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We consider the problem of checking whether an incomplete design (i.e. a design con-
taining so-called Black Boxes) can still be extended to a complete design satisfying a given
property or whether the property is satisfied for all possible extensions.

In this paper we extend a method based on a series of approximate, yet sound algorithms
to prove or disprove CTL properties for incomplete designs [1]. Each algorithm in the
previous approach was able to model the effect of the unknown information at the outputs
of the Black Boxes at a different level of accuracy (leading to different requirements for
computational resources). In this paper we present a novel approach which is able to use
different methods for modeling unknowns at the outputs of different Black Boxes within a
single model checking run. This permits us to handle less relevant Black Boxes (in terms
of the CTL formula) with larger approximation and thus faster, whereas we do not lose
important information when the possible effect of more relevant Black Boxes is modeled
by more exact methods.

Finally we give a series of experimental results demonstrating the effectiveness and
feasibility of the new method.

1 Introduction

Deciding the question whether a circuit implementation fulfills its specification is an essential problem
in computer-aided design of VLSI circuits. Growing interest in universities and industry has led to
new results and significant advances concerning topics like property checking, state space traversal
and combinational equivalence checking.

For proving properties of sequential circuits, Clarke, Emerson, and Sistla presented model checking
for the temporal logic CTL [2]. Burch, Clarke, and McMillan et al. improved the technique by using
symbolic methods based on binary decision diagrams [3] for both state set representation and state
traversal in [4, 5].

In this paper we will consider how to perform model checking of incomplete circuits, i.e. circuits
which contain unknown parts. These unknown parts are combined into so-called Black Boxes. In
doing so, we will approach two potentially interesting questions, whether it is still possible to replace
the Black Boxes by circuit implementations, so that a given model checking property is satisfied
(‘realizability’) and whether the property is satisfied for any possible replacement (‘validity’).

There are three major benefits symbolic model checking for incomplete circuits can provide: First,
instead of forcing the verification runs to the end of the design process where the design is completed,
it rather allows model checking in early stages of design, where parts may not yet be finished, so
that errors can be detected earlier. Second, complex parts of a design can be replaced by Black
Boxes, simplifying the design, while many properties of the design still can be proven, yet in shorter



time. Third, the location of design errors in circuits not satisfying a model checking property can be
narrowed down by iteratively masking potentially erroneous parts of the circuit.

Some well-known model checking tools like SMV [5] (resp. NuSMV [6]) and VIS [7] provide the
definition of non-deterministic signals (see [8, 9, 10]), and — at first sight — signals coming from un-
known areas can be handled as non-deterministic signals. However, it was already shown in [1] that
modeling by non-deterministic signals is not capable of answering the questions of realizability (‘is
there a replacement of the Black Boxes so that the overall implementation satisfies a given property?’)
or validity (‘is a given property satisfied for all Black Box replacements?’). This approach is even not
able to provide approximate solutions for realizability or validity (assuming arbitrary CTL formulas).

The approach of [1] for solving the problem is based on the following concept considering two
sets of states: The first set is an overapproximation of the set of states satisfying the given CTL
formula for at least one substitution of the Black Boxes and the second set is an underapproximation
of the set of states satisfying the formula for all Black Box substitutions. Given these two sets, is is
possible to prove validity (the CTL formula is satisfied for all Black Boxes substitutions) or to disprove
realizability (the CTL formula is satisfied for no Black Box substitution). Based on this concept a
series of approximate, yet sound algorithms to process incomplete designs with increasing quality and
computational resources was presented.

Whereas [1] presents a series of approximation algorithms where each algorithm models the effect
of the unknown information at the outputs of the Black Boxes in a uniform way, this paper presents
a novel approach which is able to use different methods for modeling unknowns at the outputs of
different Black Boxes within a single model checking run. This permits us to handle less relevant
Black Boxes (in terms of the CTL formula) with larger approximation and thus faster, whereas we
do not lose important information when the possible effect of more relevant Black Boxes is modeled
by more exact methods. The advantage of our novel method becomes apparent on the basis of the
following scenario:

Consider an incomplete design with multiple Black Boxes, in which the output provided by some
Black Boxes has a large influence on the result of the model checking run, while the output of others
has only a smaller influence.

Furthermore, assume that the methods from [1] having a small level of accuracy are not capable
of providing a conclusive answer to the model checking problem due to the ‘Black Boxes with large
influence’. In this case all Black Boxes have to be handled with high accuracy by the approach in [1],
leading to a high demand for memory and runtime. However, this accuracy might not be necessary for
all Black Boxes. For this reason, we present a new method that allows us to specify the method (and
thus the level of approximation and the computational resources) separately for each Black Boz. This
method provides a much higher flexibility in modeling unknowns and leads to much smaller needs for
computational resources compared to a uniform modeling (see Sect. 5).

The paper is structured as follows: After giving a brief review of symbolic model checking for
incomplete designs in Sect. 2, we will discuss our new method gaining the accuracy advantages of the
more exact methods without losing the speed advantages of the less exact methods in Sect. 3. Finally
we give a series of experimental results demonstrating the effectiveness and feasibility of the presented
methods in Sect. 4 and we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Incomplete Designs

Representing Incomplete Designs: If parts of a circuit are not yet known or cut off, we have to
handle incomplete designs. In this section we briefly review symbolic representations of incomplete
designs.

Unknown parts of the design are combined into so-called ‘Black Boxes’ (see Fig. la for a combina-
tional example with one Black Box).
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Consider the combinational part of a sequential circuit (Mealy automaton) defining the transition
function ¢ and the output function A. For simulating this combinational circuit wrt. some input vector
we can make use of the ternary (0, 1, X)-logic [11, 12]: We assign a value X to each output of the Black
Box (since the Black Box outputs are unknown) and we perform a conventional (0, 1, X)-simulation
[13] (see Fig. 1b). If the value of some primary output is X, we do not know the value due to the
unknown behavior of the Black Boxes.

For a symbolic representation of the incomplete circuit we model the additional value X by a new
variable Z as in [14, 12]. For each output g; of the incomplete design with primary input variables
x1,...,T, we obtain a BDD representation of g; by using a slightly modified version of symbolic
simulation with

1, if the (0,1,X)-simulation with input (ey,...,€,) produces 1
Gilei=erown=c, = < 0, if the (0,1,X)-simulation with input (ey,...,€,) produces 0
Z, if the (0,1,X)-simulation with input (e, ..., €,) produces X

This modified version of symbolic simulation is called symbolic (0,1,X)-simulation, see Fig. 1c for an
example.

Since (0, 1, X')-simulation can not distinguish between unknown values at different Black Box out-
puts, some information is lost in symbolic (0, 1, X)-simulation. This problem can be solved at the
cost of additional variables: Instead of using the same variable Z for all Black Box outputs, we intro-
duce a new variable Z; for each Black Box output and perform a (conventional) symbolic simulation.
This approach was called symbolic Z;-simulation in [12]. Fig. 1d shows an example for symbolic
Z;-simulation. (Note that the first output can now be shown to be constant 0.)

Please note that in contrast to [12], we will consider Black Boxes that can be replaced not only
by combinational, but also by sequential circuits, so that for two states in a computation path that
generate the same Black Box input, the Black Box may answer with different outputs.

Realizability and Validity: Given an incomplete design with Black Boxes and a CTL formula, the
questions we will consider in the following are:

1. Is there a replacement of the Black Boxes in the incomplete design, so that the resulting circuit
satisfies a given CTL formula ¢? If this is true, then the property ¢ is called realizable for the
incomplete design. The corresponding decision problem is called realizability problem.

2. Is a CTL formula ¢ satisfied for all possible replacements of the Black Boxes? If this is the
case, then ¢ is valid for the incomplete design; the corresponding decision problem is denoted
as validity problem.

2.2 Approximate Symbolic Model Checking for Incomplete Designs

Symbolic Z- and Z;-Model Checking: We here briefly review approximate symbolic model check-
ing for incomplete designs [1, 15], which is based on well-known symbolic model checking for complete
designs [4] for properties specified in CTL (Computation Tree Logic).



For a given incomplete design and a CTL formula ¢, approximate symbolic model checking for an
incomplete designs considers two sets of states: Sats(y), an underapproximation of the set of states
in which ¢ is satisfied for all Black Box substitutions and Satg(y), an overapproximation of the set
of states in which ¢ is satisfied for at least one Black Box substitution.

Given these two sets, it is potentially possible to prove validity and to disprove realizability: If all
initial states lie within Sat (), then for all initial states and all Black Box substitutions, ¢ is satisfied
and thus ¢ is valid. If there is one initial state lying outside Satg(p), then there is a initial state that
does not satisfy ¢ for any Black Box substitution and thus ¢ is not realizable.

The approximations of Satg(p) and Sats(p) can be computed based on an approximate transition
relation and on approximate output functions for the corresponding Mealy automaton. In incomplete
designs we have Black Boxes in the functional block defining the transition function § and the output
function A (see Fig. 3). For this reason there are transitions which exist independently from the
replacement of the Black Boxes, i.e. for all possible replacements of the Black Boxes (we call them
‘fixed transitions’) and transitions which may or may not exist in a complete version of the design —
depending on the implementation for the Black Boxes (we call them ‘possible transitions’).

Due to that, we work with two types of approximations of the transition relation: An underap-
proximation xg, only contains fixed transitions and an overapproximation xpg, contains at least all
possible transitions (of course, this includes all fixed transitions).

In the same manner we approximate the sets of states in which the output value y; of \; is true:
An underapproximation Sats(y;) contains only states in which y; is true independently from the
replacements of the Black Boxes and an overapproximation Satg(y;) contains at least all states in
which y; may be true for some replacement of the Black Boxes.

Based on Xgr,, XRg, Sata(y;) and Satg(y;), it is possible to define rules how arbitrary CTL formulas
can be recursively evaluated. As an exemplary case we here show how to evaluate Sats(EX1) and

Given Sata(1)), the set of states which definitely satisfy v for all Black Box replacements, we include
into Sata(EX1) all states with a fixed transition to a state in Safs(¢)). Likewise, we include all the
states into Satg(EX1)) which have a possible transition to a state in Satg (). Fig. 2 illustrates the
sets.

Sata(—)), the set of states surely satisfying —), can be computed by using the inverse set of
Satg (1) and vice versa. Sata(p1 V p2) is build by the union of Sats(y1) and Sata(yps), analogously
for Satg(v1 V o). Finally, ¢ = EGY and ¢ = EyUty can be evaluated by their standard fixed
point iterations (see [4], e.g.) based on the evaluation of EX defined above (two separate fixed
point iterations for Sats and Satg). Since every CTL property can be expressed using the operands
discussed so far, the model checking method is complete.

All sets described above are symbolically represented by using BDDs for their characteristic func-
tions which allows us to perform the set operations by using boolean functions. No explicit represen-
tation is necessary at any point.

For symbolic Z-model checking, the transition function § and the output function A are determined
by symbolic (0, 1, X')-simulation. Based on the transition function ¢, an underapproximation g, of
the transition relation is computed by

I lq1-1 oo o,
Xra (0,7, 7) = (Hizo VZ(6:(q.7,2) = qz-)>
and an overapproximation xpg, of the transition relation is computed by
R lq1-1 - .,
Xrp (0.7, q') = (Hizo 32(0:(q. %, 2) = qi))-
Sata(y;) and Satg(y;) are computed based on Ait X gaty () (7, T) = VZ()\Z-(J, z, Z)) and X sat, (v,) (@5 T) =
HZ()\i(cj', z, Z))
For symbolic Z;-model checking, d and A\ are determined by using symbolic Z;-simulation. The

approximations Xr,, Xrs, Sata(y;), and Satg(y;) are computed in an analogous manner with every
appearance of Z in the formulas above replaced by Z.



Since symbolic Z;-simulation is more accurate than symbolic (0, 1, X)-simulation, symbolic Z;-
model checking is more accurate than symbolic Z-model checking as well. However, this gain of
accuracy has to be paid by an increased need of variables for the Black Box outputs, affecting the
time and computation resources.

Symbolic Output Consistent Z;-Model Checking: A further improvement on the accuracy of
the two approximated sets considered in symbolic Z;-model checking can be gained by including the
Z;-variables assigned to Black Box outputs into the state space.

In this way, the values of the transition function d and the output function A are uniquely determined
by the current state and it is no longer necessary to distinguish between possible and fixed transitions
and states possibly resp. surely satisfying an atomic CTL formula y;. However, this fact is paid by
larger state spaces, which typically leads to an increase of computational resources.

3 Building an Approximate Symbolic Model Checking Method
for Incomplete Designs with Flexible Handling of Unknowns

Symbolic Z-model checking, symbolic Z;-model checking and symbolic output consistent Z;-model
checking can be seen as a sequence of methods with increasing accuracy, but increasing need of time
and computational resources, too.

All these methods are only able to handle every Black Box in an incomplete design with the same
accuracy, so it is possible that one has to use a method with good accuracy in order to determine a
conclusive result, although this accuracy is disproportionate for some Black Boxes that only have a
low influence to the result of the model checking run.

Due to this, we will now describe how symbolic Z-, Z;- and output consistent Z;-model checking
can be combined into one single method. This combined method is able to handle each Black Box
with different accuracy and thus different complexity. For that, we will start with a combined Z- and
Z;-model checking method and will then add output consistent Z;-model checking.

3.1 Combining Symbolic Z- and Z;-Model Checking

For a combined Z- and Z;-model checking method, we first have to explore a combined method
performing symbolic (0,1, X')- and Z;-simulation in parallel.

Combining Symbolic (0,1, X)- and Z;-Simulation. Symbolic (0,1, X)-simulation [12] is based
on the well-known (0, 1, X')-simulation [11] and introduces a new Z variable, which is used to model
the unknown value X of the Black Box outputs. As described in Sect. 2.1, for each output g; of the
incomplete design with primary input variables xy, ..., x,, a BDD representation of g; is obtained by
using a slightly modified version of symbolic simulation with:

1, if the (0,1,X)-simulation with input (ey,...,€,) produces 1
= ¢ 0, if the (0,1,X)-simulation with input (ey,...,€,) produces 0
Z, if the (0,1,X)-simulation with input (ey,...,€,) produces X

Gi |x1:€17~--’zn:€n

Please note that the only difference to conventional symbolic simulation is that for NOT gates, Z has
to be replaced by Z; both AND and OR gates can be handled as usual.

In contrast to symbolic Z-simulation, symbolic Z;-simulation [12] introduces a new Z; variable for
each Black Box output and then performs symbolic simulation as if the Black Box outputs were inputs.

We can now construct a combined symbolic (0, 1, X )- and Z;-simulation: For the Black Boxes, which
are to be handled by symbolic (0, 1, X)-simulation, we assign Z to model the Black Box outputs, while
for each output of the Black Boxes, which are to be handled by Z;-model checking, we use a new Z;
variable. The combined simulation now considers the latter Black Box outputs as additional inputs
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and then performs symbolic (0,1, X)-simulation (always replacing Z by Z when processing NOT
gates).

We receive BDD representations of the circuit outputs g; with inputs x4, ..., z, and (Z;-simulated)
Black Box outputs 21, ..., Z,:

1, if the (0,1,X)-simulation with input (ey,..., €., M1, .., m) produces 1
gi| mi=cran=en =< 0, if the (0,1,X)-simulation with input (e, ..., €,,M1,...,7n) produces 0
Z, if the (0,1,X)-simulation with input (e, ..., €, M1, ..., Mm) produces X

Example Figure 4 shows an exemplary circuit: If this circuit is simulated by using symbolic (0, 1, X )-
simulation, meaning that Z is assigned to the outputs of both Black Box 1 and Black Box 2, a total
number of 3 variables are needed (x1,x2, Z) and the resulting function for the output is f; = Z.

If the circuit is simulated by using symbolic Z;-simulation instead, meaning that for each output
of Black Box 1 and Black Box 2 a new Z; variable is used, 9 variables are needed (x1, z2, Z1, ..., Z7),
and the function for the output is fz, = Z121 + Z; - (@ + (29 Z3 74+ ZoZsZis+ Z 3 73 s+ 222327)).

When using a combined method, assigning Z to all outputs of Black Box 2 but different Z;’s to the
outputs of Black Box 1, we end up using 6 variables (x1, 72,7, Z1, Zs, Z3) and receive the function
feomb = Z121 + Z1 - (Ta + Z).

So, the combined method generates an output function that is obviously less complicated than the
result of symbolic Z;-simulation, yet contains more information than the result of symbolic (0,1, X)-
simulation. To give an example, for z; = 1 and x5 = 0, the output can be shown to be 1 using the
combined method, while it is not possible to gain this information from symbolic (0, 1, X )-simulation.

Note that in general, the combined method is at most as exact as symbolic Z;-simulation, but at
least as exact as symbolic (0, 1, X')-simulation.

Using Combined Symbolic (0,1, X)- and Z;-Simulation for Combining Symbolic Z- and Z;-
Model Checking. In this chapter, we will discuss how to combine symbolic Z- and Z;-model check-
ing. This combined method has a lower need of BDD variables compared to pure Z;-model checking,
since for those Black Box outputs which are to be handled by Z-model checking, one single Z variable
can be used instead of an extra Z; variable for each single Black Box output.

Here we adopt the concept of [1] which considers ‘possible’ and ‘fixed’ transitions together with the
sets of states for each atomic property y; that ‘possibly’ or ‘surely’ satisfy this property. Based on this
concept, it is possible to compute an overapproximation of the set of states satisfying a given CTL
property ¢ for at least one Black Box substitution (Satg(y)) and the underapproximation of the set
of states satisfying the property for all Black Box substitutions (Sata(¢)).

Given these two sets, it is possible to provide sound statements whether the property is satisfied
for all Black Box substitutions (‘the property is valid’) or for none (‘the property is not realizable’)
can be provided: If all initial states lie within Sats(p), then for all start states and all Black Box
substitutions, ¢ is satisfied and thus ¢ is valid. If there is one initial stale lying outside Satg(p),



then there is an initial state that does not satisfy ¢ for any Black Box substitution and thus ¢ is not
realizable.

This concept can be applied for the combined method as well: For an incomplete circuit, let there
be a number of Black Boxes that are to be handled by symbolic Z-model checking and some other
Black Boxes that are to be handled by symbolic Z;-model checking.

We then apply combined symbolic (0, 1, X)- and Z;-simulation for computing the transition func-
tion ¢ and the output function A. Thus, we introduce new variables Z and Z, = (Z;1, Zi2,...).
Combined symbolic (0,1, X)- and Z;-simulation now provides symbolic representations of the output
(7, &, 7, 7)) and tran51t10n function &,(q, 7, Z, Z,).

As for symbolic Z- and Z;-model checkmg, a state surely satisfies an atomic property y;, if it is
satisfied for all possible assignments to Z and Z; and a state possibly satisfies an atomic property y;,
if it is satisfied for at least one possible assignment to Z and Z;. Likewise, there is a fized transition
between two states if the transition exists for all possible assignments to Z and Z; and there is a
possible_transition between two states if the transition exists for at least one possible assignment to
Z and Z;. Based on this definition of fixed and possible states and transitions, a combined method of
symbolic Z- and Z;-model checking can be built:

If \j|g=gix z—zsx = 1 for some state (¢™ %) € B!7*I7 then we know that \; is 1 in this state
independently from the replacement of the Black Boxes, so we include (¢ #%%) into Sats(y;) and
Satp(y;). If Ni|j—gox z—zax = 0, then the output J; is 0 in this state independently from the replacement
of the Black Boxes, so we include (7% 7%) neither into Sata(y;) nor Satg(y;). In any other case, the
value of y; is unknown in this state and thus we include (7% 7%) into Satg(y;), but not into Sata(y;).
This leads to the following symbolic representations

Xsutatw) (@, ) =VZVZ,(N(T, 7,2, ) and Xsup () (T, F) = 3232, (N (0.7, Z, 7).

An analogous argumentation leads to fixed transitions and possible transitions of yg, since the
outputs of the transition functions may be definitely 1 or 0 (independently from the Black Boxes) or
they may be unknown: For xpg,, representing only fixed transitions we obtain

L lg—1 - o S
X (G T, 7)) = (Hizo VINZ (67, %, 2, 2Z)) = qé))
and for xp, representing at least all possible transitions we obtain
L lg—1 - o o
X5 (0,2, 0) = (Hizo 3232,(6:(4.7, 2, 2)) = QZ)>~

The rules computing Xsat, () and X say () for the remaining operators EX, -, EG and EU can be
adopted from symbolic Z- (resp. Z;-) model checking (see Sect. 2), since they are based on Xsut,(y,),
X Satg(y:)» XRs and X g, and do not consider any Black Box outputs.

As for symbolic Z- and Z;-model checking, the result of the recursive calculation can then be
evaluated as follows:!

VZ(Xsata(o)lg=qr) =1 = ¢ is valid

| _
VZ (Xsatp ()] d=g0) =0 = ¢ is not realizable

3.2 Adding Symbolic Output Consistent Z;-Model Checking

A further improvement on the accuracy of the two approximated sets considered in symbolic Z- or
Z;-model checking can be gained by including the Z;-variables assigned to Black Box outputs into the
state space.

Consider the CTL formula EF (yA—y) for a design in which a Black Box output is directly connected
to the primary output y. It can be seen that the combined method given in the last section is neither
able to prove validity nor to falsify realizability for the given incomplete design and the given formula.

ILet ¢° be the initial state of the circuit.



However, it is clear that there will be no time during the computation when y is both true and
false. This problem can be solved if we include Z;-variables assigned to Black Box outputs into the
states of the Kripke structure. In this way the Black Box output values Z are constant within each
single state and therefore in our example y will have a fixed value for each state.

Yet, it is not necessary to include all Z;’s into the state space. Let Z be the Z;-simulated Black
Box outputs that are included into the state space and let Zl be the Z;-simulated Black Box outputs
that are not included. Then the values of Z, are constant within each single state, while the values of
Z, are arbitrary as they were in symbolic Z;-model checking. o

Both the output function A\(q, %, Z, Z;, Z,) and the transition function 6(q, Z, Z, Z;, Z,) can be com-
puted by using the combined symbolic (Oq7 1, X)- and Z;-simulation, whereas for simulation it is not
necessary to distinguish between Z; and Z,.

We now describe how to compute the sets of states surely or possibly satisfying the atomic CTL
formula y;: If Ajl ;g z_zx 7,75« = 1 for some state (qfx, 7t Z1x) ¢ BII*xIZel then we know
that A; is 1 in thls state mdependently from the replacement of the Black Boxes so we include
(g 2% Z5%) into Sata(y;) and Satg(y;). If A; | g 7z, 7,— 75 = 0, then the output A; is 0 in this
state independently from the replacement of the Black Boxes, so we include (7% 7% Z1%) neither
into Sata(y;) nor SatE(yl) In any other case, the value of y; is unknown in this state and thus we
include (7™ 7% Zx) into Satg(y;), but not into Sata(y;).

Based on thls, the set of states surely resp. possibly satisfying the atomic property y; can now be
calculated as follows:

Xsataw) (@ T Zo) =VIVZ(NAG T, 2, 20, 2)) s Xsutptun) (0.7, Zo) = 3Z3Z(N(G. 7. Z, 21, Z)).
Likewise, we define fixed transitions (symbolically represented by xr,) and possible transitions
(symbolically represented by xr,):

L = |q]—1 - o - o
XRA(QVx?ZO?q = (Hi:() VZVZI(51<q7x7 Z, ZhZo) = q:))a

L= g1 o o
XRE(qvxa Zovq,) - (Hi:O EIZE]ZZ(&,(Q7IJZ7 ZhZO) Eg;))
Based on xg, and xp,, we define SatA(EX@D) and SatE(EX@/J) as follows: For Sats(EX1), w

include all states (¢, T, Z o), for which there exist q "and 7", so that for all Black Box output values Z 7!
(7@ Z") is a sure successor of (7,7, Z,) and (7! Z") surely satisfies 1.

Xsata(mx0) (T, T, Zo) = 373 (XRA(q,x Zoy @) -V Z0 (X Suta( ¢)| i )((Tﬁ il ZQ))

For Satp(EX1)), we include all states (¢, 7, Z, Z,), for which there exist ¢ and #', so that for at least
one Black Box output value Z’ (q" 2" Z!) is a possible successor of (¢, Z, Z o) and (¢ 2! A /) possibly

satisfies 1. L = ) o2 g L
XSatE(EX1/1)<QJ €, ZO) = Elq iz <XRE(Q7 JJ, 0,4 /) ElZ (XSatE ¢)| Z_Z )(q7 x, Zo))

The calculation of all remaining CTL operators =, EG and EU can be adopted from combined
symbolic Z- and Z;-model checking. The result of the recursive evaluation can be evaluated as
follows:? -
OHOWS VWZO(XSatA(¢)|q*:q*O) =1 = ¢y isvalid
‘V’:EEIZO (XSatE((p)b*:q‘O) =0 = ¢ is not realizable

When comparing this combined method to (pure) symbolic output consistent Z;-model checking, it
is obvious that there is a smaller set of states to be considered, and thus a smaller set of transitions,
which can lead to a less complex model checking run without necessarily losing all of the improved
accuracy of symbolic output consistent Z;-model checking.

Note that we do not need to perform two separate model checking runs to compute Satg(p) and
Sata(p). By using an additional encoding variable e and defining xg = €- xXgr, + € XRry, We can
easily combine the two computations of Xsu,(p) and Xsay(e) into one computation for xsu(e) =

€ " XSata () T € XSatp(p)-

2Let @° be the initial state of the circuit.



4 Experimental Results

To demonstrate the feasibility and effectiveness of the presented method we modified the prototype
model checker called MIND (Model Checker for Incomplete Designs) introduced in [1, 15] so it is now
capable of performing combined symbolic Z-, Z;- and output consistent Z;-model checking. MIND is
based on the BDD package CUDD 2.40 [16] and uses ‘Lazy Group Sifting’ [17], a reordering technique
particularly suited for model checking, and partitioned transition functions [18]. All experiments were
performed on an Dual Opteron 2GHz with 4GB RAM and with a limited runtime of 86.400 seconds.

For our experiments we used a class of simple synchronous pipelined ALUs (see Fig. 5) similar to
the ones presented in [4]. In contrast to [4], the complete version of our pipelined ALU contains a
combinational multiplier. Since combinational multipliers show exponential size regarding to their
width if represented by BDDs [3], symbolic model checking for the complete design can only be
performed up to a moderate bit width of the ALU.

In the following we consider a series of incomplete pipelined ALUs with 256 registers in the register
file and varying word width. Both the adder and the multiplier of the pipelined ALU are substituted
by Black Boxes, and all registers in the register file except the first four are masked out as well.

In our experiments, we checked the CTL formula ¢ = AG (”R2 =Ro®R," — ((AX)QRO@(AX)QRl =
(AX)*R»)) which corresponds to formula (1) in [4]. It says that whenever the instruction Ry:=Ro®R4
is given at the inputs, the values in Ry three clock cycles in the future will be identical to the exclusive-
or of Ry and Ry in the state two clock cycles in the future (Rg, Ry and Ry are the respective first,
second and third register in the register file). This property is true for our incomplete design, indepen-
dently of the implementation of the adder function, the multiplier function and the registers masked
out. Due to that, ¢ is satisfied for every possible Black Box replacement in the incomplete pipelined
ALUs, thus valid.

First, we used symbolic output consistent Z;-model checking for all Black Boxes in the circuit. We
then reduced the accuracy for the Black Boxes in the register file by using symbolic Z;-model checking
resp. symbolic Z-model checking, while still using symbolic output consistent Z;-model checking for
the Black Boxes replacing the adder and the multiplier. Except for the timeouts, we always were able
to prove the validity of ¢. If symbolic Z- or Z;-model checking was used for the Black Boxes replacing
the adder and the multiplier, nothing could be proven.

In Tab. 1 we give the results for the incomplete pipelined ALUs with varying word width tested
with ¢, using symbolic Z-, Z;- resp. output consistent Z;-model checking for the Black Boxes in the
register file and output consistent Z;-model checking for the Black Boxes replacing the adder and the
multiplier. For each word width and each method used for the Black Boxes in the register file, the
table shows the number of BDD variables (‘BDD vars’), the peak memory usage, the peak number of
BDD nodes and the overall time in CPU seconds.

If symbolic output consistent Z;-model checking is used for all Black Boxes, a complex transition
relation has to be build between the states that contain the Z; variables of all Black Boxes in the
register file. On account of this, it is only possible to prove validity for a word width up to 8 bit before
exceeding the time limit. Note that this method corresponds to pure symbolic output consistent
Z;-model checking as presented in [1].

If symbolic Z;-model checking is used for the Black Boxes in the register file instead, only the Z;’s
of the multiplier’s and the adder’s Black Box are included into the state space. Due to that, we have
to deal with a smaller state space and a less complex transition relation, which leads to the result that
we are able to prove validity for all instances within the time limit.

In the case that symbolic Z-model checking is used for the Black Boxes in the register file, there
is a significant decrease of the number of necessary BDD variables, since all the Black Boxes in the
register file now share one single Z variable. On account of this, there is a further speedup compared
to the last experiment.

Taken together, the results show that by a flexible modeling of unknowns we are able to provide
sound and useful results, yet at shorter time and with fewer memory consumption compared to
methods which only allow to handle every Black Box in a design the same way.



Black Boxes in Register File modeled by
symb. o.c.Z-model checking | symb. Z;-model checking | symb. Z-model checking
word | BDD | memory BDD BDD | memory | BDD BDD | memory | BDD
width | vars used nodes time vars used nodes time vars used nodes | time
2] 605197923828 | 8499065 | 20606.16 605| 12688820| 93783 78.81| 101| 8104996 (111386 4.42
41 1141494039764 | 25627103 | 78505.29 | 1141 | 27136068 | 127272 453.89| 133(17063700| 140038 10.51
6] 1677387220180 | 17562606 |64164.95| 1677 | 37372260| 92581 179.92] 165|37980292 | 466098 85.06
81 2213509172420 [ 19683830 | 77214.36 | 2213 | 44797860 | 103384 157.24]1 197|28477652| 153328 20.40

12 timeout 3285| 61407956 | 97342 | 191.22]| 261 (32558180 |142978| 31.67
16 timeout 4357| 76706740|159200| 241.49| 325|40574868|156514| 55.35
24 timeout 6501105234068 | 192840 | 811.76| 453 |47584628|164318| 119.68
32 timeout 8645 | 145393908 | 249088 | 1518.85| 581 48671524 |204879| 197.85
48 timeout 12933]226031012| 418484 |15315.37| 837 |55666644 | 287263 | 538.13
64 timeout 17221 304953364 | 578314 | 37783.82| 1093 | 59316948 | 566758 | 2031.79

Table 1: Incomplete pipelined ALU with 256 registers: Proving the validity of ¢ = AG("Ry:=Ro & Ry"—
((AX)*Ro @ (AX)?R; = (AX)?Ry)) using different methods to model the Black Boxes in the
register file

5 Conclusions and Future Work

We introduced a method that combines symbolic Z-, Z;- and output consistent Z;-model checking into
one single algorithm in such a way that different Black Boxes can be handled with differing methods
(trading off accuracy and computation resources) in one single model checking run.

This allows us to handle less relevant (in terms of the CTL formula) Black Boxes with larger
approximation and thus faster, without necessarily losing important information only the more exact
methods can provide.

The combined method is able to provide sound results for falsifying realizability and for proving
validity of incomplete designs (even if the Black Boxes lie inside the cone of influence for the considered
CTL formula). Experimental results using our prototype implementation MIND proved that the
need for computational resources (memory and time) of the combined method could be substantially
decreased in comparison to one single complex and time-consuming method while still gaining the
same result.

At the moment we are working on further improvements concerning the accuracy of our approximate
symbolic model checking methods. Starting from a concept for exact symbolic model checking of
incomplete designs (containing several Black Boxes with bounded memory) we develop appropriate
approximations trading off accuracy and computational resources. Interestingly, it is possible to add
these concepts to the combined method as well.
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