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Abstrat. Several types of Deision Diagrams (DDs) have been proposed for the veri�ation

of Integrated Ciruits. Reently, word-level DDs like bmds, *bmds, hdds, k*bmds and *phdds

have been attrating more and more interest, e.g., by using *bmds and *phdds it was for the �rst

time possible to formally verify integer multipliers and oating point multipliers of \signi�ant"

bitlengths, respetively.

On the other hand, it has been unknown, whether division, the operation inverse to multipli-

ation, an be eÆiently represented by some type of word-level DDs. In this paper we show

that the representational power of any word-level DD is too weak to eÆiently represent integer

division. Thus, neither a lever hoie of the variable ordering, the deomposition type or the

edge weights, an lead to a polynomial DD size for division.

For the proof we introdue Word-Level Linear Combination Diagrams (wlds), a DD, whih

may be viewed as a \generi" word-level DD. We derive an exponential lower bound on the wld

representation size for integer dividers and show how this bound transfers to all other word-level

DDs.

Keywords: Funtional Design Veri�ation, Formal Veri�ation, Deision Diagrams, Word-Level

Deision Diagrams, WLCDs, Division

1. Introdution

One of the most important tasks during the design of Integrated Ciruits is the

veri�ation of an implemented iruit, i.e., the hek whether the implementation

ful�lls its spei�ation.

In the last few years several methods based on Deision Diagrams (DDs) have

been proposed [14, 5℄ to perform veri�ation. The idea is to transform both, im-

plementation and spei�ation of a ombinational iruit, into a DD. Then, due

to the anoniity of the DD representation, the equivalene hek for spei�ation

and implementation translates to the hek whether the orresponding DDs are

idential.

The most popular data struture in this ontext are Ordered Binary Deision

Diagrams (obdds) [3℄. They were applied suessfully e.g. to the veri�ation of

ontrol logi and integer adders. But there are funtions of high pratial relevane,
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whih annot be represented eÆiently by obdds. Already in [3℄ and [4℄ Bryant

proved that obdd representations for integer multipliers are of exponential size.

Several other types of DDs were de�ned to overome the limitations of obdds,

suh as Ordered Funtional Deision Diagrams (ofdds) [12℄, Ordered Kroneker

Funtional Deision Diagrams (okfdds) [11℄, Multi{Terminal Binary Deision Di-

agrams (mtbdds) [9℄ (also alled Algebrai Deision Diagrams (adds) [1℄) and

Edge{valued Binary Deision Diagrams (evbdds) [13℄. But the �rst DDs to rep-

resent integer multipliation eÆiently were Binary Moment Diagrams (bmds) and

Multipliative bmds (*bmds) introdued in [6℄. Like mtbdds and evbdds, also

bmds and *bmds are word-level DDs, i.e. they represent integer-valued funtions

f : f0; 1g

n

! Z (Z denotes the set of integer numbers).

To further improve on the representational power of bmds, several other word-

level DD types have been introdued, e.g. Hybrid Deision Diagrams (hdds) [8℄

and Kroneker *bmds (k*bmds) [10℄. Reently Chen and Bryant de�ned a new

data struture alledMultipliative Power Hybrid Deision Diagrams (*phdds) [7℄,

whih is able to represent not only integer multipliation but also oating point

multipliation eÆiently.

Until now it has not been known, whether the word-level DDs mentioned above

are also able to represent division eÆiently. Reently Nakanishi [15℄ made a �rst

step by showing that *bmds annot represent integer division eÆiently. The proof

is tehnially ompliated, it is based on fooling set arguments similar to the orginal

proof for multipliation by Bryant and has to take into aount the edge values in

the *bmd representation. Consequently, as already mentioned, in this form it only

works for *bmds.

In this paper we prove that integer division annot be represented in polynomial

size by any of the ordered word-level DDs mentioned in the literature until now.

Even more interestingly, we prove that the onept of word-level DDs in general is

too weak to result in polynomial size representations of division.

For the proof we introdue a new data struture, the Word-Level Linear Combi-

nation Diagrams (wlds). wlds are a generalization of Waak's Parity Ordered

Binary Deision Diagrams (pobdds) [18℄ to the word level. It turns out that wlds

an be viewed as a \generi" ordered word-level DD in the following sense: Eah

ordered word-level DD an be \embedded into" wlds suh that a DD with k

nodes is transformed into a wld representing the same funtion with the same

number k of nodes. Thus, a lower bound on the size of a wld is also a lower

bound on the size of all other ordered word-level DDs.

wlds are similar to Binary Linear Diagrams (blds) whih were developed by

Thathahar [17℄ independently from our work [16℄. wlds as presented in this

paper are a little more general than blds (they allow more than two outgoing

edges of a node) and thus they an also be used to \simulate" additive edge values

e.g. In that way lower bounds on the size of wlds are valid for evbdds and

k*bmds as well.

We apply this idea to integer division by deriving an exponential lower bound

on the size of wlds representing integer divison (regardless of the hosen variable

order). For wlds lower bounds an be obtained by onsideration of the rank of
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a ommuniation matrix whih is onstruted from the funtion tables of several

ofators. It follows that bothering details onerning e.g. edge values have not to

be taken into aount to derive the lower bound in our proof. On the other hand,

due to the properties of wlds we obtain an exponential lower bound result, valid

for all ordered word-level DD types.

The paper is strutured as follows: In Setion 2 we provide basis on word-level

DDs whih will be neessary for the understanding of the paper. wlds and their

relationship to existing word-level DDs are introdued in Setion 3. Furthermore,

an algebrai haraterization of the wld omplexity is given whih leads to the

rank onsiderations of ertain ofator matries. In Setion 4 the lower bound for

division is derived. We �nish with onlusions and perspetives of further work in

Setion 5.

2. Preliminaries: Word-Level Deision Diagrams

In this setion we give a short review of ordered word-level DDs, data strutures

used for the representation of so-alled Pseudo Boolean funtions, i.e. funtions

from a Boolean domain to the integers or rational numbers. In general, DDs are

graph{based representations, where at eah (non{terminal) node (labeled with a

variable x) a deomposition of the funtion (represented by this node) into two

subfuntions (the low{funtion and the high{funtion) is performed:

De�nition 1. A word-level DD is a rooted direted ayli graph G = (V;E) with

non empty node set V ontaining two types of nodes, non-terminal and terminal

nodes. A non-terminal node v has as label a variable index(v) 2 fx

1

; : : : ; x

n

g

and two hildren low(v); high(v) 2 V . A terminal node v is labeled with a value

value(v) 2 Z.

For the purpose of this paper, we are only interested in ordered DDs, i.e. DDs,

where the variables our in the same order on all paths of the DD. More preisely,

this means:

De�nition 2. A DD is ordered i� there is a �xed order � : f1; : : : ; ng ! fx

1

; : : : ; x

n

g

suh that for any non-terminal node v the following holds: index(low(v)) = �(k)

with k > �

�1

(index(v)) (index(high(v)) = �(q) with q > �

�1

(index(v))) as long

as low(v) (high(v)) is also a non-terminal node.

Based on these general de�nitions we now onsider di�erent deomposition types

and shortly disuss resulting word-level DDs and orresponding evaluation rules.

(For a survey on word-level DDs and more details see also [2℄.)

2.1. Deomposition types and evaluation rules

Eah node of a DD represents a funtion and the funtion represented by the

root node is the funtion represented by the DD. In word-level DDs the fun-
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tion f

v

: f0; 1g

n

! Q (Q denotes the set of rational numbers) represented by a

non{terminal node v, whih is labeled by variable x

i

, is deomposed into two sub-

funtions, both independent of variable x

i

. Depending on the deomposition type

these subfuntions are ombined from the ofators

(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 0; x

i+1

; : : : ; x

n

)

and

(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 1; x

i+1

; : : : ; x

n

)

in di�erent ways. DDs as de�ned in literature di�er in the way they use deompo-

sition types. Deomposition types an be de�ned by the set Z

2;2

of non{singular

2�2 matries over Z [8℄. The most important deomposition types are Shannon de-

omposition, positive Davio deomposition and negative Davio deomposition. The

Shannon deomposition is used in mtbdds [9℄ and evbdds [13℄, the positive Davio

deomposition is used in bmds and *bmds [6℄. In k*bmds [10℄ and *phdds [7℄ Shan-

non deomposition, positive Davio and negative Davio deomposition are used. In

hdds [8℄ six di�erent deomposition types (inluding Shannon, positive and nega-

tive Davio deomposition) are used.

Following [8℄ the matries orresponding to Shannon, positive Davio and negative

Davio deomposition, respetively, are

�

1 0

0 1

� �

1 0

�1 1

�

and

�

0 1

1 �1

�

:

These matries de�ne how the funtions f

low(v)

and f

high(v)

represented by low(v)

and high(v) are omputed from (f

v

)

x

i

and (f

v

)

x

i

. For the positive Davio deom-

position, e.g., we have

�

f

low(v)

f

high(v)

�

=

�

1 0

�1 1

��

(f

v

)

x

i

(f

v

)

x

i

�

;

i.e., f

low(v)

= (f

v

)

x

i

and f

high(v)

= (f

v

)

x

i

� (f

v

)

x

i

.

A terminal node v with value(v) = z represents the onstant funtion with fun-

tion value z. To evaluate the funtion f

v

represented by a non{terminal node v for

x

i

= 0 or x

i

= 1, we have to reonstrut (f

v

)

x

i

or (f

v

)

x

i

from f

low(v)

and f

high(v)

.

To do so, we make use of the fat, that the deomposition type matries are non{

singular: Sine a deomposition type matrix A is non{singular, the inverse matrix

A

�1

exists and

�

(f

v

)

x

i

(f

v

)

x

i

�

= A

�1

�

�

f

low(v)

f

high(v)

�

: (1)

The inverse deomposition type matries for Shannon, positive Davio and negative

Davio deomposition, respetively, are

�

1 0

0 1

� �

1 0

1 1

�

and

�

1 1

1 0

�

:

For positive Davio deomposition, e.g., this means that (f

v

)

x

i

= f

low(v)

and (f

v

)

x

i

= f

low(v)

+ f

high(v)

.
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2.2. Additive and multipliative edge values, negation edges

Edge values are introdued to inrease the amount of subgraph sharing when using

integer{valued terminal nodes. It has to be di�erentiated between additive and

multipliative edge values.

An edge with additive weight a and multipliative weight m leading to node v

represents the funtion

< (a;m); f

v

>:= a+m � f

v

: (2)

mtbdds, bmds and hdds use no edge values, evbdds use only additive weights,

i.e., the multipliative weight m is 1, *bmds use only multipliative weights, i.e.

a = 0. k*bmds use both additive and multipliative weights. *phdds use only

multipliative weights of form (�1)

ne

�2

w

with ne 2 f0; 1g and w 2 Z. (For reasons

of memory eÆieny (�1)

ne

� 2

w

is stored as an integer w and a bit ne representing

a \negation edge" when ne = 1.)

Now onsider any ordered word-level DD with edge values. Then for eah non{

terminal node v there is a 0{edge labeled with edge weights (a

low

;m

low

) leading to

node low(v) and a 1{edge labeled with edge weights (a

high

;m

high

) leading to node

high(v). If in node v the deomposition type A =

�

a

11

a

12

a

21

a

22

�

with inverse matrix

A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

is used, then using Equations 1 and 2 the evaluation rule for this

node is the following:

f

v

= (1� x

i

)�(f

v

)

x

i

+ x

i

� (f

v

)

x

i

= (1� x

i

)�(a

0

11

(a

low

+m

low

f

low(v)

)

+a

0

12

(a

high

+m

high

f

high(v)

))

+ x

i

� (a

0

21

(a

low

+m

low

f

low(v)

)

+a

0

22

(a

high

+m

high

f

high(v)

))

= (1� x

i

)�((a

0

11

a

low

+ a

0

12

a

high

)

+(a

0

11

m

low

f

low(v)

) + (a

0

12

m

high

f

high(v)

))

+ x

i

� ((a

0

21

a

low

+ a

0

22

a

high

)

+(a

0

21

m

low

f

low(v)

) + (a

0

22

m

high

f

high(v)

)):

(3)

In Setion 3 we will use the \most general evaluation rule" of Equation 3 to

analyze the relationship between the existing ordered word-level DDs and our new

data struture alled Word-Level Linear Combination Diagrams (wlds).

3. Word-Level Linear Combination Diagrams

In this setion we de�ne Word-Level Linear Combination Diagrams (wlds).

wlds are a generalization of pobdds de�ned by Waak [18℄ to the word-level.

Whereas pobdds an represent only Boolean funtions, wlds represent funtions

f : f0; 1g

n

! Q.

wlds are given by the following de�nition:
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u1

w(v,u )kw(v,u )1 w(v,t )mw(v,t )1

v

uk

xi

t1 tm

0

0 1

1

... ...

......

Figure 1. Non-terminal node v of a wld. v is labeled by variable x

i

. The 0{edges of v are given

by edges to nodes u

1

; : : : ; u

k

and the 1{edges are given by edges to t

1

; : : : ; t

m

.

De�nition 3. A Word-Level Linear Combination Diagram (wld) is a rooted di-

reted ayli graph G = (V;E). If the wld is not empty, it ontains ex-

atly one sink labeled with 1 and with no outgoing edges. The remaining nodes

are alled non{terminal nodes. A non-terminal node v is labeled by a variable

index(v) 2 fx

1

; : : : ; x

n

g. The outgoing edges of a non{terminal node v are parti-

tioned into two sets: 0{edges(v) and 1{edges(v). At least one of these sets is not

empty. All edges e are labeled by an edge weight w(e) 2 Q. A wld is ordered,

i.e., as with DDs the variables our in the same order on all paths of wld. The

size of a wld is its number of nodes.

The de�nition of a wld is illustrated by Figure 1.

An empty wld represents the onstant 0{funtion, the sink of a non{empty

wld represents the onstant 1{funtion. The funtion f

v

represented by a non{

terminal node v labeled by variable x

i

with 0{edges(v) = f(v; u

1

); : : : ; (v; u

k

)g and

1{edges(v) = f(v; t

1

); : : : ; (v; t

m

)g is de�ned by the following evaluation rule:

f

v

:= (1� x

i

) � (w(v; u

1

) � f

u

1

+ : : :+ w(v; u

k

) � f

u

k

)

+x

i

� (w(v; t

1

) � f

t

1

+ : : :+ w(v; t

m

) � f

t

m

):

(4)

Similar to pobdds, also for wlds eÆient synthesis operations and an equiva-

lene hek an be derived. We omit any further details, rather we onentrate on

the property of wlds whih is most important in this paper: Ordered word-level

DDs an be \embedded into wlds", i.e., if there is some word-level DD with k

nodes, we an easily onstrut a wld with the same number k of nodes. This

fat is used to onlude lower bounds on the size of arbitrary word-level DDs from

lower bounds on the size of wlds.

The omputation of lower bounds on the size of wlds an be done in an elegant

way using arguments from linear algebra. Before oming to lower bounds we show

how to embed word-level DDs into wlds.
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3.1. Relationship between wlds and existing word-level DDs

Here we prove that all ordered word-level DDs mentioned in the previous setions

an be \embedded into wlds". To do so we proeed as follows:

A given word-level DD is transformed step by step into a wld.

If the given DD ontains terminals v with values value(v) di�erent from 0 and 1,

these terminals are replaed by a terminal 1 and the multiplitive edge weights of

all inoming edges of v are multiplied by value(v). If now there is more than one

terminal with value 1, these terminals are replaed by a unique terminal with value

1. Edges to terminal 0 with additive weight a are replaed by edges to terminal

1 with additive weight a and multipliative weight 0. The 0{terminal is removed.

All these steps do not hange the funtion represented by the DD.

Now in a bottom{up proedure for eah non{terminal node v labeled with variable

x

i

= index(v) representing a funtion f

v

the outgoing edges are replaed resulting

in awld{node representing the same funtion f

v

. Suppose that the deomposition

type used for node v is given by A =

�

a

11

a

12

a

21

a

22

�

(with inverse matrix A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

)

and the 0{edge is labeled with edge weights (a

low

;m

low

), the 1{edge is labeled with

edge weights (a

high

;m

high

). Then the evaluation rule of Equation 3 gives a relation

between f

low(v)

and f

high(v)

and f

v

. A omparison with the evaluation rule for

wlds (see Equation 4) leads to the de�nition of the equivalent wld{node and

its orresponding edges (let v

one

be the terminal with value 1):

� 0{edges(v) = f(v; v

one

); (v; low(v)); (v; high(v))g,

w(v; v

one

) = a

0

11

a

low

+ a

0

12

a

high

, w(v; low(v)) = a

0

11

m

low

, w(v; high(v)) =

a

0

12

m

high

.

� 1{edges(v) = f(v; v

one

); (v; low(v)); (v; high(v))g,

w(v; v

one

) = a

0

21

a

low

+ a

0

22

a

high

, w(v; low(v)) = a

0

21

m

low

, w(v; high(v)) =

a

0

22

m

high

.

The replaement is illustrated by Figure 2.

After this bottom{up proedure, if there is a root edge with weight (a;m),

the weights of the outgoing edges of the root are multiplied by m and an edge

(root; v

one

) with weight a is inluded into 0{edges(root) and 1{edges(root).

Finally we obtain a wld representing the same funtion as the original DD. We

summarize:

Theorem 1 If the mtbdd, evbdd, bmd, *bmd, hdd, k*bmd or *phdd for a

funtion f : f0; 1g

n

! Z (or f : f0; 1g

n

! Q for the ase of *phdds) with variable

order � has k nodes, then there also exists a wld with variable order � representing

f with (at most) k nodes.

Example: In Figure 3 the node replaement desribed to prove Theorem 1 is

illustrated for positive Davio deomposition without edge weights (i.e. the additive

edge weights are 0 and multipliative edge weights are 1). For positive Davio
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xi 0

0

0
1

1

1

1

xi0 1

1

highlow aaaa '

12

'

11 +

highlow aaaa '

22

'

21 +

lowma '

11 lowma '

21

highma '

12

),( highhigh ma),( lowlow ma
highma '

22

lo wf lo wfh ig hf h ig hf

Figure 2. Transformation into wld node

xi0 1
xi0 1

1

lo wf lo wfh ig hf h ig hf

Figure 3. Transformation of a positive Davio node into a wld node

deomposition the deomposition type matrix is given by A =

�

a

11

a

12

a

21

a

22

�

=

�

1 0

�1 1

�

,

A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

=

�

1 0

1 1

�

. Thus, the evaluation rule an be simpli�ed to

f

v

= (1� x

i

)�((a

0

11

a

low

+ a

0

12

a

high

)

+(a

0

11

m

low

f

low(v)

) + (a

0

12

m

high

f

high(v)

))

+ x

i

� ((a

0

21

a

low

+ a

0

22

a

high

)

+(a

0

21

m

low

f

low(v)

) + (a

0

22

m

high

f

high(v)

))

= (1� x

i

)�f

low(v)

+ x

i

� (f

low(v)

+ f

high(v)

):

3.2. An Algebrai Charaterization of the wld Complexity

In this subsetion we give an algebrai haraterization of the wld omplexity,

whih we will use to prove lower bounds on the size of wlds. We show, that

the number of nodes in a wld annot be smaller than the dimension of a ertain

vetor spae.

Consider the set of all funtions from f0; 1g

n

to the rational numbersMap(f0; 1g

n

;

Q) = ff : f0; 1g

n

! Qg. De�ne addition onMap(f0; 1g

n

;Q) by (f+g)(x

1

; : : : ; x

n

)
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= f(x

1

; : : : ; x

n

) + g(x

1

; : : : ; x

n

) and multipliation with a salar w 2 Q by (w �

f)(x

1

; : : : ; x

n

) = w � f(x

1

; : : : ; x

n

). It is easy to see, that Map(f0; 1g

n

;Q) together

with addition and multipliation with salars forms a vetor spae.

Based on wlds with �xed variable order � we will de�ne subspaes of the vetor

spae Map(f0; 1g

n

;Q). W.l.o.g. we assume the natural variable order, i.e., � :

f1; : : : ; ng ! fx

1

; : : : ; x

n

g with �(i) = x

i

8i 2 f1; : : : ; ng.

Given a wld B, onsider for some k 2 f1; : : : ; ng the set of all wld{nodes,

whih are labeled with variable x

k

or whih are labeled with a variable x

i

with

i > k and whih have an inoming edge from a node labeled by a variable x

j

with

j < k. These nodes represent funtions of Map(f0; 1g

n

;Q). We denote this set of

funtions by V

B

k

. Of ourse, the vetor spae < V

B

k

> whih is generated by the

funtions in V

B

k

forms a subspae of Map(f0; 1g

n

;Q).

Let f be the funtion represented by the wld B. We onsider the following set

of ofators of f :

V

f

k

= ff j

x

1

=

1

;:::;x

k�1

=

k�1

j

1

; : : : ; 

k�1

2 f0; 1gg:

Again, < V

f

k

>, whih is generated by the funtions in V

f

k

, is a subspae of

Map(f0; 1g

n

;Q).

Now we investigate the relationship between the vetor spaes < V

B

k

> and

< V

f

k

>. We laim that

< V

f

k

>�< V

B

k

> :

To prove this it is suÆient to show, that eah ofator f j

x

1

=

1

;:::;x

k�1

=

k�1

2 V

f

k

is in < V

B

k

>. We onsider all paths starting from the root of B, whih ful�ll

the assignment x

1

= 

1

; : : : ; x

k�1

= 

k�1

. Let v

1

; : : : ; v

m

be the nodes, whih are

reahed by these paths and suppose that eah node v

r

8r 2 f1 : : :mg is reahed by

i

r

di�erent paths p

(r)

1

; : : : ; p

(r)

i

r

. Let w

(r)

j

be the produt of all weights of edges on

path p

(r)

j

. Then aording to the de�nition of wlds and by indution on k the

following holds:

f j

x

1

=

1

;:::;x

k�1

=

k�1

=

0

�

i

1

X

j=1

w

(1)

j

1

A

f

v

1

+ : : :+

0

�

i

m

X

j=1

w

(m)

j

1

A

f

v

m

:

Sine 81 � i � m f

v

i

2 V

B

k

, we onlude that f j

x

1

=

1

;:::;x

k�1

=

k�1

2< V

B

k

> for

eah hoie of 

1

; : : : ; 

k�1

2 f0; 1g.

Beause of < V

f

k

>�< V

B

k

> we have

dim(< V

f

k

>) � dim(< V

B

k

>)

and sine V

B

k

generates < V

B

k

> it holds

dim(< V

f

k

>) � jV

B

k

j:

Thus we obtain the following lemma
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Lemma 1 Let f be any funtion in Map(f0; 1g

n

;Q). Then

dim(< V

f

k

>)

is a lower bound on the size of a wld for f with respet to the natural variable

ordering.

In fat, we an prove even a stronger result with similar arguments as in the proof

of Waak [18℄ for pobdds:

Theorem 2 A wld B with natural variable order, representing funtion f with

a minimal number of nodes, has exatly dim(<

S

n+1

k=1

V

f

k

>) nodes.

However, for the purposes of this paper we need only Lemma 1.

4. An Exponential Lower Bound for Division

In this setion we apply Lemma 1 to derive an exponential lower bound on the size

of wlds (and thus of word-level DDs) representing integer divison.

For our proof we use the following notations and de�nitions onerning division:

Two sets of variables, the a-variables A = fa

n�1

; : : : ; a

0

g and the b-variables B =

fb

n�1

; : : : ; b

0

g, are onsidered. As usual, the binary representation of A and B is

given by

jjAjj := 2

n�1

a

n�1

+ : : :+ 2

0

a

0

and jjBjj := 2

n�1

b

n�1

+ : : :+ 2

0

b

0

;

respetively. Then the integer divisionDIV is the Pseudo Boolean funtion de�ned

by

DIV : f0; 1g

n

� f0; 1g

n

! IN;

(a

n�1

; : : : ; a

0

; b

n�1

; : : : ; b

0

) 7!

�

jjAjj

jjBjj

�

:

Before we prove the exponential lower bound for wlds with arbitrary variable

orders we onsider a restrited ase whih niely demonstrates the idea of the proof

and the proof tehnique. Then we turn to the proof of the general ase whih is

slightly more ompliated but works along similar lines.

4.1. wlds with Interleaved Variable Ordering

For the restrited ase we �x the variable order in advane: it is given by the

interleaved ordering

(a

n�1

; b

n�1

; : : : ; a

0

; b

0

):

Furthermore, we may assume that n is even. (For n odd, we embed an (n � 1){

bit divider into the n{bit divider by setting a

n�1

= b

n�1

= 0 and note that for an

exponential lower bound 
(

n

) it holds 
(

n

) = 
(

n�1

).)

Following Lemma 1 we now onsider the set V

f

n+1

of ofators
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a

1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a

0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

b

1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

b

0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a

3

a

2

b

3

b

2

0 0 0 0 # 0 0 0 # 1 0 0 # 2 1 0 # 3 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 # 4 2 1 # 5 2 1 # 6 3 2 # 7 3 2

0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 # 8 4 2 # 9 4 3 # 10 5 3 # 11 5 3

1 0 0 1 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1

1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 # 12 6 4 # 13 6 4 # 14 7 4 # 15 7 5

1 1 0 1 3 2 2 1 3 2 2 1 3 2 2 2 3 3 2 2

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

Figure 4. Communiation matrix of division for n = 4.

V

f

n+1

= ff j

a

n�1

=

1

;b

n�1

=

2

;:::;a

n

2

=

n�1

;b

n

2

=

n

j 

1

; : : : ; 

n

2 f0; 1gg

and show an exponential lower bound for dim(< V

f

n+1

>).

To estimate dim(< V

f

n+1

>) we prove that a ertain number of elements of V

f

n+1

is linearly independent. For that we onsider a ommuniation matrix whose rows

are funtion tables of the ofators of V

f

n+1

. The rows of the matrix are \numbered"

by input ombinations of the \upper half" of the a- and b-variables. Analogously,

the \lower half" of the a- and b-variables de�nes the olumns. For illustration see

Figure 4, where we give the ommuniation matrix for n = 4. (# in the matrix

means that the orresponding result of DIV is not de�ned (division by zero). Our

proof is valid for all possible replaements of symbols #.)

The rank of this ommuniation matrix is equal to dim(< V

f

n+1

>). Sine we

need only a lower bound on dim(< V

f

n+1

>), we may remove olumns and rows in

the matrix (thereby possibly reduing the rank of the resulting matrix).

The idea now is to restrit to entries with onstant values for the b-variables and

to observe the result of the division for inreasing values of a-variables . More

preisely, we only keep rows where from the b-variables exatly the least signi�ant

upper b-variable b

n

2

is set, i.e.

b

n�1

= 0; : : : ; b

n

2

+1

= 0; b

n

2

= 1

Analogously, only olumns with b

n

2

�1

= 0; : : : ; b

1

= 0; b

0

= 1 are onsidered.

Furthermore, the rows and olumns with 0 for all a-inputs are removed. For our

example with n = 4 the following matrix remains:
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a

1

0 1 1

a

0

1 0 1

b

1

0 0 0

b

0

1 1 1

a

3

a

2

b

3

b

2

0 1 0 1 1 1 1

1 0 0 1 1 2 2

1 1 0 1 2 2 3

In general, we obtain a matrix M of size (2

n

2

� 1) � (2

n

2

� 1). For the om-

putation of the entries of M onsider the set A

HIGH

:= fa

n�1

; : : : ; a

n

2

g and

A

LOW

:= fa

n

2

�1

; : : : ; a

0

g, i.e. A

HIGH

(A

LOW

) onsists of the upper (lower) a-

variables. De�ne jjA

HIGH

jj :=

P

n�1

i=

n

2

a

i

2

i�

n

2

and jjA

LOW

jj :=

P

n

2

�1

i=0

a

i

2

i

.

Now let m

ij

denote an entry of M . Then row i orresponds to an assignment

jjA

HIGH

jj and olumn j orresponds to an assignment jjA

LOW

jj. The entry m

ij

is

then given by

m

ij

=

�

jjA

HIGH

jj � 2

n

2

+ jjA

LOW

jj

2

n

2

+ 1

�

:

(Remember that (b

n�1

; : : : ; b

n

2

) = (0; : : : ; 0; 1) and (b

n

2

�1

; : : : ; b

0

) = (0; : : : ; 0; 1).)

It follows that the result of DIV annot be determined by looking at the assign-

ment for A

HIGH

, rather the \relation" between \orresponding" bits of A

HIGH

and

A

LOW

is essential: For jjA

HIGH

jj = jjA

LOW

jj the result is obviously jjA

HIGH

jj.

For jjA

LOW

jj < jjA

HIGH

jj we have m

ij

= jjA

HIGH

jj � 1. (m

ij

< jjA

HIGH

jj � 1

would imply jjA

HIGH

jj � 2

n

2

+1+ jjA

LOW

jj whih annot be true.) For jjA

LOW

jj >

jjA

HIGH

jj we obtain m

ij

= jjA

HIGH

jj.

Thus, the resulting matrix has the following form:

M =

0

B

B

B

B

B

B

B

�

1 1 1 1 � � � 1

1 2 2 2 � � � 2

2 2 3 3 � � � 3

3 3 3 4 � � � 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

n

2

� 2 2

n

2

� 2 � � � � � � 2

n

2

� 2 2

n

2

� 1

1

C

C

C

C

C

C

C

A

:

To prove that this matrix M has full rank we apply olumn transformations

starting with a subtration of the �rst olumn from all other olumns. For the

resulting matrix the submatrix onsisting of the last 2

n

2

� 2 olumns and the last

2

n

2

�2 rows is an upper triangular matrix with 1's on the diagonal (and 1's above the

diagonal). By additional olumn tranformations it follows diretly that the matrix

has maximum rank 2

n

2

� 1. Consequently, the rank of the original ommuniation

matrix and dim(< V

f

n+1

>) is in 
(2

n

2

). We summarize:

Lemma 2 A wld with interleaved variable ordering representing funtion DIV

has at least size (2

n

2

� 1).
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4.2. The General Case

In the rest of this setion we extend the above proof to wlds with arbitrary vari-

able order. Cruial for the proof in the ase of the interleaved variable ordering

was the fat that the outome of DIV was depending on the assignments for or-

responding variables in the upper and lower half of the a-variables. More preisely:

For the interleaved variable ordering there are n=2 pairs of variables (a

i

; a

j

) with

� a

i

(a

j

) is an upper (a lower) a-variable

� a

i

and a

j

are split between the �rst and the seond half of the variable order

and

� the di�erene of the indies i and j is a onstant o�set

n

2

.

For arbitrary variable orders this is not always the ase for the o�set

n

2

, but if

one modi�es the o�set to a number

n

2

� p

0

, one an always �nd \enough" \suit-

able" pairs (a

i

; a

j

) being separated by the onsidered variable ordering. A preise

formulation of this (purely ombinatorial) property, its proof (and the appliation

to lower bounds for multipliation) has already been given by Bryant in [4℄. Using

this property the proof for the interleaved variable ordering an be modi�ed by

spei�ation of a \similar" ommuniation submatrix. Consideration of the rank

of this submatrix then leads to the following result:

Theorem 3 A wld for funtion DIV has at least size 2

n

16

� 1 (regardless of the

variable order).

Proof: We now give details of the proof: At �rst the notion \suitable" pairs

(a

i

; a

j

) is preisely spei�ed: To do so, we adopt the notions of [4℄ and give a short

review on the main points as far as they are neessary for our proof.

Let

A

U

= fa

n�1

; : : : ; a

n

2

g

and

A

D

= fa

n

2

�1

; : : : ; a

0

g

be the sets of upper and lower a-variables, respetively. Given any variable order

� for the variables of A and B we de�ne two sets L and R. L ontains the �rst l

variables in the variable order and R ontains the remaining 2n � l variables. l is

hosen suh that jA \ Lj = jA \ Rj, i.e. in L and R we have the same number of

a-variables.

We de�ne the sets of upper and lower a-variables ontained in L and R:

A

UL

:= A

U

\ L; A

DL

:= A

D

\ L; A

UR

:= A

U

\ R; A

DR

:= A

D

\ R:

In sets Args

p

pairs of variables (a

i

; a

j

) 2 A

U

� A

D

are grouped with onstant

distane i� j =

n

2

� p: For �

n

2

+1 � p � 0 Args

p

:= f(a

n

2

�p+i

; a

i

)j0 � i <

n

2

+ pg
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and for 1 � p �

n

2

� 1 Args

p

:= f(a

n

2

+i

; a

p+i

)j0 � i <

n

2

� pg.

Moreover let

Split

p

= Args

p

\ ((A

UL

�A

DR

) [ (A

UR

�A

DL

))

be the subset of Args

p

ontaining the pairs split between L and R.

Following [4℄ there is a p

0

with

jSplit

p

0

j >

n

8

:

Split

p

0

ontains our set of suitable pairs whih we will use to obtain the lower

bound for wlds with general variable orders.

For the remaining part of the proof we assume that �

n

2

+ 1 � p

0

� 0. (The

ase 1 � p

0

�

n

2

� 1 an be handled in an analogous manner.) Furthermore, sine

jSplit

p

0

j >

n

8

we have jSplit

p

0

\(A

UL

�A

DR

)j >

n

16

or jSplit

p

0

\(A

UR

�A

DL

)j >

n

16

.

Sine the ase jSplit

p

0

\ (A

UR

� A

DL

)j >

n

16

an be handled in a ompletely

analogous manner, we assume that

jSplit

p

0

\ (A

UL

�A

DR

)j >

n

16

:

As in the speial ase we onsider a ommuniation matrix. The rows are funtion

tables of the ofators with respet to the variables of L. To estimate the rank of

this matrix we remove rows and olumns and ompute the rank of the remaining

submatrix.

Let k be minimal with (a

n

2

�p

0

+k

; a

k

) 2 Split

p

0

. We keep only rows and olumns

with b

k

= 1, b

n

2

�p

0

+k

= 1 and b

i

= 0 for i 2 f0; : : : ; n� 1g n f

n

2

� p

0

+ k; kg.

In addition we keep only rows and olumns with a

i

= 0 for all a

i

whih do not

our as omponents in Split

p

0

.

De�ne

jjA

HIGH

jj :=

X

(a

i

;a

i�

n

2

+p

0

)2Split

p

0

\(A

UL

�A

DR

)

a

i

2

i�

n

2

+p

0

�k

and

jjA

LOW

jj =

X

(a

n

2

�p

0

+i

;a

i

)2Split

p

0

\(A

UL

�A

DR

)

a

i

2

i�k

By varying the �rst omponents of Split

p

0

\ (A

UL

� A

DR

) we obtain

2

jSplit

p

0

\(A

UL

�A

DR

)j

di�erent values for jjA

HIGH

jj (inluding 0 and 1), and by

varying the seond omponents we obtain 2

jSplit

p

0

\(A

UL

�A

DR

)j

di�erent values for

jjA

LOW

jj (also inluding 0 and 1).

Rows whih orrespond to the assignment jjA

HIGH

jj = 0 and olumns whih

orrespond to the assignment jjA

LOW

jj = 0 are removed.

The remaining submatrix M has 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1 di�erent rows orre-

sponding to di�erent values for jjA

HIGH

jj and 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1 di�ferent

olumns orresponding to di�erent values for jjA

LOW

jj.
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The entry m

ij

orresponding to jjA

HIGH

jj and jjA

LOW

jj is given by

m

ij

=

�

jjA

HIGH

jj � 2

n

2

�p

0

+k

+ jjA

LOW

jj � 2

k

2

n

2

�p

0

+k

+ 2

k

�

=

�

jjA

HIGH

jj � 2

n

2

�p

0

+ jjA

LOW

jj

2

n

2

�p

0

+ 1

�

:

For jjA

HIGH

jj = jjA

LOW

jj we have m

ij

= jjA

HIGH

jj, for jjA

LOW

jj < jjA

HIGH

jj we

have m

ij

= jjA

HIGH

jj�1. (m

ij

< jjA

HIGH

jj�1 would imply jjA

HIGH

jj � 2

n

2

�p

0

+

1 + jjA

LOW

jj, whih an not be true.) For jjA

LOW

jj > jjA

HIGH

jj we obtain m

ij

=

jjA

HIGH

jj. (m

ij

� jjA

HIGH

jj+ 1 would imply jjA

LOW

jj � 2

n

2

�p

0

+ 1+ jjA

HIGH

jj,

whih an not be true.)

If the rows with values jjA

HIGH

jj are ordered with inreasing values x

1

= 1; x

2

; x

3

; : : :

and the olumns with values jjA

LOW

jj are also ordered with inreasing values, we

obtain the following submatrix

M =

0

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 � � � 1 1

x

2

� 1 x

2

x

2

x

2

� � � x

2

x

2

x

3

� 1 x

3

� 1 x

3

x

3

� � � x

3

x

3

x

4

� 1 x

4

� 1 x

4

� 1 x

4

.

.

.

x

4

x

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

max

� 1 x

max

� 1 � � � � � � � � � x

max

� 1 x

max

1

C

C

C

C

C

C

C

C

C

C

C

A

and similar to the speial ase we multiply the �rst olumn by (�1) and add this

olumn to all other olumns. Again, for the resulting matrix, the submatrix on-

sisting of the last 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 2 rows and olumns is an upper triangular

matrix with 1's on the diagonal (and 1's above the diagonal). Additional olumn

transformations even prove that the matrix has full rank 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1.

Sine jSplit

p

0

\ (A

UL

� A

DR

)j >

n

16

, the rank is at least 2

n

16

and thus the rank of

the original ommuniation matrix is also in 
(2

n

16

).

Using Theorems 3 and 1 we �nally obtain the following orollary:

Corollary 1 mtbdds, evbdds, bmds, *bmds, hdds, k*bmds and *phdds re-

quire representations of size 
(2

n

16

) for division (regardless of the variable order).

5. Conlusions

We proved an exponential lower bound on the size of word-level representations

for integer dividers. The proof ould be done \simultaneously" for all word-level

DDs by the introdution of Word-Level Linear Combination Diagrams (wlds) as
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a generi word-level DD. They turned out to be a powerful tool to haraterize the

limits of the word-level DD-onept.

Conerning division our result gives the following hints for future work: Sine

word-level DDs are not suitable as a data struture at least as long as they are

used for the representation of the input-output behaviour, new methods have to

be developed. If existing DDs are still to be used, e.g. the struture of the iruit

might be onsidered to hek whether a hierahial substitution based approah is

feasible. Another approah is to ompute word-level DDs not for the divider itself

but for a iruit, whih is obtained from the divider by a transformation. Then

it has to be easy to onlude the orretness of the divider from the orretness

of the transformed iruit. On the other hand, it is an interesting open question,

whih type of (DD-similar) data struture is powerful enough to allow polynomial

representation of division and eÆient manipulation for veri�ation at the same

time.
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