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Abstrat|In this paper we study the e�et of using infor-

mation about (partially) symmetries for the minimization

of Redued Ordered Binary Deision Diagrams (robdds).

The inuene of symmetries for the integration in dynami

variable ordering is studied for both ompletely and inom-

pletely spei�ed Boolean funtions.

The problems above are studied from a theoretial and

pratial point of view. Statistial results and benhmark

results are reported to underline the eÆieny of the ap-

proah. They prove that our tehniques lead to improve-

ments of the robdd sizes by up to 70%.

Keywords| BDD, symmetry, sifting, inompletely spei-

�ed funtions, symmetry detetion

I. Introdution

B

INARY Deision Diagrams (bdds) as a data struture

for representation of Boolean funtions were �rst intro-

dued by Lee [30℄ and further popularized by Akers [1℄ and

Moret [38℄. In the restrited form of robdds they gained

widespread appliation, beause robdds are a anonial

representation and allow eÆient manipulations [5℄. Some

�elds of appliation are logi design veri�ation, test gen-

eration, fault simulation, and logi synthesis [33℄, [6℄. Most

of the algorithms using robdds have run time polynomial

in the size of the robdds. The sizes themselves depend

on the variable order used. Thus, there is a need to �nd

a variable order that minimizes the number of nodes in an

robdd.

As an example of appliation of robdds onsider the use

of Field Programmable Gate Arrays (fpga) in the on-

strution of Combinational Logi Ciruits (l) from a

bdd. The bdd has a diret orrespondene to a l when

eah node of the bdd is substituted by a multiplexer. Sine

it is straightforward to map these multiplexer iruits on

an fpga, where the logi bloks are based on multiplexers,

bdds have beome a good framework for logi synthesis.

Beause of this diret orrespondene, saving only a few

nodes in a bdd by using good variable orders already pays.

The importane of bdd minimization is also obvious for

reently proposed methods to synthesize Pass Transistor

Logi (PTL) networks diretly from bdds [7℄, [18℄. Also
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Parts of the artile have been presented at Int'l Conf. on CAD

1993 [36℄, IFIP Workshop on Logi and Arhiteture Synthesis 1994

[37℄, and European Design and Test Conf. 1997 [44℄.

for other FPGA synthesis tehniques like funtional deom-

position (see e.g. [28℄, [50℄, [45℄) it is a good heuristi to

start with minimized bdds.

The existing heuristi methods for �nding good variable

orders an be lassi�ed into two ategories: initial heuris-

tis whih derive an order by inspetion of a logi iruit

[33℄, [20℄, [21℄, [19℄ and dynami reordering heuristis whih

try to improve on a given order [26℄, [43℄, [17℄, [2℄, [14℄.

Sifting introdued by Rudell [43℄ has emerged so far as the

most suessful algorithm for dynami reordering of vari-

ables. This algorithm is based on �nding the loal optimum

position of a variable, assuming all other variables remain

�xed. The position of a variable in the order is determined

by moving the variable to all possible positions while keep-

ing the other variables �xed. As already observed in [40℄,

one limitation of sifting, however, is that it uses the ab-

solute position of a variable as the primary objetive, and

only onsiders the relative positions of groups of variables

indiretly.

In this paper we onsider partially symmetri Boolean

funtions, i.e., Boolean funtions that are invariant un-

der the permutation of some input variables. Knowing a

Boolean funtion to be symmetri allows appliation of spe-

ial logi synthesis tools that an improve the results of the

design [16℄, [27℄, [13℄. Furthermore, knowing the variables

of a Boolean funtion whih are symmetri often restrits

the searh spae of a logi design problem whih may yield

in a remarkable derease of run time for that problem. Suh

problems are, e.g., permutation independent Boolean om-

parison [29℄, [9℄, [34℄, [35℄ and tehnology mapping [32℄.

We show that symmetry properties an be used to ef-

�iently onstrut good variable orders for robdds using

modi�ed gradual improvement heuristis [37℄, [41℄

1

.

The ruial point is to loate symmetri variables side

by side and to treat them as �xed blok. This tehnique is

motivated by the following three fats:

1. The exhange of two symmetri variables does not

hange the size of the robdd, beause the funtion

remains the same.

2. The size of the robdd of any totally symmetri fun-

tion f : f0; 1g

n

! f0; 1g is O(n

2

).

3. The value of a funtion whih is symmetri in some

variables fx

i

1

; : : : ; x

i

q

g does not depend on the ex-

at assignment of these variables but only on their

weight

P

q

j=1

x

i

j

.

Using the �rst fat, the heuristis an skip over the ex-

hange of symmetri variables and so the run time de-

reases. However, the resulting robdd sizes will be the

1

The methods of paper [41℄ are similar to ours and have been inde-

pendently developed.
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same. The seond and third fat leads to the speial lass of

variable orders of our tehnique, i.e, variable orders where

the symmetri variables are loated side by side.

If we loate the symmetri variables side by side and

treat them as a �xed blok, we reeive a modi�ation of

sifting: the symmetri sifting algorithm, whih sifts sym-

metri groups simultaneously. Regular sifting usually puts

symmetri variables together in the order, but the sym-

metri groups tend to be in sub-optimal positions. The

sub-optimal solutions result from the fat that regular sift-

ing is unable to reognize that the variables of a symmetri

group have a strong attration to eah other and should be

sifted together. When a variable of a symmetri group is

sifted by regular sifting, it is likely to return to its initial

position due to the attration of the other variables of the

group [40℄.

To give an impressive example for the fat that it helps

to loate the symmetri variables side by side, onsider the

funtion x

1

x

n+1

+ x

2

x

n+2

+ : : : + x

n

x

2n

of 2n variables

[5℄. The size of the orresponding robdd with variable

ordering x

1

; x

2

; x

3

; : : : ; x

2n

is exponential in n whereas the

size of any robdd with an order where the symmetries are

side by side is linear in n.

We present statistial fats for Boolean funtions with up

to 5 input variables and experimental results for funtions

taken from the lgsynth91 benhmark set proving the new

lass of orders to be very eÆient with respet to robdd

size. The benhmark results show that the modi�ed re-

ordering heuristi, whih does not reorder single variables

but whole symmetri bloks, outperforms the original one.

Although, in general, it is reasonable to loate the sym-

metri variables side by side, it does not lead to optimal re-

sults in all ases. A ounterexample has been given in [37℄.

By iterating one of these `bad' Boolean funtions a fam-

ily of parameterized Boolean funtions an be onstruted

suh that there is a linear gap between optimal orders and

best symmetri orders [40℄.

The seond part of this paper handles the problem of

deteting partial symmetries for both ompletely and in-

ompletely spei�ed Boolean funtions. Of ourse before

exploiting symmetries we need to detet them.

First we onentrate on ompletely spei�ed Boolean

funtions. So far, logi synthesis tools that work with

robdds use the well{known naive symmetry hek whih

ompares ertain ofator funtions.

2

The problem of this

naive approah is that it needs to onstrut the robdd of

the onsidered ofator funtions �rst. Espeially for fun-

tions with a large number of inputs and a large robdd size

that may be impratial regarding to robdd onstrution

time and storage plae.

We present an improved method that tries to detet as

many asymmetries of the funtion as possible without time

onsuming manipulations of the robdd data struture it-

2

In this paper, we do not handle approahes of symmetry detetion

whih do not use robdds as, e.g., the approah proposed in [42℄ where

maximal sets of symmetri inputs of ompletely spei�ed Boolean

funtions are omputed using test generation proedures for single

stuk-at faults.

self before using the naive symmetry hek. For these

asymmetry heks, we use strutural properties of robdd

as well as simple funtion properties.

Experimental results on a large suit of benhmarks show

that this approah is promising. In many ases, the CPU

time dereases dramatially using our sophistiated sym-

metry hek instead of the naive one.

In many appliations (e.g. heking the equivalene of

two Finite State Mahines (fsms) [11℄, minimizing the tran-

sition relation of an fsm or logi synthesis for fpga realiza-

tions [28℄, [50℄, [45℄) inompletely spei�ed Boolean fun-

tions play an important role. As determining the symmet-

ri groups and applying symmetri sifting results in good

variable orders for ompletely spei�ed funtions, it also

seems to be a good idea in the ase of inompletely spei�ed

funtions to �rst determine symmetri groups and then to

apply symmetri sifting. However, the symmetri groups of

inompletely spei�ed funtions are not uniquely de�ned as

will be demonstrated by some ounterexamples. Therefore

we have to ask for good partitions of the Boolean variables

into symmetri groups with respet to robddminimization

and their omputation.

To the best of our knowledge, no variable ordering algo-

rithm exploiting don't ares has been presented in litera-

ture. First approahes [8℄, [47℄, [15℄ investigate the robdd

minimization problem for inompletely spei�ed Boolean

funtions, but there it is assumed that the variable order-

ing is �xed. However, the resulting robdd sizes heavily

depend on the initial variable order. Thus, there is a strong

need to determine good variable orders in the ase of in-

ompletely spei�ed funtions, too.

In [27℄ an algorithm has been presented whih deides for

an inompletely spei�ed Boolean funtion (represented by

a ube array) whether a given set � of input variables forms

a symmetri group or not. However, for our problem to

partition the input variables into symmetri groups there

remain two diÆulties: �rst the question, how to �nd large

andidate sets � (of ourse, we annot test for eah sub-

set of the variables whether it is a symmetri group) and

seondly the question, how to ombine symmetri groups

to a partition of the input variables, suh that the inom-

pletely spei�ed funtion is symmetri in eah set of the

partition at the same time (in Setion V-A we will show

that this annot be done in a straightforward manner). To

the best of our knowledge, no tehnique has been devel-

oped so far that targets on omputing minimal partitions

into symmetri groups for inompletely spei�ed funtions.

The eÆieny of our approah is underlined by experimen-

tal results.

The paper is strutured as follows: In Setion II we intro-

due basi notations and review the main de�nitions. Sym-

metries for ompletely spei�ed and inompletely spei�ed

funtions are de�ned. The e�et of symmetries for robdds

representing ompletely spei�ed Boolean funtions is de-

sribed in Setion III. In Setion IV we present our asym-

metry test. Algorithms for inompletely spei�ed funtions

are given in Setion V. For all methods we give experimen-
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tal results in Setion VI. Finally, the results are summa-

rized.

II. Preliminaries

In this setion we review some basis that are needed for

the understanding of the paper. First, bdds are de�ned and

the e�et of the variable ordering is disussed. After intro-

duing some notations that are needed for the desriptions

of the asymmetry detetion algorithm, the de�nitions of

symmetry for (in-)ompletely spei�ed funtions are given.

A. Binary Deision Diagrams

We start with a brief review of the essential de�nitions

and properties of Binary Deision Diagrams as introdued

in [5℄.

De�nition 1: A Binary Deision Diagram (bdd) is a

rooted direted ayli graph G = (V;E) with vertex

set V ontaining two types of verties, non-terminal and

terminal verties. A non-terminal vertex v has as la-

bel a variable index(v) 2 fx

1

; : : : ; x

n

g and two hildren

low(v); high(v) 2 V . A terminal vertex v is labeled with a

value value(v) 2 f0; 1g and has no outgoing edge.

A bdd an be used to ompute a Boolean funtion

f(x

1

; : : : ; x

n

) in the following way: Eah input a =

(a

1

; : : : ; a

n

) 2 f0; 1g

n

de�nes a omputation path through

the bdd that starts at the root. If the path reahes a non-

terminal node v that is labeled by x

i

it follows the path

low(v) i� a

i

= 0 and it follows the path high(v) i� a

i

= 1.

On all paths a terminal vertex is reahed sine a bdd is

direted and ayli. The label of the terminal vertex de-

termines the return value of the bdd on input a.

More formally, we an de�ne the Boolean funtion or-

responding to a bdd reursively.

De�nition 2: A bdd having root vertex v denotes a

Boolean funtion f

v

de�ned as follows:

1. If v is a terminal vertex and value(v) = 1 (value(v) =

0), then f

v

= 1 (f

v

= 0).

2. If v is a non-terminal vertex and index(v) = x

i

, then

f

v

is the funtion

f

v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ; x

n

) +

x

i

� f

high(v)

(x

1

; : : : ; x

n

):

The variable x

i

is alled the deision variable for v.

It is well-known that for eah Boolean funtion f there

exists a bdd denoting f . bdds are often used as a data

struture in design automation and logi synthesis. Thus

there is a need of eÆient manipulation of bdds. Unfor-

tunately, this property is not ful�lled by the general bdds

de�ned above (see [23℄). Therefore we need further restri-

tions on the struture of the bdds.

De�nition 3: A Redued Ordered bdd (robdd) is a bdd

with the following two properties:

1. The bdd is ordered, i.e., there is a �xed order

� : f1; : : : ; ng ! fx

1

; : : : ; x

n

g suh that for any

non-terminal vertex v index(low(v)) = �(k) with

k > �

�1

(index(v)) (index(high(v)) = �(q) with q >

�

�1

(index(v))) holds if low(v) (high(v)) is also a non-

terminal vertex.

0 1

x1

x2

x3 1

1

1

0

0

0

Fig. 1. BDD for f = x

1

x

2

+ x

3

2. The bdd is redued, i.e., there exists no v 2 V with

low(v) = high(v) and there are no two verties v and

v

0

suh that the sub-bdds rooted by v and v

0

are iso-

morphi.

Example 1: In Figure 1 the redued ordered bdd for

funtion f = x

1

x

2

+ x

3

is given. The left (right) outgo-

ing edge of eah node v is low(v) (high(v)).

Funtions denoted by robdds an be manipulated eÆ-

iently [5℄. For our pratial experiments we use a robdd

pakage with omplemented edges as desribed in [3℄.

Sine we work only with robdds in the following we

briey all them bdds.

B. Variable Ordering

The size of a bdd is largely inuened by the hoie of

the variable ordering. This is illustrated by the following

example from [5℄:

Example 2: Let f = x

1

x

2

+ : : :+ x

2n�1

x

2n

.

If the variable ordering is given by (x

1

; x

2

; : : : ; x

2n

), i.e.,

�(i) = x

i

8i, the size of the resulting bdd is 2n. On

the other hand if the variable ordering is hosen as

(x

1

; x

3

; : : : ; x

2n�1

; x

2

; x

4

; : : : ; x

2n

) the size of the bdd is

�(2

n

). Thus the number of nodes in the graph varies

from linear to exponential depending on the variable or-

dering. In Figure 2 the bdds of the funtion f = x

1

x

2

+

x

3

x

4

+ x

5

x

6

with variable orderings (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

)

and (x

1

; x

3

; x

5

; x

2

; x

4

; x

6

) are illustrated.

C. Notations

For a onstant b 2 f0; 1g and a variable x

i

2 X

f j

x

i

=b

(x

1

; � � � ; x

n

) = f(x

1

; : : : ; x

i�1

; b; x

i+1

; : : : ; x

n

) de-

notes the Shannon ofator or restrition of f with respet

to x

i

= b. Instead of f j

x

i

=0

and f j

x

i

=1

we also write f

x

i

and f

x

i

, respetively.

The restrition of f with respet to a set of variables and

onstants is de�ned indutively:

f j

x

i

1

=b

1

;���;x

i

r

=b

r

= (f j

x

i

1

=b

1

;���;x

i

r�1

=b

r�1

)j

x

i

r

=b

r

:

The satisfy set of f is the set of all inputs for whih the

funtion value is 1. The satisfy ount of f , denoted by jf j,

is the ardinality of this set.

It is easy to see that eah node of a bdd is itself the

root of a bdd whih represents one or more restritions of

f . Two sets of those restritions will be introdued in the
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x2 x2 x2 x2

x1

x3x3

x4 x4

x5x5 x5 x5

x6

0 1

x2

x1

x3

x4

x5

x6

1

1

1

1

1

1

111

1 1

1

1

1

1

1

0

0

0
0

0

0

0

0 0
00

00

0

Fig. 2. bdds of the funtion f = x

1

x

2

+ x

3

x

4

+ x

5

x

6

following. When using these restritions for our purposes

in this paper, we an assume w.l.o.g. that the variable order

is (x

1

; x

2

; : : : ; x

n

). For a variable x

i

we de�ne

F

f

x

i

= ff j

x

1

=b

1

;���;x

i�1

=b

i�1

: b 2 f0; 1g

i�1

g

as the set of all restritions of f with respet to all variables

that preede x

i

. For x

1

we set F

f

x

1

= ffg. The node

whih represents a restrition in F

f

x

i

an be found if we

follow the path from the root using the appropriate vetor

of onstants b. We stop at the �rst node with label greater

than x

i�1

.

The seond set is a little bit more ompliated. For two

variables x

i

, x

j

(x

i

preedes x

j

) and a restrition g 2 F

f

x

i

we de�ne

R

g

x

i

x

j

= fgj

x

i

=1;���;x

i+l

=b

l

;���;x

j

=0

: b 2 f0; 1g

j�i�1

g

as the set of all restritions of g with respet to the variables

x

i

; x

i+1

; : : : ; x

j�1

; x

j

with x

i

set to 1 and x

j

set to 0. The

set R

g

x

i

x

j

is de�ned in the same way exept that x

i

is set to

0 and x

j

is set to 1. The node whih represents a restrition

in R

g

x

i

x

j

an be found as desribed for F

f

x

i

starting at the

node that represents g and branhing to the right(left) son

for nodes with label x

i

(x

j

). E.g. for the variables x

1

and

x

3

, and g = f 2 F

f

x

1

we have

R

g

x

1

x

3

= fg

x

1

x

2

x

3

; g

x

1

x

2

x

3

g:

We will use these sets to formulate neessary onditions

for symmetry and to develop preproessing algorithms that

hek these onditions. Note that in the next setions we

use the terms F

f

x

i

and R

g

x

i

x

j

to denote a set of funtions as

well as to denote the set of the nodes that represent these

funtions.

We also use the fat, that a funtion f whih is repre-

sented by a bdd G depends essentially on x

i

if and only if

at least one node in G is labeled with x

i

.

D. Symmetry for (In-)Completely Spei�ed Funtions

In the following, let X = fx

1

; : : : ; x

n

g be the set of vari-

ables of a Boolean funtion f and D some subset of f0; 1g

n

.

First, we will briey review de�nitions and basi prop-

erties of symmetries of ompletely spei�ed Boolean fun-

tions. We start with the de�nition of symmetry in two

variables, in a set of variables, and in a partition of the set

of input variables of a ompletely spei�ed Boolean fun-

tion.

De�nition 4: A ompletely spei�ed Boolean funtion

f : f0; 1g

n

! f0; 1g is symmetri in a pair of input vari-

ables (x

i

; x

j

) if and only if f(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) holds 8� 2 f0; 1g

n

. f is sym-

metri in a subset � of X i� f is symmetri in x

i

and x

j

8x

i

; x

j

2 �. f is symmetri in a partition P = f�

1

; : : : ; �

k

g

of the set of input variables i� f is symmetri in �

i

81 � i � k.

If f is symmetri in a subset � of the set of input vari-

ables, then we say that `the variables in � form a symmetri

group'.

It is well known, that symmetry of a ompletely spei�ed

Boolean funtion f in pairs of input variables of f leads

to an equivalene relation on X . Thus, there is a unique

minimal partition P ofX (namely the set of the equivalene

lasses of this relation) suh that f is symmetri in P . The

omputation of a minimal partition of f suh that f is

symmetri in P an be done by testing for symmetry in all

pairs of input variables.

The de�nition of symmetry of an inompletely spei�ed

Boolean funtion f is redued to the de�nition of symmetry

of ompletely spei�ed extensions of f . An extension of

an inompletely spei�ed Boolean funtion is de�ned as

follows:

De�nition 5: Let f : D ! f0; 1g (D � f0; 1g

n

) be an

inompletely spei�ed Boolean funtion. f

0

: D

0

! f0; 1g

(D

0

� f0; 1g

n

) is an extension of f i� D � D

0

and f

0

(�) =

f(�) 8� 2 D.
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De�nition 6: An inompletely spei�ed Boolean fun-

tion f : D ! f0; 1g is symmetri in a pair of input variables

(x

i

; x

j

) (in a subset � ofX / in a partition P = f�

1

; : : : ; �

k

g

of X) i� there is a ompletely spei�ed extension f

0

of f ,

whih is symmetri in (x

i

; x

j

) (in � / in P ).

III. BDDs for Completely Speified Funtions

In this setion we fous on ompletely spei�ed Boolean

funtions. A polynomial upper bound for the sizes of bdds

of totally symmetri funtions is given. Motivated by this

symmetri variable orders are de�ned.

A. Totally Symmetri Funtions

For totally symmetri funtions it is well known that

the size of the bdd is bounded by O(n

2

). This is due to

the observation that for funtions symmetri in (x

i

; x

j

) the

equation f

x

i

x

j

= f

x

i

x

j

holds. For bdds this implies that for

f�(1); �(2)g = fx

i

; x

j

g the left son of the right son of the

root is the right son of the left son of the root. Thus, bdds

representing totally symmetri funtions grow in eah level

at most by one node. This is demonstrated by the following

diagram:

x1

x2 x2

x3 x3 x3

x4x4 x4x4

0

0

0 00

0

1

1

1 11

1

... ... ... ...

A more detailed analysis shows that the least upper

bound on the sizes is given by �(n

2

) [49℄, [24℄, [31℄.

B. Symmetri Variable Orderings

We now introdue the lass of symmetry variable orders

that we will use to improve the existing reordering heuris-

tis.

De�nition 7: Let f be a partially symmetri funtion

with the set of symmetry sets S = f�

1

; : : : ; �

k

g. A

variable order � is alled a symmetry variable order if

for eah symmetry set �

i

2 S there exists j so that

f�[j℄; �[j + 1℄; : : : ; �[j + j�

i

j � 1℄g = �

i

.

By this de�nition, the lass of symmetry variable orders

onsists of all variable orders where the variables of eah

symmetry set are loated side by side. The bdds that or-

respond to symmetry orders are alled symmetry ordered

bdds. In the remainder of this setion the eÆieny of

symmetry orders will be motivated.

As disussed above the bdd size of any totally symmetri

funtion f is O(n

2

). In a symmetry ordered bdd there exist

a lot of sub-bdds where all variables in the upper part form

a symmetry set. If k is the size of suh a symmetry set,

the upper parts of these sub-bdds onsisting of all nodes

labeled by variables from the symmetry set have O(k

2

)

nodes.

Furthermore, the value of a funtion that is symmetri

in some variables fx

i

1

; : : : ; x

i

q

g does not depend on the

exat assignment of these variables but only on their weight

P

q

j=1

x

i

j

. If one uses symmetry ordered bdds, this weight

is omputed in neighboring levels and no information about

partial weights has to be kept over several non-symmetri

levels { and keeping information may ause large bdd sizes.

Symmetry variable orders often avoid this drawbak

3

.

It is also worth to mention that the restrition to sym-

metri variable orderings is justi�ed not only by experi-

mental results but also from a theoretial point of view

[48℄.

IV. Detetion of Symmetries of Completely

Speified Funtions

In this setion we present an eÆient method for deter-

mining symmetries of ompletely spei�ed Boolean fun-

tions represented by bdds. We �rst give some onditions

for symmetry and then present a fast algorithm that an

eÆiently identify asymmetri strutures in bdds. This

algorithm is based on several ideas that have a diret or-

respondene to eÆient algorithms, i.e. algorithms that an

be arried out in polynomial time and spae on the bdd

representation. We assume w.l.o.g. that the variable order

is given by (x

1

; x

2

; : : : ; x

n

).

A. Conditions for Symmetries

We give some theorems that we will use to develop meth-

ods deteting symmetry and asymmetry of a funtion.

Lemma 1: Let x; x

i

; x

j

be three distint variables. f is

symmetri with respet to fx

i

; x

j

g if and only if both o-

fators f

x

and f

x

are symmetri with respet to fx

i

; x

j

g.

Applying Lemma 1 reursively to f

x

and f

x

we get:

4

Corollary 1: f is symmetri with respet to fx

i

; x

j

g if

and only if eah funtion g 2 F

f

x

i

is symmetri with respet

to fx

i

; x

j

g.

For this, we an restrit ourselves to the funtions in F

f

x

i

in order to detet symmetries in f .

Lemma 2: If g 2 F

f

x

i

is symmetri with respet to

fx

i

; x

j

g then g either depends on both x

i

and x

j

or de-

pends neither on x

i

nor on x

j

.

This is lear, beause of the following fat: If g depends on

x

i

but does not depend on x

j

, then these variables annot

be permuted without hanging g. With Corollary 1 we get:

Theorem 1: If f is symmetri with respet to fx

i

; x

j

g

then eah g 2 F

f

x

i

depends on both x

i

and x

j

or depends

neither on x

i

nor on x

j

.

Lemma 3: A funtion g 2 F

f

x

i

is symmetri with respet

to fx

i

; x

j

g if and only if for all w 2 f0; 1g

j�i�1

gj

x

i

=1;���;x

i+l

=w

l

;���;x

j

=0

= gj

x

i

=0;���;x

i+l

=w

l

;���;x

j

=1

:

3

This approah has been extended to `nearly' symmetri funtions

in [40℄. In the following we restrit our approah to `pure' symmetry.

4

In the following we always assume i < j, suh that x

i

preedes x

j

in the variable order.
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In Lemma 3, a suÆient and neessary ondition for pair-

wise symmetry is given. Unfortunately, it requires to verify

2

j�i�1

equations. However, if we onsider the two sets of

funtions that are on the left and on the right side of these

equations (that are R

g

x

i

x

j

and R

g

x

i

x

j

, respetively), we see

that they are equal in the ase of symmetry. Note, that the

ardinality of these sets is restrited by the number of nodes

in the bdd of f . Of ourse, the equalityR

g

x

i

x

j

= R

g

x

i

x

j

does

not neessarily imply that all the 2

j�i�1

equations given

above must hold. So, we obtain more eÆieny losing suf-

�ieny:

Theorem 2: If f is symmetri with respet to fx

i

; x

j

g

then for all g 2 F

f

x

i

we have

R

g

x

i

x

j

= R

g

x

i

x

j

:

That means, if there exists at least one funtion g in F

f

x

i

whih is not symmetri in fx

i

; x

j

g beause of the inequality

of the sets R

g

x

i

x

j

and R

g

x

i

x

j

, then f is not symmetri in

fx

i

; x

j

g.

Now let us onsider a speial ase of Theorem 2, namely

x

j

= x

i+1

, i.e., symmetri variables whih are neighbors

with respet to the variable order. For g 2 F

f

x

i

we have

R

g

x

i

x

i+1

= fgj

x

i

=1;x

i+1

=0

g

and analogous forR

g

x

i

x

i+1

. Both sets ontain only one fun-

tion and they are equal if and only if the equation in Lemma

3 holds. Note that we have to test only one equation. By

this we get a neessary and suÆient ondition for symme-

try for pairs fx

i

; x

i+1

g:

Theorem 3: f is symmetri with respet to fx

i

; x

i+1

g if

and only if for all g 2 F

f

x

i

R

g

x

i

x

i+1

= R

g

x

i

x

i+1

:

B. Symmetries and Asymmetries

First the basi underlying ideas of our method to �nd the

symmetries of a funtion f are explained. For that we use

strutural properties of bdds as well as funtion properties.

First, we know that f is symmetri with respet to

fx

i

; x

j

g if and only if f

x

i

x

j

= f

x

i

x

j

. That an easily be

heked by testing if the bdds of f

x

i

x

j

and f

x

i

x

j

are iso-

morphi. We all it the naive method.

Although this method is very popular, a handiap of

it is that reating the neessary bdds may be very time

onsuming. That is why we have tried to �nd methods to

aelerate symmetry detetion by deteting as many asym-

metri pairs of variables as possible to be able to avoid the

naive symmetry hek for those pairs. Of ourse, these

tests have to be done with as little e�ort as possible and

without reating new bdds.

Aording to these onstraints, we have developed four

ideas to detet asymmetri pairs. The �rst idea is based

on a simple funtion property. The other three ideas make

use of Theorem 1, Theorem 2, Theorem 3, and of ertain

properties of bdds.

B.1 Idea 1

Our �rst method uses the fat that the satisfy ount

jf

x

i

j is a harateristi of x

i

whih is independent of the

permutation of the input variables of f [34℄. Thus, if two

variables x

i

and x

j

are symmetri, then the restritions f

x

i

and f

x

j

have the same satisfy ount, suh that the following

lemma holds:

Lemma 4: f : f0; 1g

n

! f0; 1g is asymmetri in fx

i

; x

j

g

if jf

x

i

j 6= jf

x

j

j.

These satisfy ounts an be omputed by a bottom{up

traversal of the bdd of f , i.e., without onstruting the

bdds of the restritions [34℄. This an be done in time

O(n � jGj), where jGj indiates the number of nodes in the

bdd of f . (Note that suh an asymmetry test an be done

by using any time eÆient signature.)

B.2 Idea 2

The bakground of this idea is Theorem 1. Beause of

this theorem two variables x

i

and x

j

(i < j) do not form

a symmetri pair if at least one of the restritions in F

f

x

i

depends essentially on x

i

but does not depend on x

j

, or

vie versa.

Consider a restrition g 2 F

f

x

i

. The node v whih rep-

resents g may be labeled either with x

i

or with a variable

greater than x

i

. In the �rst ase g depends on x

i

. How-

ever, if the bdd, rooted by the node v, does not ontain

any node with label x

j

, then g does not depend on x

j

and

thus x

i

and x

j

do not form a symmetri pair. Thus, we

have:

Lemma 5: f : f0; 1g

n

! f0; 1g is asymmetri in fx

i

; x

j

g

if a node in the bdd of f with label x

i

does not have any

suessor with label x

j

.

In the seond ase g does not depend on x

i

. If the bdd,

rooted by the node v, ontains a node with label x

j

, then g

depends on x

j

and thus x

i

and x

j

do not form a symmetri

pair. With other words, there exists a path from the root

(of the bdd of f) to a node with label x

j

, whih does not

ontain any node with label x

i

, and we have:

Lemma 6: f : f0; 1g

n

! f0; 1g is asymmetri in fx

i

; x

j

g

if in the bdd of f a node with label x

j

an be reahed from

the root via a path whih does not ontain any node with

label x

i

.

To realize this idea, we �rst establish, for eah node v

in the bdd of f , the set of all variables whih are labels

of any suessor of v and the set of all variables whih are

labels of nodes on eah path from the root to the node v.

The sets an be determined for all nodes simultaneously in

one bottom{up and one top{down traversal of the bdd of

f in time O(n � jGj). Finally, to detet the asymmetries we

have to look for missing variables in these sets. This an

be done in time O(n � jGj).

B.3 Idea 3

Now, we want to make use of Theorem 2. Here, our task

is to onstrut the two sets of nodes R

g

x

i

x

j

and R

g

x

i

x

j

for

eah funtion g 2 F

f

x

i

and to hek their equivalene.
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Suppose, we have already heked that fx

i

; x

j

g is not

asymmetri aording to Theorem 1. Then eah restrition

g in F

f

x

i

depends on neither x

i

nor x

j

or depends on both,

x

i

and x

j

. If g depends on neither x

i

nor x

j

, then R

g

x

i

x

j

and R

g

x

i

x

j

are equal, beause the variables x

i

and x

j

will

not be tested. So, we do not have to onstrut these sets.

For the ase that g depends on both, x

i

and x

j

, let us

establish the sets R

g

x

i

x

j

and R

g

x

i

x

j

. The root node v of

the bdd of g is labeled with x

i

. Construting R

g

x

i

x

j

means

to ollet the right sons of nodes with label x

j

in the left

subgraph of v. In the following, we all these sons right

x

j

-sons. Analogous, R

g

x

i

x

j

ontains the left sons of nodes

with label x

j

in the right subgraph of v. These sons are

alled left x

j

-sons in the following. If the left x

j

-sons in the

right subgraph of v are di�erent from the right x

j

-sons in

the left subgraph of v, then the set R

g

x

i

x

j

is di�erent from

R

g

x

i

x

j

. Together with the fat that v is labeled with x

i

we

get our suÆient ondition for asymmetry:

Lemma 7: f : f0; 1g

n

! f0; 1g is asymmetri in fx

i

; x

j

g

if in the bdd of f one node v with label x

i

exists suh

that the set of the left x

j

-sons in the right subgraph of

v is di�erent from the set of the right x

j

-sons in the left

subgraph of v.

To realize this idea, we start for eah node v with label x

i

a depth{�rst{searh (dfs) proedure on the left subgraph

and on the right subgraph of v to ollet the right x

j

-sons

and the left x

j

-sons, respetively, and ompare these sets.

Unfortunately, we have to run (at most) 2 �n of the dfs pro-

edures for eah node in the bdd of f . Eah dfs proedure

visits (at most) jGj nodes. This implies an overall run time

of O(n � jGj

2

). However, the number of nodes that are vis-

ited in one searh is not very large if the distane between

the two variables x

i

and x

j

is small. Furthermore, there is

a hope that an existing asymmetry is deteted early and

so the number of searhes keeps small. Thus, it seems pos-

sible that the run time on average is not quadrati in the

size of the bdd. This presumption is learly underlined by

our experimental results.

For pairs of neighboring variables we get a speial ase

of idea 3 whih we will all idea 3

n

in the following:

B.4 Idea 3

n

Using Theorem 3 we an formulate:

Lemma 8: f : f0; 1g

n

! f0; 1g is symmetri in fx

i

;

x

i+1

g if and only if in the bdd of f for all nodes v with

label x

i

the left x

i+1

-son in the right subgraph of v is the

same node as the right x

i+1

-son in the left subgraph of v.

The proedure to test this ondition works similar to the

one for idea 3. For eah node we have to start only two

dfs alls that visit at most four nodes. So, the omplete

proedure requires time O(jGj). Note, that, similarly to

idea 3, we need to �lter out asymmetries with idea 1 in

order to guarantee the orretness of this proedure.

Although the introdued ideas work very well in pratie,

it annot be guaranteed that all asymmetries of a funtion

an be deteted using them. For all other pairs, for that

no symmetry or asymmetry ould be established so far, we

use the naive method to test if they are symmetri or not.

V. Symmetries of Inompletely Speified

Funtions

In this setion we disuss the problem of deteting sym-

metries of inompletely spei�ed Boolean funtions repre-

sented by bdds. First, we outline the ourring diÆulties.

This leads to the de�nition of `strong symmetries'. Then,

we disuss an algorithm to solve the minimum sized parti-

tioning of the variables of an inompletely spei�ed fun-

tion into symmetry groups. And �nally, we investigate the

relationship of our don't are assignment to maximize the

number of symmetries and the bdd minimization proe-

dure presented by Chang [8℄ and Shiple [47℄.

A. DiÆulties with Symmetry of Inompletely Spei�ed

Funtions

In order to minimize the bdd size for an inompletely

spei�ed Boolean funtion f , we are looking for a minimal

partition (or for maximal variable sets) suh that f is sym-

metri in this partition (or these sets). Unfortunately there

are some diÆulties in the omputation of suh partitions:

First of all, symmetry of f in two variables does not form

an equivalene relation on X in the ase of inompletely

spei�ed Boolean funtions (see also [12℄ or [27℄):

Example 3: The following funtion shows that symmetry

in two variables does not lead to an equivalene relation

on the variable set in the ase of inompletely spei�ed

Boolean funtions:

f(�) =

8

>

>

<

>

>

:

1 for � = (1; 0; 0)

d for � = (0; 1; 0)

0 for � = (0; 0; 1)

0 otherwise

It is easy to see that f is symmetri in x

1

and x

2

(for

the orresponding ompletely spei�ed extension f

0

of f

f

0

(0; 1; 0) = 1 holds) and f is symmetri in x

2

and x

3

.

However f is not symmetri in x

1

and x

3

.

Sine symmetry in pairs of variables does not form an

equivalene relation, it will be muh more diÆult to de-

due symmetries in larger variable sets from symmetries in

pairs of variables than in the ase of ompletely spei�ed

Boolean funtions.

In the rest of the paper we use symmetry graphs to il-

lustrate symmetries of Boolean funtions. The symmetry

graph G

f

sym

= (X;E) of a Boolean funtion f : D ! f0; 1g

is a undireted graph with node set X (the set of input

variables of f) and edges fx

i

; x

j

g 2 E i� f is symmetri

in (x

i

; x

j

). For ompletely spei�ed Boolean funtions f

G

f

sym

has a speial struture: The onneted omponents

of the graph form liques as symmetry in two variables

forms an equivalene relation. For inompletely spei�ed

funtions there is not any strutural property. On the on-

trary one an prove (see proof of Theorem 4), that for every

graph G with n nodes, there is an (inompletely spei�ed)

Boolean funtion f : D ! f0; 1g suh that the symmetry

graph of f oinides with G. All possible graphs an our

as symmetry graphs of an inompletely spei�ed funtion.
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x1 x2

x3 x4

Fig. 3. Symmetry graph of the funtion of Example 2

Even if f is symmetri in all pairs of variables x

i

and

x

j

of a subset � of the variable set of f , f is not nees-

sarily symmetri in �. This is illustrated by the following

example:

Example 4: Consider f : D ! f0; 1g, D � f0; 1g

4

.

f(�) =

8

>

>

>

>

<

>

>

>

>

:

1 for � = (0; 0; 1; 1)

d for � = (0; 1; 0; 1); � = (0; 1; 1; 0);

� = (1; 0; 0; 1); � = (1; 0; 1; 0)

0 for � = (1; 1; 0; 0)

0 otherwise

It is easy to see, that f is symmetri in all pairs of vari-

ables x

i

and x

j

, i; j 2 f1; 2; 3; 4g. The symmetry graph of

f is shown in Figure 3. It is the omplete graph. For eah

ompletely spei�ed extension f

0

of f , whih is symmetri

in (x

1

; x

3

), f

0

(0; 1; 1; 0) = 0 holds and for eah ompletely

spei�ed extension f

00

of f , whih is symmetri in (x

2

; x

4

),

f

00

(0; 1; 1; 0) = 1 holds. Hene there is no ompletely spe-

i�ed extension of f whih is symmetri in (x

1

; x

3

) and

(x

2

; x

4

) and therefore no extension whih is symmetri in

fx

1

; x

2

; x

3

; x

4

g.

Example 4 also points out another fat: If an inom-

pletely spei�ed Boolean funtion f is symmetri in all vari-

able sets �

i

of a partition P = f�

1

; : : : ; �

k

g, it is not ne-

essarily symmetri in P (hoose P = ffx

1

; x

3

g; fx

2

; x

4

gg).

B. Strong Symmetry

The diÆulties with the detetion of large symmetry

groups of inompletely spei�ed funtions result from the

fat that symmetry in pairs of variables does not form an

equivalene relation on the variable set X . If we hange the

de�nition of symmetry of inompletely spei�ed funtions

as given in the following, symmetry in pairs of variables

provides an equivalene relation as in the ase of ompletely

spei�ed funtions:

De�nition 8 (Strong symmetry) An inompletely spei-

�ed Boolean funtion f : D ! f0; 1g is alled strongly sym-

metri in a pair of input variables (x

i

; x

j

) i� 8(�

1

; : : : ; �

n

) 2

f0; 1g

n

either (a) or (b) holds.

(a) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =2 D

and (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) =2 D

(b) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) 2 D

and (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) 2 D

and f(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

).

In ontrast to strong symmetry of inompletely spei-

�ed funtions the symmetry de�ned so far is alled weak

symmetry. (Notie that for ompletely spei�ed Boolean

funtions strong symmetry and weak symmetry are identi-

al.)

The following lemma holds for strong symmetry:

Lemma 9: Strong symmetry in pairs of variables of an

inompletely spei�ed Boolean funtion f : D ! f0; 1g

forms an equivalene relation on the variable set X of f .

Due to Lemma 9 there is a unique minimal partition

P of the set X of input variables suh that f is strongly

symmetri in P . As in the ase of ompletely spei�ed

Boolean funtions, f is strongly symmetri in a subset �

of X i� 8x

i

; x

j

2 � f is strongly symmetri in (x

i

; x

j

). f

is strongly symmetri in a partition P = f�

1

; : : : ; �

k

g of X

i� 81 � i � k f is strongly symmetri in �

i

.

Of ourse, if a funtion f is weakly symmetri in a par-

tition P , it needs not to be strongly symmetri in P , but it

follows diretly from De�nition 6 that there is an extension

of f whih is strongly symmetri in P .

Before we deal with the omputation of extensions of in-

ompletely spei�ed Boolean funtions whih are strongly

symmetri in minimum sized variable partitions, we will

haraterize weak and strong symmetry in variable parti-

tions in more detail. To do this, we need the term of the

`weight lass' of a given partition.

De�nition 9 (Weight lass of a partition P )

Let P = f�

1

; : : : ; �

k

g be a partition of fx

1

; : : : ; x

n

g. We

all w

1

(�

1

; : : : ; �

n

) =

P

n

i=1

�

i

the 1{weight of (�

1

; : : : ; �

n

)

and w

0

(�

1

; : : : ; �

n

) = n � w

1

(�

1

; : : : ; �

n

) the 0{weight

of (�

1

; : : : ; �

n

) 2 f0; 1g

n

. For �

i

= fx

i

1

; : : : ; x

i

l

g,

w

1

�

i

(�

1

; : : : ; �

n

) =

P

j2fi

1

;:::;i

k

g

�

j

is the 1{weight of the `�

i

{

part' of (�

1

; : : : ; �

n

).

C

P

w

1

;:::;w

k

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

: w

1

�

i

(�

1

; : : : ; �

n

) =

w

i

; 1 � i � kg is alled weight lass of the partition P

with weights (w

1

; : : : ; w

k

).

Example 5: Let P = ffx

1

; x

2

g; fx

3

; x

4

; x

5

gg. C

P

1;2

is the

subset of all verties of f0; 1g

n

with a 1{weight 1 of the

fx

1

; x

2

g{part and a 1{weight 2 of the fx

3

; x

4

; x

5

g{part,

i.e., the subset of all verties with exatly one 1 in the

�rst two omponents and exatly two 1's in the remaining

omponents:

C

P

1;2

= f(0; 1; 0; 1; 1); (0; 1; 1; 0; 1); (0; 1; 1; 1; 0);

(1; 0; 0; 1; 1); (1; 0; 1; 0; 1); (1; 0; 1; 1; 0)g:

By means of `weight lasses' there is an easy harateri-

zation of weak and strong symmetry:

Lemma 10: Let P = f�

1

; : : : ; �

k

g be a partition of

fx

1

; : : : ; x

n

g. f : D ! f0; 1g is

(1) strongly symmetri in P i�

80 � w

i

� j�

i

j (1 � i � k)

f(C

P

w

1

;:::;w

k

) =

8

<

:

f0g or

f1g or

fdg

(2) (weakly) symmetri in P i�

80 � w

i

� j�

i

j (1 � i � k) f0; 1g 6� f(C

P

w

1

;:::;w

k

):

Proof: See Appendix A.
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C. Minimum Sized Partition

We have to solve the following problemMSP (Minimal

Symmetry Partition):

Given: Inompletely spei�ed funtion f : D !

f0; 1g, represented by bdds for f

on

and

f

d

. (f

on

is the ompletely spei�ed Boolean

funtion with the same on-set as f and

f

d

is the ompletely spei�ed funtion with

f0; 1g

n

nD as on-set.)

Find: Partition P of the setX = fx

1

; : : : ; x

n

g suh

that

� f is symmetri in P and

� for any partition P

0

of X in whih f

is symmetri, the inequation jP j � jP

0

j

holds.

We an prove the following theorem by a polynomial{

time transformation from the NP{omplete problem `Par-

tition into Cliques' (PC) (see [22℄) to MSP:

Theorem 4: MSP is NP-hard.

Proof: See Appendix B.

To solve the problem heuristially, we use a heuristi for

`Partition into Cliques' for the symmetry graph G

f

sym

of

f . However, the examples in Setion V-A showed that f is

not symmetri in all partitions into liques of G

f

sym

. The

heuristi has to be hanged in order to guarantee that f is

symmetri in the resulting partition P .

The heuristi to solve the problem PC makes use of the

following well known lemma:

Lemma 11: A graph G = (V;E) an be partitioned into

k disjoint liques i� G = (V;E) an be olored with k

olors. (G is the inverse graph of G, whih has the same

node set V as G and an edge fv; wg between two nodes v

and w i� there is no edge fv; wg in G, i.e., E = ffv; wg :

fv; wg =2 Eg.)

Thus, heuristis for node oloring an be diretly used

for the solution of partition into liques. Nodes with the

same olor in G form an `independent set' and thus a lique

in G. Our implementation is based on Br�elaz algorithm

for node oloring [4℄ whih has a run time of O(N) in an

implementation of Morgenstern [39℄, where N denotes the

number of nodes of the graph whih has to be olored. It

is a greedy algorithm, whih olors node by node and does

not hange the olor of a node whih is already olored. In

the algorithm there are ertain riteria to hoose the next

node to olor and the olor to use for it in a lever way (see

[4℄, [39℄).

Figure 4 shows our heuristi for the problemMSP, whih

is derived from the Br�elaz/Morgenstern heuristi for node

oloring. First of all the symmetry graph G

f

sym

of f (or

the inverse graph G

f

sym

) is omputed. The nodes of G

f

sym

are the variables x

1

; : : : ; x

n

. These nodes are olored in

the algorithm. Nodes with the same olor form a lique in

G

f

sym

. Note that partition P (see line 3) has the property

that it ontains set fx

k

g for any unolored node x

k

and

that nodes with the same olor are in the same set of P , at

any moment. The ruial point of the algorithm is that the

invariant 'f is strongly symmetri in P ' of line 6 is always

maintained.

Now let us take a look at the algorithm in more detail.

At �rst glane, the set of all admissible olors for the next

node x

i

is the set of all olors between 1 and n exept the

olors of nodes whih are adjaent to x

i

in G

f

sym

. In the

original Br�elaz/Morgenstern algorithm the minimal olor

among these olors is hosen for x

i

(urr olor in lines 10,

11). However, sine we have to guarantee that f is sym-

metri in the partition P whih results from oloring, it is

possible that we are not allowed to olor x

i

with urr olor.

If there is already another node x

j

whih is olored by

urr olor, then f has to be symmetri in the partition P

0

whih results by union of fx

i

g and [x

j

℄ ([x

j

℄ denotes �

q

,

if x

j

2 �

q

and P = f�

1

; : : : ; �

k

g). If there is suh a node

x

j

, we have to test whether f is symmetri in (x

i

; x

j

) (line

14). (This test an have a negative result, sine the don't

are set of f is redued during the algorithm). If f is not

symmetri in (x

i

; x

j

), urr olor is removed from the set

of olor andidates for x

i

(line 20) and the minimal olor

in the remaining set is hosen as the new olor andidate

(line 10). If the ondition of line 14 is true, the new par-

tition P results from the old partition P by union of fx

i

g

and [x

j

℄ (line 16). Now f is symmetri in the new partition

P (invariant (*) from line 17, see Lemma 12), and we an

assign don't ares of f suh that f is strongly symmetri

in P (line 18).

The fat that the onditions given in the algorithm im-

ply that f is symmetri in the new partition P is shown

in Lemma 12. In addition we have to point out how f an

be made strongly symmetri in P (line 18). At the end

we reeive an extension of the original inompletely spe-

i�ed Boolean funtion whih is strongly symmetri in the

resulting partition P .

To prove invariant (*) in line 17, we need the following

lemma:

Lemma 12: Let f : D ! f0; 1g be strongly symmetri

in P , [x

i

℄; [x

j

℄ 2 P two subsets with j[x

i

℄j = 1, and let

f be symmetri in (x

i

; x

j

), then f is symmetri in P

0

=

P n f[x

j

℄; fx

i

gg

S

f[x

j

℄ [ fx

i

gg.

Proof: Let P = f�

1

; : : : ; �

k

g and w.l.o.g. �

1

= fx

i

g,

�

2

= [x

j

℄. Then we have P

0

= f�

1

[ �

2

; �

3

; : : : ; �

k

g.

Beause of Lemma 10, we have to show that there is no

weight lass C

P

0

w

2

;:::;w

k

of P

0

with f0; 1g � f(C

P

0

w

2

;:::;w

k

).

Case 1: w

2

� 1

C

P

0

w

2

;:::;w

k

an be written as a disjoint union of two

weight lasses of P :

C

P

0

w

2

;:::;w

k

= C

P

0;w

2

;:::;w

k

[ C

P

1;w

2

�1;w

3

;:::;w

k

:

Sine f is strongly symmetri in P , jf(C

P

0;w

2

;:::;w

k

)j =

jf(C

P

1;w

2

�1;w

3

;:::;w

k

)j = 1 holds aording to Lemma

10. Suppose f0; 1g � f(C

P

0

w

2

;:::;w

k

), then we have

f(C

P

0;w

2

;:::;w

k

) =  and f(C

P

1;w

2

�1;:::;w

k

) =  for  2

f0; 1g.

This leads to a ontradition to the ondition that f is

symmetri in x

i

and x

j

, sine there are � 2 C

P

0;w

2

;:::;w

k

and Æ 2 C

P

1;w

2

�1;:::;w

k

suh that � results from Æ only by
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Input: Inompletely spei�ed funtion f : D ! f0; 1g, D � f0; 1g

n

, represented by f

on

and f

d

Output: Partition P of fx

1

; : : : ; x

n

g, suh that f is symmetri in P

Algorithm:

1 Compute symmetry graph G

f

sym

= (V;E) of f (or G

f

sym

= (V;E)).

2 81 � k � n : olor(x

k

) := undef:

3 P = ffx

1

g; fx

2

g; : : : ; fx

n

gg

4 node andidate set := fx

1

; : : : ; x

n

g

5 while (node andidate set 6= ;) do

6 /* f is strongly symmetri in P */

7 Choose x

i

2 node andidate set aording to Br�elaz/Morgenstern riterion

8 olor andidate set := f : 1 �  � n; 6 9x

j

with fx

i

; x

j

g 2 E and olor(x

j

) = g

9 while (olor(x

i

) = undef:) do

10 urr olor := min(olor andidate set)

11 olor(x

i

) := urr olor

12 if (9 olored node x

j

with olor(x

j

) = olor(x

i

))

13 then

14 if (f symmetri in (x

i

; x

j

))

15 then

16 P := P n f[x

j

℄;fx

i

gg

S

f[x

j

℄ [ fx

i

gg

17 /* f is symmetri in P */ (*)

18 Make f strongly symmetri in P . (**)

19 else

20 olor andidate set := olor andidate set n furr olorg

21 olor(x

i

) := undef:

22 �

23 �

24 od

25 node andidate set := node andidate set n fx

i

g

26 od

Fig. 4. Algorithm to solve MSP

exhange of the ith and jth omponent, but f(�) = 

and f(Æ) = .

Case 2: w

2

= 0

C

P

0

w

2

;:::;w

k

= C

P

0;w

2

;:::;w

k

and f0; 1g 6� f(C

P

0

w

2

;:::;w

k

) fol-

lows from the strong symmetry of f in P .

Remark 1: The statement of Lemma 12 is not orret,

if we replae `f strongly symmetri in P ' by `f (weakly)

symmetri in P ' or if we don't assume j[x

i

℄j = 1. But

note that the given onditions oinide exatly with the

onditions existing in the algorithm.

Next we have to explain how f is made strongly symmet-

ri in the partition P in line 18 of the algorithm. From the

de�nition of symmetry of inompletely spei�ed funtions

it is lear that it is possible to extend a funtion f , whih

is (weakly) symmetri in a partition P , to a funtion whih

is strongly symmetri in P . From the set of all extensions

of f whih are strongly symmetri in P we hoose the ex-

tension with a maximum number of don't ares. If f is

(weakly) symmetri in a pair of variables (x

i

; x

j

), the ex-

tension f

0

of f , whih is strongly symmetri in (x

i

; x

j

) and

whih has a maximal don't are set among all extensions

of f with that property, an be easily omputed from the

bdd representations of f

on

, f

d

and f

off

by the proedure

make strongly symm in Figure 5.

We an use a sequene of alls of the proedure

make strongly symm to make f strongly symmetri in the

partition P in line 18 of the algorithm. For this purpose

we an prove the following theorem:

Theorem 5: Let f : D ! f0; 1g strongly symmetri in P ,

fx

i

g; [x

j

1

℄ 2 P , [x

j

1

℄ = fx

j

1

; : : : ; x

j

k

g, f =: f

(0)

symmetri

in (x

i

; x

j

1

).

f

(1)

= make strongly symm(f

(0)

; x

i

; x

j

1

)

f

(2)

= make strongly symm(f

(1)

; x

i

; x

j

2

)

.

.

.

f

(k)

= make strongly symm(f

(k�1)

; x

i

; x

j

k

):

Then f

(k)

is strongly symmetri in

P

0

= P n f[x

j

1

℄; fx

i

gg

[

f[x

j

1

℄ [ fx

i

gg:

Proof: See Appendix C.

There are examples where we need the omplete sequene

of alls given in the theorem. However, in many ases there

is a p < k suh that f

(p)

does not di�er from f

(p�1)

. We

an prove that the sequene of alls an be stopped in suh

ases with the result f

(k)

= f

(p�1)

.

D. Compatibility with other BDD Minimization Teh-

niques

In the last setion we presented an algorithm to ompute

a minimum sized partition P of the input variables in whih

an inompletely spei�ed funtion f is symmetri. In ad-

dition we assigned values to don't ares to make f strongly

symmetri in P . Usually the result will still ontain don't

ares after this assignment.

We try to make use of these remaining don't ares by

applying the tehnique of Chang [8℄ and Shiple [47℄ to fur-

ther minimize bdd sizes. Sine this method removes don't

ares, we have to ask the question, if the method an de-

stroy symmetries whih were found earlier.
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Proedure make strongly symm

Input: f : D ! f0; 1g, represented by f

on

, f

off

, f

d

. f is (weakly) symmetri in (x

i

; x

j

).

Output: minimal extension f

0

of f (represented by f

0

on

, f

0

off

, f

0

d

), whih is strongly symmetri in

(x

i

; x

j

).

Algorithm:

1. f

0

on

= x

i

x

j

f

on

x

i

x

j

+ x

i

x

j

f

on

x

i

x

j

+ (x

i

x

j

+ x

i

x

j

)(f

on

x

i

x

j

+ f

on

x

i

x

j

)

2. f

0

off

= x

i

x

j

f

off

x

i

x

j

+ x

i

x

j

f

off

x

i

x

j

+ (x

i

x

j

+ x

i

x

j

)(f

off

x

i

x

j

+ f

off

x

i

x

j

)

3. f

0

d

= f

0

on

+ f

0

off

Fig. 5. Proedure make strongly symm

The answer to this question given in this setion is that

we an preserve these symmetries using a slightly modi�ed

version of Chang's tehnique.

The algorithm proposed by Chang [8℄ minimizes the

number of nodes at every level of the bdd by an opera-

tion remove z assigning as few don't ares as possible to

either the on-set or the o�-set, i.e., the number of so-alled

linking nodes immediately below a ut line between two

adjaent variables is minimized. After the minimization of

nodes at a ertain level of the bdd they use the remaining

don't ares to minimize the number of nodes at the next

level. The ut line is moved from top to bottom in the bdd.

We an prove that under ertain onditions, this method

does preserve strong symmetry:

Lemma 13: Let f be an inompletely spei�ed Boolean

funtion whih is strongly symmetri in P = f�

1

; : : : ; �

k

g

and assume that the variable order of the bdd representing

f is a symmetri order with the variables in �

i

before the

variables in �

i+1

(1 � i < k). If we restrit the operation

remove z presented in [8℄ to ut lines between two symmet-

ri groups �

i

and �

i+1

, then it preserves strong symmetry

in P .

Proof: See Appendix D.

Sine we will use suh `symmetri orders' to mini-

mize bdd sizes (see Setion VI), we only have to restrit

remove z to ut lines between symmetri groups to guar-

antee that we will not lose any symmetries.

VI. Experimental Results

A. Completely Spei�ed Funtions

In this setion we present experimental results for om-

pletely spei�ed funtions, in the next setion results for

inompletely spei�ed funtions.

A.1 Asymmetry Test

We ompare the performane of our sophistiated sym-

metry hek with the naive one. For that we have imple-

mented the ideas desribed in the last setion. We have

used the mu-bdd pakage ontained in sis-1.2 [46℄. This

pakage is based on the ideas of [3℄. The algorithms were

tested for the multi-level iruits

5

from the lgsynth91

benhmark set. In Table I we give only results for benh-

marks where run times for the naive symmetry hek (or

5

exept C6288.blif and i10.blif

our proedure) were larger than 10 CPU seonds measured

on a SPARC station 20.

In Table I the �rst four olumns provide information

about the name of the iruit, the number of primary in-

puts, the number of primary outputs, and the number of

nodes in the bdds. Columns 5{9 show CPU times in se-

onds for the naivemethod and implementations of our ideas

of Setion IV, respetively. Column 6 shows CPU times for

the symmetry detetion using only idea 1, olumn 7 CPU

times using idea 1 followed by idea 2. In olumn 8 CPU

times for the sequene of running idea 1, idea 2, and idea 3

n

are given and in olumn 9 CPU times for idea 1, idea 2,

idea 3

n

, and idea 3. The CPU times inlude the run times

of the naive tests applied to those variable pairs for whih

asymmetry has not been deteted. Note, that the realiza-

tion of idea 3 starts with a realization of the speial ase

for neighboring variables in order to �lter out symmetries

of those pairs of variables. Column 10 (symsets) gives in-

formation on symmetries of the benhmark iruits: 2(5)

means that there are two symmetry sets of �ve variables.

For the iruits in Table I the run time for our method

dereases drastially ompared with the naive method. The

experimental results show that already the appliation of

idea 1 leads to a large redution of run times. For larger

examples (e.g. C2670, C7552) appliation of ideas 2, 3

n

and 3 leads to further redutions.

The reason for this is the obviously large ratio of asym-

metri pairs deteted by the asymmetry preproessing, as

shown by Table II. Table II gives the number of om-

putations of ofators to hek symmetry for the di�erent

methods. The number of ofator omputations needed to

hek symmetry is dereased step by step by the sequene

of running idea 1, idea 2, idea 3

n

and idea 3. In many

ases ideas 1, 2, 3

n

and 3 to hek asymmetry (and sym-

metry in ase of idea 3

n

) are suÆient in the sense that no

ofator omputation is neessary at the end, i.e., a 0 in

olumn Idea 1; 2; 3

n

; 3 denotes that all pairs of asymmetri

variables have been found by ideas 1, 2, 3 or 3

n

and that all

pairs of symmetri variables have been found by idea 3

n

.

The last olumn gives the number of ofators whih have

to be omputed after appliation of ideas 1, 2, 3

n

and 3 for

pairs of variables in whih the funtion is asymmetri. It

shows that almost all pairs of asymmetri variables ould

be deteted by the sequene of idea 1, 2, 3

n

and 3.
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TABLE I

CPU times in seonds.

iruit time symsets

name in out nodes naive Idea Idea Idea Idea

1 1; 2 1; 2; 3

n

1; 2; 3

n

; 3

C1355 41 32 29609 109.9 2.9 2.9 2.9 2.9 41(1)

C1908 33 25 7764 19.3 0.6 0.6 0.6 0.7 33(1)

C2670 233 140 7469 140.4 17.5 11.4 8.9 7.2 1(8) 2(2) 221(1)

C3540 50 22 27666 40.4 3.0 3.0 3.0 3.0 50(1)

C499 41 32 34113 128.5 3.4 4.0 4.0 4.0 41(1)

C5315 178 123 2433 231.9 1.9 2.1 2.1 2.1 2(2) 174(1)

C7552 207 108 9808 186.5 14.5 13.8 9.3 9.3 2(5) 4(4) 1(3) 6(2) 166(1)

apex6 135 99 1621 90.9 0.8 1.1 1.0 0.9 1(2) 133(1)

dalu 75 16 2235 15.8 0.4 0.6 0.6 0.6 1(2) 73(1)

des 256 245 7255 1100.1 5.6 5.6 5.7 5.6 256(1)

example2 85 66 757 13.9 0.2 0.3 0.3 0.3 1(2) 83(1)

frg2 143 139 3748 142.6 1.8 2.7 2.7 2.7 1(2) 141(1)

i2 201 1 1585 62.6 2.4 2.5 0.6 0.6 2(64) 3(16) 3(4)

i4 192 6 348 41.6 0.4 0.5 0.2 0.2 16(3) 50(2) 44(1)

i5 133 66 961 97.5 0.4 0.4 0.4 0.4 133(1)

i6 138 67 415 47.9 0.2 0.2 0.2 0.2 138(1)

i7 199 67 503 113.7 0.4 0.4 0.4 0.4 199(1)

i8 133 81 2637 93.8 1.1 1.2 1.1 1.1 133(1)

i9 88 63 2391 66.8 0.7 0.7 0.7 0.7 88(1)

pair 173 137 4918 132.4 2.6 3.9 3.8 3.8 2(2) 169(1)

rot 135 107 10223 556.8 4.9 6.9 5.9 5.7 2(3) 2(2) 125(1)

too large 38 3 4402 31.5 0.8 0.9 0.5 0.5 1(3) 3(2) 29(1)

x3 135 99 996 52.0 0.5 0.7 0.7 0.7 1(2) 133(1)

x4 94 71 756 24.3 0.2 0.4 0.4 0.4 1(2) 92(1)

TABLE II

Number of ofators whih have to be omputed

iruit No. of ofators No. of ofators

naive Idea 1 Idea 1; 2 Idea 1; 2; 3

n

Idea 1; 2; 3

n

; 3 for asymmetri pairs

C1355 1640 0 0 0 0 0

C1908 1056 0 0 0 0 0

C2670 3639353 118546 13012 10660 1560 12

C3540 9925 0 0 0 0 0

C499 1640 2 2 0 0 0

C5315 1336816 10719 563 123 123 0

C7552 1734673 14203 4369 1669 1525 17

apex6 282351 621 321 74 0 0

dalu 11246 17 17 16 16 0

des 3173371 0 0 0 0 0

example2 114807 66 66 0 0 0

frg2 789287 139 139 0 0 0

i2 4794 180 180 2 2 0

i4 80308 492 492 72 72 0

i5 239690 0 0 0 0 0

i6 421264 0 0 0 0 0

i7 859421 0 0 0 0 0

i8 150515 0 0 0 0 0

i9 84488 0 0 0 0 0

pair 152263 1232 274 0 0 0

rot 233762 659 643 107 107 0

too large 1318 15 15 0 0 0

x3 283519 336 336 83 0 0

x4 169498 71 71 0 0 0

A.2 Sifting Using Symmetries

Here we onsider statistial and benhmark results with

respet to ompletely spei�ed Boolean funtions.

A.2.a Statistial Results. Due to the remarks in Setion

III-B and the theoretial results proven in [48℄, it seems to

be reasonable to onsider only symmetri variable orders

for bdd minimization. To hek this assumption, we inves-

tigated all partially symmetri funtions with three, four
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and �ve inputs. For eah funtion we determined the num-

ber of general orders and the number of symmetry orders

that reate a bdd with x% more nodes than the minimum

bdd. Using these data, we omputed the probability to get

a bdd with more than x% more nodes than the minimum

for an arbitrary funtion and an arbitrary order. Figure 6

shows the result obtained for the four and �ve input fun-

tions. The dashed line shows the probability that the bdd

for an arbitrary partially symmetri funtion with an arbi-

trary symmetry order has more than x% additional nodes

with respet to the minimum. The solid line shows the

same for general orders. It turns out that the probability

to get an x% oversized bdd with a symmetry order is al-

ways smaller than it is for general orders. This shows from

a statistial point of view that symmetry orders onstitute

an eÆient sublass of variable orders.

Furthermore, this statistial study gives a negative an-

swer to the question, whether for eah bdd a symmetry

order exists that gives the minimal number of nodes. Con-

sider the fx

0

; x

1

g{symmetri funtion shown in Figure 7.

For this funtion eah symmetry ordered bdd has 4 internal

nodes while the minimum bdd has only 3 internal nodes.

For ompleteness, we omputed the number of partially

symmetri funtions for that eah symmetry order results

in a non-minimal bdd. For the 120 partially symmetri

funtions with three inputs there are 24 (20%) suh fun-

tions.

For the 20:548 partially symmetri funtions with four

inputs there are 960 (4.7%) and for the 162:535:140 par-

tially symmetri funtions with �ve inputs there are only

972:280 (0.6%) suh funtions. The distane of the best

symmetry order to the minimum was at most two nodes.

We on�rmed our results by performing experiments with

some funtions with more than �ve inputs. Thus, it seems

to be a good heuristi to on�ne ourselves to the sublass

of symmetry variable orders.

In [41℄ it was onjetured that for bdds without omple-

mented edges for eah funtion one of its symmetry orders

results in a bdd of minimal size. A negative answer to this

onjeture was given by our experiments with this kind of

bdds. For the four input funtion

f = x

1

x

2

x

3

+ x

1

x

2

x

3

+ x

1

x

2

x

3

+ x

1

x

2

x

3

x

4

whih is symmetri in fx

1

; x

2

; x

3

g the bdd with best

symmetry order has size 9 and the minimum size is 8

(with variable orders x

1

; x

2

; x

3

; x

4

and x

1

; x

2

; x

4

; x

3

, re-

spetively). For bdds without omplemented edges there

are 80 (0.4%) partially symmetri funtions with four in-

puts and 1:262:800 (0.8%) funtions with �ve inputs with-

out a minimum symmetry order.

A.2.b Benhmark Results. Now we will show the ef-

�ieny of the symmetry variable orders in pratial ap-

pliation. We proessed 109 ombinational two-level and

multi-level iruits from the lgsynth91 benhmark set.

We also proessed eah primary output of eah iruit sep-

arately, sine the single primary outputs of a multiple out-

put funtion sometimes have more symmetry. Symmetry

detetion was exeuted on the bdds using the algorithm

proposed above. We slightly modi�ed this algorithm to de-

tet equivalene symmetry as well. The notion of equiva-

lene symmetry was introdued by Hurst [25℄ and desribes

the situation that not fx

i

; x

j

g but fx

i

; x

j

g is a symmetri

pair. The additional onsideration of equivalene symme-

try results in about 10% more symmetry.

If a bdd is to be reated from a iruit desription, a

heuristi [33℄ generates a good initial order whih is not

neessarily a symmetry order. As disussed above, the size

of the bdd may be redued, if the initial non-symmetry

order is transformed into a symmetry one. We have applied

three algorithms to get a symmetry order. They di�er only

in the way they selet the new position for a symmetry set.

Heuristi �rst selets as position for a symmetry set the

position of the �rst variable of the symmetry set, median

selets the position of the middle variable and last selets

the position of the last symmetri variable.

Heuristi best alls all three methods and then selets the

best order. The suÆx so denotes the methods that handle

eah primary output separately. The results obtained by

initial reordering are shown in Table III. The �rst olumn

gives the name of the reordering heuristi. The seond,

third and fourth olumn shows the total number of benh-

mark funtions where the size of the symmetry ordered bdd

is smaller, equal-sized, or larger than the initial one when

it was reordered with the orresponding heuristi. The last

olumn shows the total number of nodes of all bdds and

the average improvement over all benhmarks.

For the 109 multiple output funtions we deteted 56

to be partially symmetri. The initial ordering heuristi

already generates a symmetry order for 39 of these fun-

tions. For more than half of the remaining non-symmetry

ordered bdds the order has been improved by eah of the

three symmetry reordering methods and the overall num-

ber of nodes dereases. The best heuristi seems to be last

and we selet it for our next experiments. However, row

best shows that the heuristis work well on di�erent fun-

tions. There are only three of the single output funtions

for whih all three heuristis generate a symmetry ordered

bdd that is larger than the initial one. This shows that

symmetry orders are also good in pratie.

To redue the size of a bdd several reordering heuristis

have been developed. Two of them, win3 and sift [43℄ are

implemented in the mu-bdd pakage. To work with sym-

metry orders we make use of the variable bloking feature

of the mu-bdd pakage. Before starting reordering, we

blok the symmetri variables whih were made adjaent

by last. The modi�ed heuristis are alled Swin3 and Ssift,

respetively.

For all symmetri funtions from the benhmark set the

original heuristis win3 and sift and the modi�ed heuristis

Swin3 and Ssift were applied to the initial bdds. Results

are presented in Table IV. The �rst olumn denotes the

reordering heuristi. The seond, third and fourth olumn

shows the total number of benhmark funtions for that

the modi�ed heuristis generate a smaller, equal-sized, or

larger bdd than the original heuristi. Column nodes shows
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Fig. 6. Distribution of general orders and symmetry orders
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TABLE III

Initial ordering with symmetry orders

Heuristi bdd size nodes

< = >

initial 58688

�rst 9 5 3 58432 1.3%

median 14 3 0 58020 1.5%

last 14 3 0 58007 1.8%

best 15 2 0 57888 2.5%

Heuristi bdd size nodes

< = >

initial so 49199

�rst so 312 236 101 47275 1,2%

median so 398 174 77 46353 1.5%

last so 409 161 79 46362 1.6%

best so 534 112 3 45252 2.4%

TABLE IV

Reordering with symmetry orders

Heuristi bdd size nodes time (se)

< = >

win3 66350 14

Swin3 25 29 2 64200 5.7% 16

sift 33878 92

Ssift 26 26 4 33149 7.1% 93

win3 so 67961 36

Swin3 so 693 1443 42 63668 3.4% 41

sift so 58177 116

Ssift so 452 1695 4 54970 2.6% 99

the number of nodes of all the optimized bdds and the

average improvement over all benhmarks. Column time

shows the run time

6

of the heuristis. The additional over-

all run time for symmetry detetion for multiple-output

and single-output funtions is about 88 seonds.

It is shown that the heuristis that use symmetry orders

6

All run times are seonds on SPARCstation 10/64 MB.

generate better or same results in most ases. Swin3 saves

5:7% nodes and Ssift3 saves 7:1% nodes on the average. The

run time for symmetri reordering remains nearly the same.

Unfortunately, there is the extra run time for symmetry

detetion. This inreases the run time of sift in general

by fator 2 and of win3 up to fator 7. One an overome

this diÆulty if the symmetry detetion is integrated in the

reordering method following idea 3

n

above (see also [41℄).

Table V shows the e�et of symmetry based reordering

for some individual benhmarks. In olumn symsets infor-

mation on symmetry is given (like in the previous setion

2(3) means that there are two symmetry sets of three in-

put variables). The following olumns show the bdd size

ahieved by the mentioned heuristis. The leading S de-

notes the symmetri version. (Column init gives the initial

bdd sizes (sifting was used as a dynami reordering method

to ompute these bdds) and olumn Sinit gives the result

of making symmetri variables adjaent by heuristi last as

desribed above.) If the symmetri reordering results in

the same size as the original the results are omitted.

It is shown that the symmetry modi�ed algorithms in

general outperform the original ones. Furthermore, even
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TABLE V

Benhmark results of reordering with symmetry orders

iruit symsets init Sinit win3 Swin3 sift Ssift

C2670 1(8) 2(2) 7306 7300

C5315 2(2) 2407 2406 2379 2378

C7552 2(5) 4(4) 1(3) 6(2) 9747 9727 9415 8838

C880 3(2) 7134 7132 5164 4879

apex2 1(3) 3(2) 2947 2846 910 634 700 654

ps 1(4) 1455 1445 1301 1294 1035 991

ex4 14(2) 895 822 692 691 537 539

seq 2(2) 5638 5532 3737 2586

t481 8(2) 63 33 33 21 33 31

vg2 2(2) 390 385 132 146

omp 16(2) 146 128 146 107

ount 1(2) 232 201 201 82

dalu 1(2) 4575 4346 1322 1323

frg2 1(2) 2297 2171

i2 2(64) 3(16) 3(4) 1586 1582 795 298

i4 16(3) 50(2) 349 333 333 245 308 233

lal 5(2) 122 110 97 95 75 72

my adder 1(3) 15(2) 457 452 457 411

pler8 l 1(2) 138 122 130 86

rot 2(3) 2(2) 10224 10222 8212 8204 4574 4568

too large 1(3) 3(2) 667 676 500 439

x1 1(2) 1211 1190 784 799 544 518

z4ml 1(3) 2(2) 37 30 21 17 24 17

a small number of symmetry sets and variables an ause

a large improvement. For example, for seq with only two

symmetry sets of size two Swin3 saves about 30% of all

nodes and for ount with only one symmetry pair Ssift saves

about 60%. Thus, symmetry based ordering is not only

suitable for funtions with a very large number of symme-

tries.

B. Inompletely Spei�ed Funtions

We have arried out experiments to test the e�et of the

algorithms for symmetry detetion in the ase of inom-

pletely spei�ed Boolean funtions.

To generate inompletely spei�ed funtions from om-

pletely spei�ed funtions, we used a method proposed in

[8℄: After ollapsing eah benhmark iruit to two level

form, we randomly seleted ubes in the on-set with a prob-

ability of 40% to be inluded into the don't are set

7

. The

last three Boolean funtions in Table VI are partial multi-

pliers partmult

n

8

.

We performed three experiments: First of all, we ap-

plied symmetri sifting to the bdds representing the on-

set of eah funtion. The results are shown in olumn 6

(sym sift) of Table VI. The entries are bdd sizes in terms

of internal nodes.

In a seond experiment, we applied our algorithm to min-

imize the number of symmetri groups followed by sym-

7

Beause of this method to generate inompletely spei�ed fun-

tions we had to on�ne ourselves to benhmark iruits whih ould

be ollapsed to two level form.

8

The n

2

inputs are the bits of the n partial produts and the 2n out-

puts are the produt bits. The don't are set ontains all input vetors

whih annot our for the reason that the input bits are not inde-

pendent from eah other, beause they are onjuntions a

i

b

j

of bits

of the operands (a

1

; : : : ; a

n

) and (b

1

; : : : ; b

n

) of the multipliation.

metri sifting. Column sym group of Table VI shows the

results. sym group provides a partition P = f�

1

; : : : ; �

k

g

and an extension f

0

of the original funtion f , suh that

f

0

is strongly symmetri in P . On the average, we an

improve the bdd size by 51%.

In a last experiment we started with the results of

sym group and then went on with a slightly modi�ed ver-

sion of the tehnique of Chang [8℄ and Shiple [47℄ aording

to Lemma 13. Lemma 13 leads to a modi�ation of the

tehnique of Chang whih does not destroy strong sym-

metry supplied by sym group: We restrit the remove z

operation [8℄ only to ut lines between groups of symmet-

ri variables. Sine our tehnique to restrit remove z to

ut lines between symmetri groups does not destroy the

symmetri groups, we an perform symmetri sifting after

the node minimization with the same symmetri groups

as before. Figure 8 illustrates our modi�ation of Chang's

tehnique. Column sym over of Table VI shows the re-

sulting bdd sizes. On the average, the new tehnique leads

to an improvement of the bdd sizes by 70%.

A omparison to the results of the restrit operator [10℄

(applied to bdds whose variable order was optimized by

regular sifting) in olumn restrit of Table VI shows that

our bdd sizes are on the average 44% smaller. Even if

sifting is alled again after the restrit operator has been

applied, the improvement is still more than 40% on average

(see olumn restrit sift).

Finally, we arried out the same experiment one more,

but this time the probability for a ube to be inluded in

the don't are set was redued to 10% (instead of 40%)

9

.

9

Note that the sizes of the don't are sets for the partial multipliers

partmult

n

are �xed, sine these don't are sets arise in a `natural
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TABLE VI

Experimental results. The table shows the number of nodes in the bdds of eah funtion. Numbers in parenthesis show the

CPU times (measured on a SPARCstation 20 (96 MByte RAM)).

iruit in out restrit restrit sift sym sift sym group sym over

5xp1 7 10 63 63 67 66 (0.2 s) 53 (0.5 s)

9symml 9 1 67 65 108 25 (0.3 s) 25 (0.4 s)

alu2 10 6 192 182 201 201 (0.7 s) 152 (2.6 s)

apex6 135 99 993 940 1033 983 (267.6 s) 612 (459.7 s)

apex7 49 37 730 716 814 728 (27.7 s) 340 (52.2 s)

b9 41 21 213 211 256 185 (8.6 s) 122 (11.5 s)

8 28 18 110 98 156 95 (1.7 s) 70 (3.2 s)

example2 85 66 497 496 491 484 (69.2 s) 416 (119.4 s)

mux 21 1 32 32 34 29 (0.6 s) 29 (0.7 s)

pler8 27 17 111 111 78 73 (1.9 s) 72 (3.3 s)

rd73 7 3 75 74 76 34 (0.3 s) 27 (0.4 s)

rd84 8 4 135 132 144 42 (0.7 s) 42 (0.7 s)

sao2 10 4 89 89 104 104 (0.4 s) 70 (0.8 s)

x4 94 71 814 812 829 633 (121.9 s) 485 (203.4 s)

z4ml 7 4 47 46 51 32 (0.2 s) 17 (0.3 s)

partmult3 9 6 70 65 152 35 (1.0 s) 29 (1.2 s)

partmult4 16 8 307 294 971 222 (49.5 s) 114 (50.6 s)

partmult5 25 10 857 843 4574 998 (1540.4 s) 365 (1548.4 s)

total 5402 5269 10139 4969 3040
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Fig. 8. On the left hand side the method presented by Chang is illustrated (ut lines between all levels). On the right hand side our method

is illustrated.

The numbers for sym sift, sym group and sym over are

given in Table VII in olumns 4, 5 and 6, respetively. It

an easily be seen that the redution ratio dereases, when

only a smaller number of don't ares is available, but with

only 10% don't ares still more than 30% of the nodes an

be saved on average.

VII. Conlusions

We presented methods for symmetry detetion for om-

pletely spei�ed funtions represented by bdds. The main

idea of our symmetry detetion algorithm is to use fast pre-

proessing algorithms to detet asymmetri variable pairs.

These methods were applied to improve the quality of bdd

reordering heuristis for the lass of partially symmetri

funtions by using symmetry variable orders. The onept

of symmetry variable orders was suessfully extended to

inompletely funtions, where there are two means to min-

way' as desribed above.

imize bdd sizes: the assignment of values to don't ares

and the optimization of the variable order. Experimental

results prove our approah to be very e�etive.

Appendix

A. Proof of Lemma 10

Proof:

1. "`(="': Suppose f is not strongly symmetri in

P . Then there must be �

i

2 P , suh that f is

not strongly symmetri in �

i

and there must be

a pair of variables (x

i

; x

j

) 2 �

i

, suh that f is

not strongly symmetri in (x

i

; x

j

). By de�nition

there must be e

1

= (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) and

e

2

= (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

), suh that e

1

2 D

and e

2

=2 D or e

1

; e

2

2 D and f(e

1

) 6= f(e

2

). But

e

1

and e

2

belong to the same weight lass C of P .

Both ases lead to a ontradition: In the �rst ase

we have fd; 1g or fd; 0g � f(C), in the seond ase
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TABLE VII

Experimental results. The table shows the number of nodes

in the bdds of eah funtion with 10% don't ares.

iruit in out sym sift sym group sym over

5xp1 7 10 75 73 68

9symml 9 1 75 25 25

alu2 10 6 199 199 166

apex6 135 99 961 911 585

apex7 49 37 807 753 428

b9 41 21 203 195 141

8 28 18 180 161 83

example2 85 66 547 540 464

mux 21 1 40 35 33

pler8 27 17 83 83 81

rd73 7 3 65 35 31

rd84 8 4 126 42 42

sao2 10 4 106 106 79

x4 94 71 677 670 499

z4ml 7 4 50 30 17

total 4194 3858 2742

f0; 1g � f(C).

"`=)"': If f is strongly symmetri in P , then the

following holds for all � 2 � = f�

i;l

: 9�

j

2

Pwithx

i

; x

l

2 �

j

g

1

: 8e = (�

1

; : : : ; �

n

) 2 f0; 1g

n

f(e) = f(�(e)) (inluding the extended interpre-

tation f(e) = f(�(e)) = d). Let e

1

and e

2

be

members of a arbitrary weight lass C of P . Then

there is a sequene of permutations �

1

: : : �

l

2 �

with e

2

= (�

1

Æ : : : Æ �

l

)(e

1

). Thus f(e

1

) = f(e

2

)

holds, suh that f(C) = f0g or f(C) = f1g or

f(C) = fdg.

2. "`(="': Let 80 � w

i

� j�

i

j(1 � i � k) f0; 1g 6�

f(C

P

w

1

;:::;w

k

).

We have to prove that there is a ompletely spei-

�ed extension f

0

of f , whih is symmetri in P .

De�ne f

0

as follows:

If f(C) = f�g (� 2 f0; 1g) for a weight lass C, then

f

0

(C) = f(C).

If f(C) = fdg for a weight lass C, then f

0

(C) = 0.

If f(C) = f�; dg (� 2 f0; 1g) for a weight lass C,

then f

0

(C) = �.

Then f

0

is a ompletely spei�ed funtion and be-

ause of part 1 of the theorem f

0

is strongly symmet-

ri in P and thus symmetri in P aording to the

symmetry de�nition for ompletely spei�ed fun-

tions.

"`=)"': Let f be (weakly) symmetri in P . Thus

there is a ompletely spei�ed extension f

0

of f ,

whih is symmetri in P . If there would be a weight

lass C with f0; 1g � f(C), then f0; 1g � f

0

(C),

sine f

0

is an extension of f . Sine f

0

is ompletely

spei�ed, we have for all weight lasses C of P a-

ording to part 1 of the theorem: f

0

(C) = f0g or

f

0

(C) = f1g whih ontradits our assumption.

1

�

i;l

: f0; 1g

n

! f0; 1g

n

, �

i;l

(�

1

; : : : ; �

i

; : : : ; �

l

; : : : ; �

n

) = (�

1

; : : : ;

�

l

; : : : ; �

i

; : : : ; �n) 8�

1

; : : : ; �

n

2 f0; 1g

n

B. Proof of Theorem 4

Proof: Let an instane of PC be given by a graph

G = (V;E) and a number K � jV j. We an determine in

polynomial time bdds f

G

on

and f

G

d

of an inompletely

spei�ed funtion f

G

with the property that there is a par-

tition of G into K liques i� there is a partition P of the

variable set X of f , suh that f is symmetri in P and

jP j = K.

W.l.o.g. V = fx

1

; : : : ; x

n

g = X .

f

G

2 S(D) (D � f0; 1g

n

) is de�ned by

f

G

(�

1

; : : : ; �

n

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if �

1

= : : : = �

i

= 1;

�

i+1

= : : : = �

n

= 0;

1 � i � n� 1

0 if �

1

= : : : = �

i�1

= 1;

�

i

= : : : = �

j�1

= 0;

�

j

= 1;

�

j+1

= : : : = �

n

= 0;

1 � i � n� 1; j > i

and fx

i

; x

j

g =2 E

d otherwise

From the de�nition of f

G

it is easy to see that if f

G

is

symmetri in a partition P = f�

1

; : : : ; �

K

g of the input

variables, then the variables (nodes) from �

i

form a lique

in G.

Let P = f�

1

; : : : ; �

K

g be a partition of the input vari-

ables, suh that the nodes from �

i

form liques in G. Sup-

pose f is not symmetri in P .

Aording to lemma 10 there is a weight lass C

P

w

1

;:::;w

K

for P with f0; 1g � f

G

(C

P

w

1

;:::;w

K

). From the de�nition of

f

G

the only vertex of C

P

w

1

;:::;w

K

with funtion value 1 is

�

(1)

:= (1; : : : ; 1

| {z }

w times

; 0; : : : ; 0) (w =

P

k

i=1

w

i

). There has to be

j > w with �

(0)

:= ( 1; : : : ; 1

| {z }

w � 1 times

; 0; 0; : : : ; 0; 1

|{z}

�

(0)

j

; 0; : : : ; 0)

with f(�

(0)

) = 0, i.e. (x

w

; x

j

) =2 E. Let �

0

2 P with

x

w

2 �

0

. If x

j

=2 �

0

, then w

1

�

0

(�

(0)

) = w

1

�

0

(�

(1)

) � 1. This

ontradits the fat that �

(0)

and �

(1)

are in the same weight

lass. If x

j

2 �

0

, then we obtain a ontradition to the fat

that (x

w

; x

j

) =2 E.

Sine ON(f

G

) and OFF (f

G

) are of polynomial size, the

bdds for f

G

on

and f

G

d

an be omputed in polynomial

time.

C. Proof of Theorem 5

Proof: Let P = f�

1

; �

2

; �

3

; : : : ; �

l

g and w.l.o.g. �

1

=

fx

i

g and �

2

= fx

j

1

; : : : ; x

j

k

g.

f is strongly symmetri in P and we have to show that f

(k)

is strongly symmetri in P

0

= f�

1

[ �

2

; �

3

; : : : ; �

l

g.

Beause of lemma 10 we have to show that for all weight

lasses C

P

0

w

1;2

;w

3

;:::;w

l

of P

0

holds:

f

(k)

(C

P

0

w

1;2

;w

3

;:::;w

n+1�k

) =

8

<

:

f0g or

f1g or

fdg
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Case 1: w

1;2

= 0 or w

1;2

= k + 1

Then the following holds:

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

0;0;w

3

;:::;w

l

or

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

1;k;w

3

;:::;w

l

and thus jf(C

P

0

w

1;2

;w

3

;:::;w

l

)j = 1 beause of the strong

symmetry of f in P .

If f(C

P

0

w

1;2

;w

3

;:::;w

l

) = ,  2 f0; 1g,

then f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

n+1�k

) = fg for all 1 � p � k,

sine f

(p)

is an extension of f .

If f(C

P

0

w

1;2

;w

3

;:::;w

l

) = fdg,

then f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

l

) = fdg for all 1 � p � k, sine

make strongly symm(f

(p�1)

; x

i

; x

j

p

) provides amini-

mal extension, whih is strongly symmetri in (x

i

; x

j

p

)

and w

1

�

1

(�) = w

1

�

2

(�) = 0 or w

0

�

1

(�) = w

0

�

2

(�) = 0 for

all � 2 C

P

0

w

1;2

;w

3

;:::;w

l

.

Case 2: 1 � w

1;2

� k

In this ase we have the following disjoint union

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

0;w

1;2

;w

3

;:::;w

l

[ C

P

1;w

1;2

�1;w

3

;:::;w

l

.

It follows from our preondition

f(C

P

0;w

1;2

;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fdg

and

f(C

Q

1;w

1;2

�1;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fdg

Case 2.1: f(C

P

0;w

1;2

;w

3

;:::;w

l

) = f(C

P

1;w

1;2

�1;w

3

;:::;w

l

)

Sine the alls of

make strongly symm(f

(p�1)

; x

i

; x

j

p

) give minimal

extensions, whih are strongly symmetri in

(x

i

; x

j

p

), the assignment for

C

P

0;w

1;2

;w

3

;:::;w

l

and C

P

1;w

1;2

�1;w

3

;:::;w

l

is not hanged.

f

(p)

(C

P

0;w

1;2

;w

3

;:::;w

l

) = f

(p)

(C

P

1;w

1;2

�1;w

3

;:::;w

l

) holds

and thus

f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fdg

Case 2.2: f(C

P

0;w

1;2

;w

3

;:::;w

l

) 6= f(C

P

1;w

1;2

�1;w

3

;:::;w

l

)

Sine f is symmetri in (x

i

; x

j

1

), there are  2 f0; 1g

and u 2 f0; 1g, suh that

f(C

P

u;w

1;2

�u;w

3

;:::;w

l

) = fdg and

f(C

P

u;w

1;2

�u;w

3

;:::;w

l

) = fg.

In the following we assume u = 0 (ase u = 1 is

analogous).

From the de�nition of make strongly symm fol-

lows that for all 1 � p � k f

(p)

(�) 2 f; dg 8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

[ C

P

1;w

1;2

�1;w

3

;:::;w

l

.

A all of make strongly symm(f

(p)

; x

i

; x

j

p+1

) as-

signs the funtion values to vetors � 2

C

P

0;w

1;2

;w

3

;:::;w

l

with �

i

= 0 and �

j

p+1

= 1, namely

to the value f

(p)

(�

ij

p+1

(�)) =  (�

ij

p+1

(�) 2

C

P

1;w

1;2

�1;w

3

;:::;w

l

).

2

It remains to be shown that f

(k)

(�) =  8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

, i.e. that the sequene of k alls is

enough to assign funtion value  to all elements of

C

P

0;w

1;2

;w

3

;:::;w

l

.

The following statement is proven by indution:

f

(p)

(�) =  8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1 or

�

j

2

= 1 or . . . or �

j

p

= 1.

p = 0: Trivial.

p! p+ 1:

Beause of the indutive assumption and sine

f

(p+1)

is an extension of f

(p)

, we have:

f

(p+1)

(�) =  8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1

or �

j

2

= 1 or . . . or �

j

p

= 1.

We have to show that f

(p+1)

(�) =  8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

p+1

= 1.

Let Æ 2 C

P

1;w

1;2

�1;w

3

;:::;w

l

with

Æ

i

= �

i

= 1

z

; Æ

j

p+1

= �

j

p+1

= 0

and Æ

l

= �

l

for l 6= i; j

p+1

;

thus Æ = �

i;j

p+1

(�). (There is suh a Æ 2

C

P

1;w

1;2

�1;w

3

;:::;w

l

beause of 1 � w

1;2

).

We have

f

(p)

(Æ) = f(Æ) = 

and thus

f

(p+1)

(�) = f

(p)

(�

i;j

p+1

(�)) = f

(p)

(Æ) = :

It follows from the statement shown by indution:

f

(k)

(�) =  8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1 or : : : or �

j

k

= 1

or

f

(k)

(�) =  8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with w

1

�

2

(�) � 1:

But w

1

�

2

(�) = w

1;2

� 1 holds for all � 2

C

P

0;w

1;2

;w

3

;:::;w

l

(assumption in Case 2).

D. Proof of Lemma 13 (sketh)

Proof: W.l.o.g. let [

i

j=1

�

j

= fx

1

; : : : ; x

p

g and

[

n

j=i+1

�

j

= fx

p+1

; : : : ; x

n

g.

Suppose we apply the remove z operation de�ned in [8℄

to a ut line between two symmetri groups �

i

and �

i+1

.

The remove z operation works as follows:

� The bdd nodes below the ut line orrespond to all

di�erent ofators of f with respet to the �rst p

variables. Let the set of these ofators be COF =

fof

1

; : : : ; of

l

g. Note that these ofators are inom-

pletely spei�ed funtions.

2

�

ij

: f0; 1g

n

! f0; 1g

n

; �

ij

(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

)

z

For all elements � of the weight lass C

P

0;w

1;2

;w

3

;:::;w

l

is �

i

= 0.
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� Two ofators of

i

and of

j

are ompatible i� there is

no (�

p+1

; : : : ; �

n

) 2 f0; 1g

n�p

suh that

of

i

(�

p+1

; : : : ; �

n

) = ; of

j

(�

p+1

; : : : ; �

n

) = 

for  2 f0; 1g.

A partition P

COF

= fCOF

1

; : : : ; COF

m

g of COF is

omputed suh that all pairs of

i

, of

j

2 COF

q

(1 �

q � m) are ompatible.

� For a set COF

q

of ompatible ofators an extension

extension

q

is omputed as follows:

extension

q

(�

p+1

; : : : ; �

n

) =  ( 2 f0; 1g) i�

9of

j

2 COF

q

with of

j

(�

p+1

; : : : ; �

n

) =  and

extension

q

(�

p+1

; : : : ; �

n

) = d i� 8of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

n

) = d.

� The ofators of

j

2 COF

q

are all replaed by their

(ommon) extension extension

q

. This leads to an ex-

tension f

0

of f , the result of the remove z operation.

The number of bdd nodes of the representation for f

0

whih are loated immediately below the ut line be-

tween �

i

and �

i+1

equals the size m of the partition

P

COF

.

We have to prove that f

0

is strongly symmetri in all sets

�

j

2 P = f�

1

; : : : ; �

k

g.

Case 1: j � i

Let x

j

1

and x

j

2

2 �

j

.

Choose �

(1)

; �

(2)

2 f0; 1g

n

arbitrarily with

�

(1)

= (�

1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

)

and �

(2)

= (�

1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

):

Sine f is strongly symmetri in x

j

1

; x

j

2

the ofators

f j

x

1

=�

1

;:::;x

j

1

=�

j

1

;:::;x

j

2

=�

j

2

;:::;x

p

=�

p

and f j

x

1

=�

1

;:::;x

j

1

=�

j

2

;:::;x

j

2

=�

j

1

;:::;x

p

=�

p

are equal. By

remove z this ofator is replaed by some ex-

tension extension

q

and of ourse the orrespond-

ing ofators f

0

j

x

1

=�

1

;:::;x

j

1

=�

j

1

;:::;x

j

2

=�

j

2

;:::;x

p

=�

p

and

f

0

j

x

1

=�

1

;:::;x

j

1

=�

j

2

;:::;x

j

2

=�

j

1

;:::;x

p

=�

p

of the result f

0

of

this replaement are still equal. Thus, f

0

(�

(1)

) =

f

0

(�

(2)

) and f

0

is strongly symmetri in x

j

1

and x

j

2

.

Case 2: j � i+ 1

Let x

j

1

and x

j

2

2 �

j

.

Choose �

(1)

; �

(2)

2 f0; 1g

n

arbitrarily with

�

(1)

= (�

1

; : : : ; �

p

; : : : ; �

j

1

; : : : ; �

j

2

: : : ; �

n

)

and �

(2)

= (�

1

; : : : ; �

p

; : : : ; �

j

2

; : : : ; �

j

1

: : : ; �

n

):

Suppose the ofator f j

x

1

=�

1

;:::;x

p

=�

p

is in the set

COF

q

. All ofators 2 COF

q

are strongly symmet-

ri in x

j

1

and x

j

2

.

If for all ofators

of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

) = d

then also for all ofators

of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

) = d

beause of strong symmetry and aording to the def-

inition of extension

q

given above

extension

q

(�

p+1

; : : : ; �

j

1

; : : : ; �
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