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In this paper we present a complete method for verifying properties ex-
pressed in the temporal logic CTL. In contrast to the majority of verifica-
tion methods presented in recent years, we support unbounded model checking
based on symbolic representations of characteristic functions. Among others,
our method is based on an advanced And-Inverter Graph (AIG) implemen-
tation, quantifier scheduling, and BDD sweeping. For several examples, our
method outperforms BDD based symbolic model checking by orders of mag-
nitude. However, our approach is also able to produce competitive results for
cases where BDD are known to perform well.

1 Introduction

Given a sequential circuit and properties in some temporal logic like CTL or LTL, model
checking is a method for verifying these properties [1, 2]. In the early nineties, by intro-
ducing symbolic model checking, Burch et al. substantially extended the class of systems
which can be verified [3, 4]. In symbolic model checking binary decision diagrams (BDDs)
[5] are used both for state set representation and for state traversal. Sets of states are
represented by characteristic functions which in turn are represented by BDDs.

However, in the last few years SAT based techniques like Bounded Model Checking
(BMC) [6, 7] have been attracting much interest, since industrial needs ask for methods
avoiding the well known memory explosion problem which may occur during symbolic
model checking of large circuits. BMC applied to certain properties (invariants or, more
generally, LTL formulas) ‘unfolds’ the transition relation for k steps in order to find
counterexamples. If no counterexample of length k is found, then k is increased and
BMC is used again. The search for counterexamples can be stopped, if k is equal to the
diameter of the system, i.e., the maximum length of all shortest paths between states in
the system. In that case, BMC ends up with a proof of the property. Unfortunately,
computing diameters of large systems turns out to be hard. The problem may be reduced
to the validity check of a quantified Boolean formula (QBF) with alternating existential
and universal quantifiers [6]. Since this check is usually hard for large systems, BMC is
mostly used as an incomplete method for finding errors in practice.1

In this paper, we present a complete method for verifying properties expressed in the
temporal logic CTL. Our method is based on a symbolic representation of sets of states.
However, our symbolic representation relies on And-Inverter Graphs (AIGs) [9, 10] instead
of BDDs. So far, And-Inverter Graphs have been successfully applied in combinational
equivalence checking. Basically, they are Boolean circuits which consist of AND gates and

1Another possibility consists in increasing k up to the length of the longest simple path between two
states [8]. Whereas it is easier to determine the length of the longest simple path than to determine
the diameter of the system, the longest simple path may be exponentially longer than the diameter. If
this is the case, unfolding the transition relation for such a large number of steps will be prohibitive.
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inverters only. In contrast to BDDs, AIGs do not provide canonical representations of
Boolean functions. Since we do not need canonical representations for representing sets
of states, we are able to avoid memory blow-ups during the construction of (canonical)
BDDs. On the other hand, checks for satisfiability or validity, which are needed during
the model checking process, do not come for free as for BDDs, because there are different
AIG representations for constants 0 and 1.

In order to obtain as much subexpression sharing as possible we make use of a special
version of AIGs, the so-called functionally reduced AIGs (FRAIGs) which were intro-
duced by Mishchenko et al. [11] in the context of logic synthesis, technology mapping and
combinational equivalence checking. Like general AIGs, FRAIGs still form non-canonical
representations of Boolean functions, but they have the additional property that they do
not contain any pair of functionally equivalent nodes. This invariant is maintained during
construction of FRAIGs by using a SAT solver. In addition, the construction of FRAIGs
is assisted by functional simulation in order to avoid unnecessary SAT checks for pairs of
nodes for which already simulation is able to prove non-equivalence.

The most difficult step during model checking using FRAIGs is the elimination of exis-
tential quantifiers. As in [12, 13, 14] existential quantifiers ∃xf are eliminated by replacing
them by f |x=0 + f |x=1. Of course, in the worse case the elimination of one quantifier may
double the size of the representation. Although it is not very likely that this worst case
behavior can be avoided in random examples (since SAT checking is NP hard), we show in
our experimental results that we succeed in limiting the increase in size by a clever choice
of the order of quantifications (‘quantifier scheduling’) combined with other measures to
limit the size of the representation. Our novel method for quantifier scheduling is based on
estimations on the AIG sizes of the results after performing In Section 5 we motivate the
importance of quantifier scheduling by giving an example and we describe the approach
in more detail.

Other techniques for limiting the sizes of our representations of state sets are node
selection heuristics and BDD sweeping. Whenever a new node is inserted into our FRAIG
representation, we check whether there is already a node in the representation which
is functionally equivalent to this new node (using SAT combined with simulation). If
there is already a functionally equivalent node, we keep only one representation for the
function and replace the representation of one node by the other (this is in contrast to
[11] where various representations of the same function are kept for technology mapping
purposes). In order to keep the overall size of the representation small we have to select
carefully which representation is kept (see Section 4). BDD sweeping is known from
combinational equivalence checking [9, 10] and builds BDDs for AIG nodes starting at the
primary inputs until a certain node limit is reached. BDD sweeping is used there from
time to time in order to identify equivalent nodes in the AIG. Since we are using SAT for
maintaining the FRAIG invariant we do not need BDD sweeping with this objective. In
contrast to the traditional use of BDD sweeping we make use of BDD sweeping in the cone
of selected output functions of our FRAIG representation in order to compute smaller
AIG representations. After one step of BDD sweeping we check whether our FRAIG
representations decrease in size when parts of the FRAIG representation are replaced by
subgraphs which are structurally equivalent to the BDDs computed during BDD sweeping.

The work by McMillan [15] is related to our approach in the sense that it also presents
a method for unbounded model checking. In contrast to our approach it does not han-
dle CTL properties, but invariants, and it does not use exact image computations, but
overapproximations by so-called Craig interpolants. Whereas we are using sophisticated
methods for compressing our state set representations, [15] only uses a simple method to
identify functionally equivalent subformulas in overapproximated state set representations
(i.e. building BDDs up to a small fixed size). Due to the overapproximated image com-
putation the method of [15] needs to be applied iteratively on unfoldings of the transition
relation for an increasing number of steps (as in Bounded Model Checking). Our method
does not need several unfoldings, but it can be used in standard symbolic model checking
just replacing BDD representations for state sets by AIG based representations.

Altogether, our approach includes the following novel contributions which are essential
for the high quality of our experimental results (see Section 7):



• We developed methods for quantifier scheduling which are especially tailored towards
our state set representations using FRAIGs. We can show that a proper scheduling
of quantifications can lead from exponential representations to representations of
linear size.

• The size of the FRAIG representations is limited by heuristics for node selection
when functionally equivalent nodes are identified.

• We are using BDD sweeping as a method for non-local logic optimization of our
FRAIG representations. BDD sweeping is controlled by heuristics based on the size
of the AIG representations and on the success of previous runs of BDD sweeping.

We applied our representations of state sets and of transition functions to CTL model
checking. We are using a standard CTL model checking algorithm based on symbolic
representations of state sets. However, we make use of degrees of freedom in CTL model
checking by preferring operations which are beneficial for our representation (see also
Section 2).

Our experimental results prove the efficiency of our approach. We present several ex-
amples where BDDs are known to perform poorly and we demonstrate that our approach
improves model checking for these examples by orders of magnitude. However, note that
our approach is also able to produce competitive results for cases where BDD are known to
perform well (which was not observed for approaches [12, 13], e.g.). We show in detail how
our concepts such as quantifier scheduling, node selection heuristics and BDD sweeping
as a non-local optimization step contribute to the success of our experiments.

The paper is structured as follows: We begin with a brief review of CTL model checking
in Section 2. Then we describe both And-Inverter Graphs (AIGs) in general and the special
version of AIGs we use as a data structure for model checking (Section 3). In Section 4
we describe our heuristics for node selection and in Section 5 we present our method for
quantifier scheduling. AIG compression techniques by BDD sweeping are given in Section
6. After presenting experimental results in Section 7 we give some conclusions and future
directions in Section 8.

2 Preliminaries

We use our FRAIG representation in the context of symbolic model checking [3, 4]. Sym-
bolic model checking is applied to Kripke structures which may be derived from sequential
circuits on the one hand and to a formula of a temporal logic (in our case CTL (Compu-
tation Tree Logic)) on the other hand.

An essential step in the recursive evaluation of CTL formulas is the preimage compu-
tation which computes for a set of states Sat(φ) the set of states Sat(EXφ) with at least
one successor in Sat(φ):

χSat(EXφ)(~q, ~x) := ∃~q ′∃~x ′
(
χR(~q, ~x, ~q ′) · (χSat(φ)| ~q←~q ′

~x←~x ′

)
(~q ′, ~x ′)

)
(1)

(As usual χM means the characteristic function of set M , ~x represents the input variables,
~q the current state variables, and ~q ′ the next state variables. χR represents the transition
relation of the Kripke structure.)

It is well known that the same formula can also be computed based on transition
functions δi of the sequential circuit instead of the transition relation R:

χSat(EXφ)(~q, ~x) := ∃~x ′
(
χSat(φ)| q1←δ1(~q,~x)

...
qm←δm(~q,~x)

~x←~x ′

)
(~q, ~x, ~x ′)

)
(2)

In our implementation of the model checking procedure we always prefer Equation (2)
over Equation (1), since the substitution operation is easy in the AIG context and can be
performed in parallel for several substitutions. Although we use sophisticated methods to



prevent memory blow-ups due to quantification, in principle quantification needs special
attention, since quantifying a single variable has the risk of doubling the size of the rep-
resentation. If not needed, we do not take this risk and we avoid the additional effort of
preventing the representation from increasing.

3 And-Inverter Graphs

Recently, And-Inverter Graphs (AIGs) [9, 10] enjoy a widespread application in combi-
national equivalence checking and Bounded Model Checking (BMC). They are simply a
special kind of directed acyclic graphs representing boolean functions. There are three
types of nodes: and nodes with two outgoing edges, modeling the Boolean conjunction
of the functions represented by the two edges, variable nodes with no outgoing edges but
labelled with a variable name, representing boolean variables, and a special terminal node
with no outgoing edges, forming the constant 0 function. The edges of an AIG may contain
negation marks that denote complementation.

Constructing AIGs using one level structural hashing [10] assures that we do not have
two different nodes with the same pair of predecessors.

3.1 Functionally Reduced And-Inverter Graphs

AIG representations of Boolean functions are not canonical – for each Boolean function
there exist many structurally different AIGs. Actually an AIG may contain functionally
redundant nodes, i.e., nodes which are roots of structurally different subgraphs represent-
ing the same functions.

Redundant nodes lead to two problems: On the one hand, the graph structure is ineffi-
cient. Redundant nodes could be merged to reduce the graph size. On the other, checking
the equivalence of two nodes needs additional effort.

To address these problems Mishchenko et al. [11] introduced the notion of functionally
reduced AIGs (FRAIGs). The main idea is to check for equivalent nodes using SAT-
based equivalence checking techniques while constructing an AIG and to merge them
immediately. This approach establishes the functional reduction property: each node in
an FRAIG represents a unique Boolean function (up to complementation).

3.2 An AIG Package for Model Checking

Since we use our AIG package for state set representations in CTL model checking, we
have different requirements compared to usual packages for combinational equivalence
checking. In this section we have a brief look at the key features of our package.

Apart from standard Boolean opera-
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Fig. 1: Impact of adaptive simulation

tions which are translated into AND op-
erations and / or complementations we
have to support substitution and existen-
tial quantification. Substitution of vari-
ables by functions is basically reduced to
replacements of inputs of an AIG by sub-
graphs representing these functions and
it can be easily performed for several vari-
ables in parallel. Existential quantifica-
tion ∃xf is reduced to f |x=0+f |x=1 (with
optimizations described in the following
sections).

Whereas in combinational equivalence
checking only insertion of nodes has to be supported, we need efficient methods for the
deletion of nodes. Nodes have to be deleted when certain state set representations are not
needed any longer during the model checking procedure and when functionally equivalent
nodes are merged into one representation. One-level structural hashing is applied as a
fast technique for detecting isomorphic AIG nodes. The data structure we use for this



purpose includes measures that support the fast deletion of all occurrences of a node,
while permitting lookups in constant time.

To maintain the functional reduction property, we use a simulation guided, SAT based
equivalence checking method known from the combinational equivalence checking domain
as proposed in [11]. The idea is to avoid powerful methods for easy problems: If for
a given pair of nodes simulation is already able to prove non-equivalence, more time
consuming SAT checks are not needed. The simulation vectors are initially random, but
they are updated using feedback from satisfied SAT instances. Figure 1 shows the impact
of different simulation vector sizes and the use of learned simulation vectors in a typical
model checking run: Depending on the size of the simulation vectors used, the dashed
line shows the run times for the complete model checking run, when the learning of
distinguishing simulation vectors from satisfied SAT instances is turned off. The solid line
shows the same run times for the case that learning is turned on. At least for the smaller
sizes of simulation vectors learning leads to considerable improvements of run times.

Additional features of our AIG package which are used during model checking are
node selection, quantifier scheduling, and BDD sweeping. They will be described in the
following three sections.

4 Node Selection in Case of Equivalence

When constructing a new node in an AIG, one will often encounter the situation that
the current AIG already contains a functionally equivalent node which is the root of a
structurally different subgraph. Since the functional reduction invariant must be main-
tained, only one of the two nodes can be kept and the other one needs to be removed from
the AIG. Unlike the approach in [11] where the already existing AIG node is kept and all
equivalent nodes are stored in a list of possible structural representations for later technol-
ogy mapping, our AIG package tries to keep the memory consumption as low as possible
and thus destroys redundant nodes. This strategy is vital for a successful employment of
AIGs in the model checking domain.

The question is whether to preserve the old, existing node or the newly created one.
We use two different heuristics to conquer the problem:

• hkeep. We always keep the old node and discard the new node. The drawback of this
trivial method is the possible rejection of more efficient structural representations.

• hsize. We keep the node that structurally depends on less variables. If the nodes
have equal support sizes, we consider the subgraphs (cones) rooted by the two nodes
and select the node which has a smaller cone.

In our experiments (see Section 7) we will show that the naive node selection heuristics
hkeep may result in high and even unmanageable node counts, while the more advanced
one is able to reduce the AIGs to reasonable sizes.2

5 Quantifier Scheduling

During model checking we eliminate existential quantifiers ∃xf by replacing them by
f |x=0 +f |x=1. In the worse case this elimination may double the size of the representation.
Thus, after an existential quantification of a series of variables the size of the representation
may potentially show an exponential blow-up. In this section we will present a heuristic
method which aims at limiting this (potential) increase in size by a clever choice of the
order of quantifications (‘quantifier scheduling’).

2In the case the used heuristics suggest to keep the old node, the only thing to do is to delete the new
node. But if the new node is selected, we use a technique similar to implementation techniques known
from BDD packages: All edges of the AIG pointing to the old node must be modified to reference
the new node. Since the data structure used in our AIG package does not contain a directory of all
edges, we need to use a more subtle replacement method: we actually transfer the data of the new
node object into the old node object and then delete the new node. By doing this no edge has to be
touched.
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Fig. 2: sn · sn−1 after (1) quantification of a0 and (2) quantification of an−1.
Quant. Nr. orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
UP 111 105 106 115 140 197 318 567 1072 2089 4130 8219 16404 32781 1
DOWN 111 105 99 93 87 81 75 69 63 57 51 45 39 33 1

Tab. 1: 14-bit-adder, function s14 ·s13: Number of AIG nodes after quantifications of single
variables ai, according to orders UP and DOWN

5.1 A motivating example

First of all, we give a motivating example which shows that the order of quantifications
may be essential for avoiding memory blow-ups. Consider a simple carry ripple adder
which computes the sum (sn, . . . , s0) for two operands (an−1, . . . , a0) and (bn−1, . . . , b0).
Now we want to compute the set of inputs (bn−1, . . . , b0) with the property that there is
an input (an−1, . . . , a0) with 2n−1 ≤ ∑n−1

i=0 ai2
i +

∑n−1
i=0 bi2

i < 2n, i.e. with sn = 0 and
sn−1 = 1. The problem may be solved by computing a symbolic (BDD or AIG based)
representation of sn·sn−1 based on the carry ripple circuit and by computing the existential
quantification ∃an−1 . . . ∃a0sn · sn−1. The result of the quantification is a representation
of a characteristic function for the set of inputs (bn−1, . . . , b0) fulfilling the given property.
Since it is easy to see that this set of inputs is equal to IBn, the final result has to be equal
to 1.

Now we consider the two extreme cases for the order of quantification: The first or-
der UP is (a0, . . . , an−1) (i.e. we start with the quantification of the least significant bit)
and the second order DOWN is (an−1, . . . a0) starting with the quantification of the most
significant bit. Figure 2.(1) shows the result of the quantification wrt. the first variable
a0 of order UP (for simplicity applied to the given carry ripple circuit, not to the corre-
sponding AIG, which has roughly the same structure). The illustration shows that the
propagation of constants 0 and 1 already stops at bit position 1 and no subcircuit sharing
can be observed in the remaining circuit . Thus, the size of the circuit is almost doubled
by quantification.

However, if we quantify variable an−1 first, we obtain the situation shown in Figure
2.(2). In this case most parts of the circuit are shared between the positive and the
negative cofactor. Since we use FRAIGs which identify functionally equivalent nodes, the
corresponding FRAIG also shows this sharing. The duplication of the number of nodes
as observed in the previous case can not be seen here.

The effect shown above continues during the following quantifications according to the
orders UP and DOWN : As shown in Table 1 for the example of a 14-bit-adder, we
observe an exponential blow-up of AIG nodes during quantification according to order
UP , whereas the number of AIG nodes is monotonically decreasing for quantification
order DOWN . Altogether our example shows that there may be an exponential gap
wrt. AIG sizes between good and bad orders of quantification. So we have a strong need
for heuristics computing good quantification orders.

5.2 A heuristic approach to quantifier scheduling

Here we present a method for quantifier scheduling which is especially tailored towards
our state set representations using FRAIGs. Our greedy method is based on estimations
on the sizes of the results after performing quantifier elimination. Before performing a
quantification ∃xf = f |x=0 + f |x=1 for some variable x and some function f represented



by a FRAIG, we compute an estimate on the FRAIG size of the final result:

• In a first step we consider the subgraph of the AIG representing f and for each
ε ∈ {0, 1} we determine by two traversals of this subgraph the set Rε of nodes which
are not removed by propagation of constant ε.

• In a second step we compute an estimate for the node sharing between the repre-
sentations of the positive and the negative cofactor: If a node n which occurs both
in R0 and R1 is not connected to variable x by a path in the AIG graph, then it
does not depend on x and thus the nodes corresponding to n in the representation
of f |x=0 and f |x=1 are the same (due to the functional reduction property). So the
set R0,1 of all such nodes is our estimate for the set of nodes shared between f |x=0

and f |x=1.
3

• Finally, our estimate for the size of f |x=0 + f |x=1 is 1 + |R0|+ |R1| − |R0,1|.
For reasons of efficiency our estimate does not consider node sharing between nodes for
both cofactors on the one hand and nodes which are not in the subgraph representing f
on the other hand. Additionally, possible restructuring of the AIG during node insertion
(see Sections 4 and 6) is not taken into account. However, as shown by experimental
results, our heuristic estimate seems to be reasonable for computing a good order for
quantification: Whenever a number of variables x1, . . . , xn has to be quantified for a
function f , we compute for each xi our estimate of the size of ∃xif and (greedily) start
with quantification of the variable with smallest cost. Then the method is repeated to
determine the next variable to be quantified and so on.

We would like to point out that in the case of our motivating example from above our
heuristic method leads to quantification order DOWN which produces a monotonically
decreasing number of AIG nodes, whereas unfavorable orders like the order UP shown
above lead to an exponential peak size in the number of AIG nodes before the final result
1 is computed.

6 BDD Sweeping

BDD sweeping [9, 10] is a well-known technique from combinational equivalence checking
(CEC). It builds BDDs for AIG nodes starting at the primary inputs until a certain node
limit is reached. Whereas in [9, 10] BDD sweeping is used in order to identify functionally
equivalent nodes in the AIG, this is not needed in our case, since we always maintain the
functional reduction property using SAT as described in Section 3. Here we use BDD
sweeping as a means for non-local optimizations of our AIG representations. However,
for reasons of efficiency both the number of BDD sweepings and the cost of a single BDD
sweeping have to be limited.

From time to time, after certain operations of the AIG package, BDD sweeping is applied
to the cone of the corresponding result. BDD sweeping builds a BDD for the cone of the
given AIG node starting from the variable nodes and using AND and NOT operations.
Variable reordering applied by the BDD package automatically tries to find an optimal
variable order in terms of BDD node count. If BDD sweeping is able to compute the BDD
for the given AIG node, then we check whether it makes sense to replace the cone of the
AIG node by an AIG which is structurally equivalent to the BDD. Here we exploit the fact
that any BDD node can be interpreted as a multiplexer, which can be transformed into
an AIG with exactly three AIG nodes. Thus, if the size of the generated BDD is smaller
than one third of the size of the given cone, we create an AIG from the BDD structure by
recursively transforming the BDD nodes to their three-node AIG representation. When
inserting this new AIG into the AIG package, node selection heuristics as described in
Section 4 are used as usual with the additional effect that subgraphs of the new AIG may

3Situations where a node does not functionally depend on a variable x, but is (structurally) connected to
x, may be possible in AIGs due to non-canonicity. However they are neglected for reasons of efficiency.



be replaced by smaller (functional equivalent) representations which are already present
in the existing AIG graph.

In order to limit the cost of a single BDD sweeping we use a variable BDD limit. When-
ever the number of nodes in the BDD package is larger than BDD limit, the BDD con-
struction is aborted.

In order to limit the number of BDD sweepings, we decided to confine BDD sweeping
to the results of cofactor operations which occur during existential quantification, since
existential quantification of a variable is the only operation that has the risk of doubling
the size of the representation. Moreover, BDD sweeping is not applied after all cofactor
operations, but only after a small fraction of cofactor operations controlled by sophisticated
heuristics based on the sizes of the results and the success of previous BDD sweepings.
To avoid unnecessary BDD sweepings, BDD sweeping is only applied, if the AIG size of
the current operation is larger than a some variable AIG limit. AIG limit is initialized to
a certain constant (100 in our current implementation) and it evolves as follows:

• If a BDD is successfully built within the node limit BDD limit, but it is not used in
the AIG due to its size, AIG limit is multiplied by a certain factor f1 > 1 (f1 = 1.2
in our current implementation ).

• If the BDD construction is aborted, since BDD limit is exceeded, AIG limit is mul-
tiplied by some larger factor f2 > 1 (f2 = 4 in our current implementation).

• If a BDD is successfully built and a structural equivalent AIG is inserted into the
AIG package, then AIG limit is set to the size of the resulting AIG.

• Whenever BDD sweeping is not applied, since AIG limit is too large, AIG limit
is decreased by multiplication with 1 − f3 · (1

2
)abort, where f3 is a small constant

(0 < f3 < 1) and abort is the number of times the BDD construction is aborted due
to an exceeded node limit (in our implementation we used f3 = 0.01).

The presented heuristics ensure that unsuccessful BDD sweeping runs result in fewer BDD
sweeping runs in the future.

The variable BDD limit for aborting BDD constructions has to be high enough to allow
for BDD variable reordering and is set to AIG limit times 100 in our implementation.

Whenever BDD sweeping is aborted, it ends up with a number of BDDs for AIG nodes
in the considered cone, since it computes BDDs beginning with the input variables of the
cone. The procedure described above can be easily extended by making use of the BDDs
computed so far. However, this feature is not yet realized in our prototype implementa-
tion.

7 Experimental Results

We performed a number of experiments for evaluating our approach. The examples Coher-
ence, DAIO, Lock, Picojava/ICU, and Barrelshifter are taken from the VIS Verification
Benchmark set [16].4 Moreover, we used a pipelined ALU (‘PALU’) similar to the one pre-
sented in [3]. The pipelined ALU includes 16 registers, a combinational adder, a combina-
tional multiplier, and bitwise operations, all with a bit width of 16 bits. For the pipelined
ALU we checked the CTL formula φ = AG

(′′R2 :=R0⊕R1
′′ → (

(AX)2R0 + (AX)2R1 ≡
(AX)3R2

))
(similar to formula (1) from [3]).5

All experiments were performed on a 3 GHz Pentium4 workstation running Debian
Linux. We used a timeout of 12 CPU hours.

4The number of registers in the barrelshifter was increased from 4 to 10.
5Given an exor operation in the instruction register the formula basically checks whether the contents

of the destination register in three steps are the same as the or operation of the contents of the
operand registers in two steps. This would be true for an or operation in the instruction register, but
is obviously not true for the exor operation.



In a first experiment we evaluated the effect of our node selection heuristics from Section
4. Table 2 lists the peak node counts, numbers of node replacement steps, and run times
for the two different proposed node selection heuristics: the naive method hkeep (always
keeping the already existing node), and hsize. In this experiment we turned off BDD
sweeping, because the naive method hkeep would never use the results of BDD sweeping.
(Thus the results would be biased towards hsize, since it can exploit BDD sweeping whilst
hkeep does not profit from it.)

The results clearly show that the Name hkeep (naive method) hsize
nodes time nodes repl. time

Lock 12196 6.5 10241 1531 5.7
Picojava 24021 40.2 10747 810 8.4
DAIO 65046 20571.1 21879 18907 421.6
Coherence - > 12h - - > 12h
Barrel 6037 20.4 6037 0 20.4
PALU 6221 4.0 6221 288 2.4

Tab. 2: Impact of node selection heuristics

node selection heuristics are of great
importance for obtaining good results:
The heuristics hsize lead to a consid-
erable decrease in peak node counts.
The most impressive examples are Pi-
cojava and DAIO where the peak num-
ber of AIG nodes for the naive method
are by 124% and 244% higher than for hsize. Not only the node counts, but also the run
times are greatly reduced by hsize, in the case of Picojava from 40.2 CPU seconds with
hkeep to 8.4 CPU seconds with hsize, in the case of DAIO even from 5.7 CPU hours with
hkeep to about 7 CPU minutes with hsize. Results for example ‘Coherence’ could not be
given here, since – without BDD sweeping – the computation did not finish within our
limit on CPU time, i.e., BDD sweeping is essential for success with this benchmark (see
also experiments below, Table 3). Since the node selection heuristics hsize seems to be the
best choice, we always use this method in the following.

Name original order quantifier scheduling BDD- VIS
nodes time nodes time BDD BDD BDD SAT SAT MC (v 2.0)

sweep success limit equiv time time
Lock 631 0.33 629 0.38 7.2 · 10−3 0.74 0.00 0.020 0.99 0.04 < 0.1
Picojava 8130 9.6 2943 6.6 1.5 · 10−3 0.19 0.00 0.051 0.40 1.10 12.2
DAIO 925 0.79 925 0.81 2.4 · 10−3 0.89 0.00 0.160 0.92 0.39 1.5
Coherence 116303 943.4 40454 137.1 2.2 · 10−4 0.41 0.00 0.013 0.73 17.00 0.4
Barrel 6037 32.0 6037 32.3 6.5 · 10−5 0.00 1.00 0.021 0.37 > 12h > 2GB
PALU 6221 26.2 6215 78.0 7.7 · 10−5 0.25 0.75 0.011 0.79 > 12h > 2GB

Tab. 3: Experiments with BDD Simulation and Quantifier Scheduling

In the following experiments we consider our method with BDD sweeping turned on. In
the second experiment shown in Table 3 we evaluated the effect of quantifier scheduling
and in the third experiment we compared our results to BDD based CTL model checkers
(to VIS in the last column and to our own implementation of a CTL model checker in the
column before).

First of all, columns 2 and 3 show the peak node counts and run times for the unmod-
ified quantification order (‘original order’) and columns 4 and 5 give the same results for
our quantifier scheduling heuristics from Section 5. It can be observed that quantifier
scheduling always improves the peak node counts; for Picojava, e.g., by a factor of 2.8,
for Coherence by a factor of 2.9. With exception of PALU, run times are always better or
at least in the same range, for our slowest example Coherence run times are even reduced
from 15.7 CPU minutes to 2.3 CPU minutes.

Columns 6-10 give some more details for our experiments with BDD sweeping and
quantifier scheduling turned on: Column 6 shows the number of applications of BDD
sweeping divided by the total number of attempts to insert a node into the AIG. Column
7 shows the numbers of successful applications of BDD sweeping (i.e. the numbers of BDD
sweepings where the results are used in the AIG package) divided by the total number
of BDD sweepings. And finally column 8 shows the numbers of aborted BDD sweepings
(due to exceeded node limits) divided by the total number of BDD sweepings. BDD
sweeping is only applied from time to time in all cases and in cases where BDD sweeping
is not very successful (especially for examples ‘Barrel’ and ‘PALU’) our heuristics from
Section 6 work in the sense that unsuccessful BDD sweeping runs result in fewer BDD
sweeping runs in the future. Column 9 shows the number of SAT checks divided by the
total number of attempts to insert a node into the AIG, column 10 shows the fraction of



SAT checks which lead to the result that the compared nodes are functionally equivalent.
Although we always maintain the functional reduction property of our FRAIGs, the results
show that the assistance of SAT by simulation and structural hashing as described in
Section 3.2 assures that SAT is applied only for 1-5% of all node insertions. Moreover,
the high percentage of SAT checks proving functional equivalence of two nodes shows the
effectiveness of simulation in avoiding unnecessary SAT checks for nodes which are not
equivalent.

The last two columns give a comparison of our results to BDD based CTL model
checking. For the last two examples, Barrel and PALU, the BDD based model checkers
were not able to provide a result (for our own model checker we had to abort due to a
CPU limit of 12 hours, VIS quickly ran out of memory (2GB)). However, these examples
did not form a problem for the model checker presented in this paper and we could solve
them within a few seconds.

In contrast, for the remaining benchmarks taken from the VIS Benchmark set, BDDs
are known to perform well and these examples could be solved quickly by the BDD based
model checkers. However, note that also for these examples we could observe that our
approach succeeded in producing competitive results within a few seconds.

8 Conclusions and Future Work

We presented an approach to symbolic CTL model checking based on And-Inverter Graphs
as a representation of characteristic functions. Several methods such as functional reduc-
tion using simulation assisted SAT checks, node selection heuristics, quantifier scheduling,
and BDD sweeping contribute to the success of our approach. Although the experimental
results for our preliminary implementation already appear to be impressive, we believe
that there is still room for improvement. Among others, we will work on future improve-
ments of the heuristics presented in Sections 4, 5, and 6. In addition, we will investigate
whether methods for structural SAT solving [9] will be useful in our context and we will
explore whether it sometimes makes sense to switch to lazy methods for AIG compression
instead of our eager one.
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