), 2005, pp. 61–75.

[9] R. Ostrowski, É. Grégoire, B. Mazure, and L. Sais, “Recovering and
Exploiting Structural Knowledge from CNF Formulas,” in Proc. of the
8th Int. Conf. on Principles and Practice of Constraint Programming
(CP 2002), 2002, pp. 185–199.

[10] E. Giunchiglia, P. Marin, and M. Narizzano, “sQueezBF: An Effective
Preprocessor for QBF,” in Proc. of the 2nd Int. Workshop on Quantifi-
cation in Constraint Programming (QiCP 2008), 2008.

[11] L. Zhang, “Solving QBF with Combined Conjunctive and Disjunctive
Normal Form,” in Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI 2006), 2006.

[12] F. Lonsing and A. Biere, “Nenofex: Expanding NNF for QBF Solving,”
in Proc. of the 11th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT 2008), 2008.

[13] M. Benedetti, “Evaluating QBFs via Symbolic Skolemization,” in Proc.
of the 11th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR04), ser. LNCS. Springer, 2005, no. 3452.

[14] E. Giunchiglia, M. Narizzano, and A. Tacchella, “Quantifier Structure in
Search-Based Procedures for QBFs,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 26, no. 3, pp. 497–507, 2007.

[15] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,” EECS
Dept., UC Berkeley, Tech. Rep., 03 2005.

[16] F. Pigorsch, C. Scholl, and S. Disch, “Advanced Unbounded Model
Checking Based on AIGs, BDD Sweeping, And Quantifier Scheduling,”
in Proc. of the Conf. on Formal Methods in Computer Aided Design
(FMCAD 2006). IEEE Computer Society Press, Nov 2006, pp. 89 –
96.

[17] R. Bryant, “Graph - Based Algorithms for Boolean Function Manipu-
lation,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[18] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén, “Improve-
ments to combinational equivalence checking,” in Proc. of the Int. Conf.
on Computer-Aided Design (ICCAD 2006), 2006, pp. 836–843.

[19] H. Samulowitz, J. Davies, and F. Bacchus, “Preprocessing QBF,” in
Proc. of the 12th Int. Conf. on Principles and Practice of Constraint
Programming (CP 2006), 2006, pp. 514–529.

[20] M. Davis and H. Putnam, “A Computing Procedure for Quantification
Theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, 1960.

[21] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi, “An algo-
rithm to evaluate quantified boolean formulae,” in Journal of Automated
Reasoning. AAAI Press, 1998, pp. 262–267.

[22] H. Samulowitz and F. Bacchus, “Binary Clause Reasoning in QBF,” in
Proc. of the 9th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT 2006), 2006, pp. 353–367.

[23] G. Tseitin, “On the complexity of derivations in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logics,
A. Slisenko, Ed., 1968.

[24] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proc. of the
43rd annual Conf. on Design Automation (DAC 2006). ACM, 2006,
pp. 532–535.

[25] E. Giunchiglia, M. Narizzano, and A. Tacchella, “QUBE: A System for
Deciding Quantified Boolean Formulas Satisfiability,” in Proc. of the 1st
Int. Joint Conf. Automated Reasoning (IJCAR 2001), 2001, pp. 364–369.

[26] ——, “QBF Evaluation 2007,” http://www.qbflib.org/index eval.php.

