
Symbolic Computer Algebra and SAT Based Information
Forwarding for Fully Automatic Divider Verification

Christoph Scholl
Department of Computer Science

Albert-Ludwigs-University Freiburg
Freiburg i. Br., Germany

scholl@informatik.uni-freiburg.de

Alexander Konrad
Department of Computer Science

Albert-Ludwigs-University Freiburg
Freiburg i. Br., Germany

konrada@informatik.uni-freiburg.de

Abstract—During the last few years Symbolic Computer Algebra
(SCA) delivered excellent results in the verification of large integer and
finite field multipliers at the gate level. In contrast to those encouraging
advances, SCA-based divider verification has been still in its infancy and
awaited a major breakthrough. In this paper we analyze the fundamental
reasons that prevented the success for SCA-based divider verification
so far and present SAT Based Information Forwarding (SBIF). SBIF
enhances SCA-based backward rewriting by information propagation in
the opposite direction. We successfully apply the method to the fully
automatic formal verification of large non-restoring dividers.

I. INTRODUCTION

Today arithmetic circuits play a crucial role in many computation-
ally intensive applications (like signal processing and cryptography).
In order to satisfy the demands for high speed, low power, and low
area designs, a large variety of architectures have been proposed for
arithmetic units. These architectures take advantage of sophisticated
algorithms to optimize different implementation aspects. As a result,
they are usually extensively parallel and structurally complex which
makes it extremely challenging to ensure the correctness of such
arithmetic circuit implementations.

In this paper we look into fully automatic formal verification
that goes beyond incomplete simulation-based approaches and semi-
automatic approaches based on theorem proving which are still
the state-of-the-art for arithmetic circuit verification in industrial
practice. Formal verification is needed to provide rigorous guarantees
concerning the correctness of arithmetic circuits. The need for full
automation has substantially increased during the last years, since the
design of circuits containing arithmetic is nowadays not only confined
to the major processor vendors, but is also done by many different
suppliers of special-purpose embedded hardware who cannot afford
to employ large teams of specialized verification engineers being able
to provide human-assisted theorem proofs.

Most arithmetic circuits are based on implementations of the four
basic operations +,−,×, and÷. While the automatic formal verifica-
tion of adder circuits (and hence also subtractor circuits) turned out to
be easier, multipliers and dividers formed a major problem for a long
time. Fortunately, for the automatic formal verification of gate-level
multipliers there has been great progress during the last few years.
Methods based on Symbolic Computer Algebra (SCA) were able to
verify large, structurally complex and highly optimized multipliers.
Both finite field multipliers [1] and integer multipliers [2]–[12] have
been considered. Here the verification task has been reduced to an
ideal membership test for the specification polynomial based on so-
called backward rewriting, proceeding from the outputs of the circuit
in direction of the inputs.

Here we look into the formal verification of divider circuits where
the situation is not such beneficial as for multipliers. After the
famous Pentium bug [13] in 1994, where a subtle design error in the
divider had not been detected by Intel’s design validation (leading

to erroneous Pentium chips brought to the market), a lot of research
efforts went into divider verification. In one of the first approaches
by Bryant [14], Decision Diagrams have been used to prove the
correctness of an SRT divider [15]. However, the approach considered
only a single stage of the divider (at the gate level). Methods based
on word-level model checking [16] looked into SRT division as well,
but considered only a special abstract and clean sequential (i.e., non-
combinatorial) divider without gate-level optimizations. In [17] a very
general (negative) result about the complexity of Decision Diagram
representations for division has been proven, implying that for all
known Word-level Decision Diagrams such as MTBDDs, EVBDDs,
BMDs, *BMDs, K*BMDs and *PHDDs the size of the Decision
Diagrams representing division and remainder is exponential in the
number of input bits, independently from the used variable order.
Other approaches like [18], [19], or [20] looked into fixed division
algorithms and used semi-automatic theorem proving with ACL2,
Analytica, or Forte to prove their correctness. Nevertheless, all those
efforts did not lead to a fully automated verification method suitable
for gate-level dividers. Related to modern SCA-based verification
approaches, Hamaguchi et al. [21] mentioned already in 1995 a
simple and fully automated method to verify integer dividers using
*BMDs [22]. Assume that an integer divider for dividend X and
divisor D computes the quotient Q = bX

D
c and the remainder

R = Q×D−X . Hamaguchi et al. start with a *BMD representing
Q×D+R and use a backward construction to replace the bits of Q
and R step by step by *BMDs representing the gates of the divider.
(Note that Hamaguchi’s proposal can be reinterpreted in terms of
SCA-based verification as will become clear later on in this paper.)
However, in their experiments they observed exponential blow-ups
of *BMDs in the backward construction and thus the approach did
not provide an effective way for verifying large integer dividers.
Moreover, some first results on SCA-based divider verification have
been published in [23] recently. However, they are mainly confined
to division by constants and cannot handle general dividers due to a
memory explosion problem.

The approach proposed in this paper uses Symbolic Computer Al-
gebra (SCA) methods as well and enhances them with so-called SAT
Based Information Forwarding (SBIF). It starts with a representation
of the “specification polynomial” Q × D + R − X and (similar
to Hamaguchi’s method) tries to prove by “backward substitution”
of gate output variables with the gates’ specification polynomials
(called backward rewriting) that the specification polynomial finally
reduces to 0. We show that this approach does not work for large
dividers due to an exponential blow-up of the sizes of intermediate
polynomials and analyze fundamental reasons for this situation. Our
main observation is that backward rewriting in direction from the out-
puts to the inputs will not be successful without adding information
propagated in the opposite direction from the inputs to the outputs.

scholl
Schreibmaschinentext
Preprint from Design Automation Conference (DAC), July 2020, San Francisco, USA



This information propagation is performed by SBIF which is crucial
for the efficiency of the method. It takes into account constraints on
the allowed range of inputs as well as the structure of the circuit. We
successfully use the method to verify large non-restoring dividers. In
this context it turns out that a simple version of SBIF is sufficient
to keep the sizes of intermediate polynomials small: Before adding a
variable corresponding to a signal a in the circuit through backward
rewriting, we check (using SAT) whether there is an equivalent or
antivalent signal b (i.e. a represents the same Boolean function as b
or its negation). If this is the case, we use a unique “representative
variable” (or its negation) for all equivalent (or antivalent) signals,
avoiding to introduce different variables for identical (or negated)
Boolean functions. By this the occurring polynomials are simplified
early on. The results of SBIF have to be exploited as early as possible
during SCA-based backward rewriting to avoid an exponential growth
of the polynomials. By using SBIF we do not compute a different
polynomial in the end, but profit from “forward” information that
would be used later on in the process. We expect that SBIF is able
to improve the SCA based verification of other arithmetic circuits
as well – just as the so–called AND-/EXOR-rule [6] which can be
used to remove “vanishing monomials” early during the backward
substitution process.

The verification of a divider is not complete, if we have not shown
that the computed remainder R is always smaller than the divisor D.
To our great surprise, this did not form any problem and could be
easily proven using BDDs [24].

Note that our method works on the gate level netlist without using
any hierarchy information which may have been lost during logic
optimization. Moreover, the correctness of the method does not rely
on the availability of a “golden specification circuit” for division.
It only uses the natural abstract specification from the definition of
division.

The paper is structured as follows: In the next section we present
preliminaries like pseudo-Boolean polynomials, SCA-based verifica-
tion, and divider circuits. In Sect. III we look into the basic SCA-
based verification method for dividers and analyze why it fails for
divider verification. In Sect. IV we present SBIF to improve on the
previous methods. Sect. V is devoted to the remaining task of showing
that the remainder is always smaller than the divisor. We evaluate
the approach by experiments in Sect. VI and conclude the paper by
Sect. VII.

II. PRELIMINARIES

A. SCA for Verification

Symbolic Computer Algebra (SCA) based approaches work with
polynomials and reduce the verification task to an ideal membership
test using a Gröbner base representation of the ideal. The ideal
membership test is performed using polynomial division. While
Gröbner base theory is very general and, e.g., can be applied to finite
field multipliers [1] and truncated multipliers [12] as well, for integer
arithmetic it boils down to substitutions of variables for gate outputs
by polynomials over the gate inputs (in reverse topological order),
if we choose an appropriate “term order” (see [6] or [9], e.g.). Due
to lack of space and to keep the explanation as simple as possible
we restrict ourselves to exactly this view. Experimental results for
multipliers in [9] showed that those substitutions were much more
efficient than polynomial divisions in computer algebra systems, even
though the computed results were the same.

For integer arithmetic we consider polynomials over binary vari-
ables (from a set X = {x1, . . . , xn}) with integer coefficients, i. e.,
a polynomial is a sum of terms, a term is a product of a monomial

b0 a0 c

c0 s0

h1
h2

h3

b1 a1

h4

s1

c0 = h2 + h3 − h2h3

s0 = c + h1 − 2ch1

h3 = ch1

h2 = a0b0
h1 = a0 + b0 − 2a0b0
s1 = c0 + h4 − 2c0h4

h4 = a1 + b1 − 2a1b1

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c + h1
h2→ 2a0b0 − 2a0b0ch1 + c + h1
h1→ a0 + b0 + c

Fig. 1. Circuit with gate polynomials (upper right part) and series of
substitutions (lower right part, only for black colored part of the circuit).

with an integer, and a monomial is a product of variables from X .
Polynomials represent pseudo-Boolean functions f : {0, 1}n 7→ Z.

As a simple example consider the full adder from Fig. 1 (black
colored part). The full adder defines a pseudo-Boolean function
fFA : {0, 1}3 7→ Z with fFA(a0, b0, c) = a0 + b0 + c. We can
compute a polynomial representation for fFA by starting with a
weighted sum 2c0 + s0 (called the “output signature” in [5]) of the
output variables. Step by step, we replace the variables in polynomials
by the so–called “gate polynomials”. This replacement is performed
in reverse topological order of the circuit, see Fig. 1. We start by
replacing c0 in 2c0 + s0 by its gate polynomial h2 + h3 − h2h3

(which is derived from the Boolean function c0 = h2 ∨ h3). Finally,
we arrive at the polynomial a0 + b0 + c (called the “input signature”
in [5]) representing the pseudo-Boolean function defined by the
circuit. During this procedure (which is called backward rewriting)
the polynomials are simplified by reducing powers vk of variables v
with k > 1 to v (since the variables are binary), by combining terms
with identical monomials into one term, and by omitting terms with
leading factor 0. We can also consider a0 + b0 + c = 2c0 + s0 as the
“specification” of the full adder. The circuit implements a full adder
iff backward substitution, now starting with 2c0 + s0 − a0 − b0 − c
instead of 2c0+s0 reduces the “specification polynomial” to 0 in the
end. (This is the notion usually preferred in SCA based verification.)

The correctness of this statement can be derived from results
of SCA or simply from the fact that polynomials (with the above
mentioned simplifications resp. normalizations) are canonical rep-
resentations of pseudo-Boolean functions (up to reordering of the
terms). The canonicity easily results as follows: Let p1 and p2 be
different polynomials. Then one of the two polynomials contains a
term that is not included in the other. Let t = zxi1 . . . xik with
z 6= 0 be the shortest term with this property. W. l. o. g. it belongs
to p1. Consider the valuation xi1 = . . . = xik = 1 and xj = 0
for all xj ∈ X \ {xi1 , . . . , xik}. This valuation evaluates p1 − p2
to z − z′, if p2 contains t′ = z′xi1 . . . xik with z′ 6= z and to
z otherwise. This shows that p1 and p2 represent different pseudo-
Boolean functions. Polynomials can be seen as “flattened” *BMDs
[22] which are canonical as well. In that way the *BMD based
backward substitution method by Hamaguchi [21] is essentially the
same as the backward rewriting methods from SCA. Whereas *BMDs
can be more compact than polynomials due to factorization and
sharing, the rather fine-granular and local optimization capabilities of
polynomials make them more flexible to use and easier to optimize.
In addition, the success of recent SCA-based methods builds on the
exploitation of degrees of freedom in the backwards construction of
polynomials that had never been used before.



B. Divider Circuits
In the following we briefly review textbook knowledge on com-

puter arithmetic and dividers in particular. We use the notions
〈an, . . . , a0〉 :=

∑n
i=0 ai2

i and [an, . . . , a0]2 := (
∑n−1

i=0 ai2
i) −

an2
n for interpretations of bit vectors (an, . . . , a0) ∈ {0, 1}n+1

as unsigned binary numbers and two’s complement numbers respec-
tively. The leading bit an is called the sign bit. An unsigned integer
divider is a circuit with the following property:

Definition 1. Let (r
(0)
2n−2 . . . r

(0)
0 ) be the dividend with sign bit

r
(0)
2n−2 = 0 and value R(0) := 〈r(0)2n−2 . . . r

(0)
0 〉 = [r

(0)
2n−2 . . . r

(0)
0 ]2,

(dn−1 . . . d0) be the divisor with sign bit dn−1 = 0 and value
D := 〈dn−1 . . . d0〉 = [dn−1 . . . d0]2, and 0 ≤ R(0) < D · 2n−1.*
Then (qn−1 . . . q0) with value Q = 〈qn−1 . . . q0〉 is the quotient of
the division and (r2n−2 . . . r0) with value R = [r2n−2 . . . r0]2 is the
remainder of the division, if R(0) = Q ·D+R (vc1) and 0 ≤ R < D
(vc2).

Restoring division is the simplest algorithm to compute quotient
and remainder. It computes the quotient bits and “partial remainders”
R(j) step by step. In each step it subtracts a shifted version of D.
If the result is less than 0, the corresponding quotient bit is 0 and
the shifted version of D is “added back”, i. e., “restored”. Otherwise
the quotient bit is 1 and we proceed with the next smaller shifted
version of D. More precisely, restoring division works according to
the following algorithm:

For j = 1 to n do:
qn−j =

{
0, if R(j−1) −D · 2n−j < 0

1, if R(j−1) −D · 2n−j ≥ 0

R(j) = R(j−1) − qn−j(D · 2n−j).
The final remainder R is equal to R(n).

SUB2n−1

R(0) D · 2n−1

CAS 2n−1

D · 2n−2qn−1
R(1)

R(2) D · 2n−3

R(n−1) D · 20
...

...
...

...
...

qn−2

q1

CAS 2n−1

D

“(1− q0)D”

q0

ADD2n−1

R(n)

R

Fig. 2. Non-restoring divider.

The idea of non-restoring di-
vision is to combine in case
of a negative partial remain-
der two steps of restoring di-
vision: adding the shifted D
back and (tentatively) subtract-
ing the next D shifted by one
position less. These two steps
are replaced by just adding D
shifted by one position less
(which obviously leads to the
same result). A combinational
circuit computing Q and R by
non-restoring division is given
in Fig. 2. It works with two’s
complement numbers and contains a subtractor, several combined
adder/subtractors (denoted by CAS in Fig. 2), and an adder.

The following well-known textbook result shows how addition of
two’s complement numbers can be reduced to addition of unsigned
numbers:

Lemma 1. Consider a = (an, . . . , a0), b = (bn, . . . , b0) ∈
{0, 1}n+1, c ∈ {0, 1}, s = (sn, . . . , s0) ∈ {0, 1}n+1 with
〈cn, s〉 = 〈a〉+ 〈b〉+ c. (For 0 ≤ i ≤ n ci is the carry bit from the
unsigned addition of (ai, . . . a0), (bi, . . . b0) with incoming carry c.)
It holds [a]2 + [b]2 + c ∈ {−2n, . . . , 2n − 1} iff cn = cn−1. If this
is the case, then we have [a]2 + [b]2 + c = [s]2.

*As in the case of multipliers where the number of product bits is two
times the number of bits of one factor, we consider here the general case that
the dividend has twice as many bits as the divisor. If both the dividend and
the divisor are supposed to have the same length, we just set r(0)2n−2 = . . . =

r
(0)
n−1 = 0 and require D > 0 (which then implies 0 ≤ R(0) < D · 2n−1).

TABLE I
PEAK SIZES OF POLYNOMIALS.

n 2 4 8 16
peak size 27 1591 5,363,443 MEMOUT

The lemma basically says that the reduction of signed addition
to unsigned addition only works, if there is no overflow, i. e., if the
result can be represented as an n + 1-bit signed binary number as
well. Note that for the non-restoring divider it can be proven that there
is no overflow during signed addition / subtraction by construction.
As usual, subtraction of two’s complement numbers can be reduced
to addition by using −[a]2 = [a]2 + 1 where a means bitwise
negation of all ai-bits. By this, it is also easy to design a combined
adder/subtractor (CAS) for a and b: If a control input c is 0, we just
add a and b, if c is 1 we add a, b, and 1 (i. e., we subtract b from a).
This can be achieved by replacing in an adder for a and b the bits
bi by bi ⊕ c and the incoming carry by c.

III. LIMITS OF EXISTING SCA-BASED TECHNIQUES

Here we look into the question why existing SCA-based techniques
for divider verification fail. To verify verification condition (vc1)
from Def. 1 we start with a representation of SP = Q · D + R −
R(0) = (

∑n−1
i=0 qi2

i)·(
∑n−2

i=0 di2
i)+(

∑2n−3
i=0 ri2

i)−r2n−22
2n−2−

(
∑2n−3

i=0 r
(0)
i 2i) by a polynomial and use the method summarized in

Sect. II-A, i. e., we try to prove that after backward rewriting SP
finally reduces to 0. The backward rewriting is performed in reverse
topological order from inputs to the outputs. To keep the sizes of
the intermediate polynomials small, we use known heuristics from
[10], [11].† We considered non-restoring dividers as in Fig. 2 with
varying bit widths. Table I shows the peak sizes (measured in the
numbers of terms) of the intermediate polynomials with increasing
bit width. It clearly shows that the original method is not able to
verify dividers with larger bit widths. For the 8-bit-divider already
more than 5 million terms are needed, the 16-bit divider could not
be verified with the available memory of 62 GiB. Fig. 3 depicts for
the 8-bit divider how the polynomial sizes develop from substitution
to substitution. Although in the end the polynomial reduces to 0, we
observe huge peak sizes in between.

0 100 200 300 400 500 600 700

1 · 106

2 · 106

3 · 106

4 · 106

5 · 106

6 · 106

Step

Po
ly

no
m

ia
ls

iz
e

Fig. 3. Sizes of polynomials during verifica-
tion of 8-bit divider.

To analyze the rea-
sons of this situation we
consider a simpler prob-
lem first and look at a
signed adder according
to Lemma 1. Using in-
duction and some alge-
braic manipulations we
can prove the follow-
ing lemma (the proof is
omitted due to lack of
space):

Lemma 2. The pseudo-Boolean function for the binary adder ac-
cording to Lemma 1 is represented by the polynomial

An = (

n−1∑
i=0

ai2
i − an2

n) + (

n−1∑
i=0

bi2
i − bn2

n) + c− 2n+1Pn

where Pn = Cn · (1− an− bn +2anbn)− anbn and Cn represents
the pseudo-Boolean function for the carry bit cn−1 (expressed with
input bits an−1, . . . , a0, bn−1, . . . , b0, c). Cn contains 1

2
(3n+1 − 1)

terms and thus Pn contains 2 · 3n+1 − 1 terms.

†In contrast to [11], we restrict ourselves just to the detection of half adders
and full adders as atomic blocks and do not consider compressors.



This means that we arrive at a polynomial with exponential size,
if we start with the polynomial

∑n−1
i=0 si2

i − sn2
n for the outputs

of the binary adder and replace the gates of the circuit in reverse
topological order. The reason why we do not arrive at (

∑n−1
i=0 ai2

i−
an2

n) + (
∑n−1

i=0 bi2
i − bn2

n) + c is that the implementation is only
an adder, if the result can be represented with n + 1 bits (as the
operands), i. e., if no overflow occurs. If we know for instance that
one operand is positive and the other is negative, i. e., an = bn, then
there will not be any overflow and (1 − an − bn + 2anbn) as well
as Pn vanish.

Now we consider backward rewriting for the non-restoring divider
shown in Fig. 2, started with polynomial SP . With similar techniques
as in Lemma 2 we can see that the polynomial resulting after
processing the final adder (see cut marked by the dashed red line
in Fig. 2) has exactly 3n−1+n2+n−3 terms. Now we can identify
the reason why existing SCA-based methods for verifying dividers as
in Fig. 2 have to fail: Whereas from the division algorithm it follows
that overflows of adder, subtractor, and CAS stages cannot occur, this
is not immediately visible from the circuit in Fig. 2. In particular,
backward rewriting is not able to detect this when constructing
polynomials from outputs to inputs, since this information can only
be obtained by propagating constraints from inputs to outputs, i. e.,
in the opposite direction.

IV. SAT BASED INFORMATION FORWARDING

In the last section we observed that a simple backward rewriting
without using information propagated in direction from inputs to
outputs will not be successful and fails already after processing the
last divider stage. Such “forward information propagation” can be
interpreted as a restricted form of computing don’t cares. Here we
will make use of the strength of modern SAT solvers to compute the
needed information. This “don’t care information” will be used to
simplify polynomials as early as possible. We call this method SAT
Based Information Forwarding (SBIF).

Here we restrict the SAT based information propagation to the
question whether there are pairs of signals a and b that are equivalent
or antivalent (i. e., a represents the same Boolean function as b or its
negation). Alg. 1 summarizes the approach.

Input : Input constraint C, Circuit CUV with set of signals
S = {a1, . . . , an}, maximal window depth dmax

Output: Partition E of signals (or their negations) into equivalence
classes

1 Choose set V of input vectors satisfying C;
2 Simulate CUV with vectors from V leading to simulation vectors

sim(a) and sim(a) for each a ∈ S;
3 Choose topological order ≺top for S;
4 E = {{a1}, . . . , {an}};
5 foreach a ∈ S in topological order do
6 foreach b ≺top a with sim(a) = sim(bε) do
7 if a /∈ [b] then
8 for s ∈ {a, b} do
9 Ws = {g | g ∈

S is an i-step predecessor of s with i ≤ dmax};
10 if UNSAT (CNF (a⊕ bε,Wa,Wb, C)) then
11 E = (E \ {[a], [b]}) ∪ {[a] ∪ [bε]};

12 return E;
Algorithm 1: SAT based information propagation.

The algorithm works with a constraint C for the input variables of
the circuit under verification CUV . In our case C = (0 ≤ R(0) < D·
2n−1) (or D > 0 for a dividend with only n bits). First, we simulate
the circuit with input vectors satisfying C. To take antivalence into
account as well, we consider both the simulation vector sim(a) and

its bitwise negation sim(a) for each signal a. Then we check using
a SAT solver whether the candidate equivalences / antivalences are
real ones. For this we partition the set of signals into equivalent
or antivalent signals. In the beginning each signal is in its own
equivalence class (line 4). We process the signals a in topological
order and check whether there are equivalent / antivalent predecessor
signals b; candidates are found by considering simulation vectors
(line 6). (We use the notion b1 = b and b0 = b, i. e., in case ε = 0
our candidate equivalence of (a, b) is actually a candidate antivalence
of (a, b).) To be able to handle large circuits we do not consider
the complete logic cones of the signals a and b in the comparison
a ⊕ bε, but only restricted “windows” Wa and Wb up to a certain
maximal depth dmax. Note that in the computation of those windows
we replace the predecessors pred(t) of signals t by the topologically
minimal representatives of their corresponding equivalence classes
[pred(t)]. This also explains why we examine the candidate pairs
in topological order: We collect information from the inputs to the
outputs and the handling in topological order enables to use already
computed information (since we only consider input cones of signals
in our SAT checks). The counterexamples to equivalence have to
satisfy the given input constraint C, of course. If an equivalence is
detected, the corresponding equivalence classes are merged (in case
of antivalence all signals in [b] have to be negated (line11)).

It is interesting to note that Alg. 1 is able to prove e.g. qn−j =

r
(j)
2n−2 for all j ∈ {1, . . . , n} in Fig. 2 with windows of depth 4.

Without using already computed information in the following SAT
checks this would not have been possible, since those antivalences
cannot be detected by local reasoning.

Alg. 1 forwards information that results both from the input
constraints and from the circuit implementation. In the next step we
make use of this information in SCA-based backward rewriting. In
Alg. 2 a simplified version of backward rewriting is presented that
starts with the specification polynomial and performs substitutions
of variables by gate polynomials in reverse topological order. First
of all, signals in the specification polynomial are replaced by the
topologically minimal representatives in their equivalence classes that
have been computed by Alg. 1 (lines 2–4). In the same way, before
replacing a signal ri with its gate polynomial pri , we in turn replace
the signals in the gate polynomial with the topologically minimal
representatives in their equivalence classes (lines 6–8). It is crucial
for the success of the approach that those replacements are done as
early as possible, such that polynomials are not reduced after an
exponential blow-up in size has happened, but such a blow-up is
prevented before it can occur.

Input : Circuit CUV with topological order ≺top on signals.
Let E = {e1, . . . , em} be returned by Alg. 1.
∀1 ≤ i ≤ m let r

εri
i ∈ ei with ri minimal wrt. ≺top.

Let r1 ≺top . . . ≺top rm, pri is the gate polynomial of ri.
Output: 1 iff specification holds

1 SPm := SP ; i = m;
2 while SPm depends on a with aεa ∈ ej , a 6= rj do
3 if εa = εrj then SPm = SPm|a←rj ;
4 else SPm = SPm|a←(1−rj)

;

5 while i ≥ 0 do
6 while pri depends on a with aεa ∈ ej , a 6= rj do
7 if εa = εrj then pri = pri |a←rj ;
8 else pri = pri |a←(1−rj)

;

9 SPi−1 = SPi|ri←pri
; i = i− 1;

10 return (SP0 = 0);
Algorithm 2: Modified backward rewriting.

Example 1. Consider the circuit in Fig. 1 again, now also with the



parts shown in red. c0 now becomes an internal signal. Suppose that
we start backward rewriting with the polynomial s0 − 2s1. After
substituting the 7 gate polynomials we arrive at the polynomial
a0 − 2a1 + b0 − 2b1 + c −4a0b0 − 4a0c − 4b0c + 8a0b0c +
4a0a1b0+4a0a1c+4a1b0c−8a0a1b0c+4a0b0b1+4a0b1c+4b0b1c−
8a0b0b1c−8a0a1b0b1−8a0a1b1c−8a1b0b1c+16a0a1b0b1c+4a1b1.
If the circuit in Fig. 1 is part of a larger circuit which implies
that b1 = a1, then all 17 terms shown in red will vanish. Now
we consider what happens, if we apply Alg. 1 and Alg. 2. Suppose
that Alg. 1 is able to prove b1 = a1. The first replacement of s1
leads to s0 − 2c0 − 2h4 + 4c0h4. Before the replacement of h4 by
its gate polynomial a1 + b1 − 2a1b1 we notice that {b1, a1} ∈ E,
thus (assuming a1 ≺top b1) the gate polynomial is simplified to 1
by substituting b1 with 1 − a1. Replacing h4 by the modified gate
polynomial 1 results in 2c0 + s0− 2 and the remaining substitutions
are the same as in Fig. 1 (apart from the additional term −2). During
the modified backward rewriting we never observe more than 5 terms
in a polynomial. If we were to use the knowledge gained by Alg. 1
only after substituting all 7 gates however, the 17 terms shown in red
would be introduced, of course.

V. VERIFYING THE SIZE OF THE REMAINDER

Verifying condition (vc1) from Def. 1 is not sufficient to prove
that a circuit implements a divider. We have to prove as well that for
the remainder 0 ≤ R < D holds (condition (vc2)). Unfortunately,
backward rewriting starting with a polynomial for 0 ≤ R < D fails,
since already the polynomial representation for 0 ≤ R < D has
exponential size. In contrast, there is a BDD [24] of linear size that
represents this constraint. The variable ordering is chosen such that
bits of R and D having the same index are arranged side by side
and bits with higher indices are evaluated first. Starting from the
BDD for the predicate 0 ≤ R < D we perform a backward traversal
of the circuit using the same reverse topological order as for the
backward rewriting of Sect. IV. Now we substitute BDD variables
for gate outputs with BDDs for the gate functions. Finally, we obtain
a BDD for a predicate WPC depending only on input variables.
It is easy to see that WPC represents the weakest precondition
on the input variables that implies that 0 ≤ R < D holds at the
outputs of the circuit. Then condition (vc2) holds, iff the constraint
C = (0 ≤ R(0) < D · 2n−1) on the input variables implies WPC,
i. e., iff the BDD for C ∨ WPC is constant 1. For computing an
initial order on the BDD variables we use [25], extended to the
case that the relative order of certain variables (in our case the
variables of R and D as mentioned above) has already been fixed.
During the computation of WPC we use symmetric sifting [26] as
a dynamic variable reordering method. To our great surprise, our
experiments showed that those simple measures were sufficient to
make the building of the needed BDDs possible for large bit widths
n, see Sect. VI.

VI. EXPERIMENTAL RESULTS

For our experiments we have used one core of an Intel Xeon CPU
E5-2643 with 3.3 GHz and 62 GiB of main memory. The runtime of
all experiments was limited to 72 CPU hours. All run times in our
result table (Table II) are given in CPU seconds.

We consider the verification of non-restoring dividers as in Fig 2.
Note that we do not use any hierarchy information during verification.
We just use the flat gate level netlist and employ heuristics for
detecting atomic blocks (restricted to half and full adders) and for
finding a good substitution order [10], [11].

We start with two experiments for comparison. In both experiments
we check the equivalence of the divider circuit with a “golden
specification”. For this we construct a miter circuit between the

divider and its golden specification and conjoin it with a circuit for
C = (0 ≤ R(0) < D · 2n−1) to ensure that counterexamples are
restricted to the allowed range of inputs.

In the first experiment we use a SAT solver (MiniSat 2.2.0 [27]) to
solve the corresponding satisfiability problems. In Table II the results
are presented in col. 2. SAT solving for non-trivial arithmetic circuits
is hard and the SAT problems with bit widths larger than 8 could not
be solved due to a timeout.

In the second experiment we use the combinational equivalence
checking (CEC) approach of ABC [28], [29]. In contrast to the pure
SAT approach, ABC is based on And-Inverter-Graph (AIG) rewriting
via structural hashing, simulation, and SAT. This technique reduces
the overall complexity of checking equivalence between two designs
by finding equivalent internal AIG nodes. Based on those techniques,
ABC is able to verify dividers up to 32 bit. However, as already
observed in [5] for multiplier verification, finding internal equivalent
nodes in non-trivial arithmetic designs is difficult and thus ABC is
unable to verify larger dividers, see col. 3 in Table II.

2 4 8 16 24 32 48 64 96 128
100

101

102

103

104

105

106

Bit width

Pe
ak

si
ze

with SBIF
without SBIF

Fig. 4. Peak sizes for n-bit dividers.

Now we look into re-
sults for our method. We
use SCA-based meth-
ods for verifying that
the divider circuits ful-
fill their abstract speci-
fication from Def. 1. In
particular, for the proofs
we do not need golden
specification circuits. As
already demonstrated in
Sect. III, SCA is not
successful without using
SBIF. Fig. 4 shows the peak sizes of the polynomials with increasing
bit widths. Without SBIF we observe an exponential increase in the
peak size of the polynomials during backward rewriting (measured in
the number of terms), leading to more than 5 million terms already for
the 8-bit divider. With SBIF however the growth in size is moderate,
leading to peak sizes of 9,510 and 16,774 for the 96-bit and 128-bit
dividers, respectively.‡

For a more detailed analysis, we show run times split into different
sub-tasks in Table II. In col. 4 we show run times for reading
the circuit design, in col. 5–6 we consider forward information
propagation using SAT (SBIF, col. 5 gives the number of equivalences
/ antivalences found by SAT and col. 6 the time needed), and in col. 7
we show run times for backward rewriting making use of the results
of forward propagation. The results clearly show that the method
using SBIF is able to verify large dividers in short time. E.g. for the
128-bit divider the complete SCA-based verification needs less than
4 CPU minutes. It is interesting to observe that SCA-based rewriting
needs only 0.88 CPU seconds, after SBIF has been performed before.
The remaining run time is distributed between reading the circuit and
SAT solving time for SBIF. Remember that CEC with ABC already
needs more than 72 CPU hours (our timeout) for dividers with bit
widths of 48 or more.

Finally columns 8 and 9 of Table II give results for the BDD-
based verification of condition (vc2) from Def. 1 on the size of the
final remainder. We use the BDD package CUDD 3.0.0 [30]. Col. 8
shows peak sizes for the number of BDD nodes during the verification
and col. 9 shows the needed run times. The fact that the peak
sizes on the number of BDD nodes do not monotonically increase

‡Note that our results do not contradict the negative result from [17], since
we do not start backward rewriting with a polynomial for the quotient Q or
for the remainder R, but we start with a polynomial for Q ·D +R−R(0).



TABLE II
VERIFYING NON-RESTORING DIVIDERS, TIMES IN CPU SECONDS.

SCA-SBIF
n SAT ABC read SBIF rewrite vc2

time time time #equiv time time nodes time

2 0.23 0.03 0.05 21 < 0.01 < 0.01 23 < 0.01
4 1.48 0.04 0.20 40 < 0.01 < 0.01 106 0.01
8 83.06 2.07 0.80 120 0.01 < 0.01 397 0.02

16 TO 8.49 3.24 376 0.05 0.01 630 0.23
24 TO 69.27 6.83 760 0.15 0.03 1,502 1.16
32 TO 171.83 13.61 1272 0.31 0.05 83,392 4.16
48 TO TO 26.53 2680 1.67 0.11 591,365 27.53
64 TO TO 46.57 4600 4.43 0.20 843,594 71,67
96 TO TO 110.73 9976 17.50 0.47 737,660 510.29

128 TO TO 188.21 17400 37.16 0.88 80,911 1226.39

with increasing bit widths can be explained by the use of dynamic
variable reordering which is automatically triggered at favourable or
less favourable times during the BDD construction. Nevertheless, the
times needed for BDD construction increase monotonically and we
obtain surprisingly small CPU times (e.g. about 8.5 CPU minutes for
a bit width of 96 and about 20.5 CPU minutes for a bit width of
128). Note that the moderate CPU times for BDD-based verification
can only be observed for the verification of condition (vc2). Using
BDDs in the context of CEC for single output bits of dividers or for
backward rewriting starting with a circuit for Q ·D+R (with BDDs
instead of polynomials) is not a good idea and immediately fails with
exponential numbers of BDD nodes.

VII. CONCLUSIONS AND FUTURE WORK

With the fully automatic formal verification of divider circuits we
solved a problem that has been open for a long time. Moreover, we
precisely characterized the reasons why SCA-based approaches for
divider verification did not work so far and we presented forward
information propagation as a means to enable backward verification
of dividers. Our results for non-restoring dividers are only a first
step and our next steps will be to evaluate and extend the approach
for different divider designs such as SRT division [15] which is
based on the same principles as non-restoring division but works
with redundant number systems and lookup tables to enable quotient
bit determination and addition in constant time, or the Goldschmidt
algorithm (also called IBM method) which is based on iterated
multiplication [31]. We expect that those architectures will need
(possibly extended) forward information as well, which is derived
both from the circuit and the allowed input range and is used for
optimizing intermediate polynomials.

REFERENCES

[1] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” IEEE Transactions
on Computer Aided Design of Circuits and Systems, vol. 32, no. 9, pp.
1409–1420, Sept 2013.

[2] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in Computer Aided Verification, 2008, pp. 473–486.

[3] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” Microprocessors and Microsystems, vol. 39,
no. 2, pp. 83–96, 2015.

[4] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level
arithmetic circuits by function extraction,” in Design Automation Conf.,
2015, pp. 52:1–52:6.

[5] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verifi-
cation of arithmetic circuits by function extraction,” IEEE Transactions
on Computer Aided Design of Circuits and Systems, vol. 35, no. 12, pp.
2131–2142, 2016.

[6] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in Design, Automation and Test in Europe, 2016,
pp. 1048–1053.

[7] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in Int’l Conf. on Formal Methods
in CAD, 2017, pp. 23–30.

[8] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter graphs,” IEEE Transactions on Computer Aided Design
of Circuits and Systems, vol. 37, no. 9, pp. 1907–1911, 2017.

[9] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in Design,
Automation and Test in Europe, 2018, pp. 1556–1561.

[10] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your
polynomials before backward rewriting to verify million-gate multipli-
ers,” in International Conference on Computer-Aided Design, 2018, pp.
129:1–129:8.

[11] ——, “RevSCA: Using reverse engineering to bring light into backward
rewriting for big and dirty multipliers,” in Design Automation Conf.,
2019.

[12] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in Int’l Conf. on Formal Methods
in CAD, 2019.

[13] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs Journal, vol. 20,
no. 4, pp. 129–135, 1995.

[14] R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in Design
Automation Conf., 1996, pp. 661–665.

[15] J. E. Robertson, “A new class of digital division methods,” IRE Trans.
Electronic Computers, vol. 7, no. 3, pp. 218–222, 1958.

[16] E. M. Clarke, M. Khaira, and X. Zhao, “Word level model checking -
avoiding the Pentium FDIV error,” in Design Automation Conf., 1996,
pp. 645–648.

[17] C. Scholl, B. Becker, and T. M. Weis, “On WLCDs and the complexity
of word-level decision diagrams – a lower bound for division,” Formal
Methods in System Design, vol. 20, no. 3, pp. 311–326, 2002.

[18] D. M. Russinoff, “A mechanically checked proof of IEEE compliance
of the floating point multiplication, division and square root algorithms
of the AMD-K7 processor,” LMS Journal Comput. Math., vol. 1, pp.
148–200, 1998.

[19] E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division
algorithm using theorem proving techniques,” Formal Methods in System
Design, vol. 14, no. 1, pp. 7–44, 1999.

[20] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating point hardware,” Intel Technology Journal,
vol. Q1, pp. 1–10, 1999.

[21] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of bi-
nary moment diagrams for verifying arithmetic circuits,” in International
Conference on Computer-Aided Design, 1995, pp. 78–82.

[22] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Design Automation Conf., 1995, pp. 535–
541.

[23] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification
of integer dividers: Division by a constant,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2019, pp. 76–81.

[24] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[25] S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” in International Conference on Computer-Aided Design,
1988, pp. 6–9.

[26] S. Panda, F. Somenzi, and B. Plessier, “Symmetry detection and dynamic
variable ordering of decision diagrams,” in International Conference on
Computer-Aided Design, 1994, pp. 628–631.

[27] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, 2003, pp. 502–518.

[28] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

[29] “ABC: A system for sequential synthesis and verification,” available at
https://people.eecs.berkeley.edu/ alanmi/abc/, 2019.

[30] F. Somenzi, “Efficient manipulation of decision diagrams,” STTT, vol. 3,
no. 2, pp. 171–181, 2001.

[31] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd.,
2001.




