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Abstra
t. Several types of De
ision Diagrams (DDs) have been proposed for the veri�
ation

of Integrated Cir
uits. Re
ently, word-level DDs like bmds, *bmds, hdds, k*bmds and *phdds

have been attra
ting more and more interest, e.g., by using *bmds and *phdds it was for the �rst

time possible to formally verify integer multipliers and 
oating point multipliers of \signi�
ant"

bitlengths, respe
tively.

On the other hand, it has been unknown, whether division, the operation inverse to multipli-


ation, 
an be eÆ
iently represented by some type of word-level DDs. In this paper we show

that the representational power of any word-level DD is too weak to eÆ
iently represent integer

division. Thus, neither a 
lever 
hoi
e of the variable ordering, the de
omposition type or the

edge weights, 
an lead to a polynomial DD size for division.

For the proof we introdu
e Word-Level Linear Combination Diagrams (wl
ds), a DD, whi
h

may be viewed as a \generi
" word-level DD. We derive an exponential lower bound on the wl
d

representation size for integer dividers and show how this bound transfers to all other word-level

DDs.
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1. Introdu
tion

One of the most important tasks during the design of Integrated Cir
uits is the

veri�
ation of an implemented 
ir
uit, i.e., the 
he
k whether the implementation

ful�lls its spe
i�
ation.

In the last few years several methods based on De
ision Diagrams (DDs) have

been proposed [14, 5℄ to perform veri�
ation. The idea is to transform both, im-

plementation and spe
i�
ation of a 
ombinational 
ir
uit, into a DD. Then, due

to the 
anoni
ity of the DD representation, the equivalen
e 
he
k for spe
i�
ation

and implementation translates to the 
he
k whether the 
orresponding DDs are

identi
al.

The most popular data stru
ture in this 
ontext are Ordered Binary De
ision

Diagrams (obdds) [3℄. They were applied su

essfully e.g. to the veri�
ation of


ontrol logi
 and integer adders. But there are fun
tions of high pra
ti
al relevan
e,
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whi
h 
annot be represented eÆ
iently by obdds. Already in [3℄ and [4℄ Bryant

proved that obdd representations for integer multipliers are of exponential size.

Several other types of DDs were de�ned to over
ome the limitations of obdds,

su
h as Ordered Fun
tional De
ision Diagrams (ofdds) [12℄, Ordered Krone
ker

Fun
tional De
ision Diagrams (okfdds) [11℄, Multi{Terminal Binary De
ision Di-

agrams (mtbdds) [9℄ (also 
alled Algebrai
 De
ision Diagrams (adds) [1℄) and

Edge{valued Binary De
ision Diagrams (evbdds) [13℄. But the �rst DDs to rep-

resent integer multipli
ation eÆ
iently were Binary Moment Diagrams (bmds) and

Multipli
ative bmds (*bmds) introdu
ed in [6℄. Like mtbdds and evbdds, also

bmds and *bmds are word-level DDs, i.e. they represent integer-valued fun
tions

f : f0; 1g

n

! Z (Z denotes the set of integer numbers).

To further improve on the representational power of bmds, several other word-

level DD types have been introdu
ed, e.g. Hybrid De
ision Diagrams (hdds) [8℄

and Krone
ker *bmds (k*bmds) [10℄. Re
ently Chen and Bryant de�ned a new

data stru
ture 
alledMultipli
ative Power Hybrid De
ision Diagrams (*phdds) [7℄,

whi
h is able to represent not only integer multipli
ation but also 
oating point

multipli
ation eÆ
iently.

Until now it has not been known, whether the word-level DDs mentioned above

are also able to represent division eÆ
iently. Re
ently Nakanishi [15℄ made a �rst

step by showing that *bmds 
annot represent integer division eÆ
iently. The proof

is te
hni
ally 
ompli
ated, it is based on fooling set arguments similar to the orginal

proof for multipli
ation by Bryant and has to take into a

ount the edge values in

the *bmd representation. Consequently, as already mentioned, in this form it only

works for *bmds.

In this paper we prove that integer division 
annot be represented in polynomial

size by any of the ordered word-level DDs mentioned in the literature until now.

Even more interestingly, we prove that the 
on
ept of word-level DDs in general is

too weak to result in polynomial size representations of division.

For the proof we introdu
e a new data stru
ture, the Word-Level Linear Combi-

nation Diagrams (wl
ds). wl
ds are a generalization of Waa
k's Parity Ordered

Binary De
ision Diagrams (pobdds) [18℄ to the word level. It turns out that wl
ds


an be viewed as a \generi
" ordered word-level DD in the following sense: Ea
h

ordered word-level DD 
an be \embedded into" wl
ds su
h that a DD with k

nodes is transformed into a wl
d representing the same fun
tion with the same

number k of nodes. Thus, a lower bound on the size of a wl
d is also a lower

bound on the size of all other ordered word-level DDs.

wl
ds are similar to Binary Linear Diagrams (blds) whi
h were developed by

Thatha
har [17℄ independently from our work [16℄. wl
ds as presented in this

paper are a little more general than blds (they allow more than two outgoing

edges of a node) and thus they 
an also be used to \simulate" additive edge values

e.g. In that way lower bounds on the size of wl
ds are valid for evbdds and

k*bmds as well.

We apply this idea to integer division by deriving an exponential lower bound

on the size of wl
ds representing integer divison (regardless of the 
hosen variable

order). For wl
ds lower bounds 
an be obtained by 
onsideration of the rank of
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a 
ommuni
ation matrix whi
h is 
onstru
ted from the fun
tion tables of several


ofa
tors. It follows that bothering details 
on
erning e.g. edge values have not to

be taken into a

ount to derive the lower bound in our proof. On the other hand,

due to the properties of wl
ds we obtain an exponential lower bound result, valid

for all ordered word-level DD types.

The paper is stru
tured as follows: In Se
tion 2 we provide basi
s on word-level

DDs whi
h will be ne
essary for the understanding of the paper. wl
ds and their

relationship to existing word-level DDs are introdu
ed in Se
tion 3. Furthermore,

an algebrai
 
hara
terization of the wl
d 
omplexity is given whi
h leads to the

rank 
onsiderations of 
ertain 
ofa
tor matri
es. In Se
tion 4 the lower bound for

division is derived. We �nish with 
on
lusions and perspe
tives of further work in

Se
tion 5.

2. Preliminaries: Word-Level De
ision Diagrams

In this se
tion we give a short review of ordered word-level DDs, data stru
tures

used for the representation of so-
alled Pseudo Boolean fun
tions, i.e. fun
tions

from a Boolean domain to the integers or rational numbers. In general, DDs are

graph{based representations, where at ea
h (non{terminal) node (labeled with a

variable x) a de
omposition of the fun
tion (represented by this node) into two

subfun
tions (the low{fun
tion and the high{fun
tion) is performed:

De�nition 1. A word-level DD is a rooted dire
ted a
y
li
 graph G = (V;E) with

non empty node set V 
ontaining two types of nodes, non-terminal and terminal

nodes. A non-terminal node v has as label a variable index(v) 2 fx

1

; : : : ; x

n

g

and two 
hildren low(v); high(v) 2 V . A terminal node v is labeled with a value

value(v) 2 Z.

For the purpose of this paper, we are only interested in ordered DDs, i.e. DDs,

where the variables o

ur in the same order on all paths of the DD. More pre
isely,

this means:

De�nition 2. A DD is ordered i� there is a �xed order � : f1; : : : ; ng ! fx

1

; : : : ; x

n

g

su
h that for any non-terminal node v the following holds: index(low(v)) = �(k)

with k > �

�1

(index(v)) (index(high(v)) = �(q) with q > �

�1

(index(v))) as long

as low(v) (high(v)) is also a non-terminal node.

Based on these general de�nitions we now 
onsider di�erent de
omposition types

and shortly dis
uss resulting word-level DDs and 
orresponding evaluation rules.

(For a survey on word-level DDs and more details see also [2℄.)

2.1. De
omposition types and evaluation rules

Ea
h node of a DD represents a fun
tion and the fun
tion represented by the

root node is the fun
tion represented by the DD. In word-level DDs the fun
-
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tion f

v

: f0; 1g

n

! Q (Q denotes the set of rational numbers) represented by a

non{terminal node v, whi
h is labeled by variable x

i

, is de
omposed into two sub-

fun
tions, both independent of variable x

i

. Depending on the de
omposition type

these subfun
tions are 
ombined from the 
ofa
tors

(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 0; x

i+1

; : : : ; x

n

)

and

(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 1; x

i+1

; : : : ; x

n

)

in di�erent ways. DDs as de�ned in literature di�er in the way they use de
ompo-

sition types. De
omposition types 
an be de�ned by the set Z

2;2

of non{singular

2�2 matri
es over Z [8℄. The most important de
omposition types are Shannon de-


omposition, positive Davio de
omposition and negative Davio de
omposition. The

Shannon de
omposition is used in mtbdds [9℄ and evbdds [13℄, the positive Davio

de
omposition is used in bmds and *bmds [6℄. In k*bmds [10℄ and *phdds [7℄ Shan-

non de
omposition, positive Davio and negative Davio de
omposition are used. In

hdds [8℄ six di�erent de
omposition types (in
luding Shannon, positive and nega-

tive Davio de
omposition) are used.

Following [8℄ the matri
es 
orresponding to Shannon, positive Davio and negative

Davio de
omposition, respe
tively, are

�

1 0

0 1

� �

1 0

�1 1

�

and

�

0 1

1 �1

�

:

These matri
es de�ne how the fun
tions f

low(v)

and f

high(v)

represented by low(v)

and high(v) are 
omputed from (f

v

)

x

i

and (f

v

)

x

i

. For the positive Davio de
om-

position, e.g., we have

�

f

low(v)

f

high(v)

�

=

�

1 0

�1 1

��

(f

v

)

x

i

(f

v

)

x

i

�

;

i.e., f

low(v)

= (f

v

)

x

i

and f

high(v)

= (f

v

)

x

i

� (f

v

)

x

i

.

A terminal node v with value(v) = z represents the 
onstant fun
tion with fun
-

tion value z. To evaluate the fun
tion f

v

represented by a non{terminal node v for

x

i

= 0 or x

i

= 1, we have to re
onstru
t (f

v

)

x

i

or (f

v

)

x

i

from f

low(v)

and f

high(v)

.

To do so, we make use of the fa
t, that the de
omposition type matri
es are non{

singular: Sin
e a de
omposition type matrix A is non{singular, the inverse matrix

A

�1

exists and

�

(f

v

)

x

i

(f

v

)

x

i

�

= A

�1

�

�

f

low(v)

f

high(v)

�

: (1)

The inverse de
omposition type matri
es for Shannon, positive Davio and negative

Davio de
omposition, respe
tively, are

�

1 0

0 1

� �

1 0

1 1

�

and

�

1 1

1 0

�

:

For positive Davio de
omposition, e.g., this means that (f

v

)

x

i

= f

low(v)

and (f

v

)

x

i

= f

low(v)

+ f

high(v)

.
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2.2. Additive and multipli
ative edge values, negation edges

Edge values are introdu
ed to in
rease the amount of subgraph sharing when using

integer{valued terminal nodes. It has to be di�erentiated between additive and

multipli
ative edge values.

An edge with additive weight a and multipli
ative weight m leading to node v

represents the fun
tion

< (a;m); f

v

>:= a+m � f

v

: (2)

mtbdds, bmds and hdds use no edge values, evbdds use only additive weights,

i.e., the multipli
ative weight m is 1, *bmds use only multipli
ative weights, i.e.

a = 0. k*bmds use both additive and multipli
ative weights. *phdds use only

multipli
ative weights of form (�1)

ne

�2

w

with ne 2 f0; 1g and w 2 Z. (For reasons

of memory eÆ
ien
y (�1)

ne

� 2

w

is stored as an integer w and a bit ne representing

a \negation edge" when ne = 1.)

Now 
onsider any ordered word-level DD with edge values. Then for ea
h non{

terminal node v there is a 0{edge labeled with edge weights (a

low

;m

low

) leading to

node low(v) and a 1{edge labeled with edge weights (a

high

;m

high

) leading to node

high(v). If in node v the de
omposition type A =

�

a

11

a

12

a

21

a

22

�

with inverse matrix

A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

is used, then using Equations 1 and 2 the evaluation rule for this

node is the following:

f

v

= (1� x

i

)�(f

v

)

x

i

+ x

i

� (f

v

)

x

i

= (1� x

i

)�(a

0

11

(a

low

+m

low

f

low(v)

)

+a

0

12

(a

high

+m

high

f

high(v)

))

+ x

i

� (a

0

21

(a

low

+m

low

f

low(v)

)

+a

0

22

(a

high

+m

high

f

high(v)

))

= (1� x

i

)�((a

0

11

a

low

+ a

0

12

a

high

)

+(a

0

11

m

low

f

low(v)

) + (a

0

12

m

high

f

high(v)

))

+ x

i

� ((a

0

21

a

low

+ a

0

22

a

high

)

+(a

0

21

m

low

f

low(v)

) + (a

0

22

m

high

f

high(v)

)):

(3)

In Se
tion 3 we will use the \most general evaluation rule" of Equation 3 to

analyze the relationship between the existing ordered word-level DDs and our new

data stru
ture 
alled Word-Level Linear Combination Diagrams (wl
ds).

3. Word-Level Linear Combination Diagrams

In this se
tion we de�ne Word-Level Linear Combination Diagrams (wl
ds).

wl
ds are a generalization of pobdds de�ned by Waa
k [18℄ to the word-level.

Whereas pobdds 
an represent only Boolean fun
tions, wl
ds represent fun
tions

f : f0; 1g

n

! Q.

wl
ds are given by the following de�nition:
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u1

w(v,u )kw(v,u )1 w(v,t )mw(v,t )1

v

uk

xi

t1 tm

0

0 1

1

... ...

......

Figure 1. Non-terminal node v of a wl
d. v is labeled by variable x

i

. The 0{edges of v are given

by edges to nodes u

1

; : : : ; u

k

and the 1{edges are given by edges to t

1

; : : : ; t

m

.

De�nition 3. A Word-Level Linear Combination Diagram (wl
d) is a rooted di-

re
ted a
y
li
 graph G = (V;E). If the wl
d is not empty, it 
ontains ex-

a
tly one sink labeled with 1 and with no outgoing edges. The remaining nodes

are 
alled non{terminal nodes. A non-terminal node v is labeled by a variable

index(v) 2 fx

1

; : : : ; x

n

g. The outgoing edges of a non{terminal node v are parti-

tioned into two sets: 0{edges(v) and 1{edges(v). At least one of these sets is not

empty. All edges e are labeled by an edge weight w(e) 2 Q. A wl
d is ordered,

i.e., as with DDs the variables o

ur in the same order on all paths of wl
d. The

size of a wl
d is its number of nodes.

The de�nition of a wl
d is illustrated by Figure 1.

An empty wl
d represents the 
onstant 0{fun
tion, the sink of a non{empty

wl
d represents the 
onstant 1{fun
tion. The fun
tion f

v

represented by a non{

terminal node v labeled by variable x

i

with 0{edges(v) = f(v; u

1

); : : : ; (v; u

k

)g and

1{edges(v) = f(v; t

1

); : : : ; (v; t

m

)g is de�ned by the following evaluation rule:

f

v

:= (1� x

i

) � (w(v; u

1

) � f

u

1

+ : : :+ w(v; u

k

) � f

u

k

)

+x

i

� (w(v; t

1

) � f

t

1

+ : : :+ w(v; t

m

) � f

t

m

):

(4)

Similar to pobdds, also for wl
ds eÆ
ient synthesis operations and an equiva-

len
e 
he
k 
an be derived. We omit any further details, rather we 
on
entrate on

the property of wl
ds whi
h is most important in this paper: Ordered word-level

DDs 
an be \embedded into wl
ds", i.e., if there is some word-level DD with k

nodes, we 
an easily 
onstru
t a wl
d with the same number k of nodes. This

fa
t is used to 
on
lude lower bounds on the size of arbitrary word-level DDs from

lower bounds on the size of wl
ds.

The 
omputation of lower bounds on the size of wl
ds 
an be done in an elegant

way using arguments from linear algebra. Before 
oming to lower bounds we show

how to embed word-level DDs into wl
ds.
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3.1. Relationship between wl
ds and existing word-level DDs

Here we prove that all ordered word-level DDs mentioned in the previous se
tions


an be \embedded into wl
ds". To do so we pro
eed as follows:

A given word-level DD is transformed step by step into a wl
d.

If the given DD 
ontains terminals v with values value(v) di�erent from 0 and 1,

these terminals are repla
ed by a terminal 1 and the multipli
tive edge weights of

all in
oming edges of v are multiplied by value(v). If now there is more than one

terminal with value 1, these terminals are repla
ed by a unique terminal with value

1. Edges to terminal 0 with additive weight a are repla
ed by edges to terminal

1 with additive weight a and multipli
ative weight 0. The 0{terminal is removed.

All these steps do not 
hange the fun
tion represented by the DD.

Now in a bottom{up pro
edure for ea
h non{terminal node v labeled with variable

x

i

= index(v) representing a fun
tion f

v

the outgoing edges are repla
ed resulting

in awl
d{node representing the same fun
tion f

v

. Suppose that the de
omposition

type used for node v is given by A =

�

a

11

a

12

a

21

a

22

�

(with inverse matrix A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

)

and the 0{edge is labeled with edge weights (a

low

;m

low

), the 1{edge is labeled with

edge weights (a

high

;m

high

). Then the evaluation rule of Equation 3 gives a relation

between f

low(v)

and f

high(v)

and f

v

. A 
omparison with the evaluation rule for

wl
ds (see Equation 4) leads to the de�nition of the equivalent wl
d{node and

its 
orresponding edges (let v

one

be the terminal with value 1):

� 0{edges(v) = f(v; v

one

); (v; low(v)); (v; high(v))g,

w(v; v

one

) = a

0

11

a

low

+ a

0

12

a

high

, w(v; low(v)) = a

0

11

m

low

, w(v; high(v)) =

a

0

12

m

high

.

� 1{edges(v) = f(v; v

one

); (v; low(v)); (v; high(v))g,

w(v; v

one

) = a

0

21

a

low

+ a

0

22

a

high

, w(v; low(v)) = a

0

21

m

low

, w(v; high(v)) =

a

0

22

m

high

.

The repla
ement is illustrated by Figure 2.

After this bottom{up pro
edure, if there is a root edge with weight (a;m),

the weights of the outgoing edges of the root are multiplied by m and an edge

(root; v

one

) with weight a is in
luded into 0{edges(root) and 1{edges(root).

Finally we obtain a wl
d representing the same fun
tion as the original DD. We

summarize:

Theorem 1 If the mtbdd, evbdd, bmd, *bmd, hdd, k*bmd or *phdd for a

fun
tion f : f0; 1g

n

! Z (or f : f0; 1g

n

! Q for the 
ase of *phdds) with variable

order � has k nodes, then there also exists a wl
d with variable order � representing

f with (at most) k nodes.

Example: In Figure 3 the node repla
ement des
ribed to prove Theorem 1 is

illustrated for positive Davio de
omposition without edge weights (i.e. the additive

edge weights are 0 and multipli
ative edge weights are 1). For positive Davio
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xi 0

0

0
1

1

1

1

xi0 1

1

highlow aaaa '

12

'

11 +

highlow aaaa '

22

'

21 +

lowma '

11 lowma '

21

highma '

12

),( highhigh ma),( lowlow ma
highma '

22

lo wf lo wfh ig hf h ig hf

Figure 2. Transformation into wl
d node

xi0 1
xi0 1

1

lo wf lo wfh ig hf h ig hf

Figure 3. Transformation of a positive Davio node into a wl
d node

de
omposition the de
omposition type matrix is given by A =

�

a

11

a

12

a

21

a

22

�

=

�

1 0

�1 1

�

,

A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

=

�

1 0

1 1

�

. Thus, the evaluation rule 
an be simpli�ed to

f

v

= (1� x

i

)�((a

0

11

a

low

+ a

0

12

a

high

)

+(a

0

11

m

low

f

low(v)

) + (a

0

12

m

high

f

high(v)

))

+ x

i

� ((a

0

21

a

low

+ a

0

22

a

high

)

+(a

0

21

m

low

f

low(v)

) + (a

0

22

m

high

f

high(v)

))

= (1� x

i

)�f

low(v)

+ x

i

� (f

low(v)

+ f

high(v)

):

3.2. An Algebrai
 Chara
terization of the wl
d Complexity

In this subse
tion we give an algebrai
 
hara
terization of the wl
d 
omplexity,

whi
h we will use to prove lower bounds on the size of wl
ds. We show, that

the number of nodes in a wl
d 
annot be smaller than the dimension of a 
ertain

ve
tor spa
e.

Consider the set of all fun
tions from f0; 1g

n

to the rational numbersMap(f0; 1g

n

;

Q) = ff : f0; 1g

n

! Qg. De�ne addition onMap(f0; 1g

n

;Q) by (f+g)(x

1

; : : : ; x

n

)
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= f(x

1

; : : : ; x

n

) + g(x

1

; : : : ; x

n

) and multipli
ation with a s
alar w 2 Q by (w �

f)(x

1

; : : : ; x

n

) = w � f(x

1

; : : : ; x

n

). It is easy to see, that Map(f0; 1g

n

;Q) together

with addition and multipli
ation with s
alars forms a ve
tor spa
e.

Based on wl
ds with �xed variable order � we will de�ne subspa
es of the ve
tor

spa
e Map(f0; 1g

n

;Q). W.l.o.g. we assume the natural variable order, i.e., � :

f1; : : : ; ng ! fx

1

; : : : ; x

n

g with �(i) = x

i

8i 2 f1; : : : ; ng.

Given a wl
d B, 
onsider for some k 2 f1; : : : ; ng the set of all wl
d{nodes,

whi
h are labeled with variable x

k

or whi
h are labeled with a variable x

i

with

i > k and whi
h have an in
oming edge from a node labeled by a variable x

j

with

j < k. These nodes represent fun
tions of Map(f0; 1g

n

;Q). We denote this set of

fun
tions by V

B

k

. Of 
ourse, the ve
tor spa
e < V

B

k

> whi
h is generated by the

fun
tions in V

B

k

forms a subspa
e of Map(f0; 1g

n

;Q).

Let f be the fun
tion represented by the wl
d B. We 
onsider the following set

of 
ofa
tors of f :

V

f

k

= ff j

x

1

=


1

;:::;x

k�1

=


k�1

j


1

; : : : ; 


k�1

2 f0; 1gg:

Again, < V

f

k

>, whi
h is generated by the fun
tions in V

f

k

, is a subspa
e of

Map(f0; 1g

n

;Q).

Now we investigate the relationship between the ve
tor spa
es < V

B

k

> and

< V

f

k

>. We 
laim that

< V

f

k

>�< V

B

k

> :

To prove this it is suÆ
ient to show, that ea
h 
ofa
tor f j

x

1

=


1

;:::;x

k�1

=


k�1

2 V

f

k

is in < V

B

k

>. We 
onsider all paths starting from the root of B, whi
h ful�ll

the assignment x

1

= 


1

; : : : ; x

k�1

= 


k�1

. Let v

1

; : : : ; v

m

be the nodes, whi
h are

rea
hed by these paths and suppose that ea
h node v

r

8r 2 f1 : : :mg is rea
hed by

i

r

di�erent paths p

(r)

1

; : : : ; p

(r)

i

r

. Let w

(r)

j

be the produ
t of all weights of edges on

path p

(r)

j

. Then a

ording to the de�nition of wl
ds and by indu
tion on k the

following holds:

f j

x

1

=


1

;:::;x

k�1

=


k�1

=

0

�

i

1

X

j=1

w

(1)

j

1

A

f

v

1

+ : : :+

0

�

i

m

X

j=1

w

(m)

j

1

A

f

v

m

:

Sin
e 81 � i � m f

v

i

2 V

B

k

, we 
on
lude that f j

x

1

=


1

;:::;x

k�1

=


k�1

2< V

B

k

> for

ea
h 
hoi
e of 


1

; : : : ; 


k�1

2 f0; 1g.

Be
ause of < V

f

k

>�< V

B

k

> we have

dim(< V

f

k

>) � dim(< V

B

k

>)

and sin
e V

B

k

generates < V

B

k

> it holds

dim(< V

f

k

>) � jV

B

k

j:

Thus we obtain the following lemma
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Lemma 1 Let f be any fun
tion in Map(f0; 1g

n

;Q). Then

dim(< V

f

k

>)

is a lower bound on the size of a wl
d for f with respe
t to the natural variable

ordering.

In fa
t, we 
an prove even a stronger result with similar arguments as in the proof

of Waa
k [18℄ for pobdds:

Theorem 2 A wl
d B with natural variable order, representing fun
tion f with

a minimal number of nodes, has exa
tly dim(<

S

n+1

k=1

V

f

k

>) nodes.

However, for the purposes of this paper we need only Lemma 1.

4. An Exponential Lower Bound for Division

In this se
tion we apply Lemma 1 to derive an exponential lower bound on the size

of wl
ds (and thus of word-level DDs) representing integer divison.

For our proof we use the following notations and de�nitions 
on
erning division:

Two sets of variables, the a-variables A = fa

n�1

; : : : ; a

0

g and the b-variables B =

fb

n�1

; : : : ; b

0

g, are 
onsidered. As usual, the binary representation of A and B is

given by

jjAjj := 2

n�1

a

n�1

+ : : :+ 2

0

a

0

and jjBjj := 2

n�1

b

n�1

+ : : :+ 2

0

b

0

;

respe
tively. Then the integer divisionDIV is the Pseudo Boolean fun
tion de�ned

by

DIV : f0; 1g

n

� f0; 1g

n

! IN;

(a

n�1

; : : : ; a

0

; b

n�1

; : : : ; b

0

) 7!

�

jjAjj

jjBjj

�

:

Before we prove the exponential lower bound for wl
ds with arbitrary variable

orders we 
onsider a restri
ted 
ase whi
h ni
ely demonstrates the idea of the proof

and the proof te
hnique. Then we turn to the proof of the general 
ase whi
h is

slightly more 
ompli
ated but works along similar lines.

4.1. wl
ds with Interleaved Variable Ordering

For the restri
ted 
ase we �x the variable order in advan
e: it is given by the

interleaved ordering

(a

n�1

; b

n�1

; : : : ; a

0

; b

0

):

Furthermore, we may assume that n is even. (For n odd, we embed an (n � 1){

bit divider into the n{bit divider by setting a

n�1

= b

n�1

= 0 and note that for an

exponential lower bound 
(


n

) it holds 
(


n

) = 
(


n�1

).)

Following Lemma 1 we now 
onsider the set V

f

n+1

of 
ofa
tors
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a

1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a

0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

b

1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

b

0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a

3

a

2

b

3

b

2

0 0 0 0 # 0 0 0 # 1 0 0 # 2 1 0 # 3 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 # 4 2 1 # 5 2 1 # 6 3 2 # 7 3 2

0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 # 8 4 2 # 9 4 3 # 10 5 3 # 11 5 3

1 0 0 1 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1

1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 # 12 6 4 # 13 6 4 # 14 7 4 # 15 7 5

1 1 0 1 3 2 2 1 3 2 2 1 3 2 2 2 3 3 2 2

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

Figure 4. Communi
ation matrix of division for n = 4.

V

f

n+1

= ff j

a

n�1

=


1

;b

n�1

=


2

;:::;a

n

2

=


n�1

;b

n

2

=


n

j 


1

; : : : ; 


n

2 f0; 1gg

and show an exponential lower bound for dim(< V

f

n+1

>).

To estimate dim(< V

f

n+1

>) we prove that a 
ertain number of elements of V

f

n+1

is linearly independent. For that we 
onsider a 
ommuni
ation matrix whose rows

are fun
tion tables of the 
ofa
tors of V

f

n+1

. The rows of the matrix are \numbered"

by input 
ombinations of the \upper half" of the a- and b-variables. Analogously,

the \lower half" of the a- and b-variables de�nes the 
olumns. For illustration see

Figure 4, where we give the 
ommuni
ation matrix for n = 4. (# in the matrix

means that the 
orresponding result of DIV is not de�ned (division by zero). Our

proof is valid for all possible repla
ements of symbols #.)

The rank of this 
ommuni
ation matrix is equal to dim(< V

f

n+1

>). Sin
e we

need only a lower bound on dim(< V

f

n+1

>), we may remove 
olumns and rows in

the matrix (thereby possibly redu
ing the rank of the resulting matrix).

The idea now is to restri
t to entries with 
onstant values for the b-variables and

to observe the result of the division for in
reasing values of a-variables . More

pre
isely, we only keep rows where from the b-variables exa
tly the least signi�
ant

upper b-variable b

n

2

is set, i.e.

b

n�1

= 0; : : : ; b

n

2

+1

= 0; b

n

2

= 1

Analogously, only 
olumns with b

n

2

�1

= 0; : : : ; b

1

= 0; b

0

= 1 are 
onsidered.

Furthermore, the rows and 
olumns with 0 for all a-inputs are removed. For our

example with n = 4 the following matrix remains:
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a

1

0 1 1

a

0

1 0 1

b

1

0 0 0

b

0

1 1 1

a

3

a

2

b

3

b

2

0 1 0 1 1 1 1

1 0 0 1 1 2 2

1 1 0 1 2 2 3

In general, we obtain a matrix M of size (2

n

2

� 1) � (2

n

2

� 1). For the 
om-

putation of the entries of M 
onsider the set A

HIGH

:= fa

n�1

; : : : ; a

n

2

g and

A

LOW

:= fa

n

2

�1

; : : : ; a

0

g, i.e. A

HIGH

(A

LOW

) 
onsists of the upper (lower) a-

variables. De�ne jjA

HIGH

jj :=

P

n�1

i=

n

2

a

i

2

i�

n

2

and jjA

LOW

jj :=

P

n

2

�1

i=0

a

i

2

i

.

Now let m

ij

denote an entry of M . Then row i 
orresponds to an assignment

jjA

HIGH

jj and 
olumn j 
orresponds to an assignment jjA

LOW

jj. The entry m

ij

is

then given by

m

ij

=

�

jjA

HIGH

jj � 2

n

2

+ jjA

LOW

jj

2

n

2

+ 1

�

:

(Remember that (b

n�1

; : : : ; b

n

2

) = (0; : : : ; 0; 1) and (b

n

2

�1

; : : : ; b

0

) = (0; : : : ; 0; 1).)

It follows that the result of DIV 
annot be determined by looking at the assign-

ment for A

HIGH

, rather the \relation" between \
orresponding" bits of A

HIGH

and

A

LOW

is essential: For jjA

HIGH

jj = jjA

LOW

jj the result is obviously jjA

HIGH

jj.

For jjA

LOW

jj < jjA

HIGH

jj we have m

ij

= jjA

HIGH

jj � 1. (m

ij

< jjA

HIGH

jj � 1

would imply jjA

HIGH

jj � 2

n

2

+1+ jjA

LOW

jj whi
h 
annot be true.) For jjA

LOW

jj >

jjA

HIGH

jj we obtain m

ij

= jjA

HIGH

jj.

Thus, the resulting matrix has the following form:

M =

0

B

B

B

B

B

B

B

�

1 1 1 1 � � � 1

1 2 2 2 � � � 2

2 2 3 3 � � � 3

3 3 3 4 � � � 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

n

2

� 2 2

n

2

� 2 � � � � � � 2

n

2

� 2 2

n

2

� 1

1

C

C

C

C

C

C

C

A

:

To prove that this matrix M has full rank we apply 
olumn transformations

starting with a subtra
tion of the �rst 
olumn from all other 
olumns. For the

resulting matrix the submatrix 
onsisting of the last 2

n

2

� 2 
olumns and the last

2

n

2

�2 rows is an upper triangular matrix with 1's on the diagonal (and 1's above the

diagonal). By additional 
olumn tranformations it follows dire
tly that the matrix

has maximum rank 2

n

2

� 1. Consequently, the rank of the original 
ommuni
ation

matrix and dim(< V

f

n+1

>) is in 
(2

n

2

). We summarize:

Lemma 2 A wl
d with interleaved variable ordering representing fun
tion DIV

has at least size (2

n

2

� 1).
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4.2. The General Case

In the rest of this se
tion we extend the above proof to wl
ds with arbitrary vari-

able order. Cru
ial for the proof in the 
ase of the interleaved variable ordering

was the fa
t that the out
ome of DIV was depending on the assignments for 
or-

responding variables in the upper and lower half of the a-variables. More pre
isely:

For the interleaved variable ordering there are n=2 pairs of variables (a

i

; a

j

) with

� a

i

(a

j

) is an upper (a lower) a-variable

� a

i

and a

j

are split between the �rst and the se
ond half of the variable order

and

� the di�eren
e of the indi
es i and j is a 
onstant o�set

n

2

.

For arbitrary variable orders this is not always the 
ase for the o�set

n

2

, but if

one modi�es the o�set to a number

n

2

� p

0

, one 
an always �nd \enough" \suit-

able" pairs (a

i

; a

j

) being separated by the 
onsidered variable ordering. A pre
ise

formulation of this (purely 
ombinatorial) property, its proof (and the appli
ation

to lower bounds for multipli
ation) has already been given by Bryant in [4℄. Using

this property the proof for the interleaved variable ordering 
an be modi�ed by

spe
i�
ation of a \similar" 
ommuni
ation submatrix. Consideration of the rank

of this submatrix then leads to the following result:

Theorem 3 A wl
d for fun
tion DIV has at least size 2

n

16

� 1 (regardless of the

variable order).

Proof: We now give details of the proof: At �rst the notion \suitable" pairs

(a

i

; a

j

) is pre
isely spe
i�ed: To do so, we adopt the notions of [4℄ and give a short

review on the main points as far as they are ne
essary for our proof.

Let

A

U

= fa

n�1

; : : : ; a

n

2

g

and

A

D

= fa

n

2

�1

; : : : ; a

0

g

be the sets of upper and lower a-variables, respe
tively. Given any variable order

� for the variables of A and B we de�ne two sets L and R. L 
ontains the �rst l

variables in the variable order and R 
ontains the remaining 2n � l variables. l is


hosen su
h that jA \ Lj = jA \ Rj, i.e. in L and R we have the same number of

a-variables.

We de�ne the sets of upper and lower a-variables 
ontained in L and R:

A

UL

:= A

U

\ L; A

DL

:= A

D

\ L; A

UR

:= A

U

\ R; A

DR

:= A

D

\ R:

In sets Args

p

pairs of variables (a

i

; a

j

) 2 A

U

� A

D

are grouped with 
onstant

distan
e i� j =

n

2

� p: For �

n

2

+1 � p � 0 Args

p

:= f(a

n

2

�p+i

; a

i

)j0 � i <

n

2

+ pg
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and for 1 � p �

n

2

� 1 Args

p

:= f(a

n

2

+i

; a

p+i

)j0 � i <

n

2

� pg.

Moreover let

Split

p

= Args

p

\ ((A

UL

�A

DR

) [ (A

UR

�A

DL

))

be the subset of Args

p


ontaining the pairs split between L and R.

Following [4℄ there is a p

0

with

jSplit

p

0

j >

n

8

:

Split

p

0


ontains our set of suitable pairs whi
h we will use to obtain the lower

bound for wl
ds with general variable orders.

For the remaining part of the proof we assume that �

n

2

+ 1 � p

0

� 0. (The


ase 1 � p

0

�

n

2

� 1 
an be handled in an analogous manner.) Furthermore, sin
e

jSplit

p

0

j >

n

8

we have jSplit

p

0

\(A

UL

�A

DR

)j >

n

16

or jSplit

p

0

\(A

UR

�A

DL

)j >

n

16

.

Sin
e the 
ase jSplit

p

0

\ (A

UR

� A

DL

)j >

n

16


an be handled in a 
ompletely

analogous manner, we assume that

jSplit

p

0

\ (A

UL

�A

DR

)j >

n

16

:

As in the spe
ial 
ase we 
onsider a 
ommuni
ation matrix. The rows are fun
tion

tables of the 
ofa
tors with respe
t to the variables of L. To estimate the rank of

this matrix we remove rows and 
olumns and 
ompute the rank of the remaining

submatrix.

Let k be minimal with (a

n

2

�p

0

+k

; a

k

) 2 Split

p

0

. We keep only rows and 
olumns

with b

k

= 1, b

n

2

�p

0

+k

= 1 and b

i

= 0 for i 2 f0; : : : ; n� 1g n f

n

2

� p

0

+ k; kg.

In addition we keep only rows and 
olumns with a

i

= 0 for all a

i

whi
h do not

o

ur as 
omponents in Split

p

0

.

De�ne

jjA

HIGH

jj :=

X

(a

i

;a

i�

n

2

+p

0

)2Split

p

0

\(A

UL

�A

DR

)

a

i

2

i�

n

2

+p

0

�k

and

jjA

LOW

jj =

X

(a

n

2

�p

0

+i

;a

i

)2Split

p

0

\(A

UL

�A

DR

)

a

i

2

i�k

By varying the �rst 
omponents of Split

p

0

\ (A

UL

� A

DR

) we obtain

2

jSplit

p

0

\(A

UL

�A

DR

)j

di�erent values for jjA

HIGH

jj (in
luding 0 and 1), and by

varying the se
ond 
omponents we obtain 2

jSplit

p

0

\(A

UL

�A

DR

)j

di�erent values for

jjA

LOW

jj (also in
luding 0 and 1).

Rows whi
h 
orrespond to the assignment jjA

HIGH

jj = 0 and 
olumns whi
h


orrespond to the assignment jjA

LOW

jj = 0 are removed.

The remaining submatrix M has 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1 di�erent rows 
orre-

sponding to di�erent values for jjA

HIGH

jj and 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1 di�ferent


olumns 
orresponding to di�erent values for jjA

LOW

jj.
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The entry m

ij


orresponding to jjA

HIGH

jj and jjA

LOW

jj is given by

m

ij

=

�

jjA

HIGH

jj � 2

n

2

�p

0

+k

+ jjA

LOW

jj � 2

k

2

n

2

�p

0

+k

+ 2

k

�

=

�

jjA

HIGH

jj � 2

n

2

�p

0

+ jjA

LOW

jj

2

n

2

�p

0

+ 1

�

:

For jjA

HIGH

jj = jjA

LOW

jj we have m

ij

= jjA

HIGH

jj, for jjA

LOW

jj < jjA

HIGH

jj we

have m

ij

= jjA

HIGH

jj�1. (m

ij

< jjA

HIGH

jj�1 would imply jjA

HIGH

jj � 2

n

2

�p

0

+

1 + jjA

LOW

jj, whi
h 
an not be true.) For jjA

LOW

jj > jjA

HIGH

jj we obtain m

ij

=

jjA

HIGH

jj. (m

ij

� jjA

HIGH

jj+ 1 would imply jjA

LOW

jj � 2

n

2

�p

0

+ 1+ jjA

HIGH

jj,

whi
h 
an not be true.)

If the rows with values jjA

HIGH

jj are ordered with in
reasing values x

1

= 1; x

2

; x

3

; : : :

and the 
olumns with values jjA

LOW

jj are also ordered with in
reasing values, we

obtain the following submatrix

M =

0

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 � � � 1 1

x

2

� 1 x

2

x

2

x

2

� � � x

2

x

2

x

3

� 1 x

3

� 1 x

3

x

3

� � � x

3

x

3

x

4

� 1 x

4

� 1 x

4

� 1 x

4

.

.

.

x

4

x

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

max

� 1 x

max

� 1 � � � � � � � � � x

max

� 1 x

max

1

C

C

C

C

C

C

C

C

C

C

C

A

and similar to the spe
ial 
ase we multiply the �rst 
olumn by (�1) and add this


olumn to all other 
olumns. Again, for the resulting matrix, the submatrix 
on-

sisting of the last 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 2 rows and 
olumns is an upper triangular

matrix with 1's on the diagonal (and 1's above the diagonal). Additional 
olumn

transformations even prove that the matrix has full rank 2

jSplit

p

0

\(A

UL

�A

DR

)j

� 1.

Sin
e jSplit

p

0

\ (A

UL

� A

DR

)j >

n

16

, the rank is at least 2

n

16

and thus the rank of

the original 
ommuni
ation matrix is also in 
(2

n

16

).

Using Theorems 3 and 1 we �nally obtain the following 
orollary:

Corollary 1 mtbdds, evbdds, bmds, *bmds, hdds, k*bmds and *phdds re-

quire representations of size 
(2

n

16

) for division (regardless of the variable order).

5. Con
lusions

We proved an exponential lower bound on the size of word-level representations

for integer dividers. The proof 
ould be done \simultaneously" for all word-level

DDs by the introdu
tion of Word-Level Linear Combination Diagrams (wl
ds) as



16

a generi
 word-level DD. They turned out to be a powerful tool to 
hara
terize the

limits of the word-level DD-
on
ept.

Con
erning division our result gives the following hints for future work: Sin
e

word-level DDs are not suitable as a data stru
ture at least as long as they are

used for the representation of the input-output behaviour, new methods have to

be developed. If existing DDs are still to be used, e.g. the stru
ture of the 
ir
uit

might be 
onsidered to 
he
k whether a hiera
hi
al substitution based approa
h is

feasible. Another approa
h is to 
ompute word-level DDs not for the divider itself

but for a 
ir
uit, whi
h is obtained from the divider by a transformation. Then

it has to be easy to 
on
lude the 
orre
tness of the divider from the 
orre
tness

of the transformed 
ir
uit. On the other hand, it is an interesting open question,

whi
h type of (DD-similar) data stru
ture is powerful enough to allow polynomial

representation of division and eÆ
ient manipulation for veri�
ation at the same

time.
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