
Verifying Dividers Using Symbolic Computer
Algebra and Don’t Care Optimization

Christoph Scholl1 Alexander Konrad1 Alireza Mahzoon2 Daniel Große3 Rolf Drechsler2
1University of Freiburg, Germany 2University of Bremen, Germany 3Johannes Kepler University Linz, Austria

{scholl, konrada}@informatik.uni-freiburg.de, {mahzoon, drechsle}@informatik.uni-bremen.de, daniel.grosse@jku.at

Abstract—In this paper we build on methods based on Symbolic
Computer Algebra that have been applied successfully to multiplier
verification and more recently to divider verification as well. We
show that existing methods are not sufficient to verify optimized
non-restoring dividers and we enhance those methods by a novel
optimization method for polynomials w. r. t. satisfiability don’t cares.
The optimization is reduced to Integer Linear Programming (ILP).
Our experimental results show that this method is the key for
enabling the verification of large and optimized non-restoring
dividers (with bit widths up to 512).

I. INTRODUCTION

Arithmetic circuits are crucial components in processor designs
as well as in special-purpose hardware for computationally inten-
sive applications like signal processing and cryptography. At the
latest since the famous Pentium bug [1] in 1994, where a subtle
design error in the divider had not been detected by Intel’s design
validation (leading to erroneous Pentium chips brought to the
market), it has been widely recognized that incomplete simulation-
based approaches are not sufficient for verification and formal
methods should be used to verify the correctness of arithmetic
circuits. Since the design of circuits containing arithmetic is
nowadays not only confined to the major processor vendors,
but is also done by many different suppliers of special-purpose
embedded hardware who cannot afford to employ large teams of
specialized verification engineers being able to provide human-
assisted theorem proofs, the interest in fully automatic formal
verification of arithmetic circuits is growing more and more.

While the automatic formal verification of adder circuits (and
hence also subtractor circuits) turned out to be easier, multipliers
and dividers formed a major problem for a long time. Early at-
tempts to represent both multiplier specifications and implementa-
tions by canonical forms like BDDs [2] showed exponential space
complexity [3]. SAT-based methods did not prove to be scalable
either [4]. Nevertheless, for the automatic formal verification of
gate-level multipliers there has been great progress during the last
few years. Apart from rewriting based approaches like [5], methods
based on Symbolic Computer Algebra (SCA) were able to verify
large, structurally complex, and highly optimized multipliers. Both
finite field multipliers [6] and integer multipliers [4], [7]–[17] have
been considered in SCA-based approaches. Here the verification
task has been reduced to an ideal membership test for the specifica-
tion polynomial based on so-called backward rewriting, proceeding
from the outputs of the circuit in direction of the inputs.

Although the Pentium bug affected the divider unit, research
efforts for divider verification were not as successful as for
multipliers. Attempts to use Decision Diagrams for proving the
correctness of an SRT divider [18] were confined to a single
stage of the divider (at the gate level) [19]. Methods based on
word-level model checking [20] looked into SRT division as well,
but considered only a special abstract and clean sequential (i.e.,

This work was supported by the German Research Foundation (DFG) within
the project VerA (SCHO 894/5-1, GR 3104/6-1 and DR 297/37-1).

non-combinatorial) divider without gate-level optimizations. Other
approaches like [21], [22], or [23] looked into fixed division
algorithms and used semi-automatic theorem proving with ACL2,
Analytica, or Forte to prove their correctness. Nevertheless, all
those efforts did not lead to a fully automated verification method
suitable for gate-level dividers. Hamaguchi et al. [24] mentioned
in a side remark a simple and fully automated method to verify
integer dividers using *BMDs [25] which is closely related to
the SCA-based method to be presented in this paper. They start
with a *BMD representing Q×D+R (where Q is the quotient,
D the divisor, and R the remainder of the division) and use a
backward construction to replace the bits of Q and R step by step
by *BMDs representing the gates of the divider. The goal is to
finally obtain a *BMD representation for the dividend R(0) which
proves the correctness of the divider circuit. Unfortunately, in their
experiments they observed exponential blow-ups of *BMDs in the
backward construction and thus the approach did not provide an
effective way for verifying large integer dividers.

We are aware of three recent approaches which try to take up the
success of SCA to provide a fully automatic divider verification.
The work in [26] is mainly confined to division by constants
and cannot handle general dividers due to a memory explosion
problem. [27] works at the gate level, but assumes that hierarchy
information in a restoring divider is present. Using this hierarchy
information it decomposes the proof obligation R(0) = Q×D+R
into separate proof obligations for each level of the restoring
divider. Nevertheless, the approach scales only to medium-sized
bit widths (up to 21 as shown in the experimental results of [27]).
The approach of [28] works on the gate level as well, but it
does not need any hierarchy information. It proves the correctness
of non-restoring dividers by “backward rewriting” starting with
the “specification polynomial” Q × D + R − R(0). Here back-
ward rewriting performs “backward substitutions” of gate output
variables with the gates’ specification polynomials. By finally
obtaining the 0-polynomial they prove the dividers to be correct.
To avoid an exponential blow-up during backward rewriting, their
method uses information on equivalent and antivalent signals
which is derived by forward propagating the allowed range of the
divider inputs, i. e., the constraint 0 ≤ R(0) < D·2n−1, using SAT.
The method scales very well, but it is restricted to a very clean
implementation of non-restoring division. Using optimizations to
the implementation (which are usually even contained in textbook
designs) leads to a memory explosion problem for this approach,
too.

Here we present a novel SCA-based verification method which
is basically along the lines of [28], but completely avoids the
problems mentioned above. Our method works on the gate-level
netlist without using any hierarchy information which may have
been lost during logic optimization. As [28] it does not use a
“golden specification circuit” for division, but only uses the natural
abstract specification from the definition of division. We consider
optimized non-restoring dividers and show that the method from

scholl
Textfeld
Preprint from Proceedings of Design, Automation and Test in Europe (DATE), February 2021



[28] leads to memory explosion in this case. Whereas we agree
with the authors of [28] in the analysis that backward rewriting
cannot be efficient without forward propagation of information,
we do not limit ourselves to the detection and exploitation of
equivalences and antivalences as in [28]. Rather we compute
satisfiability don’t cares of atomic blocks in the divider circuit
which are present due to the input constraint 0 ≤ R(0) < D ·2n−1.
We use those satisfiability don’t cares to optimize polynomials
modulo don’t cares, i. e., from a polynomial P we compute a
smaller polynomial P ′ which evaluates to the same values as P
for all input combinations which do not satisfy the don’t care
conditions. The computation of optimized polynomials is reduced
to suitable Integer Linear Programming (ILP) problems and makes
use of progress in ILP solving made during the last decades. Since
we change polynomials only w. r. t. satisfiability don’t cares, i. e.,
w. r. t. value combinations which do not occur in the circuit as
long as we stay in the allowed input range, it is clear that the
final polynomial after backward rewriting is – within the allowed
input range – identical to the polynomial which would have been
computed without using don’t care optimization.

Our experiments show that this approach to optimize polynomi-
als in early stages (before an exponential blow-up occurs) is very
efficient in restricting the sizes of polynomials. E.g. for the 512-
bit divider the whole verification including backward rewriting and
don’t care based optimizations of polynomials could be performed
in less than 162 CPU minutes.

Moreover, we make the observation that for a correct divider
the final polynomial only has to evaluate to 0 for the inputs in the
allowed input range (0 ≤ R(0) < D ·2n−1). Whereas for the clean
divider from [28] the final polynomial evaluates to 0 for all input
combinations (“by chance”), this is not the case for the optimized
divider designs and thus we had to provide an efficient evaluation
proving that the final polynomial is 0 for all inputs in the allowed
input range 0 ≤ R(0) < D · 2n−1.

The paper is structured as follows: In Sect. II we provide
background on SCA and divider circuits. In Sect. III we motivate
the need for our novel optimization method which is presented in
Sect. IV. We evaluate the approach in Sect. V and conclude with
final remarks in Sect. VI.

II. PRELIMINARIES

A. SCA for Verification

For the presentation of SCA we basically follow [28]. SCA
based approaches work with polynomials and reduce the verifi-
cation task to an ideal membership test using a Gröbner base
representation of the ideal. The ideal membership test is performed
using polynomial division. While Gröbner base theory is very
general and, e.g., can be applied to finite field multipliers [6] and
truncated multipliers [16] as well, for integer arithmetic it boils
down to substitutions of variables for gate outputs by polynomials
over the gate inputs (in reverse topological order), if we choose an
appropriate “term order” (see [4] or [13], e.g.). Here we restrict
ourselves to exactly this view.

For integer arithmetic we consider polynomials over binary vari-
ables (from a set X = {x1, . . . , xn}) with integer coefficients, i. e.,
a polynomial is a sum of terms, a term is a product of a monomial
with an integer, and a monomial is a product of variables from X .
Polynomials represent pseudo-Boolean functions f : {0, 1}n 7→ Z.

As a simple example consider the full adder from Fig. 1. The
full adder defines a pseudo-Boolean function fFA : {0, 1}3 7→ Z
with fFA(a0, b0, c) = a0 + b0 + c. We can compute a polynomial
representation for fFA by starting with a weighted sum 2c0 + s0

b0

a0

c

c0

s0

h1

h2

h3

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c + h1
h2→ 2a0b0 − 2a0b0ch1 + c + h1
h1→ a0 + b0 + c

Fig. 1. Circuit with series of substitutions.

(called the “output signature” in [10]) of the output variables.
Step by step, we replace the variables in polynomials by the
so–called “gate polynomials”. This replacement is performed in
reverse topological order of the circuit, see Fig. 1. We start by
replacing c0 in 2c0 + s0 by its gate polynomial h2 + h3 − h2h3

(which is derived from the Boolean function c0 = h2∨h3). Finally,
we arrive at the polynomial a0+b0+c (called the “input signature”
in [10]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers vk

of variables v with k > 1 to v (since the variables are binary),
by combining terms with identical monomials into one term, and
by omitting terms with leading factor 0. We can also consider
a0 + b0 + c = 2c0 + s0 as the “specification” of the full adder.
The circuit implements a full adder iff backward substitution, now
starting with 2c0 + s0 − a0 − b0 − c instead of 2c0 + s0, reduces
the “specification polynomial” to 0 in the end. (This is the notion
usually preferred in SCA-based verification.)

The correctness of this statement already follows from the
following lemma:

Lemma 1. Polynomials (with the above mentioned simplifications
resp. normalizations) are canonical representations of pseudo-
Boolean functions (up to reordering of the terms).

The proof of Lemma 1 as well as a discussion of the relation
between polynomials and *BMDs can be found in [28], e.g..

B. Divider Circuits

In the following we briefly review textbook knowledge
on dividers. We use 〈an, . . . , a0〉 :=

∑n
i=0 ai2

i and
[an, . . . , a0]2 := (

∑n−1
i=0 ai2

i) − an2
n for interpretations of bit

vectors (an, . . . , a0) ∈ {0, 1}n+1 as unsigned binary numbers
and two’s complement numbers respectively. The leading bit an
is called the sign bit. An unsigned integer divider is a circuit with
the following property:

Definition 1. Let (r
(0)
2n−2 . . . r

(0)
0 ) be the dividend with sign bit

r
(0)
2n−2 = 0 and value R(0) := 〈r(0)2n−2 . . . r

(0)
0 〉 = [r

(0)
2n−2 . . . r

(0)
0 ]2,

(dn−1 . . . d0) be the divisor with sign bit dn−1 = 0 and value
D := 〈dn−1 . . . d0〉 = [dn−1 . . . d0]2, and let 0 ≤ R(0) <
D · 2n−1.* Then (qn−1 . . . q0) with value Q = 〈qn−1 . . . q0〉 is
the quotient of the division and (r2n−2 . . . r0) with value R =
[r2n−2 . . . r0]2 is the remainder of the division, if R(0) = Q·D+R
(verification condition 1 = “vc1”) and 0 ≤ R < D (“vc2”).

The simplest algorithm to compute quotient and remainder
is restoring division which is the “school method” to compute
quotient bits and “partial remainders” R(j). In each step it subtracts
a shifted version of D. If the result is less than 0, the corresponding
quotient bit is 0 and the shifted version of D is “added back”,

*As in the case of multipliers where the number of product bits is two times the
number of bits of one factor, we consider here the general case that the dividend
has twice as many bits as the divisor. If both the dividend and the divisor are
supposed to have the same length, we just set r(0)2n−2 = . . . = r

(0)
n−1 = 0 and

require D > 0 (which then implies 0 ≤ R(0) < D · 2n−1).



Algorithm 1 Non-restoring division.
1: R(1) := R(0) −D · 2n−1; if R(1) < 0 then qn−1 := 0 else qn−1 := 1;
2: for i = 2 to n do
3: if R(j−1) ≥ 0 then R(j) := R(j−1) −D · 2n−j

4: elseR(j) := R(j−1) + D · 2n−j ;
5: if R(j) < 0 then qn−j := 0 else qn−j := 1;
6: R := R(n) + (1− q0) ·D;

i. e., “restored”. Otherwise the quotient bit is 1 and the algorithm
proceeds with the next smaller shifted version of D. Non-restoring
division optimizes restoring division by combining in case of a
negative partial remainder two steps of restoring division: adding
the shifted D back and (tentatively) subtracting the next D shifted
by one position less. These two steps are replaced by just adding
D shifted by one position less (which obviously leads to the same
result). More precisely, non-restoring division works according to
Alg. 1.

Fig. 2. Non-restoring divider, n = 3.

Fig. 3. Optimized non-restoring divider, n = 3.
For simplicity, we present the circuit before prop-
agation of constants (which is done however in
the real implemented circuit). The red numbers
in the upper right corners of full adders give
the number of satisfiability don’t cares resulting
from the input constraint (for the circuit before
constant propagation).

Fig. 2 shows a
combinational circuit
for n = 3 computing Q
and R by non-restoring
division as it was used
in [28]. It works with
two’s complement
numbers, the first
row implements a
subtractor, row j
with 2 ≤ j ≤ n
represents a combined
adder/subtractor
(CAS), depending
on the quotient
bit qn−j+1, row
n + 1 represents the
backaddition in case
q0 = 0. The divider
works with partial
remainders R(j) of
fixed lengths 2n − 1,
i. e., the width of a row
is 2n − 1. However,
well-known textbook
implementations make
it with rows of width
n only, leading to a
non-restoring divider
as shown in Fig. 3 for
n = 3. This can be
seen as follows: Due to
shifting of D by n− j
bit positions to the left
in rows 1 to n, the
right-most n − j full
adders can be omitted
in row j. The fact that the j − 1 left-most full adders may be
omitted as well needs some deeper insight into non-restoring
division and is due to range restrictions derived from the condition
on the input range. We obtain the following result for the size of
the partial remainders:

Lemma 2. For all partial remainders in non-restoring division
with 0 ≤ R(0) < D·2n−1 we obtain−D·2n−j ≤ R(j) < D·2n−j .

Proof. By induction using 0 ≤ R(0) < D · 2n−1.

Corollary 1. For 1 ≤ j ≤ n R(j) may be represented by a two’s
complement representation with 2n− j bits.

Proof. With −D · 2n−j ≤ R(j) < D · 2n−j and D ≤ 2n−1− 1 ≤
2n−1 we obtain −22n−j−1 ≤ R(j) < 22n−j−1.

From Corollary 1 we can conclude that R(j) can be represented
by (r

(j)
2n−j−1 . . . r

(j)
0 ) and a circuit for non-restoring division does

not need to compute any bits with higher indices than r
(j)
2n−j−1.

However, in the adder/subtractor stage computing R(j+1), the
leading bit r(j)2n−j−1 of R(j) does not need to be used as an input,
since we know that the result R(j+1) can be represented by one bit
less, i.e., r(j+1)

2n−j−1 resulting from addition at bit position 2n−j−1
would just be a sign extension of (r(j+1)

2n−j−2 . . . r
(j+1)
0 ). A further

analysis shows that for the allowed input range the carry output
of the full adder computing r

(j)
2n−j−1 as a sum output is exactly

equal to the negated sign bit r(j)2n−j−1 (which is in turn equal to the
quotient bit qn−j). Thus, r(j)2n−j−1 does not need to be computed
at all. Altogether, the considerations sketched above lead to an
optimized non-restoring divider implementation shown in Fig. 3.

III. ANALYZING SCA FOR DIVIDER VERIFICATION

With only a high level view on the algorithm for non-restoring
division one could assume that backward rewriting starting with
the specification polynomial Q×D+R−R(0) would lead to small
polynomials – at least if the backward rewriting would always hit
the boundaries between the stages of the divider and there would
not be any significant peaks in polynomial sizes in between: With
R = R(n)+(1− q0) ·D the polynomial obtained after processing
stage n+1 would be (

∑n−1
i=1 qi2

i+20)·D+R(n)−R(0). For j = 2
to n the algorithm implies R(j) = R(j−1) − qn−j+1(D · 2n−j) +
(1 − qn−j+1)(D · 2n−j) = R(j−1) + (1 − 2qn−j+1)(D · 2n−j)
and thus the polynomial after processing stage j with j = n to
2 would be (by induction) equal to (

∑n−1
i=n−j+2 qi2

i + 2n−j+1) ·
D + R(j−1) − R(0). Finally, after processing stage 1 using the
equation R(1) = R(0) −D · 2n−1, the polynomial would reduce
to 0.

It has been observed already in [28] that even for the unopti-
mized implementation from Fig. 2 the polynomials represented
at the cuts between stages are different from this high-level
derivation. The reason lies in the fact that the stages do not
really implement signed addition / subtraction. In general, signed
addition / subtraction of two (2n− 1)-bit numbers leads to a 2n-
bit number. The leading bit of the result can only be omitted, if
“no overflow occurs”. Since this fact cannot be seen by backward
reasoning, backward rewriting leads to exponential intermedi-
ate polynomials. As a main effect of SAT-based information
forwarding (SBIF), [28] could derive from the input constraint
0 ≤ R(0) < D · 2n−1 that in each stage from 1 to n the most
significant bits are antivalent, and thus the stages really implement
addition / subtraction under this constraint. Using this information
as early as possible in backward rewriting avoids blow-ups in the
sizes of polynomials.

In the optimized implementation from Fig. 3 the situation is
completely different. The most significant bits in stages 1 to n are
neither equivalent nor antivalent. Thus, we cannot expect that SBIF
with exploiting equivalent / antivalent signals helps much for the
design from Fig. 3. In fact, we did not only experimentally observe
memory blow-ups during verification of non-restoring dividers as
in Fig. 3 with the method from [28], but we were able to prove that
the canonical polynomials for pseudo-boolean functions occurring



Algorithm 2 Optimized backward rewriting.
Input: Specification polynomial SP init , Input constraint IC , Circuit CUV with atomic

blocks a1 ≺top . . . ≺top am in topological order ≺top and signals s1, . . . , sn
Output: 1 iff specification holds for all inputs satisfying IC
1: SPm := SP init ; oldsize := size(SPm); i := m; ST := ∅;
2: (dc(a1), . . . , dc(am)) := Compute DC(CUV , IC );
3: (rp(s1), . . . , rp(sn)) := SBIF(CUV , IC , (dc(a1), . . . , dc(am)));
4: while i > 0 do
5: SPi−1 := Rewrite(SPi, ai);
6: if size(SPi−1) > threshold · oldsize and ST 6= ∅ then
7: (SP , j, type) = pop(ST );
8: i := j; SPi−1 := SP ;
9: if type = dc then SPi−1 := Opt DC(SPi−1, dc(ai));

10: if type = eq then ∀s ∈ in(ai): SPi−1 := Replace(SPi−1, s, rp(s));
11: else
12: if dc(ai) 6= ∅ then push(ST , (SPi−1, i, dc)); oldsize := size(SPi−1);
13: if ∃s ∈ in(ai) with rp(s) 6= s then
14: push(ST , (SPi−1, i, eq)); oldsize := size(SPi−1);
15: i := i− 1;
16: return evaluate(SP0);

Algorithm 3 evaluate(SP0).
1: for i = n− 2 to 0 do
2: if SP0|

di=1,r
(0)
i+n−1

=0
6= 0 then return 0; . divider incorrect

3: SP0 := SP0|
r
(0)
i+n−1

=di
;

4: return 1; . divider correct

at cuts between stages in Fig. 3 have exponential sizes. (The proof
is omitted due to lack of space.) Thus, the memory explosion we
observed in our implementation of [28] is not due to unfavorable
heuristic decisions, but cannot be avoided – if the backward
rewriting from [28] is not enhanced by a stronger propagation and
exploitation of constraints in the opposite direction from inputs to
outputs.

IV. SCA WITH DON’T CARE OPTIMIZATION

In this section we present our algorithm which uses don’t
care optimization of polynomials as an essential ingredient. The
algorithm starts with a gate level netlist and detects atomic blocks
[15], resulting in a circuit with non-trivial atomic blocks (like
full adders, half adders etc.) and trivial atomic blocks (original
gates not included in non-trivial atomic blocks). We compute a
topological order ≺top on the atomic blocks with heuristics from
[14], [15]. Assume m atomic blocks with a1 ≺top . . . ≺top am.
The remaining algorithm is given in Alg. 2.

For divider verification the algorithm is started with the speci-
fication polynomial SP init representing Q ×D + R − R(0) and
the input constraint IC = 0 ≤ R(0) < D · 2n−1.

a) Computation of satisfiability don’t cares: In a first step we
compute satisfiability don’t cares at the inputs of atomic blocks
(like full adders) that result from the input constraint IC (Line 2).
We start by using simulation (taking IC into account) to detect
candidates for satisfiability don’t cares. Whereas in principle we
could prove those candidates to be really satisfiability don’t cares
using SAT, preliminary experiments showed that for large dividers
it was not possible to confirm a sufficient number of don’t care
candidates by SAT due to lack of resources. SAT-solving restricted
to windows of moderate size was not successful either, since it
seems that for the non-restoring divider designs existing don’t
cares cannot be confirmed by local reasoning. However, it turned
out in our experiments (see Sect. V) that a series of BDD-based
image computations [29] was able to derive all satisfiability don’t
cares at the inputs of atomic blocks. We start with a BDD for
representing input constraint IC . Then we identify the first atomic
block ai in the topological order which has a non-empty set of
don’t care candidates (computed by simulation). Atomic blocks

a1, . . . , ai−1 form the first slice sl1 in the circuit. The output
signals of sl1 are exactly the signals connecting sl1 with atomic
blocks ai, . . . , am, i. e., by construction, the inputs of ai are
outputs of sl1. We use BDD-based image computation to compute
the BDD for the image IMG1 of IC under sl1. Then we evaluate
IMG1 wrt. to the don’t care candidates at the inputs of ai. If the
evaluation results in constant 0 for some candidate, then it is not
included in the image and it is confirmed as a don’t care. Then,
we consider the next atomic block aj with a non-empty set of
don’t care candidates, choose ai, . . . , aj−1 to form the next slice,
compute the image IMG2 of IMG1 under this slice etc.. In the end
we have classified all don’t care candidates to be real don’t cares
or not. As an example see Fig. 3 showing (in red) the numbers
of don’t cares computed for the full adders in the optimized 3-bit
divider before constant propagation.

During our BDD-based computations we just use a static vari-
able order corresponding to the initial order in [28]. The variable
order is chosen such that the bits ri and di as well as r(0)i+n−1 and di
are arranged side by side and bits with higher indices are evaluated
first. Other variables corresponding to internal signals are ordered
according to [30], extended to the case that the relative order of
the previously mentioned variables has already been fixed.

Note that, as a side effect, those image computations can also
be used to check whether verification condition (vc2) from Def. 1
holds. As a last step we perform an image computation with the
remaining atomic blocks and obtain the complete image IMGf of
IC under the whole circuit under verification. Now we just have
to check whether IMGf implies 0 ≤ R < D.†

b) Optimization: During backward rewriting we are using
two optimization methods: (1) Exploitation of equivalent / antiva-
lent signals from [28] and (2) our novel don’t care optimization for
polynomials. For (1) we compute classes of equivalent / antivalent
signals (Line 3). The signals s in each class are represented
by the unique signal rp(s) that is minimal w. r. t. ≺top. It is
important to note that for the divider design from Fig. 3 the original
SBIF version with simulation and restricted window-based SAT-
solving does not work, since it seems that existing antivalences /
equivalences cannot be proven by local reasoning. For this reason,
it is essential to enhance the SAT-problems with the information
that signal combinations corresponding to satisfiability don’t cares
(as computed in Line 2) cannot occur.

Our experiments in Sect. V show that it is essential to
use our novel don’t care optimization method for polynomi-
als P (x1, . . . , xn) which represent pseudo-boolean functions
f(x1, . . . , xn) : {0, 1}n → Z. If certain valuations for the
inputs of a polynomial P cannot occur, since they are satisfiability
don’t cares, then we can modify the pseudo-boolean function for
those valuations. Our goal is to find an assignment to the don’t
cares that minimizes the size of P (x1, . . . , xn). For a polynomial
P (x1, . . . , xn) with don’t care cubes dc1, . . . , dcn the method
consists in the following steps:
• Introduce a new integer variable vi for each don’t care cube
dci.

• Add for all 1 ≤ i ≤ n “vi · dci” to P .
• Multiply out, combine terms with the same monomial etc..
• Use Integer Linear Programming to minimize the size of P .

Example 1. As an example we choose P (x1, x2, x3) = 1− x1−
x2−x3+2x1x2+2x1x3+2x2x3−4x1x2x3 with don’t care cubes
¬x1x2x3 and x1¬x2¬x3. For ¬x1x2x3 we choose the integer

†This is in contrast to [28] where the verification of (vc2) starts with 0 ≤ R <
D and performs backward substitutions.



variable v1, for x1¬x2¬x3 we choose v2. Since v1(1− x1)x2x3

and v2x1(1 − x2)(1 − x3) reduce to 0 for all care vectors, we
can add them to P (x1, x2, x3) without changing the polynomial
within the care set. By multiplying out and combining terms with
the same monomial we arrive at the polynomial 1+ (v2− 1)x1−
x2 − x3 + (2− v2)x1x2 + (2− v2)x1x3 + (2+ v1)x2x3 + (v2 −
v1−4)x1x2x3. Minimizing the number of terms in the polynomial
means choosing integer values for v1 and v2 such that the constant
of a maximum number of terms is 0 (thus eliminating a maximum
number of terms). Thus, in the equation system in Fig. 4 we try to
satisfy a maximum number of equations. It is easy to see that the
optimal solution is v1 = −2, v2 = 2, leading to the polynomial
1 + x1 − x2 − x3.

v2 − 1 = 0
2− v2 = 0
2− v2 = 0
2 + v1 = 0

v2 − v1 − 4 = 0

Fig. 4. Minimization

Satisfying a maximum number of lin-
ear integer equations can be reduced
to integer linear programming by stan-
dard methods (replacing each equation
`i(x1, . . . , xn) = 0 by `i(x1, . . . , xn) ≤
Mdi and −`i(x1, . . . , xn) ≤ Mdi with a
sufficiently large constant M and a binary deactivation variable
di for each equation, then minimizing the number of deactivation
variables assigned to 1).

In Lines 4 to 15 of Alg. 2 we perform backward rewriting
processing the atomic blocks in reverse topological order. We
apply our optimization methods only if needed, i. e., if we observe
a significant growth in size of the polynomial SPi−1. Whenever
we arrive at an atomic block with a non-empty don’t care set
dc(ai) or at an atomic block whose set of inputs in(ai) contains
a signal with a topologically smaller equivalent / antivalent signal
(indicated by rp(s) 6= s in Line 13) we save this situation as a
backtrack point on a stack ST . If the polynomial SPi−1 grows
too much (Line 6, we use a growth factor threshold = 2.0 in
our implementation), we backtrack to the last backtrack point
and perform an optimization of the saved polynomial – either by
applying don’t care optimization of the polynomial (Line 9) or
by replacing input variables of the replaced atomic block by their
topologically minimal equivalent / antivalent representative signals
(of course in the right polarity, Line 10).

c) Evaluating the final polynomials: We observed that sim-
ple and non-optimized SCA-based methods applied to optimized
non-restoring dividers as in Fig. 3 finally result in a non-zero
polynomial (for small bit widths where the verification finishes).
Whereas this is in contrast to the typical assumption in SCA-based
verification (“the implementation is correct iff backward rewriting
reduces the specification polynomial to 0”), it does not indicate an
error. The divider has only to be correct for input combinations
satisfying the input constraint IC = 0 ≤ R(0) < D · 2n−1, i. e.,
the divider is correct iff the final polynomial evaluates to 0 for
all inputs satisfying IC = 0 ≤ R(0) < D · 2n−1. Of course, the
number of inputs satisfying the input constraint is exponential and
thus it is not advisable to evaluate the polynomial for all admissible
input combinations. Fortunately, in the special case of a divider
the input constraint IC has a form that allows a decomposition
into a linear number of cases to be evaluated, following the idea
of bitwise comparing R(0) and D · 2n−1 starting with the most
significant bit (see Alg. 3).

V. EXPERIMENTAL RESULTS

Our experimental evaluation has been performed on one core
of an Intel Xeon CPU E5-2643 with 3.3 GHz and 62 GiB of main
memory. The runtime of all experiments was limited to 24 CPU
hours. To solve the ILP problems for don’t care optimization

of polynomials we used the ILP solver Gurobi [31]. For image
computations we used the BDD package CUDD 3.0.0 [32]. The
run times in Table I are given in CPU seconds.

We consider the verification of optimized non-restoring dividers
as in Fig. 3 with different bit widths (Col. 1 in Table I). During
verification we did not use any hierarchy information. We just used
the flat gate-level netlist (numbers of gates are shown in Col. 2)
and employed heuristics for detecting atomic blocks as well as for
finding a good substitution order [14], [15].

We start with three experiments for comparison. In those ex-
periments we check the equivalence of the divider circuit with
a “golden specification”. For this we construct a miter circuit
between the divider and its golden specification and conjoin it with
a circuit for 0 ≤ R(0) < D · 2n−1 to ensure that counterexamples
are restricted to the allowed range of inputs.

In the first experiment we used a SAT-solver (MiniSat 2.2.0 [33])
to solve the corresponding satisfiability problems. In Table I the
results are presented in Col. 3. The results show that SAT-solving
for non-trivial arithmetic circuits is hard and the SAT-problems
with bit widths larger than 8 could not be solved due to a time-
out. In the second experiment we considered the combinational
equivalence checking (CEC) approach of ABC [34], [35] which
is based on And-Inverter-Graph (AIG) rewriting via structural
hashing, simulation, and SAT and reduces the overall complexity
of equivalence checking between two designs by finding equivalent
internal AIG nodes. As for SAT-solving, ABC cannot verify the
dividers with bit widths larger than 8, see Col. 4 in Table I. In a
third experiment we considered the commercial verification tool
from OneSpin [36]. As Col. 5 in Table I shows, the OneSpin tool
performs better on the non-restoring dividers, but it needs already
more than 1 CPU hour for the verification of 24-bit-dividers and
runs into a timeout for larger dividers.

Col. 6 of Table I shows that the SCA-based method using
SBIF from [28] is not suitable for verifying large optimized
non-restoring dividers either. The method exceeds the available
memory for all dividers with bit widths larger than 8 bits.

In contrast, from Col. 7 we can see that dividers up to 512 bits
do not form any problem for our method. The verification of 512-
bit dividers needs less than 162 CPU minutes. Remember that (as
in [28]) we do not need any golden specification circuits for the
verification, since we prove that the divider circuits fulfill their
abstract specification from Def. 1. We split the overall run time
into different sub-tasks for a more detailed analysis. Col. 8 shows
the run times for reading the circuit design, Col. 9 the run times
for simulations that produce candidates for satisfiability don’t
cares. In Col. 10 the run times for BDD-based image computation
confirming don’t care candidates are given. Col. 11 shows the
corresponding peak sizes for the number of BDD nodes. Col. 12
gives the run times for computing equivalent / antivalent signals
(SBIF, [28]) with a window size of 2 for the SAT-problems, making
use of the computed don’t cares as well. Finally, Col. 13 gives the
run times for SCA-based backward rewriting, Col. 14 the run times
for don’t care optimization of polynomials, Col. 15 the number of
backtrackings our algorithm performs, Col. 16 the peak sizes of
polynomials, and Col. 17 gives the size of the final polynomial
after rewriting. In almost all cases our optimization was strong
enough to minimize the final polynomial to 0 and thus the run
times for evaluating the final polynomial were negligible. Verifying
condition (vc2) from Def. 1 has been integrated into the BDD-
based image computation and is thus included in Col. 10. The
results clearly show that don’t care optimization of polynomials is
fast and effective. By using it before the polynomial sizes have



TABLE I
VERIFYING OPTIMIZED NON-RESTORING DIVIDERS, TIMES IN CPU SECONDS.

Our method
n #Gates SAT ABC Commercial [28] overall read sim BDD BDD SBIF rewrite DCOP peak final

time time time time time time time time nodes time time time #bt poly. poly.

3 54 0.27 <0.01 2.44 0.08 0.10 0.05 0.02 <0.01 216 <0.01 <0.01 0.02 4 74 6
4 100 0.82 0.01 2.56 0.16 0.16 0.09 0.02 <0.01 366 <0.01 <0.01 0.03 7 79 0
8 404 47.17 17.60 2.65 904.30 0.48 0.37 0.05 0.01 1,228 <0.01 0.02 0.04 11 272 0

16 1,588 TO TO 165.89 MO 1.91 1.59 0.13 0.03 3,617 <0.01 0.08 0.07 19 859 0
24 3,540 TO TO 4,319.20 MO 3.82 3.12 0.22 0.11 6,881 <0.01 0.25 0.11 27 2,046 0
32 6,260 TO TO TO MO 6.79 5.62 0.29 0.22 11,041 0.01 0.51 0.14 35 2,864 0
48 14,004 TO TO TO MO 14.19 11.07 0.53 0.75 22,049 0.02 1.54 0.25 51 7,509 0
64 24,820 TO TO TO MO 28.86 21.51 0.87 1.92 36,641 0.03 4.11 0.40 67 9,706 0
96 55,668 TO TO TO MO 70.22 44.40 1.85 7.19 76,577 0.09 15.80 0.85 99 24,724 0

128 98,804 TO TO TO MO 148.18 78.38 3.02 20.25 130,849 0.16 44.52 1.78 131 54,920 0
256 394,228 TO TO TO MO 989.91 335.40 8.62 294.84 491,297 0.68 343.91 6.49 259 203,838 0
512 1,574,900 TO TO TO MO 9,668.70 1,258.88 26.21 5,595.47 1,900,321 2.78 2,762.31 23.02 515 676,521 0

1024 6,295,540 TO TO TO MO TO - - - - - - - - - -

increased to a large extent we are able to successfully verify
dividers up to 512 bits with small peak sizes of polynomials.

0 2,000 4,000 6,000

101

102

103

104

105

106

107

108

Step

Po
ly

no
m

ia
ls

iz
e

our Method
v1
v2
v3
v4

Fig. 5. Growth behaviour of polynomials for
32-bit divider.

To check whether
don’t care optimization
of polynomials could
also be replaced by
don’t care optimization
at the bit level, we
considered the follow-
ing variant of our algo-
rithm: We forbid to use
exactly the don’t cares
(whose number is two
for n ≥ 4) that oc-
cur at the inputs of one
atomic block, the block computing output q1. Instead, we replace
this block by all possible circuit functions that result from the
4 possible assignments of don’t cares in its function table (the
resulting variants are called v1, v2, v3, and v4 in Fig. 5, v1
is the version which does not change the atomic block). Fig. 5
shows that for the 32-bit divider, e.g., all four variants lead to an
exponential growth in polynomial sizes, no matter how the don’t
care assignment at the bit level is chosen. (The curves for v1 to
v4 are not exactly equal, but unfortunately they overlap at the
given resolution.) In contrast, for our original method the growth
behaviour of the polynomials is moderate. (The observed small
peaks always occur before backtracking to an optimization step.)
This result clearly shows that optimization of polynomials at the
word level is essential and cannot be replaced by bit-level don’t
care optimization.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel ILP-based method for optimizing poly-
nomials w. r. t. satisfiability don’t cares. Using this method has
been essential to successfully verify large optimized non-restoring
dividers. For the verification we had to take into account that
usually divider designs are only correct under given input con-
straints. This observation typically holds for other designs as
well and (to the best of our knowledge) has not been used in
SCA-based verification approaches so far. We strongly believe
that the combination of forward information propagation (leading
to the computation of satisfiability don’t cares) and backward
computation of polynomials that will be optimized using this
information is not only applicable to non-restoring dividers, but
will be the key to move forward the verification of other divider
architectures as well as other arithmetic circuits.

REFERENCES

[1] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs J., vol. 20, no. 4, pp. 129–135, 1995.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” TC, vol. 35,
no. 8, pp. 677–691, 1986.

[3] J. R. Burch, “Using BDDs to verify multipliers,” in DAC, 1991, pp. 408–412.
[4] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler, “Formal verification

of integer multipliers by combining Gröbner basis with logic reduction,” in DATE, 2016,
pp. 1048–1053.

[5] M. Temel, A. Slobodová, and W. A. Hunt, “Automated and scalable verification of integer
multipliers,” in CAV, 2020, pp. 485–507.

[6] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for formal verification
of Galois field arithmetic circuits,” TCAD, vol. 32, no. 9, pp. 1409–1420, 2013.

[7] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An algebraic approach for
proving data correctness in arithmetic data paths,” in CAV, 2008, pp. 473–486.

[8] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification of large
arithmetic circuits using gaussian elimination and cone-based polynomial extraction,”
MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[9] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level arithmetic circuits
by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[10] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verification of arithmetic
circuits by function extraction,” TCAD, vol. 35, no. 12, pp. 2131–2142, 2016.

[11] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using
computer algebra,” in FMCAD, 2017, pp. 23–30.

[12] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based on And-Inverter
graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[13] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the algebraic approach for
verifying gate-level multipliers,” in DATE, 2018, pp. 1556–1561.

[14] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your polynomials before
backward rewriting to verify million-gate multipliers,” in ICCAD, 2018, pp. 129:1–129:8.

[15] ——, “RevSCA: Using reverse engineering to bring light into backward rewriting for big
and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[16] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by combining SAT
and computer algebra,” in FMCAD, 2019, pp. 28–36.

[17] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal verification of
optimized and industrial multipliers,” in DATE, 2020, pp. 544–549.

[18] J. E. Robertson, “A new class of digital division methods,” IRE Trans. Electronic
Computers, vol. 7, no. 3, pp. 218–222, 1958.

[19] R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in DAC, 1996, pp. 661–665.
[20] E. M. Clarke, M. Khaira, and X. Zhao, “Word level model checking - avoiding the Pentium

FDIV error,” in DAC, 1996, pp. 645–648.
[21] D. M. Russinoff, “A mechanically checked proof of IEEE compliance of the floating

point multiplication, division and square root algorithms of the AMD-K7 processor,” LMS
Journal Comput. Math., vol. 1, pp. 148–200, 1998.

[22] E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division algorithm using
theorem proving techniques,” Form Methods Syst. Des., vol. 14, no. 1, pp. 7–44, 1999.

[23] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying IEEE compliance
of floating point hardware,” Intel Technology Journal, vol. Q1, pp. 1–10, 1999.

[24] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of binary moment
diagrams for verifying arithmetic circuits,” in ICCAD, 1995, pp. 78–82.

[25] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with binary moment
diagrams,” in DAC, 1995, pp. 535–541.

[26] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification of integer dividers:
Division by a constant,” in ISVLSI, 2019, pp. 76–81.

[27] ——, “Functional verification of hardware dividers using algebraic model,” in VLSI-SoC,
2019, pp. 257–262.

[28] C. Scholl and A. Konrad, “Symbolic computer algebra and sat based information forward-
ing for fully automatic divider verification,” in DAC, 2020.

[29] O. Coudert and J. C. Madre, “A unified framework for the formal verification of sequential
circuits,” in ICCAD, 1990, pp. 126–129.

[30] S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Logic verifica-
tion using binary decision diagrams in a logic synthesis environment,” in ICCAD, 1988,
pp. 6–9.

[31] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2020. [Online].
Available: http://www.gurobi.com

[32] F. Somenzi, “Efficient manipulation of decision diagrams,” STTT, vol. 3, no. 2, pp. 171–
181, 2001.

[33] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003, pp. 502–518.
[34] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength verification

tool,” in CAV, 2010, pp. 24–40.
[35] “ABC: A system for sequential synthesis and verification,” available at https://people.eecs.

berkeley.edu/∼alanmi/abc/, 2019.
[36] OneSpin Solutions GmbH, 2020. [Online]. Available: https://www.onespin.com

http://www.gurobi.com
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.onespin.com

	Introduction
	Preliminaries
	SCA for Verification
	Divider Circuits

	Analyzing SCA for divider verification
	SCA with don't care optimization
	Experimental Results
	Conclusions and Future Work
	References



