
Computation of Minimal Counterexamples by Using
Black Box Techniques and Symbolic Methods

Tobias Nopper and Christoph Scholl and Bernd Becker
Institute of Computer Science, Albert-Ludwigs-University, D-79110 Freiburg, Germany

{nopper, scholl, becker}@informatik.uni-freiburg.de

Abstract— Computing counterexamples is a crucial task for
error diagnosis and debugging of sequential systems. If an
implementation does not fulfill its specification, counterexamples
are used to explain the error effect to the designer. In order
to be understood by the designer, counterexamples should be
simple, i.e. they should be as general as possible and assign
values to a minimal number of input signals.

Here we use the concept of Black Boxes — parts of the
design with unknown behavior — to mask out components for
counterexample computation. By doing so, the resulting coun-
terexample will argue about a reduced number of components in
the system to facilitate the task of understanding and correcting
the error. We introduce the notion of ‘uniform counterexamples’
to provide an exact formalization of simplified counterexamples
arguing only about components which were not masked out. Our
computation of counterexamples is based on symbolic methods
using AIGs (And-Inverter-Graphs). Experimental results using
a VLIW processor as a case study clearly demonstrate our
capability of providing simplified counterexamples.

I. INTRODUCTION

Given a sequential circuit and properties in some temporal
logic like CTL or LTL, model checking is a method for
verifying these properties [1], [2]. In the early nineties, by in-
troducing symbolic model checking, Burch et al. substantially
extended the class of systems which can be verified [3], [4].
In (unbounded) symbolic model checking, Binary Decision
Diagrams (BDDs) [5] (or more recently And-Inverter Graphs
(AIGs) [6], [7], [8]) are used both for state set representation
and for state traversal. In the last few years SAT based
techniques like Bounded Model Checking (BMC) [9], [10]
have also attracted much interest. BMC applied to certain
properties (safety properties or, more generally, LTL formulas)
‘unfolds’ the transition relation for k steps and checks whether
there is a run of length k which does not fulfill the specified
property. If such a run does not exist, then k is increased
and BMC is used again. However, for proving properties
using BMC, a suitable upper bound on k is needed. In the
case of safety properties, e.g., the procedure can be stopped,
when k equals the diameter of the system, i.e. the maximum
length of all shortest paths between states in the system. In
this case, BMC ends up with a proof of the property. Since
computing the diameter of a system turns out to be difficult
however, alternative approaches such as k-induction [11] and
interpolation [12] have been proposed for making SAT-based
model checking complete.

In this paper we address an important feature of unbounded
symbolic model checkers, the generation of counterexamples
for cases when the specified property does not hold. If the
property does not hold, counterexamples are an important

means for the designer, since they explain the error by showing
a run of the system violating the property and may guide
the designer to a correction of the error in the system. In
this sense the strength of model checking as a verification
technique largely relies on counterexamples produced for
failing properties.

Standard methods for counterexample generation imple-
mented in model checkers like SMV [3], [4] produce a
sequence of assignments to all input signals defining an
erroneous run of the system. Thus, a consideration of all parts
of the system is needed in order to understand and reproduce
the error effect in the current design. In this paper we consider
a method for constructing counterexamples arguing about a
reduced number of components of the system in order to
facilitate the task of understanding and correcting the error.

The goals of our work are most closely related to approaches
in the Bounded Model Checking (BMC) context which try
to improve a counterexample produced by a SAT solver in
BMC [13], [14]. Starting from a single counterexample which
specifies all signals at all times prior to the error, the approach
from [13] tries to remove (‘lift’) assignments to input signals
without losing the property that the remaining assignments
imply a violation of the property. It is important to note that
the quality of this method strongly depends (1) on the order
which is used for removing assignments to input signals and
(2) on the original counterexample produced by the SAT solver
(which may happen to be only one out of a large number of
possible counterexamples).1

In contrast, our approach to the improvement of counterex-
amples in symbolic model checking is based on Black Box
model checking methods [15] where components of a system
are removed and replaced by so-called Black Boxes. If Black
Box model checking is able to prove that the property is
violated independently from the implementation of the Black
Boxes, then we know that those parts of the design which
were replaced by Black Boxes are not important for explaining
the error effect and we have successfully reduced the number
of components to be considered when analyzing the error. In
our current approach Black Boxing is performed interactively
based on the property and conjectures of the user about which
parts of the design could potentially be irrelevant for the error.
Black Boxing may be performed step by step until further
replacements of components by Black Boxes would lead to the
situation that Black Box model checking is not able to prove
a violation of the property independently from the Black Box

1We refer to Section III-G for a more detailed discussion comparing SAT
based methods to our approach.

1-4244-1382-6/07/$25.00 ©2007 IEEE 273

scholl
Textfeld
Preprint from Proceedings of International Conference on Computer Aided Design (ICCAD 2007), November 2007, San Jose, USA

implementation.
Another application scenario for our counterexample gener-

ation methods presented in this paper are partial designs with
Black Boxes where Black Boxes represent parts of the design
which are not yet present in early phases of the design process.
In order to help the designer to remove errors which are
already present in the current partial design, counterexamples
are needed which do not depend on values produced by some
future implementation of the Black Boxes. However in this
paper we focus our attention on the generation of improved
counterexamples by removing components from an already
existing design.

Based on existing methods for Black Box model check-
ing [15], we had to develop methods for counterexample
generation in this context. In Section III we show that a
straightforward generalization of counterexample generation
from classical symbolic model checking to Black Box model
checking will not meet our demands. The reason for this lies in
the fact that counterexamples generated by the straightforward
method may still argue about the signals at the interface
of the Black Boxes and different implementations of the
Black Boxes may lead to different counterexamples. Hence
we had to develop more sophisticated methods which produce
‘uniform’ counterexamples that do not depend on the behavior
implemented by the Black Boxes.

Note that in contrast to previous approaches dealing with
unknown initial states [16], [17], we have to cope with dif-
ferent possible behaviors of the system due to different Black
Box implementations since the ‘uniform counterexample’ is
defined to be a counterexample for all possible Black Box
implementations.

A. Related Work

Apart from approaches in the Bounded Model Checking
(BMC) context trying to improve concrete counterexamples
by ‘lifting’ assignments produced by a SAT solver [13],
[14] as already mentioned above, there are related methods
based on ternary (0, 1, X)-logic such as Symbolic Trajectory
Evaluation (STE) [18], [19]. The most popular applications
of STE are also based on properties arguing about bounded
time windows. These properties (called ‘simple assertions’
in [18]) have the special form A ⇒ C where A and C
are so-called trajectory formulas. The antecedent A expresses
constraints on signals at different times t, and the consequent
C expresses requirements that should hold on signals at (some
other) times t′. STE solves the model checking problem
by considering symbolic representations for all runs of the
system (‘trajectories’) fulfilling A and all sequences of signals
fulfilling C. The traces fulfilling A are overapproximated
using ternary (0, 1, X)-logic. (In contrast, approximations used
in our method are not necessarily bound to (0, 1, X)-logic,
see also Section II.). Counterexamples for failing properties
specify only input signals which were mentioned in A or C,
other inputs retain the unknown (and thus arbitrary) value X .

However, it may be the case that A⇒ C can not be proved
due to overapproximations of traces allowed by A. Then in
a refinement step more symbolic variables (or more concrete
values) may be introduced into A (reducing unknown values
X and thus reducing the set of traces which are represented

symbolically). However, introducing symbolic variables for
inputs may potentially introduce complex parts of the system
into counterexamples which could be ‘black boxed’ by our
method. Introducing symbolic variables for internal signals
(other than inputs) can lead to the problem of ‘vacuously
failing’ properties [20], i.e. to the problem that there is no
concrete counterexample which is compatible to the abstract
counterexample derived from A and C by STE.

More general properties for STE arguing about unbounded
time windows (like iterations from [18]) suffer from the fact
that sets of states have to be approximated by (0, 1, X) (e.g. a
state set {(00), (01), (10)} can only be described as (XX)
[18]). This can have the effect that for faulty designs it is
unknown whether a property is violated or not (due to values
X in the state vector). In contrast, our method does not
approximate sets of states using X-values, even if (0, 1, X)-
logic is used for approximating transitions in the system.

Another interesting approach which is related to our method
by giving more information to the user than a single counterex-
ample was presented by Copty et al. [21]: In their approach
most insight into the nature of counterexamples has been given
given by so-called ‘strong values’: Starting from a specific
counterexample Copty et al. are able to show, e.g., that some
state bits at some instants in time have the same values for
all possible counterexamples, i.e., these ‘strong values’ are
essential for the error trace. In contrast, our focus is on
providing information that certain parts of the circuit and
certain signals in the counterexample are definitely irrelevant
for the existence of the error. The approaches are on the one
hand related in the sense that they focus the attention of the
user to the most relevant parts in the counterexample, but on
the other hand they form two orthogonal methods.

The paper is structured as follows: Section II reviews
the main ideas of Black Box model checking which is a
necessary ingredient for our counterexample optimization.
Then, Sect. III introduces our approach generating ‘uniform’,
minimized counterexamples and presents some interesting
theoretical results wrt. the length of uniform counterexamples.
Experimental results demonstrating counterexample minimiza-
tion for a VLIW processor design are presented in Sect. IV.
Our experiments rely on symbolic methods using AIGs (And-
Inverter-Graphs) and they clearly illustrate that our methods
are able to go beyond ‘lifting’ assignments to input signals
in fixed counterexamples produced by SAT solvers. Finally,
Sect. V summarizes the paper and gives directions for further
research.

II. PRELIMINARIES

In this section we give a brief introduction into symbolic
representations of incomplete designs by means of a small
sequential example given in Fig. 1. The unknown part of the
design has been combined into a so-called ‘Black Box’.

For the remainder of this paper, we abbreviate the
state names for this example as follows: We use q1q0 for
(q1 = 0, q0 = 0), q1q0 for (q1 = 0, q0 = 1), q1q0 for (q1 = 1,
q0 =0), and q1q0 for (q1 =1, q0 =1). Likewise, we use x for
x=0 and x for x=1.

The Black Box computes a boolean-valued output Z0.
Symbolic simulation of this circuit returns the following result

274

q0

q1

q′0

q′1

Z0

FF 0

FF 0

Black
Box

x

δ0

δ1

Fig. 1. An exemplary sequential circuit with one Black Box. Initially, q1 =
q0 = 0.

q1q0

q1q0

q1q0 q1q0

x, x

x, x

x

x

x
(Z0=0)

x
(Z0=1)

x
(Z0=0)

x
(Z0=1)

Fig. 2. Automaton of the circuit in Fig. 1 with fixed transitions (solid
arrows) and possible transitions (both solid and dashed arrows). q1q0 is the
initial state, the safety property AG(¬q0 ∨ ¬q1) is violated in state q1q0.

for the transition functions δ0 and δ1:

δ0(q1, q0, x, Z0) = q0 · Z0 + q0 · q1 + q0 · q1

δ1(q1, q0, x, Z0) = x+ q0

Given a state (q1, q0) and an input x, the next state computed
by the transition functions may or may not depend on the
behavior of the Black Box: For instance, for state q1q0 and
input x the next state will be q1q0 independently of the value
Z0 computed by the Black Box. In this case we call the
transition (q1q0, x, q1q0) a fixed transition, since it will be
present for all possible replacements of the Black Box. On
the other hand, for state q1q0 and input x the next state
may be either q1q0 (in case that the Black Box computes
Z0 = 0 in this situation) or q1q0 (in case that the Black
Box computes Z0 = 1 in this situation). Here we say that
both transitions (q1q0, x, q1q0) and (q1q0, x, q1q0) are possible
transitions, since they may or may not be present depending
on the implementation of the Black Box.

For the complete set RA of fixed transition we have the
following result

RA=
{

(q1q0, x, q1q0), (q1q0, x, q1q0), (q1q0, x, q1q0),
(q1q0, x, q1q0), (q1q0, x, q1q0), (q1q0, x, q1q0)

}
and for the set RE of possible transitions we have

RE=
{

(q1q0, x, q1q0), (q1q0, x, q1q0), (q1q0, x, q1q0),
(q1q0, x, q1q0), (q1q0, x, q1q0),(q1q0, x, q1q0),
(q1q0, x, q1q0), (q1q0, x, q1q0), (q1q0, x, q1q0),
(q1q0, x, q1q0)

}
.

Figure 2 illustrates the fixed transitions (solid arrows) and the
possible transitions (both dashed and solid arrows) for this
example.

For understanding the following sections the existence of
fixed and possible transitions is the most crucial point.

For the general case, the characteristic functions χRA and
χRE representing the sets RA resp. RE may be computed
using symbolic methods [15], [22].

In [15], [22], different possibilities to model the behavior of
Black Boxes in their environment are considered. Starting from
a symbolic version of ternary (0, 1, X)-simulation [23] where
Black Box outputs are handled by assigning the unknown
value X to them, Black Box outputs can alternatively be
modeled by distinct Zi-variables (as already shown above
for the small example of Fig. 1). Modeling with distinct Zi-
variables leads to a more accurate representation in general,
however at the expense of more variables and higher costs
for symbolic representations and manipulations. In a second
step, these Zi variables can also be included into the state
space during symbolic model checking, which again results in
a gain of accuracy.

The different methods to handle the Black Box outputs
lead to different approximations of the sets of fixed and
possible transitions. Based on this, [15] defines a symbolic
model checking procedure (for arbitrary CTL formulas) that
is able to falsify so-called realizability problems and to prove
validity problems for designs with Black Boxes. A property
is called realizable, if there is a replacement of the Black
Boxes by some implementation such that the overall design
fulfills the property and a property is called valid, if it holds
independently of the replacement of the Black Boxes. In
this paper we restrict our considerations to disproofs of the
realizability of safety properties.

III. COUNTEREXAMPLE GENERATION FOR INCOMPLETE
DESIGNS

In this section, we present our method to compute coun-
terexamples for a given incomplete design and a safety prop-
erty, i.e., a property that has to be satisfied in every state
reachable from the initial state.

In the case that symbolic model checking for an incomplete
design returns the result that a safety property is not realizable,
it is proven that for every Black Box substitution, there is an
input sequence leading to a state violating the safety property
(hence a counterexample). However it needs to be defined how
counterexamples should be computed in this situation.

Since our motivation for Black Boxing was the simplifica-
tion of counterexamples, our goal is to find counterexamples
that work irrespective of a concrete substitution of the Black
Boxes. We now discuss three possible approaches to this.

A. Approaches
a) Straightforward approach: The straightforward

approach to generating counterexamples for incomplete
designs would consist in an adaption of the standard method
for computing counterexamples [24], meaning that the Black
Box outputs could — like inputs — hold arbitrary values in
every state. Yet, this allows the counterexample computation
to make assumptions about the Black Box output values. The

275

q1q0

q1q0

q1q0 q1q0

2: x

3: x

4: x

1: x
(Z0=1)

q1q0

q1q0

q1q0 q1q0

4: x3: x
1: x
(Z0=0)

2: x
(Z0=0)

q1q0

q1q0

q1q0 q1q0

3: x

4: x

1: x
(Z0=0)

2: x
(Z0=1)

Fig. 3. Illustration of the three possible paths that the system in Fig. 2
can take for the input sequence x̃ = (0, 1, 0, 1) depending on the Black Box
substitution. Since all possible paths end in an errorneous state, x̃ is a uniform
counterexample that works for all replacements of the Black Box.

problem with this approach is illustrated by means of the
example in Fig. 2: Suppose the initial state is q1q0 and our
safety property is AG(¬q0 ∨¬q1), i.e. the erroneous state
is q1q0: Then the input sequence of length 1 x̃ = (1) is a
counterexample for all Black Box replacements that produce
output Z0 = 1 when the sequential circuit is in the initial state
with x = 1. However, this counterexample does not work for
other replacements, e.g. for replacements that produce output
Z0 = 0 in this situation, since then the sequence x̃ = (1)
would lead us to state q1q0 which is not erroneous. Thus, this
approach does not meet our goal to find a counterexample
that does not depend on the behavior of the Black Box.

b) Approach based on fixed transitions: Alternatively, it
is possible to consider fixed transitions in RA only. By that, the
input sequence forces the design into a specific sequence of
states, independently from the Black Box substitutions. Thus,
if such an input sequence is found, it will work for every
Black Box replacement. Yet, in many cases, it is not possible
to find such a counterexample, since the erroneous states are
not reachable from the initial state by fixed transitions only.
For our example in Fig. 2, there is no fixed successor for the
initial state q0q1 (see RA for this example as given in Sect. II),
and thus no such counterexample can be generated only based
on fixed transitions here.

c) Uniform counterexamples: The following approach
is not limited to fixed transitions, but still meets our goal of
finding counterexamples that work irrespective of substitutions
of the Black Boxes. This approach is based on the notions of
‘possible paths’ and ‘uniform counterexamples’:

Definition 1: Given an input sequence (x1, . . . , xn) and a
state q0, a possible path starting with q0 and resulting from
sequence (x1, . . . , xn) is any sequence of states (q0, . . . , qn)
where (qi−1, xi, qi) is in the set of possible transitions RE
(1 ≤ i ≤ n).

Definition 2: A uniform counterexample for an incomplete
design is a sequence of input values such that each resulting
possible path starting with a specific initial state ends with an
erroneous state violating the safety property.

Thus, a uniform counterexample works independently of the
Black Boxes substitutions. (However, both the intermediate
states and the final erroneous state may vary depending on
the substitutions of the Black Boxes.)

For our example in Fig. 2, the input sequence x̃ =
(0, 1, 0, 1) is a uniform counterexample that works for all
replacements of the Black Box, since it works for all three
possible paths as illustrated in Fig. 3.

B. Computation of Uniform Counterexamples

The main idea of uniform counterexample computation is
as follows: Starting from the set of states directly violating
the safety property, we iteratively compute all states q with
the property that there is an input sequence that leads us from
q into an erroneous state, regardless of which possible path is
taken. These input sequences are built in the iteration process
and are stored together with the states q.

To simplify matters, we will first illustrate our method in an
explicit way and show how to perform symbolic computation
later. Let Q be the set of states, I be the set of initial states, and
X be the set of possible input values. In our case, Q = B|~q|
and X = B|~x|.

The safety property ϕ has the form ϕ = AG(ψ), whereas
ψ only consists of state variables, negation, conjunction
and disjunction.2 The set of erroneous states is defined as
{q ∈ Q | q 6|= ψ}.

In our algorithm we inductively define sets Ci ⊆ Q ×Xi,
i.e., an element (q, x̃) ∈ Ci consists of a state q and an
input sequence x̃ = (x1, . . . , xi) of length i. To prove the
correctness of our approach we use the following invariant for
every set Ci constructed during our iteration:

(q, x̃) ∈ Ci, if and only if each possible path starting with q
and resulting from input sequence x̃ will end in an erroneous
state.

Definition 3: The set Ci ⊆ Q×Xi is defined as follows:
• i = 0: Initially, the length of the considered input se-

quences is i = 0. We define

C0 :=
{(
q, ()

) ∣∣ q ∈ Q, q 6|= ψ
}
.

• i→ i+ 1: Based on Ci, Ci+1 is computed:

Ci+1 :=
{(
q, (x, x̃)

) ∣∣∣ q ∈ Q, x ∈ X, x̃ ∈ Xi;

∀q′ ∈ Q :
((

(q, x, q′) ∈ RE
)
→
(
(q′, x̃) ∈ Ci

))}
Obviously, C0 satisfies the invariant defined above.
The invariant for Ci+1 can be proven inductively based

on the invariant for Ci: Let us consider some state q ∈ Q,
some input x ∈ X , and some input sequence x̃ ∈ Xi. By
definition of Ci+1,

(
q, (x, x̃)

)
is in Ci+1 iff for every possible

successor q′ ∈ Q with (q, x, q′) ∈ RE : (q′, x̃) ∈ Ci. This
means that, regardless of which possible transition under x
is taken, we arrive at some successor state q′ such that each
possible path starting with q′ and resulting from the remaining
input sequence x̃ ends in an erroneous state (by inductive
assumption on Ci). Altogether, starting with q, each possible
path resulting from the input sequence (x, x̃) (with length i+1)
will end in an erroneous state.

The opposite direction of the invariant for Ci+1 can be
shown by induction in a similar manner.

Now, a uniform counterexample with length i exists, iff a
sequence starting with an initial state is included in the set
Ci.

The computation of uniform counterexamples is applied
after the Black Box model checker produced the result that

2For ease of explanation, we assume that ψ contains only state variables.
This is not a necessary restriction to our method, actually ψ may contain
arbitrary signals of the design.

276

the safety property is violated for every possible Black Box
substitution. That means that there is a (possibly non-uniform)
counterexample of length d (where d is the number of back-
ward steps that were necessary to prove unrealizability).

However, it may be possible that there is no uniform
counterexample of length d (we will explain this issue in detail
in Sect. III-F). Due to that, it is reasonable to look also for
uniform counterexamples that are longer than d (at least by
some small constant factor c > 1). We are not interested in
uniform counterexamples much longer than d, since it is our
goal to simplify counterexamples by our Black Box techniques.
This upper bound on the length of uniform counterexamples
provides our stop criterion for the iterative computation also
in cases where there is no uniform counterexample at all.

Altogether, this leads to the algorithm shown in Fig. 4.
Theorem 1: The algorithm shown in Fig. 4 computes —

if possible at all — a uniform counterexample (according to
Def. 2) with minimum length ≤ c · d.

The proof of the theorem follows immediately from the
arguments given above.

C. Example
We again use our example given in Figures 1 and 2 together

with the safety property ϕ = AG(¬q0∨¬q1). The possible
transition relation RE for this example is given in Section II.

Model checking for incomplete designs proves that ϕ is not
satisfied for any substitution of the Black Box. For uniform
counterexample computation, we evaluate Ci as defined above
for increasing counterexample length i. For i = 0, C0 contains
all states directly violating the safety property ψ = ¬q0∨¬q1

plus an empty input sequence:

C0 =
{(
q1q0, ()

)}
In the next step, we iteratively increase the length of the input
sequence:

C1 =
{(
q1q0, (x)

)
,
(
q1q0, (x)

)
,
(
q1q0, (x)

)}
Note that e.g.

(
q1q0, (x)

)
/∈ C1 due to

(
q1q0, x, q1q0

)
∈ RE

yet
(
q1q0, ()

)
/∈ C0. We continue:

C2 =
{(
q1q0, (x, x)

)
,
(
q1q0, (x, x)

)
,(

q1q0, (x, x)
)
,
(
q1q0, (x, x)

)}
C3 =

{(
q1q0, (x,x,x)

)
,
(
q1q0, (x, x, x)

)
,
(
q1q0, (x, x, x)

)
,(

q1q0, (x, x, x)
)
,
(
q1q0, (x, x, x)

)
,
(
q1q0, (x, x, x)

)
,(

q1q0, (x, x, x)
)
,
(
q1q0, x, x, x)

)
,
(
q1q0, (x, x, x)

)
,(

q1q0, (x, x, x)
)
,
(
q1q0, (x, x, x)

)}
i := 0;
C0 :=

˘`
q, ()

´ ˛̨
q ∈ Q, q 6|= ψ

¯
;

while
`
(@q ∈ Q, x̃ ∈ Xi : q ∈ I ∧ (q, x̃) ∈ Ci) ∧ (i < c · d)

´
{

Ci+1 :=
n`
q, (x, x̃)

´ ˛̨
q ∈ Q, x ∈ X, x̃ ∈ Xi;

∀q′ ∈ Q :
“`

(q, x, q′) ∈ RE
´
→

`
(q′, x̃) ∈ Ci

´”o
;

i := i+ 1;
}

Fig. 4. Algorithm for uniform counterexample computation

Since there is an input sequence for the initial state q1q0 in
C3, we have found the uniform counterexample (1, 0, 1) with
minimum length i = 3.

D. Impact of different modeling of unknowns
Of course, uniform counterexamples depend on the set of

possible transitions derived from the system. However, our
approach (following [15]) considers different possibilities to
model the behavior of Black Boxes in their environment
leading to different approximations of the sets of possible
transitions (see also Section II). The least expensive method
computes possible transitions based on (0, 1, X)-logic; it leads
to the largest number of possible transitions. Yet, due to
well-known deficiencies of (0, 1, X)-logic, ternary logic may
lead to “possible transitions” which are not present for any
replacement of the Black Boxes (see also [15]), i.e., potentially
possible paths are considered which are not present in any im-
plementation. This “overapproximation” potentially prevents
us from finding uniform counterexamples. In this case we
have to consider more accurate approximations as discussed
in Sect. II.

E. Symbolic Computation
For symbolic computation, we use the symbolic transition

relation χRE (~q, ~x, ~q ′) as introduced in Sect. II and the char-
acteristic function χSat(¬ψ)(~q) of the set of states violating
ψ. The uniform counterexamples can then be symbolically
computed as shown in Fig. 5.

For our implementation we use symbolic representations
based on AIGs [8].

F. Bounds on the Length of Uniform Counterexamples
The following Theorem 2 justifies our decision to abort

the search for a uniform counterexample whenever its length
exceeds its non-uniform counterpart by a constant factor. The
proof of Theorem 2 presents an example where the size of the
shortest uniform counterexample is much larger than the size
of the shortest non-uniform counterexample. (Whereas this is
an interesting theoretical result, this does not mean that such
examples will be observed in practical applications.)

Theorem 2: There are incomplete circuits with n states
where the length of the shortest uniform counterexample is
in Ω(2

√
n).

Proof: Let p = (2, 3, 5, 7, . . .) be the sequence of prime
numbers.

Consider the automaton shown in Figure 6. Starting from
the initial state q0 and for input x = 1, there are m successors

i := 0;
χC0(~q) := χSat(¬ψ)(~q);
while

`
(χCi · χI = false) ∧ (i < c · d)

´
{

χCi+1(~q, ~xi+1, . . . , ~x1) := ∀~q ′
“̀
χRE |~x←~xi+1

´
(~q, ~xi+1, ~q

′)

→
`
χCi |~q←~q ′

´
(~q ′, ~xi, . . . , ~x1)

”
;

i := i+ 1;
}

Fig. 5. Symbolic algorithm for uniform counterexample computation

277

q0

q3,0

q3,1

q5,0

q5,1

q5,2 q5,3

q2,1 q3,2

q5,4

q2,0

0

1

1 1

1

0

0
0

0

0

0 0

0

0
0

1

1
1 1

1

1 1

1 1

1

Fig. 6. Exemplary automaton for uniform counterexample length consid-
eration. Fixed transitions are indicated by solid arrows, possible transitions
are indicated by dashed and solid arrows. q0 is the initial state and for every
prime number pi, qpi,pi−1 is an erroneous state.

(qp1,0, . . . , qpm,0) in different cycles with pi states. It is easy
to see that the number of states is n = 1 +

∑m
i=1 pi.

In each of these cycles i of length pi, the input x = 1
leads from qpi,j to the next state in the cycle qpi,j+1(mod pi),
while x = 0 always leads back to the same state. For each
cycle, qpi,pi−1 is the only state violating the safety property.
All transitions except the transitions for input x = 1 from q0

to qp1,0, . . . , qpm,0 are fixed transitions.
Due to this construction, it can be seen that the shortest

uniform counterexample has length l =
∏m
i=1 pi and always

sets the input to 1.
The primorial

∏m
i=1 pi is known to be in Ω(2pm). Together

with

n =
∑m

i=1
pi + 1 ≤

∑pm

j=1
j =

p2
m − pm

2
≤ p2

m,

one can see that for this automaton with n states the shortest
uniform counterexample has length Ω(2

√
n).

From a theoretical point of view, it is also interesting
to consider upper bounds on the length of shortest uniform
counterexamples:

Theorem 3: For any automaton corresponding to an incom-
plete circuit with n states the length of the shortest uniform
counterexample is ≤ 2n.

Theorem 3 can be proven by a power set construction
similar to the well-known transformation of non-deterministic
finite automata to deterministic finite automata. Theorem 3
could be used as an alternative stop criterion for the algorithm
of Sect. III-B, but remember that — from a practical point
of view — we use Black Boxing as a means for simplifying
counterexamples and thus, we are not interested in (uniform)
counterexamples having huge lengths.

G. Lessons Learned for SAT Based Methods

The result of Theorem 2 is also interesting in the context
of counterexample simplification in Bounded Model Checking
[13]: It essentially says that there are examples where the
number of unfoldings in BMC has to be exponentially enlarged
before it is possible to ‘simplify’ the counterexample by
‘lifting’ all output signals of Black Boxes in all time frames
(lifting means removing assignments to signals without losing
the property that the remaining assignments imply a violation
of the safety property).

R7 . . . R4

Select Select

FU 1FU 3

R11 . . . R8

Select Select

FU 0

R15 . . . R12

Select Select

op1op2op3 op0src11 src12src31 src32 src01 src02dest1dest2dest3 dest0

R3 . . . R0

FU 2

value2

Fig. 7. A simple VLIW ALU with an error in the XOR operation in FU0.

Moreover, note that our approach based on Black Box
techniques is more powerful than SAT based methods for
lifting assignments to signals, if the goal is to lift all output
signals of Black Boxes in all time frames: SAT based methods
start with a fixed counterexample and try to lift assignments.
This specific counterexample may be only one out of a large
number of possible counterexamples, and, by accident, it
may be the case that lifting does not work for this specific
counterexample, but it would work for other counterexamples.
We will come back to this problem when considering our case
study in Sect. IV.

By a formulation as a QBF (Quantified Boolean Formula)
problem instead of a number of SAT problems it would be
possible to check for all possible counterexamples whether
the variables mentioned above may be lifted [25], [26], but
QBF problems are harder to solve than SAT formulas and for
QBF solving it could not yet be observed such a breakthrough
as for SAT solving during recent years [27], [28].

IV. CASE STUDY

As a case study, we will consider a simple VLIW ALU with
four functional units as illustrated in Fig. 7; the VLIW instruc-
tion word (consisting of four parts for the four functional units)
is considered to be the input of the design. Each functional
unit FU0. . . FU3 is able to read from each of the 16 registers,
while writing is limited to a local part of the registers (FU0

may write to registers R0 . . . R3, FU1 to R4 . . . R7 etc.).
FU3 realizes the four logical instructions AND, OR, XOR

and NOP, whereas the XOR operation is faulty and computes
an OR instead (note that XOR and OR only differ when both
inputs are 1). FU2 implements a ‘Load Immediate’ operation
(that writes a value given in the operation code into a specified
register) and a NOP operation. FU1 and FU0 both realize the
arithmetic operations ADD, SUB, MUL and NOP. All registers
are assumed to be initialized by 0.

All our experiments were performed on a Dual Opteron
running at 2 GHz and with 4 GB of RAM.

A. Complete Assignments and Lifting
This completely specified system can be checked with a

property stating that if the last operation that FU3 executed
was “R14 := R12 ⊕ R13”, then the current value of R14 has
to be the current value of R12 XOR the current value of
R13.3 Due to the erroneous XOR implementation, the property

3To turn this property into a AG-formula mentioning only current state
bits, we had to cache the last operation in the design, so that it is available
in the current state.

278

TABLE I
COUNTEREXAMPLE FOR THE CIRCUIT IN FIG. 7 BEFORE (ALL ENTRIES)
AND AFTER LIFTING VARIABLE ASSIGNMENTS (BOLD ENTRIES ONLY).

Step FU3 FU2 FU1 FU0

0 R12 := R0 ∧R0 R8 := 0 . . .01 R4 := R0 ·R0 R0 := R0 ·R0

1 R12 :=R8∧R8 R8 := 10 . . .0 R4 :=R0+R8 R0 :=R8–R0

2 R13 :=R0∧R4 R8 := 0 . . .00 NOP R0 := R2 ·R1

3 R14 :=R12⊕R13 ∗ ∗ ∗

fails. It is now possible to compute a counterexample for the
complete design, which includes a value for each primary
input, thus a complete VLIW instruction in every step of the
counterexample, by an arbitrary conventional counterexample
computation method. Based on this assignment, it is possible
to remove (‘lift’) some of these variable assignments using the
lifting algorithm presented in [13].

As a representative example for such a counterexample
computation method, we used a simple bounded model
checker based on MiniSAT [28] that additionally implemented
lifting. Table I shows a counterexample generated by BMC for
the VLIW ALU with 12 Bit word width before lifting.

Based on this assignment, a reduced counterexample was
obtained by lifting as many variables as possible; the bold
entries in Tab. I illustrate this reduced counterexample. Obvi-
ously, still all functional units have to be considered in order
to understand the counterexample.

Using this BMC tool, we performed experiments for several
versions of the VLIW processor with differing word widths;
Tab. II shows the overall run times for bounded model check-
ing and lifiting, the run times for lifting only, and the set of
functional units the lifted counterexample argues about.

For comparison, Tab. II additionally gives the runtimes of
bounded model checking using the VIS tool [29]; these run-
times do not include lifting, since a version of VIS including
lifting was not at our disposal.

Note that BMC followed by lifting may or may not find
uniform counterexamples as defined in this paper, since lifting
starts with a specific counterexample found by a SAT solver.

In the following we will show that our method is able to
provide a much better counterexample than that of Table I.

B. Counterexample Generation for Incomplete Designs
For our experiments, we replaced FU1 and FU0 by a Black

Box (comp. the dashed box in Fig. 7).

TABLE II
BOUNDED MODEL CHECKING COUNTEREXAMPLE GENERATION WITH

LIFTING FOR THE CIRCUIT IN FIG. 7 WITH VARYING WORD WIDTHS.

word CPU sec Functional Units used VIS CPU sec
width Overall Lifting in the counterexample (No Lifting)

2 0.10 0.04 FU3, FU2, FU0 0.1
4 0.20 0.06 FU3, FU2 0.2
6 0.34 0.10 FU3, FU2 0.4
8 0.52 0.16 FU3, FU2 0.6

12 1.44 0.74 FU3, FU2, FU1, FU0 1.2
16 2.12 1.02 FU3, FU2, FU0 2.0
24 4.04 1.74 FU3, FU2 4.3
32 8.32 4.20 FU3, FU2, FU0 8.7
48 19.80 9.66 FU3, FU2, FU0 35.2
64 46.13 22.60 FU3, FU2, FU0 83.3

TABLE III
UNIFORM COUNTEREXAMPLE FOR THE CIRCUIT IN FIG. 7 IN WHICH FU1

AND FU0 HAVE BEEN REPLACED BY A BLACK BOX.

Step FU3 FU2 FU1 FU0

0 ∗ R9 := ∗ . . . ∗ 1 ∗ ∗
1 R12 := R9 ∨R9 ∗ ∗ ∗
2 R13 := R9 ∨R9 ∗ ∗ ∗
3 R14 := R12 ⊕R13 ∗ ∗ ∗

Note that our first conjecture that we would need only
FU3 (which implements logical operations) to be kept in the
design for deriving a minimized counterexample turned out
to be incorrect: If FU2, FU1 and FU0 are replaced by a
Black Box, it is not possible to prove that the property fails.4

Moreover note that the Black Box in Fig. 7 lies inside the
cone of influence for the considered property, and thus can
not be removed by a cone-of-influence reduction. Our method
presented in Sect. III-E was able to find a uniform coun-
terexample that included only instructions for FU3 and FU2.
Table III shows the counterexample generated by our approach
based on a symbolic computation of uniform counterexamples
and a removal of nonessential input variable assignments. It
is easy to see that this counterexample gives a much better
and more succinct explanation for the error in the design than
the counterexample from Tab. I, now arguing about a smaller
number of components and input signals.

We performed experiments for several versions of the VLIW
processor with varying bit widths. Whereas the symbolic
model checker for incomplete designs that was used in [15]
was based on the BDD package CUDD [30] and used rela-
tional preimage computation, we used an improved version
in which boolean formulas are represented by And-Inverter-
Graphs [8] and that used functional preimage computation
[31], [32] for our experiments.

Our method was able to provide a counterexample for a
word width of 64 bits in less than 11 minutes of CPU time.
Detailed results for varying word widths can be found in
Tab. IV. The runtimes given in the table cover the model
checking for the incomplete design, the computation of a
uniform counterexample and the computation of a complete

4It is easy to see that we need constants 1 in both operand registers R12

and R13 of the XOR operation in order to make the error observable. Using
only FU3, it is not possible to place these constants into R12 and R13.

TABLE IV
UNIFORM COUNTEREXAMPLE GENERATION FOR THE CIRCUIT IN FIG. 7 IN

WHICH FU1 AND FU0 HAVE BEEN REPLACED BY A BLACK BOX FOR

VARYING WORD WIDTHS.

word AIGs BDDs
width CPU sec # Nodes CPU sec # Nodes

2 0.68 2077 20.58 203175
4 1.18 3703 846.98 2739457
6 2.02 5329 23.24 195284
8 2.97 6955 33.43 210342

12 5.18 10207 458.72 875048
16 10.81 13459 472.90 839244
24 27.16 19963 3273.05 2159946
32 34.08 26467 2488.55 1928284
48 165.45 39475 5363.69 4678588
64 638.95 52483 3601.53 2086592

279

simulation run demonstrating the error.
For comparison, Tab. IV shows also run times and node

counts for a version of our model checker where AIGs were
replaced by BDDs (CUDD [30]) for symbolic representations.
The table shows a drastic increase of run times for the BDD
based version compared to the AIG based version.

It is interesting to see that for our case study it is necessary
to compute uniform counterexamples based on possible tran-
sition as defined in Def. 2 (Sect. III-A). The second approach
discussed in Sect. III-A, which considered fixed transitions
only, would not have been able to generate a counterexample,
since no erroneous state is reachable by only fixed transitions
in this example.

V. CONCLUSION AND FUTURE WORK

We introduced a method to compute counterexamples for
incomplete designs. This method can be used to compute more
comprehensible counterexamples arguing about a reduced
number of components in the system. Our method is based on
the notion of ‘uniform counterexamples’ which are counterex-
amples showing an error effect without making assumptions on
certain Black Boxes in the design. Experimental results, which
demonstrate the usefulness of our concepts and algorithms,
are complemented by theoretical results wrt. existence and
potential lengths of uniform counterexamples.

For the future we plan to extend the approach from safety
properties to more general classes of temporal formulas.
Currently, the selection of parts of the design which will be
replaced by Black Boxes is performed by the user based on the
hierarchical structure of the system and the property at hand.
We plan to develop methods which automate this selection
process in order to obtain simplified counterexamples without
or with a reduced user interaction.

REFERENCES

[1] A. Sistla and E. Clarke, “The complexity of propositional linear temporal
logics,” Journal of the ACM, vol. 32, no. 3, pp. 733–749, 1985.

[2] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of Finite–
State Concurrent Systems Using Temporal Logic Specifications,” ACM
Trans. on Programming Languages and Systems, vol. 8, no. 2, pp. 244–
263, 1986.

[3] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
Model Checking: 1020 States and Beyond,” Information and Computa-
tion, vol. 98(2), pp. 142–170, 1992.

[4] K. McMillan, Symbolic Model Checking. Kluwer Academic Publisher,
1993.

[5] R. Bryant, “Graph - based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[6] M. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based unbounded
symbolic model checking using circuit cofactoring,” in Int’l Conf. on
Computer-Aided Design, 2004, pp. 510–517.

[7] H.-J. Kang and I.-C. Park, “Sat-based unbounded symbolic model
checking,” IEEE Trans. on CAD, vol. 24, no. 2, pp. 129–140, February
2005.

[8] F. Pigorsch, C. Scholl, and S. Disch, “Advanced unbounded model
checking based on aigs, bdd sweeping, and quantifier scheduling,” in
Proceedings of the Conference on Formal Methods in Computer Aided
Design (FMCAD). IEEE Computer Society Press, Nov 2006, pp. 89 –
96.

[9] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999.

[10] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in Design Automation
Conf., 1999.

[11] M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety Properties
Using Induction and a SAT-solver,” in FMCAD, ser. LNCS, W. H. Jr.
and S. Johnson, Eds., vol. 1954. Springer, 2000, pp. 407–420.

[12] K. McMillan, “Interpolation and sat-based model checking,” in Com-
puter Aided Verification, vol. 2725. Springer Verlag, 2003, pp. 1–13.

[13] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in TACAS, vol. 2988. Springer, 2004, pp. 31–45.

[14] S. Shen, Y. Qin, and S. Li, “Minimizing counterexample with unit core
extraction and incremental sat,” in VMCAI, vol. 3385. Springer, 2005,
pp. 298–312.

[15] T. Nopper and C. Scholl, “Approximate symbolic model checking for
incomplete designs,” in Formal Methods in Computer-Aided Design, ser.
LNCS, A. J. Hu and A. K. Martin, Eds., vol. 3312. Austin, Texas:
Springer Verlag, Nov 2004, pp. 290–305.

[16] C. Pixley, “A theory and implementation of sequential hardware equiva-
lence,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 11,
no. 12, pp. 1469–1478, 1992.

[17] T. Kropf and H.-J. Wunderlich, “A Common Approach to Test Genera-
tion and Hardware Verification Based on Temporal Logic,” in Int’l Test
Conf., 1991, pp. 57–66.

[18] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in System
Design: An International Journal, vol. 6, no. 2, pp. 147–189, March
1995.

[19] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard,
C. Barrett, and D. Syme, “An industrially effective environment for
formal hardware verification.” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 24, no. 9, pp. 1381–1405, 2005.

[20] R. Tzoref and O. Grumberg, “Automatic refinement and vacuity detec-
tion for symbolic trajectory evaluation.” in CAV, ser. LNCS, T. Ball and
R. B. Jones, Eds., vol. 4144. Springer Verlag, 2006, pp. 190–204.

[21] F. Copty, A. Irron, O. Weissberg, N. P. Kropp, and G. Kamhi, “Efficient
debugging in a formal verification environment,” in Correct Hardware
Design and Verification Methods (CHARME), ser. LNCS, T. Margaria
and T. F. Melham, Eds., vol. 2144. Springer Verlag, September 2001,
pp. 275–292.

[22] T. Nopper and C. Scholl, “Flexible modeling of unknowns in model
checking for incomplete designs,” in 8. GI/ITG/GMM Workshop “Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen”, April 2005.

[23] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing
and Testable Design. Computer Science Press, 1990.

[24] O. Coudert, C. Berthet, and J. Madre, “Verification of synchronous
sequential machines based on symbolic execution,” in Automatic Verifi-
cation Methods for Finite State Systems, ser. LNCS, vol. 407. Springer
Verlag, 1989, pp. 365–373.

[25] C. Scholl and B. Becker, “Checking equivalence for partial implemen-
tations,” in Design Automation Conf., 2001, pp. 238–243.

[26] M. Herbstritt, B. Becker, and C. Scholl, “Advanced SAT-techniques for
bounded model checking of blackbox designs,” in Proc. of Micropro-
cessor Test and Verification Workshop (MTV). IEEE Computer Society,
2006.

[27] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engeneering an efficient SAT solver,” in Design Automation Conf., 2001.

[28] N. Een and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th InternationalConference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8,2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, vol. 2919. Springer,
2003, pp. 541–638.

[29] The VIS Group, “VIS: A system for verification and synthesis,” in
Computer Aided Verification, ser. LNCS, vol. 1102. Springer Verlag,
1996, pp. 428–432.

[30] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder, 2001.

[31] T. Filkorn, “Functional extension of symbolic model checking,” in CAV
’91: Proceedings of the 3rd International Workshop on Computer Aided
Verification. Springer, 1992, pp. 225–232.

[32] P. Williams, A. Biere, E. Clarke, and A. Gupta, “Combining decision
diagrams and SAT procedures for efficient symbolic model checking,”
in Computer Aided Verification, ser. LNCS, vol. 1855. Springer Verlag,
2000, pp. 124–138.

280

