Paper submitted to Formal Methods in System Design, for the final version see dx.doi.org/10.1023/A:1014702331828

Formal Methods in System Design, 20, 1-17 (2002)
© 2002 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On WLCDs and the Complexity of Word-Level
Decision Diagrams
— A Lower Bound for Division®

CHRISTOPH SCHOLL scholl@informatik.uni-freiburg.de
BERND BECKER becker@informatik.uni-freiburg.de
THOMAS WEIS weis@informatik.uni-freiburg.de
Institute of Computer Science, Albert-Ludwigs—University, D 79110 Freiburg im Breisgau, Ger-
many

Editor:

Abstract. Several types of Decision Diagrams (DDs) have been proposed for the verification
of Integrated Circuits. Recently, word-level DDs like BMDs, *BMDs, HDDs, K¥*BMDs and *PHDDs
have been attracting more and more interest, e.g., by using *BMDs and *PHDDs it was for the first
time possible to formally verify integer multipliers and floating point multipliers of “significant”
bitlengths, respectively.

On the other hand, it has been unknown, whether division, the operation inverse to multipli-
cation, can be efficiently represented by some type of word-level DDs. In this paper we show
that the representational power of any word-level DD is too weak to efficiently represent integer
division. Thus, neither a clever choice of the variable ordering, the decomposition type or the
edge weights, can lead to a polynomial DD size for division.

For the proof we introduce Word-Level Linear Combination Diagrams (WLCDs), a DD, which
may be viewed as a “generic” word-level DD. We derive an exponential lower bound on the WLCD
representation size for integer dividers and show how this bound transfers to all other word-level
DDs.

Keywords: Functional Design Verification, Formal Verification, Decision Diagrams, Word-Level
Decision Diagrams, WLCDs, Division

1. Introduction

One of the most important tasks during the design of Integrated Circuits is the
verification of an implemented circuit, i.e., the check whether the implementation
fulfills its specification.

In the last few years several methods based on Decision Diagrams (DDs) have
been proposed [14, 5] to perform verification. The idea is to transform both, im-
plementation and specification of a combinational circuit, into a DD. Then, due
to the canonicity of the DD representation, the equivalence check for specification
and implementation translates to the check whether the corresponding DDs are
identical.

The most popular data structure in this context are Ordered Binary Decision
Diagrams (0BDDs) [3]. They were applied successfully e.g. to the verification of
control logic and integer adders. But there are functions of high practical relevance,

Parts of the article have been presented at Int’l Conf. on CAD 1998

scholl
Schreibmaschinentext
Paper submitted to Formal Methods in System Design, for the final version see dx.doi.org/10.1023/A:1014702331828

which cannot be represented efficiently by oBDDs. Already in [3] and [4] Bryant
proved that OBDD representations for integer multipliers are of exponential size.

Several other types of DDs were defined to overcome the limitations of OBDDs,
such as Ordered Functional Decision Diagrams (OFDDs) [12], Ordered Kronecker
Functional Decision Diagrams (OKFDDs) [11], Multi-Terminal Binary Decision Di-
agrams (MTBDDs) [9] (also called Algebraic Decision Diagrams (ADDs) [1]) and
Edge-valued Binary Decision Diagrams (EVBDDs) [13]. But the first DDs to rep-
resent integer multiplication efficiently were Binary Moment Diagrams (BMDs) and
Multiplicative BMDs (*BMDs) introduced in [6]. Like MTBDDs and EVBDDs, also
BMDs and *BMDs are word-level DDs, i.e. they represent integer-valued functions
f:{0,1}"* — Z (Z denotes the set of integer numbers).

To further improve on the representational power of BMDs, several other word-
level DD types have been introduced, e.g. Hybrid Decision Diagrams (HDDs) [8]
and Kronecker *BMDs (K*BMDs) [10]. Recently Chen and Bryant defined a new
data structure called Multiplicative Power Hybrid Decision Diagrams (*PHDDs) [7],
which is able to represent not only integer multiplication but also floating point
multiplication efficiently.

Until now it has not been known, whether the word-level DDs mentioned above
are also able to represent division efficiently. Recently Nakanishi [15] made a first
step by showing that *BMDs cannot represent integer division efficiently. The proof
is technically complicated, it is based on fooling set arguments similar to the orginal
proof for multiplication by Bryant and has to take into account the edge values in
the *BMD representation. Consequently, as already mentioned, in this form it only
works for *BMDs.

In this paper we prove that integer division cannot be represented in polynomial
size by any of the ordered word-level DDs mentioned in the literature until now.
Even more interestingly, we prove that the concept of word-level DDs in general is
too weak to result in polynomial size representations of division.

For the proof we introduce a new data structure, the Word-Level Linear Combi-
nation Diagrams (WLCDs). WLCDs are a generalization of Waack’s Parity Ordered
Binary Decision Diagrams (POBDDs) [18] to the word level. It turns out that WLCDs
can be viewed as a “generic” ordered word-level DD in the following sense: Each
ordered word-level DD can be “embedded into” WLCDs such that a DD with &
nodes is transformed into a WLCD representing the same function with the same
number k& of nodes. Thus, a lower bound on the size of a WLCD is also a lower
bound on the size of all other ordered word-level DDs.

WLCDs are similar to Binary Linear Diagrams (BLDs) which were developed by
Thathachar [17] independently from our work [16]. WLCDs as presented in this
paper are a little more general than BLDs (they allow more than two outgoing
edges of a node) and thus they can also be used to “simulate” additive edge values
e.g. In that way lower bounds on the size of WLCDs are valid for EVBDDs and
K*BMDs as well.

We apply this idea to integer division by deriving an exponential lower bound
on the size of WLCDs representing integer divison (regardless of the chosen variable
order). For wLcDs lower bounds can be obtained by consideration of the rank of

a communication matrix which is constructed from the function tables of several
cofactors. It follows that bothering details concerning e.g. edge values have not to
be taken into account to derive the lower bound in our proof. On the other hand,
due to the properties of WLCDs we obtain an exponential lower bound result, valid
for all ordered word-level DD types.

The paper is structured as follows: In Section 2 we provide basics on word-level
DDs which will be necessary for the understanding of the paper. WLCDs and their
relationship to existing word-level DDs are introduced in Section 3. Furthermore,
an algebraic characterization of the WLCD complexity is given which leads to the
rank considerations of certain cofactor matrices. In Section 4 the lower bound for
division is derived. We finish with conclusions and perspectives of further work in
Section 5.

2. Preliminaries: Word-Level Decision Diagrams

In this section we give a short review of ordered word-level DDs, data structures
used for the representation of so-called Pseudo Boolean functions, i.e. functions
from a Boolean domain to the integers or rational numbers. In general, DDs are
graph—based representations, where at each (non—terminal) node (labeled with a
variable z) a decomposition of the function (represented by this node) into two
subfunctions (the low—function and the high—function) is performed:

Definition 1. A word-level DD is a rooted directed acyclic graph G = (V, E) with
non empty node set V containing two types of nodes, non-terminal and terminal
nodes. A non-terminal node v has as label a variable indexz(v) € {z1,...,zn}
and two children low(v), high(v) € V. A terminal node v is labeled with a value
value(v) € Z.

For the purpose of this paper, we are only interested in ordered DDs, i.e. DDs,
where the variables occur in the same order on all paths of the DD. More precisely,
this means:

Definition 2. A DD is ordered iff there is a fixed order 7 : {1,...,n} = {z1,...,2,}
such that for any non-terminal node v the following holds: indez(low(v)) = n(k)
with k& > 771 (index(v)) (indexz(high(v)) = 7(q) with ¢ > 7~ !(indez(v))) as long
as low(v) (high(v)) is also a non-terminal node.

Based on these general definitions we now consider different decomposition types

and shortly discuss resulting word-level DDs and corresponding evaluation rules.
(For a survey on word-level DDs and more details see also [2].)

2.1. Decomposition types and evaluation rules

Each node of a DD represents a function and the function represented by the
root node is the function represented by the DD. In word-level DDs the func-

tion f, : {0,1}" — Q (Q denotes the set of rational numbers) represented by a
non—terminal node v, which is labeled by variable z;, is decomposed into two sub-
functions, both independent of variable z;. Depending on the decomposition type
these subfunctions are combined from the cofactors

(fv)ﬂ: fv(xlv"'7mi71707mi+17"'7mn)

and

(f’U)Ez = fv(xlv"'7mi71717mi+17"'7mn)

in different ways. DDs as defined in literature differ in the way they use decompo-
sition types. Decomposition types can be defined by the set Zj » of non—singular
2 x 2 matrices over Z [8]. The most important decomposition types are Shannon de-
composition, positive Davio decomposition and negative Davio decomposition. The
Shannon decomposition is used in MTBDDs [9] and EVBDDs [13], the positive Davio
decomposition is used in BMDs and *BMDs [6]. In K*BMDs [10] and *PHDDs [7] Shan-
non decomposition, positive Davio and negative Davio decomposition are used. In
HDDs [8] six different decomposition types (including Shannon, positive and nega-
tive Davio decomposition) are used.

Following [8] the matrices corresponding to Shannon, positive Davio and negative
Davio decomposition, respectively, are

(07) (47) = (T24)

These matrices define how the functions fj,.(y) and fhign(v) represented by low(v)
and high(v) are computed from (f,)z and (f,),,. For the positive Davio decom-
position, e.g., we have

< flow('u)) — (1 0) <(fv)wz>
fhigh(v) -11 (fv)-Ti ’
i.e., floww) = (fo)zr and frighw) = (fo)z: — (fo)zr-

A terminal node v with value(v) = z represents the constant function with func-
tion value z. To evaluate the function f, represented by a non—terminal node v for
z; = 0 or z; = 1, we have to reconstruct (f,)z; or (fu)z; from fio(p) and frign(v)-
To do so, we make use of the fact, that the decomposition type matrices are non—

singular: Since a decomposition type matrix A is non—singular, the inverse matrix
A1 exists and

(ER—) =4 (Jronte) - 1)

The inverse decomposition type matrices for Shannon, positive Davio and negative
Davio decomposition, respectively, are

(09) (11) = (10)

For positive Davio decomposition, e.g., this means that (fy)zr = fiow(v) and (fy)e,
= flow(v) + fhigh(v)'

2.2. Additive and multiplicative edge values, negation edges

Edge values are introduced to increase the amount of subgraph sharing when using
integer—valued terminal nodes. It has to be differentiated between additive and
multiplicative edge values.

An edge with additive weight ¢ and multiplicative weight m leading to node v
represents the function

< (a,m), fo >:=a+m- f,. (2)

MTBDDs, BMDs and HDDs use no edge values, EVBDDs use only additive weights,
i.e., the multiplicative weight m is 1, *BMDs use only multiplicative weights, i.e.
a = 0. K*BMDs use both additive and multiplicative weights. *PHDDs use only
multiplicative weights of form (—1)"°-2" with ne € {0,1} and w € Z. (For reasons
of memory efficiency (—1)"¢-2" is stored as an integer w and a bit ne representing
a “negation edge” when ne = 1.)

Now consider any ordered word-level DD with edge values. Then for each non-
terminal node v there is a 0—edge labeled with edge weights (aiow, Mi0w) leading to
node low(v) and a 1-edge labeled with edge weights (apigh, Mnign) leading to node

high(v). If in node v the decomposition type A = (Z;i Z;g) with inverse matrix

Al = (Z:“ 2:12) is used, then using Equations 1 and 2 the evaluation rule for this
21
node is the following:

(1- Ii)'(alll(alow + mlowflow(v))
+a15(anigh + Mhigh frigh(v)))
+ zi- (ah (Gtow + Miow fiow(v))
+aby (anigh + Mhuigh fhigh(v))) (3)
= (1 —=i)((alyGrow + @12anign)
+(a{[1mlowflow(v)) + (aizmhighfhigh(v)))
+zi ((a316100 + a320high)
+(a'l21ml0'wflow(v)) + (al22mhighfhigh(v)))'

In Section 3 we will use the “most general evaluation rule” of Equation 3 to
analyze the relationship between the existing ordered word-level DDs and our new
data structure called Word-Level Linear Combination Diagrams (WLCDs).

3. Word-Level Linear Combination Diagrams

In this section we define Word-Level Linear Combination Diagrams (WLCDs).
WLCDs are a generalization of POBDDs defined by Waack [18] to the word-level.
Whereas POBDDs can represent only Boolean functions, WLCDs represent functions
f:{0,1}" - Q.

WLCDs are given by the following definition:

Figure 1. Non-terminal node v of a WLCD. v is labeled by variable z;. The 0—edges of v are given
by edges to nodes u1,...,u; and the 1-edges are given by edges to t1,...,tm.

Definition 3. A Word-Level Linear Combination Diagram (WLCD) is a rooted di-
rected acyclic graph G = (V,E). If the WLCD is not empty, it contains ex-
actly one sink labeled with 1 and with no outgoing edges. The remaining nodes
are called non—terminal nodes. A non-terminal node v is labeled by a variable
index(v) € {z1,...,zn}. The outgoing edges of a non-terminal node v are parti-
tioned into two sets: 0-edges(v) and 1-edges(v). At least one of these sets is not
empty. All edges e are labeled by an edge weight w(e) € Q. A WLCD is ordered,
i.e., as with DDs the variables occur in the same order on all paths of wLcD. The
size of a WLCD is its number of nodes.

The definition of a WLCD is illustrated by Figure 1.

An empty WLCD represents the constant O—function, the sink of a non—empty
WLCD represents the constant 1-function. The function f, represented by a non-—
terminal node v labeled by variable z; with 0-edges(v) = {(v,u1), ..., (v,u;)} and
I1-edges(v) = {(v,t1),..., (v,t:,)} is defined by the following evaluation rule:

fo = (1 - :cz) : (w(v,ul) < fua +...+w(v,uk) fuk) (4)
+x; - (w(v’tl) : ft1 +.. +1.U(’U,tm) 'ftm)'

Similar to POBDDs, also for WLCDs efficient synthesis operations and an equiva-
lence check can be derived. We omit any further details, rather we concentrate on
the property of WLCDs which is most important in this paper: Ordered word-level
DDs can be “embedded into WLCDs”, i.e., if there is some word-level DD with &
nodes, we can easily construct a WLCD with the same number k of nodes. This
fact is used to conclude lower bounds on the size of arbitrary word-level DDs from
lower bounds on the size of WLCDs.

The computation of lower bounds on the size of WLCDs can be done in an elegant
way using arguments from linear algebra. Before coming to lower bounds we show
how to embed word-level DDs into WLCDs.

3.1. Relationship between WLCDs and existing word-level DDs

Here we prove that all ordered word-level DDs mentioned in the previous sections
can be “embedded into wLcDs”. To do so we proceed as follows:

A given word-level DD is transformed step by step into a WLCD.

If the given DD contains terminals v with values value(v) different from 0 and 1,
these terminals are replaced by a terminal 1 and the multiplictive edge weights of
all incoming edges of v are multiplied by value(v). If now there is more than one
terminal with value 1, these terminals are replaced by a unique terminal with value
1. Edges to terminal 0 with additive weight a are replaced by edges to terminal
1 with additive weight a and multiplicative weight 0. The 0—-terminal is removed.
All these steps do not change the function represented by the DD.

Now in a bottom—up procedure for each non—terminal node v labeled with variable
z; = indez(v) representing a function f, the outgoing edges are replaced resulting
in a WLCD—node representing the same function f,. Suppose that the decomposition
type used for node v is given by A = ({1 212) (with inverse matrix A~ = (Zii Zii))
and the 0—edge is labeled with edge weights (0w, Miow), the 1—edge is labeled with
edge weights (anigh, Mnign). Then the evaluation rule of Equation 3 gives a relation
between fi,(v) and frign(y) and f,. A comparison with the evaluation rule for
WLCDs (see Equation 4) leads to the definition of the equivalent wLcD-node and
its corresponding edges (let v,ne be the terminal with value 1):

o (O-edges(v) = {(v,Vone), (v, low(v)), (v, high(v))},

W(V, Vone) = G11Gi0w + A1oGhigh, w(V,low(v)) = aliMiow, w(v,hhigh(v)) =
aloMhuigh.

o I-edges(v) = {(v,Vone), (v, low(v)), (v, high(v))},
WV, Vone) = Qh1Qlow + Gholhigh, W(V,low(v)) = ahiMiow, w(v,high(v)) =

!
a22mhigh.

The replacement is illustrated by Figure 2.

After this bottom—up procedure, if there is a root edge with weight (a,m),
the weights of the outgoing edges of the root are multiplied by m and an edge
(root, vone) with weight a is included into 0-edges(root) and 1-edges(root).

Finally we obtain a WLCD representing the same function as the original DD. We
summarize:

THEOREM 1 If the MTBDD, EVBDD, BMD, *BMD, HDD, K¥BMD or *PHDD for a
function f:{0,1}™ = Z (or f :{0,1}" — Q for the case of *PHDDs) with variable
order m has k nodes, then there also exists a WLCD with variable order w representing
f with (at most) k nodes.

ExaAMPLE: In Figure 3 the node replacement described to prove Theorem 1 is
illustrated for positive Davio decomposition without edge weights (i.e. the additive
edge weights are 0 and multiplicative edge weights are 1). For positive Davio

Figure 2. Transformation into WLCD node

Figure 3. Transformation of a positive Davio node into a WLCD node

decomposition the decomposition type matrix is given by A = ("”11 “12) = (711 2),

a21 a22
Al = (Z,“ Z}Z) = (i (1)) Thus, the evaluation rule can be simplified to
21 %22
fo = (1—zi)-((a11 010w + a15anign)

+(a§_1mlowflow(v)) + (allzmhighfhigh(v)))
+ i+ (610100 + a220mign)
+(a5 Miow fiow(v)) + (@2aMnigh frigh(v)))
= (1 - Ii)'flow(v) +Ti- (flow(v) + fhigh(v))'

3.2. An Algebraic Characterization of the WLcD Complezity

In this subsection we give an algebraic characterization of the WLCD complexity,
which we will use to prove lower bounds on the size of WLCDs. We show, that
the number of nodes in a WLCD cannot be smaller than the dimension of a certain
vector space.

Consider the set of all functions from {0, 1}" to the rational numbers Map({0, 1}",
Q) ={f:{0,1}" — Q}. Define addition on Map({0,1}",Q) by (f +9g)(z1,...,Tpn)

= f(z1,...,25n) + g(z1,...,2,) and multiplication with a scalar w € Q by (w -
Nz, .. zn) =w- f(z1,...,2,). Tt is easy to see, that Map({0,1}",Q) together
with addition and multiplication with scalars forms a vector space.

Based on WLCDs with fixed variable order m we will define subspaces of the vector
space Map({0,1}",Q). W.l.o.g. we assume the natural variable order, i.e., 7 :
{1,...,n} = {z1,...,zp} with 7(3) = z; Vi € {1,...,n}.

Given a WLCD B, consider for some k& € {1,...,n} the set of all wLcD-nodes,
which are labeled with variable xz; or which are labeled with a variable z; with
¢ > k and which have an incoming edge from a node labeled by a variable z; with
j < k. These nodes represent functions of Map({0,1}", Q). We denote this set of
functions by V;5. Of course, the vector space < V;® > which is generated by the
functions in V;® forms a subspace of Map({0,1}", Q).

Let f be the function represented by the wLcD B. We consider the following set
of cofactors of f:

ka = {f|z1=c1,...,zk_1:ck_1 |cla .o, Ck—1 € {07 1}}

Again, < ka >, which is generated by the functions in ka , is a subspace of
Map({0,1}",Q).

Now we investigate the relationship between the vector spaces < VkB > and
< ka >. We claim that

<V >c<VP>.

To prove this it is sufficient to show, that each cofactor f|z =c,,. .25 1=cx 1 € ka
is in < V2 >. We consider all paths starting from the root of B, which fulfill
the assignment z; = ¢1,...,25—1 = cx—1. Let v1,...,v,, be the nodes, which are
reached by these paths and suppose that each node v, Vr € {1...m} is reached by
i, different paths p:(lr), . ,pgr). Let wg-r) be the product of all weights of edges on
path p;.T). Then according to the definition of WLCDs and by induction on k the
following holds:

i1 im
1
flav=ecrcwici=ercs = Zw]() foo +- 4+ Zw]('m) form-
j=1 j=1

Since V1 < i < m f,;, € VB, we conclude that fls—c, 2y ,—cr, €< VP > for
each choice of ¢1,...,cp_1 € {0,1}.
Because of < ka >C< VkB > we have

dim(< V{ >) < dim(< VF >)
and since V;B generates < V;Z > it holds
dim(< vV >) < |VE|.

Thus we obtain the following lemma

10

LEMMA 1 Let f be any function in Map({0,1}",Q). Then

dim(< V;{ >)

is a lower bound on the size of a WLCD for f with respect to the natural variable
ordering.

In fact, we can prove even a stronger result with similar arguments as in the proof
of Waack [18] for POBDDs:

THEOREM 2 A WLCD B with natural variable order, representing function f with
a minimal number of nodes, has exactly dim(< Ji2; V/ >) nodes.

However, for the purposes of this paper we need only Lemma, 1.

4. An Exponential Lower Bound for Division

In this section we apply Lemma 1 to derive an exponential lower bound on the size
of wLcDs (and thus of word-level DDs) representing integer divison.
For our proof we use the following notations and definitions concerning division:

Two sets of variables, the a-variables A = {a,—1,...,a0} and the b-variables B =
{bp-1,...,bo}, are considered. As usual, the binary representation of A and B is
given by

4] :=2""an 1 +...+2%° and ||B||:=2"""b, 1 +... 4+ 200",

respectively. Then the integer division DIV is the Pseudo Boolean function defined
by

DIV : {0,1}" x {0,1}" — IN,

|1 A]|
(@n—1y---,00,bp—1,---,b0) {W .

Before we prove the exponential lower bound for WLCDs with arbitrary variable
orders we consider a restricted case which nicely demonstrates the idea of the proof
and the proof technique. Then we turn to the proof of the general case which is
slightly more complicated but works along similar lines.

4.1. WLCDs with Interleaved Variable Ordering

For the restricted case we fix the variable order in advance: it is given by the
interleaved ordering
(an_l, bn—l, ceey @0, bo)

Furthermore, we may assume that n is even. (For n odd, we embed an (n — 1)—
bit divider into the n—bit divider by setting a,,_1 = b,_1 = 0 and note that for an
exponential lower bound (c") it holds Q(c?) = Q(c"71).)

Following Lemma 1 we now consider the set an 41 of cofactors

11

a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
ag 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
bo 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
azasbzbo
0000 Z 0 0 0 # 1 0 0 # 2 1 0 # 3 1 1
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0100 # 4 2 1 # 5 2 1 # 6 3 2 #£ 7 3 2
0101 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 # 8 4 2 # 9 4 3 # 10 5 3 # 11 5 3
1001 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1
1010 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
1011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 # 12 6 4 # 13 6 4 # 14 T 4 # 15 7 5
1101 3 2 2 1 3 2 2 1 3 2 2 2 3 3 2 2
1110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1111 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
Figure 4. Communication matrix of division for n = 4.
Vrzf+1 = {f|an71:CI7bn712027---7a%:Cn717b%:Cn | Cly---yCn € {07 1}}

and show an exponential lower bound for dim(< V. 1 >)-

To estimate dim(< V,/ 41 >) we prove that a certain number of elements of v/ 1
is linearly independent. For that we consider a communication matriz whose rows
are function tables of the cofactors of Vrf +1- The rows of the matrix are “numbered”
by input combinations of the “upper half” of the a- and b-variables. Analogously,
the “lower half” of the a- and b-variables defines the columns. For illustration see
Figure 4, where we give the communication matrix for n = 4. (# in the matrix
means that the corresponding result of DIV is not defined (division by zero). Our
proof is valid for all possible replacements of symbols #.)

The rank of this communication matrix is equal to dim(< V7 41 >). Since we
need only a lower bound on dim/(< Vrf 41 >), we may remove columns and rows in
the matrix (thereby possibly reducing the rank of the resulting matrix).

The idea now is to restrict to entries with constant values for the b-variables and
to observe the result of the division for increasing values of a-variables . More
precisely, we only keep rows where from the b-variables exactly the least significant
upper b-variable bz is set, i.e.

bn1=0,...,bz41 =0,bs =1

w3

Analogously, only columns with bz_; = 0,...,b1 = 0,bp = 1 are considered.

Furthermore, the rows and columns with 0 for all a-inputs are removed. For our
example with n = 4 the following matrix remains:

12

a1 |0 1 1
ap |1 0 1
b1 |0 0O O
bo|1l 1 1
azazbzbo
0101 111
1001 2
1101 2 2 3

In general, we obtain a matrix M of size (2 — 1) x (2% — 1). For the com-

putation of the entries of M consider the set Agrgy := {an_l,...,a%} and
ALOW = {a%_l,...,ao}, i.e. AHIGH (ALOW) consists of the upper (IOWQI‘) a-
variables. Define ||Agigw]| := ZZ:%:L a;2""% and ||Arow]|| := ?:61 a;2%.

Now let m;; denote an entry of M. Then row ¢ corresponds to an assignment
||Arrca|| and column j corresponds to an assignment ||Arow||. The entry m;; is
then given by

. — | IAmTGH] - 23 + [|[Arowl|
S 25 +1 '

(Remember that (b,—1,...,b2) =(0,...,0,1) and (bz 1,...,b0) = (0,...,0,1).)

2

It follows that the result of DIV cannot be determined by looking at the assign-
ment for Agep, rather the “relation” between “corresponding” bits of Ay ;g and

Arow is essential: For ||Amrgm|| = ||ALow]|| the result is obviously ||Anrgw]||-
For ||ALOW|| < ||AHIGH|| we have mg; = ||AHIGH|| — 1. (mi]' < ||AHIGH|| —1
would imply ||Agrg|| > 22 +1+||Arow|| which cannot be true.) For ||Arow|| >
||AHIGH|| we obtain mij = ||AHIGH||

Thus, the resulting matrix has the following form:

1 1 11 1
1 2 2 2 2
2 2 3 3 3
M = 3 3 3 4 4
2% —2 25 _2 27 —92 2% —_1

To prove that this matrix M has full rank we apply column transformations
starting with a subtraction of the first column from all other columns. For the
resulting matrix the submatrix consisting of the last 27 — 2 columns and the last
23 —2 rows is an upper triangular matrix with 1’s on the diagonal (and 1’s above the
diagonal). By additional column tranformations it follows directly that the matrix
has maximum rank 2% — 1. Consequently, the rank of the original communication
matrix and dim/(< an_H >) is in ©(2%). We summarize:

LEMMA 2 A WLCD with interleaved variable ordering representing function DIV
has at least size (22 — 1).

13

4.2. The General Case

In the rest of this section we extend the above proof to WLCDs with arbitrary vari-
able order. Crucial for the proof in the case of the interleaved variable ordering
was the fact that the outcome of DIV was depending on the assignments for cor-
responding variables in the upper and lower half of the a-variables. More precisely:
For the interleaved variable ordering there are n/2 pairs of variables (a;, a;) with

e a; (aj) is an upper (a lower) a-variable

e a; and a; are split between the first and the second half of the variable order
and

e the difference of the indices i and j is a constant offset .

For arbitrary variable orders this is not always the case for the offset 4, but if
one modifies the offset to a number § — pp, one can always find “enough” “suit-
able” pairs (a;, a;) being separated by the considered variable ordering. A precise
formulation of this (purely combinatorial) property, its proof (and the application
to lower bounds for multiplication) has already been given by Bryant in [4]. Using
this property the proof for the interleaved variable ordering can be modified by
specification of a “similar” communication submatrix. Consideration of the rank

of this submatrix then leads to the following result:

THEOREM 3 A WLCD for function DIV has at least size 276 — 1 (regardless of the
variable order).

Proof: We now give details of the proof: At first the notion “suitable” pairs
(ai,a;) is precisely specified: To do so, we adopt the notions of [4] and give a short
review on the main points as far as they are necessary for our proof.

Let

AU = {an_l,...,a%}

and
AD = {a%_l,. ..,ao}

be the sets of upper and lower a-variables, respectively. Given any variable order
7 for the variables of A and B we define two sets L and R. L contains the first [
variables in the variable order and R contains the remaining 2n — [variables. [is
chosen such that |[ANL| = |[ANR|, i.e. in L and R we have the same number of
a-variables.

We define the sets of upper and lower a-variables contained in L and R:

Ayp:=AyNL, Apy, :=ApNL, Ayr := AuNR, Apr:=ApNR.

In sets Args, pairs of variables (a;,a;) € Ay x Ap are grouped with constant
distance i —j = § —p: For =5 +1 <p <0 Args, = {(az _p14,0:)[0 <7 < § +p}

14

and for 1 <p <2 —1 Args, := {(az4i,ap44)[0 <7 < 2 —p}.
Moreover let

Splitp = ATgSp n ((AUL X ADR) U (AUR X ADL))

be the subset of Args, containing the pairs split between L and R.
Following [4] there is a py with

, n
|Splitp,| > 3

Split,, contains our set of suitable pairs which we will use to obtain the lower
bound for wLCDs with general variable orders.

For the remaining part of the proof we assume that —% + 1 < pp < 0. (The
case 1 <pp < § — 1 can be handled in an analogous manner.) Furthermore, since
|Splitp0| > g we have |Spl7:tpoﬂ(AUL XADR)| > % or |Spl’itpoﬂ(AUR><ADL)| > %
Since the case |Split,, N (Aur X Apr)| > {§ can be handled in a completely
analogous manner, we assume that

|Splity, N (Aur x Apg)| > 1%

As in the special case we consider a communication matrix. The rows are function
tables of the cofactors with respect to the variables of L. To estimate the rank of
this matrix we remove rows and columns and compute the rank of the remaining
submatrix.

Let k be minimal with (az —p,+x,ar) € Split,,. We keep only rows and columns
with b, = 1, b%,p0+k =land b, =0forie {0,,17,—1}\{% —pg-l-k‘,k}.
In addition we keep only rows and columns with a; = 0 for all a; which do not
occur as components in Splity,.

Define
| ArrcH|| = Z ;2" 2P0k
(ai,ai,%ero)esplitmm(AULxADR)
and
| Azow|| = > a; 27"

(a%_p0+i,ai)65plitpo ﬂ(AUL XADR)

By varying the first components of Split,, N (Ayr X Apr) we obtain
21SplitpyN(Avz xApr)| (different values for ||[Amrer|| (including 0 and 1), and by
varying the second components we obtain 2/5Pliteo(AvrxApr)| different values for
[|Azow]|| (also including 0 and 1).

Rows which correspond to the assignment ||Agrer|| = 0 and columns which
correspond to the assignment |[ALow|| = 0 are removed.

The remaining submatrix M has 2/SPtteoN(AvzxApr)l _ 1 different rows corre-
sponding to different values for ||Agrgr|| and 2/SPlte N(AvexAbr)l 1 diffferent
columns corresponding to different values for ||Arow||.

15

The entry m;; corresponding to ||Aurcu|| and ||Arow]] is given by

{HAHIGHII 25700tk 4 | Arow]| - QkJ

Mij = 25 —potk { ok
_ | llArrcH|] - 22 7 + ||ALowl]
B 25—P0 4] '
For [[Anicul| = [|[ALow|| we have my; = ||AurcHul|, for |[Arow|| < ||AnrcH|| we
have m;; = ||AHIGH||_1- (mi]' < ||AHIGH||_1 would imply ||AHIGH|| Z 232 7Po

1+ ||ALow||, which can not be true.) For ||ALOW|| > ||AHIGH|| we obtain mg; =
|Aurcull. (mi; > ||Anicwl| + 1 would imply [|Arow|| > 22 7 + 1+ ||Aurcul,
which can not be true.)

If the rows with values ||Agrcg|| are ordered with increasing values z; = 1, z2, 23, . ..
and the columns with values ||ALow]|| are also ordered with increasing values, we
obtain the following submatrix

1 1 1 1 1 1

sz—l T2 T2 T2 T o

T3 -1 r3 — 1 T3 T3 T3 Z3

M = rq4 —1 ra—1 x4—1 x4 T4 T4
Tmaz — 1 Tmaz — 1 Tmaz — 1 Tmaz

and similar to the special case we multiply the first column by (—1) and add this
column to all other columns. Again, for the resulting matrix, the submatrix con-
sisting of the last 2/5P!itroN(AvrXApR)l _ 9 rows and columns is an upper triangular
matrix with 1’s on the diagonal (and 1’s above the diagonal). Additional column
transformations even prove that the matrix has full rank 2/5PtryN(Avz xApr)| _ 1
Since |Splity, N (Aur X Apr)| > 1%, the rank is at least 216 and thus the rank of
the original communication matrix is also in Q(27).

Using Theorems 3 and 1 we finally obtain the following corollary:

COROLLARY 1 MTBDDs, EVBDDs, BMDs, *BMDs, HDDs, K¥BMDs and *PHDDs re-
quire representations of size Q(216) for division (regardless of the variable order).

5. Conclusions

We proved an exponential lower bound on the size of word-level representations
for integer dividers. The proof could be done “simultaneously” for all word-level
DDs by the introduction of Word-Level Linear Combination Diagrams (WLCDs) as

16

a generic word-level DD. They turned out to be a powerful tool to characterize the
limits of the word-level DD-concept.

Concerning division our result gives the following hints for future work: Since
word-level DDs are not suitable as a data structure at least as long as they are
used for the representation of the input-output behaviour, new methods have to
be developed. If existing DDs are still to be used, e.g. the structure of the circuit
might be considered to check whether a hierachical substitution based approach is
feasible. Another approach is to compute word-level DDs not for the divider itself
but for a circuit, which is obtained from the divider by a transformation. Then
it has to be easy to conclude the correctness of the divider from the correctness
of the transformed circuit. On the other hand, it is an interesting open question,
which type of (DD-similar) data structure is powerful enough to allow polynomial
representation of division and efficient manipulation for verification at the same
time.

References

1. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their application. In Int’l Conf. on CAD, pages 188-191,
1993.

2. B. Becker, R. Drechsler, and R. Enders. On the computational power of bit-level and word-
level decision diagrams. In ASP Design Automation Conf., pages 461-467, 1997.

3. R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., 35(8):677—691, 1986.

4. R.E. Bryant. On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication. IEEE Trans. on Comp., 40:205—
213, 1991.

5. R.E. Bryant. Binary decision diagrams and beyond: Enabeling techniques for formal verifi-
cation. In Int’l Conf. on CAD, pages 236-243, 1995.

6. R.E. Bryant and Y.-A. Chen. Verification of arithmetic functions with binary moment dia-
grams. In Design Automation Conf., pages 535-541, 1995.

7. Y.-A. Chen and R.E. Bryant. *PHDD: An efficient graph representation for floating point
circuit verification. In Int’l Conf. on CAD, pages 2-7, 1997.

8. E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - overcoming the limitations
of MTBDDs and BMDs. In Int’l Conf. on CAD, pages 159-163, 1995.

9. E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large
Boolean functions with application to technology mapping. In Design Automation Conf.,
pages 54-60, 1993.

10. R. Drechsler, B. Becker, and S. Ruppertz. K¥*BMDs: A new data structure for verification.
In European Design & Test Conf., pages 2-8, 1996.

11. R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski. Efficient representa-
tion and manipulation of switching functions based on ordered Kronecker functional decision
diagrams. In Design Automation Conf., pages 415-419, 1994.

12. U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic synthesis based on functional
decision diagrams. In Furopean Conf. on Design Automation, pages 43—47, 1992.

13. Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hierarchical
verification. In Design Automation Conf., pages 608—613, 1992.

14. S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Logic verification
using binary decision diagrams in a logic synthesis environment. In Int’l Conf. on CAD,
pages 69, 1988.

15. M. Nakanishi. An exponential lower bound on the size of a binary moment diagram repre-
senting division. Master’s thesis, Osaka University, Japan, 1998.

16.

17.

18.

17

C. Scholl, B. Becker, and T.M. Weis. Word-level decision diagrams, WLCDs and division.
In Int’l Conf. on CAD, pages 672—677, 1998.

J.S. Thathachar. On the limitations of ordered representations of functions. In Computer
Aided Verification, volume 1427 of LNCS, pages 232-243. Springer Verlag, 1998.

S. Waack. On the descriptive and algorithmic power of parity ordered binary decision di-
agrams. In Symp. on Theoretical Aspects of Comp. Science, volume 1200 of LNC'S, pages
213-224. Springer Verlag, 1997.

