Preprint from Proceedings of

Microprocessor Test and Verification Workshop, December 2006, Austin, USA.

Advanced SAT-Techniques for Bounded Model Checking of Blackbox Designs *

Marc Herbstritt

Bernd Becker

Christoph Scholl

Institute of Computer Science, Albert-Ludwigs-University
79110 Freiburg im Breisgau, Germany

{herbstri,becker, scholl}@Rinformatik.uni-freiburg.de

Abstract

In this paper we will present an optimized structural
01X-SAT-solver for bounded model checking of blackbox
designs that exploits semantical knowledge regarding the
node selection during SAT search. Experimental results
show that exploiting the problem structure in this way
speeds up the 01X-SAT-solver considerably. Additionally,
we give a concise first-order formulation that is more ex-
pressive than using 01X-logic. This formulation leads to
hard-to-solve QBF formulas for which experimental results
from the QBF Evaluation 2006 are presented.

1 Introduction

Today’s verification of circuit designs heavily makes use
of property checking. As algorithmic workhorse, model
checking techniques are used. Within the large pool of dif-
ferent approaches, SAT-based bounded model checking [1]
has become an established technique in academic research
as well as in industrial tools. While typically the design
under analysis is fully specified, the analysis of blackbox
designs emerged as an interesting problem that has a large
variety of applications [2, 3, 4], e.g., early design verifica-
tion, error diagnosis, etc. A blackbox design corresponds
to an incomplete circuit description, i.e., some parts of the
circuits are not known.

In [5] we have proposed a SAT-based approach for
bounded invariant checking of such blackbox designs.
Since pure propositional logic is not expressive enough for
the analysis of blackbox designs, one has to apply either
logical extensions like 01X-logic or first-order logic where
universal and existential quantifiers allow for a concise
problem formulation. The usage of 01X-logic was analyzed

*This work was partly supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS). See www . avacs . org for more information.

already in [5]. There, 01X-logic was algorithmically inte-
grated into a structural SAT-solver. Then it was compared to
an encoding approach in the style of [2]. As aresult we have
found that generally the encoding approach is much faster,
although in some cases the structural 01X-SAT-solver per-
formed better. The reason for that is the “blindness” of the
encoding approach regarding the correspondence of And-
Inverter-Graph (AIG) vertices that together build a seman-
tical unit within 01X-logic.

In this work, we present a structural 01X-SAT-solver that
combines the above mentioned encoding approach with a
semantical node selection heuristics. Experimental results
show that using this heuristics clearly outperforms the pre-
vious approaches both in CPU time used and in number of
aborted instances.

Furthermore, we give for the first time a concise first-
order formulation for the bounded model checking problem
for blackbox designs with combinational blackboxes. To
get correct results, the input-output-behavior of the black-
boxes for equivalent input assignments within different time
frames must be taken into account. This constraint leads to
complex QBF formulas and we will present preliminary ex-
perimental data from the QBF Evaluation 2006 [6] showing
that it requires sophisticated QBF-techniques to solve the
corresponding QBF formulas.

The paper is structured as follows. In the following sec-
tion, we review related work. In Section 3 we briefly give
preliminaries necessary to understand the subsequent sec-
tions. Then, in Section 4 we describe our improved node
selection heuristics when using 01X-logic to analyze black-
box problems. In this section we also present experimental
results for our proposed optimization. Afterwards, in Sec-
tion 5 we describe in detail how our QBF formulation works
and present experimental results from the QBF solver eval-
uation in 2006. Finally, Section 6 concludes the paper.

IEE I-'

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

scholl
Textfeld
Preprint from Proceedings of
Microprocessor Test and Verification Workshop, December 2006, Austin, USA.

2 Related Work

Model Checking of Blackbox Designs A first attempt
for combinational equivalence checking of incomplete de-
signs was made in [7] and further extended in [8]. In the
context of symbolic CTL model checking, it turned out in
[4] that modelling blackboxes by non-deterministic inputs
ends up in ambiguous results when using different sym-
bolic model checkers, e.g. VIS and SMV. Hence, in [4]
approximation techniques were developed that give consis-
tent results w.r.t. validity and realizability of incomplete de-
signs. As already mentioned, in [5] a bounded model check-
ing approach was presented that adapted the concept of Z-
simulation, as it was used in [4] for BDD-based symbolic
model checking, to the SAT-based bounded model check-
ing framework. Recently, in [9] counterexample extraction
within a BDD-based blackbox model checking framework
was considered.

01X-Logic 01X-logic has one of its origins in ATPG
where it was applied in circuit simulation to model the un-
predictability of latches upon memory initialisation [10].
In [2] a transformation scheme was presented that com-
piles problems described in 01X-logic into pure proposi-
tional problems, allowing to use arbitrary engines that de-
cide propositional logic.

Quantified Boolean Formulas Motivated by the impres-
sive improvements for SAT engines within the last decade
[11, 12, 13], current research tries to transfer this knowl-
edge to the PSPACE-complete problem of deciding the va-
lidity of QBF [6]. Although current QBF solvers can-
not compete generally with dedicated solvers for individ-
ual problems, the efficiency of modern QBF solvers has im-
proved over the last years. It is also one aim of our work
to trigger QBF-related issues and to support the QBF re-
search community. The quest for the best algorithmic prin-
ciple to decide QBF formulas is still open. Current QBF
solvers are search-based in a DPLL-style (e.g., [14] and
[15], expansion-based (e.g., [16]), or based on skolemiza-
tion (e.g., [17]). Additionally, the usage of preprocess-
ing techniques (see [18]) and the transformation into non-
prenex form (see [19]) seem to be mandatory techniques to
solve real world problems.

3 Preliminaries

We consider the analysis of sequential circuits where
parts of the combinational logic are unknown, i.e., the cir-
cuit contains one or more blackboxes. In Figure 1 this sce-
nario is visualized.

Blackbox
h 4

v

(50,81 @ Blackbox

Figure 1. Sequential circuit containing com-
binational blackboxes.

3.1 Applications of Blackboxes

The concept of blackboxes can be used for various appli-
cations within a circuit design flow:

1. Early Design Stage Verification. Assume that two or
more people are involved in designing a new circuit.
Verification of properties or finding bugs, respectively,
already in an early stage of the design, where at least
one person has not finished yet its corresponding mod-
ule, can be done by blackboxing the unimplemented
module. Then, when a bug can be found independent
of the blackbox, there must be an error outside the
blackbox. Finding bugs in an early design stage can
considerably save development costs.

2. Module Abstraction. Assume that a circuit developer
wants to check some design property that does not de-
pend on some modules of the design. These modules
can be blackboxed, resulting in an abstraction of the
circuit. This technique can be used, for example, when
abstracting complex modules like multipliers or mem-
ory, decrease the required computational resources and
thus enable the verification.

3. Error Diagnosis. Assume a bug was found and the
circuit designer wants to know in which part of the de-
sign the error may be located. To do so, the designer
can blackbox some candidate region in which the er-
ror is suspected. When blackbox analysis techniques
can show that no error is observable, then it can be
concluded that the candidate region contains the error
location.

Modelling of the blackbox behaviour can be done in sev-
eral ways. The most simple scheme relies on 01X-logic, a
more advanced and more expressive scheme to be presented
in Section 5 relies on Quantified Boolean Formulas.

IEE l-:

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

ANDo;x (a,b) ORo1x (4, b) NOTo1x (a)
b0 1 X b| o0 1 X a
a a 0 1
0 0 0 0 0 0 1 X 1 0
1 0 1 X 1 1 1 1 X X
X 0 X X X X 1 X

Table 1. Boolean operations AND, OR, and NOT
extended to 01X-logic.

3.2 01X-Logic

01X-logic extends propositional logic by a third logical
value, X, to provide means to talk about the uncertainty of
the status of propositional variables. Basic functions like
conjunction, disjunction, and negation can be adapted con-
servatively by taking the controlling values of the gate func-
tion into account, as it is shown in Table 1.

The transformation scheme of [2] maps the three logical
values 0,1, and X to binary tuples (1,0),(0,1), and (0,0),
respectively. Using this mapping, the extended operators
can be adapted to this encoding:

ANDy;x((g0,81), (fo. /1)) (go+ fo.81- f1)
ORy;x((g0,81), (fo, f1)) = (go-fo,g1+f1)
NOTox((g0,81)) = (g1,80)

3.3 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) extend proposi-
tional formulas by allowing to existentially (3) or univer-
sally (V) quantify some variables. A QBF of the form
Jx: f(x) (Vx: f(x)) is called valid iff for some (all) value(s)
of x € {0,1}, f(x) evaluates to 1. Briefly, a QBF has the fol-
lowing general form:

01X QoY1 03X QuaYa .. Qn¥s Q1 Xy
f(Xl,Yl,Xz,Yz,...,Y%,X[nTHW),

where X1,Y1,...,Y%,X(%] are pairwise disjoint sets of
propositional variables, 01 = 3,0; € {3,V},0; # Qiy1,1 <
i <n, and f is a propositional formula in conjunctive nor-
mal form (CNF). Wlog. we require the first quantifier to
be existential, but X; may be empty, and the last quanti-
fier to be existential, since innermost universally quantified
variables can be immediately eliminated when f is given
in conjunctive normal form. This form is typically used as
input format by current QBF solvers.

3.4 And-Inverter-Graphs

The usage of And-Inverter-Graphs (AIGs) was mainly
triggered by the work of Kuehlmann et al. [20] for space-
efficient representation of boolean functions in the context

Figure 2. Example showing feasibility of 01X-
logic to detect counterexamples.

of combinational equivalence checking and property check-
ing. AIGs can be seen as combinational circuits restricted
to two-input AND-gates which correspond to the vertices
of the graph, and INV-gates which correspond to marked
edges in the graph. The leaves of the graph are primary
inputs. There exist efficient synthesis techniques based on
structural and functional hashing to compute manageable
AIGs for large circuits [20]. Figure 3 shows on the right
two AIGs for the encoding of ANDy;x.

4 Improvements to 01X-based BMC

We start by looking at a small example showing that
counterexamples can be found using 01X-logic. In Figure
2, a small sequential circuit with three flip-flops and one
blackbox is shown. The next state functions, using 01X-
logic, can be written as follows:

% = q+Y+X
4y = qo+aq (1)
7 = —(9®q)

The property that should be checked is AG(go @ gq1) =
AG (—p), i.e., p should always be 0. We simulate the cir-
cuit under the semantics of 01X-logic, i.e., in each time step
we assign the logical value X to the output of the blackbox.
Starting in the initial state (qo = 0,q1 = 1,p = 0), the fol-
lowing table depicts a trace of length 3 that ends up in a
state where p = 1 holds, so that the property is violated:

step | ¥ |90 q1 p
0 — 1 0 1 0
1 1 1 1 0
2 0 1 1 1

In [5] the first author has implemented a SAT-based
framework for bounded model checking using AIGs and
a structural SAT-solver using AIGs as basic representation.

IEE I-'

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

semantical cross
0 reference 0

01X-AND
*

right

Encoded-01X-AND

Figure 3. Semantical cross reference between
AIG vertices.

The experiments in that work revealed that the encoding ap-
proach of Jain et al. [2] in general performs much more ef-
ficient than lifting the deduction rules of the structural SAT-
solver to 01X-logic. But the experiments also showed that
in some cases the SAT-solver can be misguided when us-
ing the encoding approach, because the variable selection
mechanism of the propositional SAT-solver is not aware that
the problem was generated from a 01X-logic problem. Put
another way, the knowledge that two AIG vertices corre-
spond to each other due to the binary encoding, was not
available. Hence, one contribution of this work is to show
that it pays off to take this correspondence into account dur-
ing the search of the SAT-solver. To overcome the limi-
tations of the previous approach, we propose an improved
node selection heuristics that is used within our structural
SAT-solver as follows.

The basic principle for our node selection heuristics is
depicted in Figure 3. During construction of the AIG for
the unfolding of the circuit under analysis, the two AIG
vertices that are generated due the encoding approach are
linked together by a semantical cross reference. The main
drawback of the “blind” SAT-solver in [5] is that justifica-
tions of those two AIG vertices can be resolved at very dif-
ferent time points during the search. But now the semantical
cross reference can be used to immediately handle AIG ver-
tex justifications whenever the cross-referenced one was re-
solved. As an example have a look to the AIGs that refer to
the encoding of an AND-gate, as depicted on the right hand
side in Figure 3. L.e., assume that the justification of the left
node was already resolved and recall that from the perspec-
tive of 01X-logic, we would like to justify the 0g;x = (1,0)
value(s) of the encoding. Due to the semantical cross refer-
ence, we now can directly detect that the justification of the
right AIG vertex should be handled. This strategy was inte-
grated into the maximum-decision-level-heuristics already
used in [5].

Table 2 shows experimental results for our new node se-
lection heuristics.! As can be seen, it clearly outperforms
the previous 01X-SAT-solver [5] not only in CPU time but
also in the number of instances that can be solved.

IThe CPU time limit was set to 900seconds. The times in column “To-
tal” include the time for the aborted instances.

Solver Time

Solved Total | #Solved / #Total
“blind” SAT-solver [5] 964 | 17165 271272730
improved SAT-solver 386 | 12084 271712730

Table 2. Results for the semantical node se-
lection heuristics.

5 QBF formulation
Before going into details how our QBF formulation
works, we’ll have a look at a small example, showing that

with 01X-logic, it is not always possible to detect a coun-
terexample.

Inaccuracy of 01X-Logic For the circuit in Figure 4 the
next state functions are as follows wrt. 01X-logic:

/

go = qo+X

g = qo-X

g = 1 ()
B = @

po= (qo+(=q1))-q3-y

The circuit is analyzed with respect to the property
AG(y-q3-(—q1+q0)) = AG(—p), i.e., p should always be
0. The following trace of length 4 shows that starting from
the state (qo = 0,91 = 0,492 = 0,43 = 0,p = 0), in the last
step the signal value of (—g; +¢qo), that is necessary to be 1
so that p can be forced to 1, evaluates to X, and hence the
property cannot be falsified.

step | ¥ |90 q1 92 q3 P
0 — 1 0 0 0 0 O
1 — | X 0 1 0o 0
2 — | X X 1 1 0
3 1 X X 1 1 X

As we will see, using QBF it is possible to detect a coun-
terexample for the example given in Figure 4.

Blackbox handling for QBF Besides the issue of over-
approximation as sketched in the example, the 01X-logic
approach also abstracts from the fact that different black-
box outputs may compute different boolean functions. To
take this into account, disjoint variables are introduced for
the blackbox inputs and outputs. lLe., for the ith black-
box B; that has k inputs (/ outputs), we introduce variables
(ELEL,... EX) for the inputs, and variables (Y!,Y!,...,¥})
for the outputs. We abbreviate these vectors using =; and
I;, respectively. Since we look at a finite unfolding, we
additionally attach a time index to the variables, i.e., the kth

IEE I-'

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

input of blackbox ‘B; in time frame ¢ corresponds to the vari-
able E,’(‘l - The notion for the vectors is extended in the same
manner: i.e., I';;) denotes the vector of variables that corre-
spond to the outputs of blackbox B; in time frame ¢. In the
following, we use in(B;) (out(B;)) to denote the number of
inputs (outputs) of blackbox B;.

Transition Relation with Blackboxes The above intro-
duced variables for the blackbox outputs can now be taken
into account when building the transition relation. L.e., the
transition relation is built by symbolic simulation using
AIGs as underlying data structure. During symbolic sim-
ulation, the blackbox outputs are handled as additional
primary inputs. Regarding the implementation, we con-
struct a generic transition relation T¢"(s,x,I'y,...,I'g,s")
using generic versions l"igen of variables for the blackbox
outputs of blackbox B;. For the construction of the fi-
nite unfolding of the transition relation, we use a sub-
stitution operator to replace all generic variables by their
timed instantiation. In more detail, the transition rela-
tion T (s, x:,T'(1),- -, T'(p,), Si+1) describing the transitions
from time frame i to time frame (i + 1), is obtained as fol-
lows:

T(shxiar(l,i)v ce ar(ﬁ,i)7si+1) =
Tgen(s?xarl7"'arﬁasl) 3)

Si<— S
Ly =T

Loy TI5"

Ty —T5

/
S(i+1) <8

We apply the concept of shadow-variables suggested in
[21] to efficiently implement this substitution. Now, the fi-
nite unfolding T'(B,d) of the transition relation up to depth
d, that takes B-many blackboxes into account, can be con-
structed:

TB.d):= N TloxTap,--Tgisic1) @)
i=1...(d—1)

Input-Output-Consistency Since we focus on combina-
tional blackboxes, we have to take care about the determin-
istic input-output-behaviour of the blackbox. Put another
way, since the blackbox implements a function rather than a
finite state machine, it has to produce the same output values
given the same input values. Hence, we require a predicate
to ensure this consistency constraint. For a blackbox ‘B; and
two different time frames #; and 1, t; # 1, the following
predicate IOC(B;,11,1,) is true iff the consistency constraint
is not violated:

Figure 4. Example showing infeasibility of
01X-logic, but feasibility of QBF to detect
counterexamples.

IOC(?,’,I[,[Q) = ©)

(A '('?m:&'ﬁzz))—’(A “/Zi.,n):V?i,m)
m=1...in(B;) n=1...out(B;)

This consistency constraint has to be fulfilled for all pos-
sible time frame combinations for a given maximum unfold-
ing depth d. We capture this constraint using the predicate
I0C(B;,d):

I0C(B,,d):= [\ 10C(B,1,10) (6)
1<t),tp <d,
1 #1p

Finally, the requirement for consistent input-output-
behaviour must be satisfied for all blackboxes. Let B be
the number of blackboxes in the original sequential circuit.
Then, IOC(B,d) is true iff the consistency constraint for all
blackboxes holds in the finite unfolding up to depth d:

I0C(B.d):== /\ 10C(B;,d) (7
b=1..p

QBF Formula Now we describe a QBF formulation for
detecting counterexamples. Our QBF formula is simulation
driven, since it follows the temporal behaviour of the se-
quential circuit and its finite unfolding, respectively. Put
another way, we start in an initial state and select some as-
signment for the primary inputs. The values of the primary
input and state variables induce deterministically values at

IEE I-'

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

the blackbox inputs. The QBF-solver then has to check that
for all possible value combinations at the blackbox outputs
a next state is reached from which, again, a sequence of in-
put assignments can be found such that a state violating the
property is reached. For different instantiations of the same
blackbox, but in different time frames, the input-output-
consistency described above must be ensured, to avoid false
negative counterexamples. Finally, we are able to construct
a formula Qpprc(d):

@smc(d) =
E|S1 E|X1 33(],])\71—‘(]71) “e 33(571)VF<B,])

29,207 o)
ds” dx 3:,(172> VF(]Q) . ..3&(5’2) VF(BZ)

®)
EISd_l Elxd_l 35(1’(1,1) VF(lﬁd,]) N ElE(B,d,]>vr<B7d,]>

3s?

10C(B,d) — (I(sl) -T(B,d)- (ﬁP(S")))

I(s') is a predicate for the initial states, and P(s?) de-
scribes the safety property in time frame d, i.e., ~P(s%)
states that the state reached after d time steps violates the
given property. When formula @gsc(d) is true, then there
exists a counterexample (in terms of a Q-model, see [15]) of
length d such that for every blackbox implementation there
exists an individual counterexample that corresponds to a
path in the Q-model of @gpc(d).

Example Revisited Let’s see how the example from Fig-
ure 4 is handled with a QBF-solver using our encoding
described above. Since within our QBF formulation, the
blackbox outputs are handled by individual variables, the
next state functions are rewritten, using the variable 7y for
the blackbox output.

qo = qo+Y

g = qo-Y

@ =1 ©9)
B o= @

poi= (qo+(~q1)-q3-y

Figure 5 depicts a decision tree that is implicitly built by
a QBF-solver when analyzing the QBF formula @gnmc(3)
for this example.

The left (right) edges correspond to assigning the black-
box output at some time frame to value O (1). The time
frame can be derived from the depth of the source node of
the edge. In the example, only in the last step the value of
the primary input is of interest, hence in the diagram it is
depicted on the bottom level only.

Solver H Time \ #Solved/#Total

2clsQ 16828 0/28
GRL 16220 1/28
openQbf 16826 0/28
preQuantor 571 0/28
Qbfl 16792 0/28
Quaffle 16380 0/28
QUANTOR 906 0/28
QUANTOR _hc 900 0/28
qube3.0 16216 1/28
qube4.0 15828 1/28
qube5.0 20 28/28
semprop 16229 1/28
sKizzo0-0.9-abs 9183 0/28
sKizzo-0.9-grn 2191 0/28
sKizz0-0.9.std 10761 0/28
SQBF 11359 0/28
sSolve 16808 0/28
ssolve+ut 16809 0/28
ssolve-ut 16809 0/28
WalkQSAT 16227 1/28
yQuaffle 16699 0/28

Table 3. Short track results from QBFEVAL 06
for the blackbox_design family [6, 22].

The decision tree can be read as follows: All path
starting in the initial state lead to a state within 3 time
steps whereby (1) the signal values along this path sat-
isfy the input-output-consistency of Equation (7), and (2)
the reached state violates the analyzed property, i.e.,p = 1.
Hence, the sequence (—, —, 1) of values assigned to the pri-
mary input y is a counterexample. Please note that in gen-
eral the counterexamples detected by our QBF formulation
has not be uniform as it is the case for this small example.

Results from QBF Evaluation 2006 Table 3 shows the
short track results from the QBF Evaluation 2006 [6]. The
benchmarks used are derived from our problem setting
and are denoted blackbox_design. The benchmark
set consists of 28 instances describing a blackbox bounded
model checking problem for the PicoJava/biu bench-
mark from the VIS benchmark suite. The QBF instances are
available from [22]. As can be seen from Table 3, only one
out of 21 QBF-solvers, namely qube5.0 (see [19] for cur-
rent development of the QBF-solver qube), is able to solve
all of the QBF instances. qube5.0 applies transformations
into a non-clausal representation and applies simplification
and rewriting of the quantifier tree resulting in a non-prenex
QBF. Additionally, qube5.0 does efficient preprocessing of
the original QBF, which drastically reduces the complexity
of the QBF.

IEE I-'

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

(0,0,0,0,0)

s Y2=1 s Yo=1

Yo=

;Y2=1

;Yo=1

(0,0,1,1,1)

[ERAECSARY 0T,

((1,1,1,1,1) |

Figure 5. Decision tree implicitly built by QBF-solver. Tuples denote (qo0,91,92,93, p) and the depth of
a node corresponds to the time frame within the unfolding.

6 Conclusions

In this paper we have reported on (1) optimizations for
01X-based bounded model checking of blackbox designs
that considerably increase the efficiency of our 01X-SAT-
solver, and (2) on a formalization of counterexamples using
quantified boolean formulas that is more expressive than us-
ing 01X-logic. The QBF formulas turned out to be hard-to-
solve for current state-of-the-art QBF solvers, but especially
preprocessing techniques seem to make such a QBF-based
approach viable.

As future work, we will investigate on how to combine
01X-logic and QBF. Furthermore, we will have a look on
how the QBF formalization can be generalized to trade off
the accuracy of the counterexamples and computational re-
sources required to decide the existence of such a coun-
terexample.

Acknowledgements. We are deeply grateful to Massimo
Narizzano, Luca Pulina and Armando Tacchella for provid-
ing us the short track results of the QBF Evaluation 2006.
Additionally, we would like to thank Tobias Nopper for con-
tributing to the examples used in this paper.

References

[1] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu,
“Bounded model checking using satisfiability solv-
ing,” Formal Methods in System Design, vol. 19, no. 1,
pp- 7-34, 2001.

[2] A.Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita,
and M. Hsiao, “Testing, Verification, and Diagnosis

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

[4]

(6]

[9]

in the Presence of Unknowns,” in Proc. of VLSI Test
Symposium, 2000, pp. 263-269.

C. Scholl and B. Becker, “Checking equivalence for
partial implementations,” in Proc. of Design Automa-
tion Conference (DAC), 2001, pp. 238-243.

T. Nopper and C. Scholl, “Approximate symbolic
model checking for incomplete designs,” in Proc. of
Sth International Conference on Formal Methods in
Computer-Aided Design (FMCAD), Nov 2004, pp.
290-305.

M. Herbstritt and B. Becker, “On SAT-based
Bounded Invariant Checking of Blackbox Designs,” in
Proc. of Microprocessor Test and Verification Work-
shop (MTV). Austin (TX), USA: IEEE Computer
Society, 2005, pp. 23-28.

M. Narizzano, L. Pulina, and A. Tacchella,
“QBF Evaluation 2006,” available on-line at
www.gbflib.org/gbfeval [2006-08-02].

W. Giinther, N. Drechsler, R. Drechsler, and
B. Becker, “Verification of designs containing black
boxes,” in EUROMICRO, 2000, pp. 100-105.

C. Scholl and B. Becker, “Checking equivalence
for circuits containing incompletely specified boxes.”
in Proc. of 20th International Conference on Com-
puter Design (ICCD), Freiburg im Breisgau, Ger-
many, 2002, pp. 56-63.

T. Nopper and C. Scholl, “Counterexample generation
for incomplete designs,” in ITG/GI/GMM-Workshop
“Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Syste-
men”, 2007, to appear.

IEE I-'

COMPUTER
SOCIETY

[10] M. Abramovici, M. Breuer, and A. Friedman, Digi- [20] A. Kuehlmann, V. Paruthi, F. Krohm, and
tal Systems Testing and Testable Design. Computer M. M.K. Ganai, “Robust Boolean Reasoning for
Science Press, 1990. Equivalence Checking and Functional Property

Verification,” IEEE Trans. on CAD, 2002.

[11] J. Marques-Silva and K. Sakallah, “GRASP: A search
algorithm for propositional satisfiability,” IEEE Trans. [21] A. Kuehlmann, “Dynamic transition relation simpli-
on Comp., vol. 48, no. 5, pp. 506-521, 1999. fication for bounded property checking.” in Proc. of

International Conference on Computer-Aided Design

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, (ICCAD). San Jose, CA, USA: IEEE Computer So-
and S. Malik, “Chaff: Engeneering an efficient SAT ciety / ACM, 2004, pp. 50-57.
solver,” in Proc. of Design Automation Conference
(DAC), 2001. [22] M. Herbstritt, “QBF blackbox_design

family = benchmarks,” available on-line at

[13]

[14]

[15]

[16]

[17]

(18]

[19]

N. Eén and N. Sorensson, “An extensible sat-solver.”
in Proc. of 6th International Conference on The-
ory and Applications of Satisfiability Testing (SAT),
ser. Lecture Notes in Computer Science, vol. 2919.
Springer, 2004, pp. 502-518, selected Revised Papers.

E. Giunchiglia, M. Narizzano, and A. Tacchella,
“Qube++: An efficient gbf solver” in Proc. of
Sth International Conference on Formal Methods in
Computer-Aided Design (FMCAD), ser. Lecture Notes
in Computer Science, vol. 3312. Austin, Texas, USA:
Springer, 2004, pp. 201-213.

H. Samulowitz and F. Bacchus, “Using sat in gbf.” in
Proc. of 11th International Conference on Principles
and Practice of Constraint Programming (CP), ser.
Lecture Notes in Computer Science, vol. 3709. Sit-
ges, Spain: Springer, 2005, pp. 578-592.

A. Biere, “Resolve and expand.” in Proc. of 7th In-
ternational Conference on Theory and Applications of
Satisfiability Testing (SAT), ser. Lecture Notes in Com-
puter Science, vol. 3542. Vancouver, BC, Canada:
Springer, 2005, pp. 59-70, selected Papers.

M. Benedetti, “skizzo: A suite to evaluate and cer-
tify qbfs.” in Proc. of 20th International Conference
on Automated Deduction (CADE), ser. Lecture Notes
in Computer Science, vol. 3632. Tallinn, Estonia:
Springer, 2005, pp. 369-376.

H. Samulowitz, J. Davies, and F. Bacchus, “Prepro-
cessing qbf.” in Proc. of 12th International Confer-
ence on Principles and Practice of Constraint Pro-
gramming (CP), ser. Lecture Notes in Computer Sci-
ence, vol. 4204. Springer, 2006, pp. 514-529.

E. Giunchiglia, M. Narizzano, and A. Tacchella,
“Quantifier structure in search based procedures for
qbfs.” in Proc. of Conference on Design, Automation
and Test in Europe (DATE). Munich, Germany: Eu-
ropean Design and Automation Association, 2006, pp.
812-817.

http://www.qbflib.org/suite_detail.php ?suiteld=22
[2006-08-02].

IEE |-:

COMPUTER
SOCIETY

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00 © 2006 IEEE

