
Advanced Unbounded Model Checking Based on
AIGs, BDD Sweeping, And Quantifier Scheduling

Florian Pigorsch, Christoph Scholl, and Stefan Disch
Albert-Ludwigs-Universität Freiburg, Institut für Informatik,

D-79110 Freiburg im Breisgau, Germany
Email: {pigorsch, scholl, disch}@informatik.uni-freiburg.de

Abstract— In this paper we present a complete method for
verifying properties expressed in the temporal logic CTL. In con-
trast to the majority of verification methods presented in recent
years, we support unbounded model checking based on symbolic
representations of characteristic functions. Among others, our
method is based on an advanced And-Inverter Graph (AIG)
implementation, quantifier scheduling, and BDD sweeping. For
several examples, our method outperforms BDD based symbolic
model checking by orders of magnitude. However, our approach
is also able to produce competitive results for cases where BDD
are known to perform well.

I. INTRODUCTION

Given a sequential circuit and properties in some temporal
logic like CTL or LTL, model checking is a method for
verifying these properties [1], [2]. In the early nineties, by
introducing symbolic model checking, Burch et al. substan-
tially extended the class of systems which can be verified
[3], [4]. In symbolic model checking binary decision diagrams
(BDDs) [5] are used both for state set representation and for
state traversal. Sets of states are represented by characteristic
functions which in turn are represented by BDDs.

However, in the last few years SAT based techniques like
Bounded Model Checking (BMC) [6], [7] have been attracting
much interest, since industrial needs ask for methods avoiding
the well known memory explosion problem which may occur
during symbolic model checking of large circuits. BMC ap-
plied to certain properties (invariants or, more generally, LTL
formulas) ‘unfolds’ the transition relation for k steps in order
to find counterexamples. If no counterexample of length k is
found, then k is increased and BMC is used again. For proving
properties using BMC a suitable upper bound on k is needed.
In the case of invariants, e.g., the search for counterexamples
can be stopped, when k equals the diameter of the system, i.e.,
the maximum length of all shortest paths between states in the
system. Then, BMC ends up with a proof of the property.
Unfortunately, computing diameters of large systems turns
out to be hard. The problem may be reduced to the validity
check of a quantified Boolean formula (QBF) with alternating
existential and universal quantifiers [6]. Since this check is
usually hard for large systems, BMC is mostly used as an
incomplete method for finding errors in practice.1

In this paper, we present a complete method for verifying
properties expressed in the temporal logic CTL. Our method is

1Another possibility consists in increasing k up to the length of the longest
simple path between two states [8]. Whereas it is easier to determine the length
of the longest simple path than to determine the diameter of the system, the
longest simple path may be exponentially longer than the diameter. If this is
the case, unfolding the transition relation for such a large number of steps
will be prohibitive.

based on a symbolic representation of sets of states. However,
our symbolic representation relies on And-Inverter Graphs
(AIGs) [9], [10] instead of BDDs. So far, And-Inverter Graphs
have been successfully applied in combinational equivalence
checking [9], [10] and in BMC for simplifying representations
of transition relations [11]. Basically, they are Boolean circuits
which consist of AND gates and inverters only. In contrast
to BDDs, AIGs do not provide canonical representations of
Boolean functions. Since we do not need canonical repre-
sentations for representing sets of states, we are able to
avoid memory blow-ups during the construction of (canonical)
BDDs. On the other hand, checks for satisfiability or validity,
which are needed during the model checking process, do not
come for free as for BDDs, because there are different AIG
representations for constants 0 and 1.

In order to obtain as much sharing of subcircuits as possible
we make use of a special version of AIGs, the so-called
functionally reduced AIGs (FRAIGs) which were introduced
by Mishchenko et al. [12] in the context of logic synthesis,
technology mapping and combinational equivalence checking.
Like general AIGs, FRAIGs still form non-canonical repre-
sentations of Boolean functions, but they have the additional
property that they do not contain any pair of functionally
equivalent nodes. This invariant is maintained during con-
struction of FRAIGs by using a SAT solver. In addition, the
construction of FRAIGs is assisted by functional simulation
in order to avoid unnecessary SAT checks for pairs of nodes
for which already simulation is able to prove non-equivalence.
Similar ideas for compressing AIG representations using ‘SAT
sweeping’ and functional simulation can be also found in [11].

The most difficult step during model checking using
FRAIGs is the elimination of existential quantifiers. As in
[13], [14], [15] existential quantifiers ∃xf are eliminated by
replacing them by f |x=0 +f |x=1. Of course, in the worst case
the elimination of one quantifier may double the size of the
representation. Although it is not very likely that this worst
case behavior can be avoided in random examples (since SAT
checking is NP hard), we show in our experimental results
that we succeed in limiting the increase in size by several
measures including a clever choice of the order of quantifi-
cations (‘quantifier scheduling’). Interestingly, in contrast to
a widespread belief [16], [17], [18] our results prove that –
for our approach – quantifier elimination by a circuit-based
computation of f |x=0 +f |x=1 is not restricted to models with
a small number of inputs (which have to be quantified during
symbolic model checking). Our novel method for quantifier
scheduling is based on estimations on the AIG sizes of
the results after performing quantifier elimination. In Section
V we motivate the importance of quantifier scheduling by

scholl
Textfeld
Preprint from Proceedings of Formal Methods in Computer Aided Design, November 2006, San Jose, USA

giving an example and we describe the approach in more
detail. Note that our way of eliminating quantifiers (∃xf =
f |x=0 +f |x=1) also motivated the use of functionally reduced
AIGs (FRAIGs) instead of ‘standard’ AIGs: Since a trivial
implementation of quantifying several input variables would
lead to an exponential growth of the representation, we need
the more aggressive form of enforcing sharing of subcircuits
which is provided by FRAIGs.

Other techniques for limiting the sizes of our representations
of state sets are node selection heuristics and BDD sweeping:

• Whenever a new node is inserted into our FRAIG rep-
resentation, we check whether there is already a node
in the representation which is functionally equivalent to
this new node (using SAT combined with simulation).
If there is already a functionally equivalent node, we
keep only one representation for the function and replace
the representation of one node by the other (this is in
contrast to [12] where various representations of the same
function are kept for technology mapping purposes). In
order to keep the overall size of the representation small
we have to select carefully which representation is kept
(see Section IV).

• BDD sweeping is known from combinational equivalence
checking [9], [10] and builds BDDs for AIG nodes
starting at the primary inputs until a certain node limit is
reached. BDD sweeping is used there from time to time
in order to identify equivalent nodes in the AIG. Since we
are using SAT for maintaining the FRAIG invariant we do
not need BDD sweeping with this objective. In contrast
to the traditional use of BDD sweeping we make use of
BDD sweeping in the cone of selected output functions
of our FRAIG representation in order to compute smaller
AIG representations. After one step of BDD sweeping
we check whether our FRAIG representations decrease in
size when parts of the FRAIG representation are replaced
by subgraphs which are structurally equivalent to the
BDDs computed during BDD sweeping.

Interpolation based model checking [17] is related to our
approach in the sense that it also provides a method for
unbounded model checking. In contrast to our approach [17]
does not handle CTL properties, but invariants, and it does
not use exact image computations, but overapproximations
by so-called Craig interpolants. Due to the overapproximated
image computation the method of [17] needs to be applied
iteratively on unfoldings of the transition relation for an
increasing number of steps (as in Bounded Model Checking).
Our method does not need several unfoldings, but it can be
used in standard symbolic model checking just replacing BDD
representations for state sets by AIG based representations.
Other related approaches perform quantifier elimination by
using a SAT solver for enumerating all satisfying assignments
of a given function [16], [19]. During the enumeration process
disjunctions of cubes (or conjunctions of clauses) are collected
leading to a two-level representation of the result of the
quantification. Characteristic functions for sets of states and
transition relations are expressed in conjunctive normal form
(CNF) limiting the method to functions having efficient two-
level representations. The idea of SAT-based quantifier elimi-
nation was refined in [18]. Whereas this method is still based
on enumerations of satisfying assignments of a function f ,
disjunctions of cubes are replaced by disjunctions of cofactors
of the function f .

The following novel contributions are introduced by our

approach:
• We developed methods for quantifier scheduling which

are especially tailored towards our state set represen-
tations using FRAIGs. We can show that a proper
scheduling of quantifications can lead from exponential
representations to representations of linear size.

• The size of the FRAIG representations is limited by
heuristics for node selection when functionally equivalent
nodes are identified.

• We are using BDD sweeping as a method for non-local
logic optimization of our FRAIG representations. BDD
sweeping is controlled by heuristics based on the size of
the AIG representations and on the success of previous
runs of BDD sweeping.

We applied our representations of state sets and of tran-
sition functions to CTL model checking. We are using a
standard CTL model checking algorithm based on symbolic
representations of state sets. However, we make use of degrees
of freedom in CTL model checking by preferring operations
which are beneficial for our representation (see also Section
II).

Our experimental results prove the efficiency of our ap-
proach. For several examples, our method outperforms BDD
based symbolic model checking by orders of magnitude. How-
ever, note that our approach is also able to produce competitive
results for cases where BDDs are known to perform well
(which was not observed for approaches [13], [14], e.g.). We
show in detail how our concepts such as quantifier scheduling,
node selection heuristics and BDD sweeping as a non-local
optimization step contribute to the success of our experiments.

The paper is structured as follows: We begin with a brief
review of CTL model checking in Section II. Then we describe
both And-Inverter Graphs (AIGs) in general and the special
version of AIGs we use as a data structure for model checking
(Section III). In Section IV we describe our heuristics for node
selection and in Section V we present our method for quantifier
scheduling. AIG compression techniques by BDD sweeping
are given in Section VI. After presenting experimental results
in Section VII we give some conclusions and future directions
in Section VIII.

II. PRELIMINARIES

We use our FRAIG representation in the context of symbolic
model checking [3], [4].

Symbolic model checking is applied to Kripke structures
(which may be derived from sequential circuits) on the one
hand and to a formula of a temporal logic (in our case CTL
(Computation Tree Logic)) on the other hand.

An essential step in the recursive evaluation of CTL formu-
las is the preimage computation which computes for a set of
states Sat(φ) the set of states Sat(EXφ) with at least one
successor in Sat(φ):

χSat(EXφ)(~q, ~x) := ∃~q ′∃~x ′
(
χR(~q, ~x, ~q ′)·

(
χSat(φ)| ~q←~q ′

~x←~x ′

)
(~q ′, ~x ′)

)
(1)

(As usual χM means the characteristic function of set M ,
~x represents the current input variables, ~q the current state
variables, ~q ′ the next state variables, and ~x ′ the next input
variables. χR represents the transition relation of the Kripke
structure.)

It is well known that the same formula can also be computed
based on transition functions δi of the sequential circuit instead

of the transition relation R:

χSat(EXφ)(~q, ~x) := ∃~x ′
(
χSat(φ)| q1←δ1(~q,~x)

...
qm←δm(~q,~x)

~x←~x ′

)
(~q, ~x, ~x ′)

)
(2)

In our implementation of the model checking procedure we
always prefer Equation (2) over Equation (1), since the
substitution operation is easy in the AIG context and can
be performed in parallel for several substitutions. Although
we use sophisticated methods to prevent memory blow-ups
due to quantification, in principle quantification needs special
attention, since quantifying a single variable has the risk of
doubling the size of the representation. If not needed, we
do not take this risk and we avoid the additional effort of
preventing the representation from increasing.

III. AND-INVERTER GRAPHS

Recently, And-Inverter Graphs (AIGs) [9], [10] enjoy a
widespread application in combinational equivalence checking
and Bounded Model Checking (BMC). They are simply a
special kind of directed acyclic graphs representing boolean
functions. There are three types of nodes: and nodes with
two outgoing edges, modeling the Boolean conjunction of
the functions represented by the two edges, variable nodes
with no outgoing edges but labelled with a variable name,
representing boolean variables, and a special terminal node
with no outgoing edges, forming the constant 0 function.

The edges of an AIG may contain negation marks that
denote complementation.

Constructing AIGs using one level structural hashing [10]
assures that we do not have two different nodes with the same
pair of successors.

A. Functionally Reduced And-Inverter Graphs
AIG representations of Boolean functions are not canonical

– for each Boolean function there exist many structurally
different AIGs. Actually an AIG may contain functionally
redundant nodes, i.e., nodes which are roots of structurally
different subgraphs representing the same functions.

Redundant nodes lead to two problems: On the one hand,
the graph structure is inefficient. Redundant nodes could be
merged to reduce the graph size. On the other, checking the
equivalence of two nodes needs additional effort.

To address these problems Mishchenko et al. [12] intro-
duced the notion of functionally reduced AIGs (FRAIGs).
The main idea is to check for equivalent nodes using SAT-
based equivalence checking techniques while constructing an
AIG and to merge them immediately. (In a similar approach
Kuehlmann [11] uses ‘SAT sweeping’ from time to time
in order to remove functionally equivalent nodes in AIGs
which were not reduced immediately during construction.)
This approach establishes the functional reduction property:
There will not be any two nodes in an FRAIG representing
the same Boolean function (and there will not be a pair of
nodes where one represents the complement of the Boolean
function represented by the other).

B. An AIG Package for Model Checking
Since we use our AIG package for state set representations

in CTL model checking, we have different requirements
compared to usual packages for combinational equivalence

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

ru
n

ti
m

e
(i

n
 C

P
U

−
se

co
n

d
s)

simulation vector size (in 32 bit words)

adaptive simulation
random simulation

Fig. 1. Impact of adaptive simulation (picojava/icu benchmark)

checking. In this section we have a brief look at the key
features of our package.

Apart from standard Boolean operations which are trans-
lated into AND operations and / or complementations we
have to support substitution and existential quantification.
Substitution of variables by functions is basically reduced to
replacements of inputs of an AIG by subgraphs representing
these functions and it can be easily performed for several
variables in parallel. Existential quantification ∃xf is reduced
to f |x=0+f |x=1 (with optimizations described in the following
sections).

Whereas in combinational equivalence checking only inser-
tion of nodes has to be supported, we need efficient methods
for the deletion of nodes. Nodes have to be deleted when
certain state set representations are not needed any longer
during the model checking procedure and when functionally
equivalent nodes are merged into one representation. The hash
table we use for one-level structural hashing (applied as a
fast technique for detecting isomorphic AIG nodes) permits
lookups in constant time. We have enriched the data structure
by adding linked lists to each AIG node chaining all hash
table entries affected by this node. This allows for the fast
deletion of all occurrences of a node from the hash table
without inspecting all table entries.

To maintain the functional reduction property, we use a
simulation guided, SAT based equivalence checking method
known from the BMC and combinational equivalence checking
domains as proposed in [11], [12]. The idea is to avoid pow-
erful methods for easy problems: If for a given pair of nodes
simulation is already able to prove non-equivalence, more time
consuming SAT checks are not needed. The simulation vectors
are initially random, but they are updated using feedback from
satisfied SAT instances. Always maintaining a fixed number of
simulation vectors we use a simple FIFO replacement method
when new vectors are inserted. Figure 1 shows the impact
of different simulation vector sizes and the use of learned
simulation vectors in a typical model checking run. Depending
on the size of the simulation vectors used, the dashed line
shows the run times for the complete model checking run,
when the learning of distinguishing simulation vectors from
satisfied SAT instances is turned off. The solid line shows
the same run times for the case that learning is turned on.
At least for the smaller sizes of simulation vectors learning
leads to considerable improvements of run times. Obviously,
by learning we obtain ‘good’ simulation vectors which are
able to prevent time consuming SAT checks during future node
insertions.

Additional features of our AIG package which are used dur-
ing model checking are node selection, quantifier scheduling,
and BDD sweeping. They will be described in the following
three sections.

IV. NODE SELECTION IN CASE OF EQUIVALENCE

When constructing a new node in an AIG, one will often
encounter the situation that the current AIG already contains a
functionally equivalent node which is the root of a structurally
different subgraph. Since the functional reduction invariant
must be maintained, only one of the two nodes can be kept
and the other one needs to be removed from the AIG. Unlike
the approach in [12] where the already existing AIG node is
kept and all equivalent nodes are stored in a list of possible
structural representations for later technology mapping, our
AIG package tries to keep the memory consumption as low
as possible and thus destroys redundant nodes. This strategy
is vital for a successful employment of AIGs in the model
checking domain.

The question is whether to preserve the old, existing node
or the newly created one. We use two different heuristics to
conquer the problem:

• hkeep. We always keep the old node and discard the new
node. The drawback of this trivial method is the possible
rejection of more efficient structural representations.

• hsize. We keep the node that structurally depends on
less variables. If the nodes have equal support sizes, we
consider the subgraphs (cones) rooted by the two nodes
and select the node which has a smaller cone. 2

In our experiments (see Section VII) we will show that the
naive node selection heuristics hkeep may result in high and
even unmanageable node counts, while the more advanced one
is able to reduce the AIGs to reasonable sizes.3

V. QUANTIFIER SCHEDULING

During model checking we eliminate existential quantifiers
∃xf by replacing them by f |x=0+f |x=1. In the worst case this
elimination may double the size of the representation. Thus,
after an existential quantification of a series of variables the
size of the representation may potentially show an exponential
blow-up. In this section we will present a heuristic method
which aims at limiting this (potential) increase in size by
a clever choice of the order of quantifications (‘quantifier
scheduling’).

A. A Motivating Example
First of all, we give a motivating example which shows that

the order of quantifications may be essential for avoiding mem-
ory blow-ups. Consider a simple carry ripple adder which com-
putes the sum (sn, . . . , s0) for two operands (an−1, . . . , a0)
and (bn−1, . . . , b0). Now we want to compute the set of

2It is easy to see that hsize never replaces a node k by another node k′

having k in its cone (which would create a loop in the AIG).
3In the case the used heuristics suggest to keep the old node, the only thing

to do is to delete the new node. But if the new node is selected, we use a
technique similar to implementation techniques known from BDD packages:
All edges of the AIG pointing to the old node must be modified to reference
the new node. Since the data structure used in our AIG package does not
provide an efficient method for finding all predecessors of a node, we need
to use a more subtle replacement method: we actually transfer the data of the
new node object into the old node object and then delete the new node. By
doing this no edge has to be touched.

inputs (bn−1, . . . , b0) with the property that there is an input
(an−1, . . . , a0) with 2n−1 ≤

∑n−1
i=0 ai2i +

∑n−1
i=0 bi2i < 2n,

i.e. with sn = 0 and sn−1 = 1. The problem may be solved
by computing a symbolic (BDD or AIG based) representation
of sn ·sn−1 based on the carry ripple circuit and by computing
the existential quantification ∃an−1 . . .∃a0sn ·sn−1. The result
of the quantification is a representation of a characteristic
function for the set of inputs (bn−1, . . . , b0) fulfilling the
given property. Since it is easy to see that this set of in-
puts is equal to IBn, the final result has to be equal to 1.
Now we consider the two extreme cases for the order of
quantification: The first order UP is (a0, . . . , an−1) (i.e. we
start with the quantification of the least significant bit) and
the second order DOWN is (an−1, . . . a0) starting with the
quantification of the most significant bit. Remember that we
reduce quantification wrt. one variable to the disjunction of
positive and negative cofactors. Figure 2.(1) shows the result
of the quantification wrt. the first variable a0 of order UP
(for simplicity applied to the given carry ripple circuit, not to
the corresponding AIG, which has roughly the same structure).
The illustration shows that the propagation of constants 0 and 1
for the negative and the positive cofactor wrt. a0 already stops
at bit position 1 and no subcircuit sharing can be observed in
the remaining circuit. Thus, the size of the circuit is almost
doubled by quantification.

However, if we quantify variable an−1 first, we obtain the
situation shown in Figure 2.(2). In this case most parts of
the circuit are shared between the positive and the negative
cofactor. Since we use FRAIGs which identify functionally
equivalent nodes, the corresponding FRAIG also shows this
sharing. The duplication of the number of nodes as observed
in the previous case can not be seen here. The effect shown
above continues during the following quantifications according
to the orders UP and DOWN : As shown in Table I for the
example of a 14-bit-adder, we observe an exponential blow-
up of AIG nodes during quantification according to order
UP , whereas the number of AIG nodes is monotonically
decreasing for quantification order DOWN . (Note that BDD
sweeping described in the next section was not used in this
experiment.) Altogether our example shows that there may
be an exponential gap wrt. AIG sizes between good and
bad orders of quantification. So we have a strong need for
heuristics computing good quantification orders.

B. A Heuristic Approach to Quantifier Scheduling
Here we present a method for quantifier scheduling which is

especially tailored towards our state set representations using
FRAIGs. Our greedy method is based on estimations on the
sizes of the results after performing quantifier elimination.
Before performing a quantification ∃xf = f |x=0 + f |x=1 for
some variable x and some function f represented by a FRAIG,
we compute an estimate on the FRAIG size of the final result:

• In a first step we consider the subgraph of the AIG
representing f and for each ε ∈ {0, 1} we determine
by two traversals of this subgraph the set Rε of nodes
which are not removed by propagation of constant ε.

• In a second step we compute an estimate for the node
sharing between the representations of the positive and
the negative cofactor: If a node k which occurs both in
R0 and R1 is not connected to variable x by a path in
the AIG graph, then it does not depend on x and thus the
nodes corresponding to k in the representation of f |x=0

a1

cofactor
a = 00

cofactor
a = 10

a2an-2an-1 b1b2bn-2bn-1

FA HAFA

a1a2an-2an-1 b0b1b2bn-2

FA

bn-1

FA FAFA

FAFA

FA

...

...

a0a1a2an-2 b0b1b2bn-2

FA FAFA HA

bn-1

HA

bn-1

cofactor
a = 0n-1

cofactor
a = 1n-1

...

(1) Quantification wrt. a0
(2) Quantification wrt. an-1

Fig. 2. sn · sn−1 after (1) quantification of a0 and (2) quantification of an−1.

TABLE I
14-BIT-ADDER, FUNCTION s14 · s13 : NUMBER OF AIG NODES AFTER QUANTIFICATIONS OF SINGLE VARIABLES ai , ORDERS UP AND DOWN

Quant. Nr. orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
UP 111 105 106 115 140 197 318 567 1072 2089 4130 8219 16404 32781 1
DOWN 111 105 99 93 87 81 75 69 63 57 51 45 39 33 1

and f |x=1 are the same (due to the functional reduction
property). So the set R0,1 of all such nodes is our estimate
for the set of nodes shared between f |x=0 and f |x=1.4

• Finally, our estimate for the size of f |x=0 + f |x=1 is
1 + |R0|+ |R1| − |R0,1|.

For reasons of efficiency our estimate does not consider node
sharing between nodes for both cofactors on the one hand and
nodes which are not in the subgraph representing f on the
other hand. Additionally, possible restructuring of the AIG
during node insertion (see Sections IV and VI) is not taken
into account. However, as shown by experimental results, our
heuristic estimate seems to be reasonable for computing a
good order for quantification: Whenever a number of variables
x1, . . . , xn has to be quantified for a function f , we compute
for each xi our estimate of the size of ∃xif and (greedily)
start with quantification of the variable with smallest cost.
Then the method is repeated to determine the next variable
to be quantified and so on.

We would like to point out that in the case of our mo-
tivating example from above our heuristic method leads to
quantification order DOWN which produces a monotonically
decreasing number of AIG nodes, whereas unfavorable orders
like the order UP shown above lead to an exponential peak
size in the number of AIG nodes before the final result 1 is
computed.

VI. BDD SWEEPING

BDD sweeping [20], [9], [10] is a well-known technique
from the domain of combinational equivalence checking
(CEC). It builds BDDs for AIG nodes starting at the primary
inputs until a certain node limit is reached. Whereas in
[20], [9], [10] BDD sweeping is used in order to identify
functionally equivalent nodes in the AIG, this is not needed
in our case, since we always maintain the functional reduction
property using SAT as described in Section III. Here we use
BDD sweeping as a means for non-local optimizations of our
AIG representations. However, for reasons of efficiency both
the number of BDD sweepings and the cost of a single BDD
sweeping have to be limited.

From time to time, after certain operations of the AIG
package, BDD sweeping is applied to the cone of the cor-
responding result. BDD sweeping builds a BDD for the cone

4Situations where a node does not functionally depend on a variable x,
but is (structurally) connected to x, may be possible in AIGs due to non-
canonicity. However they are neglected for reasons of efficiency.

of the given AIG node starting from the variable nodes and
using AND and NOT operations. Variable reordering applied
by the BDD package automatically tries to find an optimal
variable order in terms of BDD node count. If BDD sweeping
is able to compute the BDD for the given AIG node, then
we check whether it makes sense to replace the cone of the
AIG node by an AIG which is structurally equivalent to the
BDD. Here we exploit the fact that any BDD node can be
interpreted as a multiplexer, which can be transformed into
an AIG with exactly three AIG nodes. Thus, if the size of
the generated BDD is smaller than one third of the size of
the given cone, we create an AIG from the BDD structure by
recursively transforming the BDD nodes to their three-node
AIG representation. When inserting this new AIG into the AIG
package, node selection heuristics as described in Section IV
are used as usual with the additional effect that subgraphs
of the new AIG may be replaced by smaller (functional
equivalent) representations which are already present in the
existing AIG graph.

In order to limit the cost of a single BDD sweeping we use
a variable BDD limit. Whenever the number of nodes in the
BDD package is larger than BDD limit, the BDD construction
is aborted.

In order to limit the number of BDD sweepings, we decided
to confine BDD sweeping to the results of cofactor operations
which occur during existential quantification, since existential
quantification of a variable is the only operation that has the
risk of doubling the size of the representation. Moreover, BDD
sweeping is not applied after all cofactor operations, but only
after a small fraction of cofactor operations controlled by
sophisticated heuristics based on the sizes of the results and
the success of previous BDD sweepings. To avoid unnecessary
BDD sweepings, BDD sweeping is only applied, if the AIG
size of the current operation is larger than a some variable
AIG limit. AIG limit is initialized to a certain constant (100 in
our current implementation) and it evolves as follows:

• If a BDD is successfully built within the node limit
BDD limit, but it is not used in the AIG due to its
size, AIG limit is multiplied by a certain factor f1 > 1
(f1 = 1.2 in our current implementation).

• If the BDD construction is aborted, since BDD limit is
exceeded, AIG limit is multiplied by some larger factor
f2 > 1 (f2 = 4 in our current implementation).

• If a BDD is successfully built and a structural equivalent
AIG is inserted into the AIG package, then AIG limit is

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

m
ax

.
A

IG
 n

o
d
e

co
u

n
t

(l
o
g

ar
it

h
m

ic
)

operations (quantifications, substitutions, ...)

FRAIG (with functional reduction)
plain AIG (without functional reduction)

Fig. 3. Impact of functional reduction (picojava/icu).

set to the size of the resulting AIG.
• Whenever BDD sweeping is not applied, since AIG limit

is too large, AIG limit is decreased by multiplication
with 1 − f3 · (1

2)abort, where f3 is a small constant
(0 < f3 < 1) and abort is the number of times the BDD
construction is aborted due to an exceeded node limit (in
our implementation we used f3 = 0.01).

The presented heuristics ensure that unsuccessful BDD sweep-
ing runs result in fewer BDD sweeping runs in the future.

The variable BDD limit for aborting BDD constructions has
to be high enough to allow for BDD variable reordering and
is set to max(100 · AIG limit, 106) in our implementation.

Whenever BDD sweeping is aborted, it ends up with a
number of BDDs for AIG nodes in the considered cone, since
it computes BDDs beginning with the input variables of the
cone. The procedure described above can be easily extended
by making use of the BDDs computed so far. However, this
feature is not yet realized in our prototype implementation.

VII. EXPERIMENTAL RESULTS

We performed a number of experiments for evaluating our
approach which we called ‘AIG-MC’. The examples AM2910,
Coherence, DAIO, Picojava/ICU, Viper, and Barrelshifter are
taken from the VIS Verification Benchmark set [21].5 For each
benchmark we checked all CTL formulas provided in the
VIS Verification Benchmark set. We randomly selected the
benchmarks from the set of those benchmarks in the VIS
Verification Benchmark set which have CTL specifications.
Since the prototype implementation of our model checker is
currently not yet able to read the benchmark format used in
VIS, we had to translate the hierarchical and multi-valued
models into flat, binary encoded models. This included a
manual adaption of the CTL formulas to the new binary
encoding variables.6 Moreover, we used a pipelined ALU
(‘PALU’) similar to the one presented in [3]. The pipelined
ALU includes 16 registers, a combinational adder, a combina-
tional multiplier, and bitwise operations.7 As in [3] the inputs
to the ALU are instruction codes containing a specification of
the operation, the source registers and the destination register.
For the pipelined ALU we checked the CTL formula φ =
AG

(′′R2 :=R0⊕R1′′ →
(
(AX)2R0+(AX)2R1≡(AX)3R2

))
5The number of registers in the barrelshifter was increased from 4 to 10.
6The complete set of benchmarks is provided in [22].
7The bit width of all operations and registers for palu12,4 is 12, for palu14,4

14 and for palu16,4 16, respectively.

TABLE II
NODE SELECTION HEURISTICS IN AIG-MC

benchmark (ctls) hkeep hsize

nodes time nodes repl. time
am2910 (1-3,5-6) 5354 5.9 2129 232 0.9
barrel10,4 (1) 5918 39.6 5918 0 37.2
coherence (1,7) 1310 0.3 1303 20 0.3
daio (1-4) 50862 10680.9 17069 13078 245.0
decay11 15578 33.6 15578 1 33.7
palu12,4 (xor) 3802 2.1 3802 216 1.9
palu14,4 (xor) 4654 2.7 4654 252 2.6
palu16,4 (xor) 5586 3.6 5586 288 3.3
picojava/icu (1) 23924 21.6 10650 937 8.5
viper (1-3) 15975 7.7 15970 69 11.7

(similar to formula (1) from [3]).8 The benchmarks named
‘decayn’ contain registers of bit widths n and they compute
decaying sums of sequences of inputs according to the formula
registernew = d registerold

2 e+ input. 9

Note that the barrelshifter example used here is different
from the barrelshifter example given in [13], [14]. The exam-
ples in [13], [14] do not contain inputs, and thus, quantification
is not needed during the fixed point computation of the model
checking procedure (see Section II, equation (2)). We did not
compare our results to the results from [13], [14], since our
goal was to prove that we are able to handle quantification
as well. In this sense our experiments show that the objection
raised by McMillan ([17], Section 1.1) ‘because of the expense
of quantifier elimination, this approach is limited to models
with a small number of inputs (typically zero or one)’ does
not apply to our approach.

All experiments were performed on a 2 GHz Dual-Opteron
workstation running Debian Linux. We used a timeout of 12
CPU hours.

First of all we demonstrate the effect of functional reduction
by means of a typical example in Fig. 3. Fig. 3 shows
the number of AIG nodes which are needed during model
checking of the picojava/icu benchmark. In this experiment we
turned off quantifier scheduling and BDD sweeping in order to
concentrate on the effect of functional reduction. The numbers
of AIG nodes were recorded after each quantification of a
variable and after each substitution, thus the x-axis represents
the ongoing progress of the model checking procedure. The
numbers of nodes are presented with a logarithmic scale. The
dashed line shows the number of nodes which are needed
when functional reduction using SAT is turned off, the solid
line shows the number of nodes of our FRAIG package using
SAT based functional reduction. The example clearly shows
that functional reduction is essential for the success in this
kind of applications. An AIG package only using structural
hashing is not able to provide sufficient compaction. For this
reason we always consider results using our FRAIG package
with SAT based functional reduction in the following.

In the first experiment we evaluated the effect of our node
selection heuristics from Section IV. Table II lists the peak
node counts and run times in CPU seconds for the two differ-
ent proposed node selection heuristics: the naive method hkeep

(always keeping the already existing node) and hsize. For
hsize Table II also reports the numbers of node replacement

8Given an exor operation in the instruction register the formula basically
checks whether the contents of the destination register in three steps are the
same as the or operation of the contents of the operand registers in two
steps. This would be true for an or operation in the instruction register, but
is obviously not true for the exor operation.

9The property asks whether there is a sequence of inputs such that for the
binary number R in the register 2n−1 ≤ R < 2n.

TABLE III
AIG-MC W/O, WITH QUANT. SCHEDULING, BDD-MC, VIS

w/o quant. sched. quant. sched. BDD-MC VIS
benchmark ctl nodes time nodes time time time
am2910 1 1132 0.2 1132 0.2 1.5 3.2

2 1143 0.3 1143 0.3 1.5 3.2
3 1605 0.8 1650 0.7 1.5 3.2
4 16039 91.9 13818 51.2 9.0 5.5
5 1977 1.1 1880 1.6 1.5 3.2
6 1205 0.3 1181 0.3 1.5 0.8

barrel10,4 1 5918 50.3 5918 51.2 >12h >12h
coherence 1 1303 0.3 1303 0.3 0.2 0.4

2 43285 334.3 49010 172.4 1.0 0.4
3 11744 22.3 10001 13.6 1.4 0.4
4 25190 72.6 18781 41.7 1.6 0.4
5 18590 40.5 7895 7.2 2.1 0.5
6 23814 176.4 25298 88.3 0.8 0.4
7 1303 0.3 1303 0.3 0.2 0.4
8 101185 609.8 42042 151.6 37.8 0.4
9 18590 33.1 7895 5.0 1.6 0.4

daio 1 996 0.6 996 0.6 0.1 0.3
2 996 0.8 996 0.8 0.2 0.4
3 1768 1.4 1768 1.4 0.3 0.4
4 996 0.8 996 0.8 0.2 0.4

decay32 1 1901 6.3 718 1.2 0.5 0.0
decay48 1 2814 30.3 1070 4.0 2.8 0.2
decay64 1 3736 83.0 1422 9.8 21.1 0.3
palu12,4 xor 3802 153.4 3832 76.2 >12h >12h
palu14,4 xor 4654 59.0 4684 119.4 >12h >12h
palu16,4 xor 5586 1062.6 5616 91.1 >12h >12h
picojava/icu 1 8144 6.6 2869 5.0 1.0 2.0
viper 1 15757 3.1 15757 3.0 43.4 75.0

2 15757 6.7 15757 6.1 43.3 73.0
3 15757 3.1 15757 3.0 43.3 74.1

TABLE IV
DETAILED RESULTS FOR AIG-MC

bdd sweeping sat
benchmark applic. succ. limit applic. equiv
am2910 0.06% 59.80% 0% 5.00% 45.58%
barrel10,4 0.01% 0% 100% 1.90% 42.51%
coherence 0.02% 74.06% 0.37% 0.97% 69.47%
decay32 0.39% 11.11% 0% 37.00% 4.65%
decay48 0.26% 9.09% 0% 55.09% 2.40%
decay64 0.20% 7.69% 0% 72.36% 1.50%
daio 0.12% 98.13% 0% 11.11% 93.99%
palu12,4 0.03% 12.5% 62.5% 1.48% 74.07%
palu14,4 0.02% 12.5% 62.5% 1.28% 76.92%
palu16,4 0.02% 12.5% 62.5% 1.12% 78.28%
picojava/icu 0.07% 33.33% 0% 5.06% 31.47%
viper 0.01% 33.33% 0% 4.56% 60.49%

steps. The numbers for each benchmark are averaged over
all different CTL formulas. In this experiment we turned off
BDD sweeping, because the naive method hkeep would never
use the results of BDD sweeping. (Thus the results would be
biased towards hsize, since it can exploit BDD sweeping whilst
hkeep does not profit from it.) In the comparison we omitted
the results for formula 4 of example ‘AM2910’ and formulas
2-6 and 8-9 of example ‘Coherence’, since the computation
did not finish for hkeep within our limit on CPU time. (For
formulas 2-6 and 8-9 of ‘Coherence’ the computation without
BDD sweeping did not finish for hsize as well, i.e., BDD
sweeping is essential for success with this benchmark (see
also experiments of Table III).)

The results clearly show that the node selection heuristics
are of great importance for obtaining good results: The heuris-
tics hsize lead to a considerable decrease in peak node counts.
The most impressive examples are AM2910 and DAIO where
the peak number of AIG nodes for the naive method are by a
factor of 2.5 and 3.0 higher than for hsize. Not only the node
counts, but also the run times are greatly reduced by hsize,
in the case of Picojava from 21.6 CPU seconds with hkeep to
8.5 CPU seconds with hsize, in the case of DAIO even from
3 CPU hours with hkeep to about 4 CPU minutes with hsize.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

m
o

d
el

 c
h

ec
k

in
g

 r
u

n
ti

m
e

in
 s

ec
o

n
d

s
(l

o
g

ar
it

h
m

ic
)

register width in bits

with quantifier scheduling
without quantifier scheduling

Fig. 4. Example decayn with and without quantifier scheduling, run times.

Since the node selection heuristics hsize seems to be the best
choice, we always use this method in the following.

In the following experiments we consider our method with
BDD sweeping turned on. In the second experiment shown in
Table III we evaluated the effect of quantifier scheduling and
in the third experiment also shown in this table we compared
our results to a BDD based version of our model checker and
to the BDD based model checker VIS 2.1 [21]. We ran VIS
using dynamic variable ordering with the sifting heuristics,
don’t care optimization via reachability analysis was turned
off.10

For the different benchmarks and CTL formulas columns
3 and 4 show the peak node counts and run times for
the unmodified quantification order (‘w/o quant. sched.’) and
columns 5 and 6 give the same results for our quantifier
scheduling heuristics from Section V. It can be observed that
quantifier scheduling improves the peak node counts in most
cases; for Coherence, formula 8, e.g., by a factor of 2.4, for
decay64 by a factor of 2.6, for Picojava, by a factor of 2.8.
The run times are always better or at least in the same range,
for example Coherence, formula 8, run times are even reduced
from 10.2 CPU minutes to 2.5 CPU minutes.11

In Fig. 4 we consider benchmark decayn and have a closer
look at the effect of quantifier scheduling: In this case we
turned off BDD sweeping in order to perform a separate
analysis of the effect of quantifier scheduling: Fig. 4 gives the
CPU times for decayn with increasing bit width n both for
the version without quantifier scheduling (dashed line) and for
the version with quantifier scheduling (solid line) (presented
with a logarithmic scale). The experiment shows that without
quantifier scheduling the run times grow exponentially with
increasing bit width rendering completion of model checking
for larger bit widths impossible. (The peak numbers of nodes
are not presented here, but they show the same exponential
growth.) With quantifier scheduling we observe only a mod-
erate growth of node counts and run times.12

10For all experiments considered here the default option of performing a
reachability analysis before backward model checking gave inferior results.
For benchmark am2910 we even observed timeouts (larger than 12 CPU hours)
for 5 out of 6 CTL formulas when reachability analysis was turned on.

11For examples palun,4 the run times are somewhat misleading (increase
of run times for palu14,4 by a factor of 2.0, decrease of run times even by
a factor of 11.7 for palu16,4 for the version with quantifier scheduling): A
more detailed analysis showed that the run times are almost exclusively due
to unsuccessful runs of BDD sweeping (not leading to node replacements in
the AIG). Without BDD sweeping the run times remain in the range of a few
seconds.

12In Table III quantifier scheduling outperforms the version without quanti-
fier scheduling for decay32, decay48, and decay64, but an exponential growth
of node counts and run times is not observed. In this experiment BDD
sweeping was turned on and it was able to prevent the exponential growth.

The last two columns of Table III give a comparison of
our results to our own model checker BDD-MC with FRAIGs
replaced by BDDs and to the BDD based model checker VIS,
respectively. For barrel10,4, palu12,4, palu14,4, and palu16,4
neither BDD-MC nor VIS were able to provide a result within
the CPU limit of 12 CPU hours. However, these examples did
not form a problem for our model checker AIG-MC and we
could solve them within a few seconds (see column 6 of Table
III).

In contrast, for the remaining benchmarks taken from the
VIS Benchmark set as well as for decayn, BDDs are known to
perform well and these examples could be solved quickly by
VIS. Even for this class of examples our approach finished
in shorter time in 10 out of 26 cases and also for the
remaining cases we could observe that our approach succeeded
in producing competitive results within a few seconds.

For completeness we give some more details for our exper-
iments with BDD sweeping and quantifier scheduling turned
on in Table IV. Here again the numbers are averaged over
all formulas. Column 2 shows the number of applications of
BDD sweeping divided by the total number of attempts to
insert a node into the AIG. Column 3 shows the numbers of
successful applications of BDD sweeping (i.e. the numbers
of BDD sweepings where the results are really used in the
AIG package) divided by the total number of BDD sweepings.
And finally, column 4 shows the numbers of aborted BDD
sweepings (due to exceeded node limits) divided by the total
number of BDD sweepings. BDD sweeping is only applied
from time to time in all cases and in cases where BDD
sweeping is not very successful (especially for examples
‘Barrel’ and ‘PALU’) our heuristics from Section VI work
in the sense that unsuccessful BDD sweeping runs result in
fewer BDD sweeping runs in the future. Column 5 shows the
number of SAT checks divided by the total number of attempts
to insert a node into the AIG, column 6 shows the fraction of
SAT checks which lead to the result that the compared nodes
are functionally equivalent. Although we always maintain the
functional reduction property of our FRAIGs, the results show
that the assistance of SAT by simulation and structural hashing
as described in Section III-B assures that SAT is applied only
for a small fraction of all node insertions. Moreover, the high
percentage of SAT checks proving functional equivalence of
two nodes shows the effectiveness of simulation in avoiding
unnecessary SAT checks for nodes which are not equivalent.13

VIII. CONCLUSIONS AND FUTURE WORK

We presented an approach to unbounded model checking
based on And-Inverter Graphs as a representation of charac-
teristic functions. Several methods such as functional reduction
using simulation assisted SAT checks, node selection heuris-
tics, quantifier scheduling, and BDD sweeping contribute to
the success of our approach. For many examples, our method
outperforms BDD based symbolic model checking by orders
of magnitude, whereas it is still able to produce competitive
results for cases where BDD are known to perform well. Al-
though the experimental results for our current implementation
already appear to be impressive, we believe that there remains
room for improvement of the heuristics presented in Sections

13Benchmarks decayn form an exception to this observation: In this case
there are many nodes in the representation which are ‘almost equivalent’,
so that simulation with a fixed number of simulation vectors is not very
effective in distinguishing between them, leading to a number of SAT checks
not proving functional equivalence.

IV, V, and VI. Certainly, our prototype implementation will
also profit from the integration of a number of interesting ideas
recently developed for optimizing AIG representations such
as DAG-aware circuit compression [23], [24] and advanced
rewriting methods [15], [24]. In the future we will investigate
whether methods for structural SAT solving [9] will be useful
in our context and we will explore whether it sometimes makes
sense to switch to lazy methods for AIG compression instead
of our eager one.

REFERENCES

[1] A. Sistla and E. Clarke, “The complexity of propositional linear temporal
logics,” Journal of the ACM, vol. 32, no. 3, pp. 733–749, 1985.

[2] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of Finite–
State Concurrent Systems Using Temporal Logic Specifications,” ACM
Trans. on Programming Languages and Systems, vol. 8, no. 2, pp. 244–
263, 1986.

[3] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
Model Checking: 1020 States and Beyond,” Information and Computa-
tion, vol. 98(2), pp. 142–170, 1992.

[4] K. McMillan, Symbolic Model Checking. Kluwer Academic Publisher,
1993.

[5] R. Bryant, “Graph - based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Constuction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999.

[7] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in Design Automation
Conf., 1999.

[8] M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety Properties
Using Induction and a SAT-solver,” in FMCAD, ser. LNCS, W. H. Jr.
and S. Johnson, Eds., vol. 1954. Springer, 2000, pp. 407–420.

[9] V. Paruthi and A. Kuehlmann, “Equivalence checking combining a
structural SAT-solver, BDDs, and simulation,” in Int’l Conf. on Comp.
Design, 2000, pp. 459–464.

[10] A. Kuehlmann, V. Paruthi, F. Krohm, and M. M.K. Ganai, “Robust
Boolean Reasoning for Equivalence Checking and Functional Property
Verification,” IEEE Trans. on CAD, 2002.

[11] A. Kuehlmann, “Dynamic transition relation simplification for bounded
property checking,” in Int’l Conf. on Computer-Aided Design, 2004, pp.
50–57.

[12] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,” EECS
Dept., UC Berkeley, Tech. Rep., 03 2005.

[13] P. Abdullah, P. Bjesse, and N. Een, “Symbolic reachability analysis
based on sat-solvers,” in Tools and Algorithms for the Constuction and
Analysis of Systems, ser. LNCS, vol. 1785. Springer-Verlag, 2000.

[14] P. Williams, A. Biere, E. Clarke, and A. Gupta, “Combining decision
diagrams and SAT procedures for efficient symbolic model checking,”
in Computer Aided Verification, ser. LNCS, vol. 1855. Springer Verlag,
2000, pp. 124–138.

[15] G. Cabodi, M. Crivellari, S. Nocco, and S. Quer, “Circuit based
quantification: Back to state set manipulation with unbounded model
checking,” in Design, Automation and Test in Europe, 2005.

[16] K. McMillan, “Applying SAT methods in unbounded symbolic model
checking,” in Computer Aided Verification, ser. LNCS, vol. 2404.
Springer, 2002, pp. 250–264.

[17] ——, “Interpolation and SAT-Based Model Checking,” in Computer
Aided Verification, ser. LNCS. Springer, 2003.

[18] M. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based unbounded
symbolic model checking using circuit cofactoring,” in Int’l Conf. on
Computer-Aided Design, 2004, pp. 510–517.

[19] H.-J. Kang and I.-C. Park, “Sat-based unbounded symbolic model
checking,” IEEE Trans. on CAD, vol. 24, no. 2, pp. 129–140, February
2005.

[20] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Design Automation Conf., 1997, pp. 263–268.

[21] The VIS Group, “VIS Verification Benchmarks.” [Online]. Available:
http://vlsi.colorado.edu/∼vis/

[22] F. Pigorsch and C. Scholl, “Collection of benchmarks.” [Online]. Avail-
able: http://www.informatik.uni-freiburg.de/∼pigorsch/benchmarks.html

[23] P. Bjesse and A. Boralv, “DAG-aware circuit compression for formal
verification,” in Int’l Conf. on CAD, 2004, pp. 42–49.

[24] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting,” in Design Automation Conf., 2006, pp. 532–535.

