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Abstract

Preprocessing turned out to be an essential step for SAT, QBF, and DQBF solvers to
reduce/modify the number of variables and clauses of the formula, before the formula is
passed to the actual solving algorithm. These preprocessing techniques often reduce the
computation time of the solver by orders of magnitude. In this paper, we present the
preprocessor HQSpre that was developed for Dependency Quantified Boolean Formulas
(DQBFs) and that generalizes different preprocessing techniques for SAT and QBF problems
to DQBF. We give a presentation of the underlying theory together with detailed proofs as
well as implementation details contributing to the efficiency of the preprocessor. HQSpre
has been used with obvious success by the winners of the DQBF track, and, even more
interestingly, the QBF tracks of QBFEVAL’18.

Keywords: Preprocessing, DQBF, Solver technology, Henkin quantifiers

Submitted November 2018; revised March 2019; published September 2019

1. Introduction

Many problems, practically relevant and at the same time hard from a complexity-theoretic
point of view, can be reduced to solving quantifier-free (SAT) or quantified (QBF) Boolean
formulas. Such applications range, among many others, from automatic test pattern
generation [16, 18] and formal verification of hard- and software systems [4, 14, 37] to
planning [62], product configuration [69], and cryptanalysis [52]. During the last three
decades, the development of very efficient algorithms to solve such formulas has paved the
way from academic interest to industrial application of solver techniques. SAT-formulas
with hundred thousands of variables and millions of clauses can be solved nowadays, with
QBF about two orders of magnitude behind.

∗This work was partly supported by the German Research Council (DFG) as part of the project
“Solving Dependency Quantified Boolean Formulas”. It extends the conference publications [77] and [79] by
additional theoretical results on (D)QBF preprocessing techniques, more (and more recent) details on the
implementation of HQSpre, complete proofs for all statements, and new experimental results on benchmarks
from QBFEVAL’18.

c©2019 IOS Press, SAT Association and the authors.
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Although QBFs are capable of encoding decision problems in the PSPACE complexity
class, they are not powerful enough to succinctly encode many natural and practical problems
that involve decisions under partial information. For example, the verification of partial
designs [65, 27], topologically constrained synthesis of logic circuits [1], synthesis of safe
controllers [7], synthesis of fragments of linear-time temporal logic (LTL) [13], and the
analysis of games with incomplete information [55] fall into this category and require an
even more general formalism known as dependency quantified Boolean formulas (DQBFs)
[55]. “Standard” quantified Boolean formulas have the restriction that each existential
variable depends on all universal variables in whose scope it is. This restriction is relaxed
for DQBF, which allows arbitrary dependencies, leading to so-called Henkin quantifiers [30]
with explicitly specified dependency sets. The semantics of a DQBF can be interpreted
from a game-theoretic viewpoint as a game played by one universal player and multiple
non-cooperative existential players with incomplete information, each partially observing the
moves of the universal player as specified by his/her own dependency set. A DQBF is true
if and only if the existential players have winning strategies. This specificity of dependencies
allows DQBF encodings to be exponentially more compact than their equivalent QBF
counterparts. On the other hand, the increased expressiveness of DQBFs comes at the cost
of a higher complexity for the decision problem – for SAT it is NP-complete [15], for QBF
PSPACE-complete [51], and for DQBF it is NEXPTIME-complete [55].

Driven by the needs of the applications mentioned above, research on DQBF solving has
emerged in the past few years, leading to solvers such as iDQ [21], iProver [44], dCAQE [61],
and HQS [28, 77, 78, 22]. iDQ [21] reduces the solution of a DQBF to the solution of a series
of SAT instantiations. iProver [44] makes use of a translation of DQBFs into Effectively
Propositional Logic (EPR) formulas [47]. dCAQE generalizes the CEGAR-based QBF solver
CAQE [74]. HQS [28] applies quantifier elimination to solve the formula and works on circuit
structures (And-Inverter Graphs) instead of CNFs.

Part of the success of SAT and QBF solving is due to efficient preprocessing of the
formula under consideration. The goal of preprocessing is to simplify the formula by
reducing/modifying the number of variables, clauses, and quantifier alternations, such that
it can be solved more efficiently afterwards. However, there is typically a trade-off between
the number of variables and the number of clauses; for instance, eliminating variables by
resolution can increase the number of clauses significantly, which in turn increases memory
consumption and the cost of subsequent operations on the formula. Removing redundant
clauses is also not always beneficial: search-based SAT and QBF solvers add implied clauses
to the formula to drive the search away from unsatisfiable parts of the search space [2, 68],
which often reduces computation times considerably.

For SAT and QBF, efficient and effective preprocessing tools are available like SatELite [17],
Coprocessor [50] for SAT and squeezeBF [29], Bloqqer [6] for QBF. Due to the success of
preprocessing in SAT and QBF, one can expect that preprocessing is beneficial for DQBF,
too – even more because the actual solving process is more costly than for QBF. This raises
the question which techniques can be generalized from SAT and QBF to DQBF. Which
adaptations need to be made to make them correct for the more general formalism? After
suitable adaptations have been found, the correctness proofs have to be re-done for DQBF
carefully because for QBF they often exploit the fact that dependencies in QBF follow a
linear order. But also techniques like the detection of backbone literals (literals that are true
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in all satisfying assignments of the matrix) [42, 39], which work for DQBF in the same way
as for SAT and QBF, have to be re-thought: in SAT only incomplete, but cheap syntactic
tests for the special case of unit literals are useful – determining backbone literals completely
is as expensive as solving the SAT problem itself. For DQBF the situation is different as the
decision problem is much harder. Even solving QBF approximations [27, 19] of the formula
at hand as an incomplete decision procedure can be beneficial. Additionally the higher
flexibility regarding the dependency sets in DQBF makes some techniques more powerful
compared to QBF and enables new techniques.

Taken together, this paper lays the foundations for DQBF preprocessing. We provide
several extensions and adaptations and provide techniques demonstrating that preprocessing
for DQBF also conceptually goes beyond standard SAT/QBF techniques. We general-
ize successful preprocessing techniques for QBF to DQBF like blocked clause elimination
(BCE) [45, 41, 6], equivalence reasoning [29], structure extraction [57], and variable elimi-
nation by resolution [3]. For some QBF preprocessing techniques that were given without
proof so far we provide proofs for the DQBF generalizations (which include proofs for the
original QBF version). For another existing QBF preprocessing technique (given without
proof before), which allows to eliminate existential variables by resolution under too relaxed
conditions, we provide a counterexample disproving the correctness of the corresponding
theorem. It is interesting to note that sometimes the generalization of preprocessing tech-
niques from QBF to DQBF even leads to a stronger QBF preprocessing technique when
back-translated from the DQBF to the QBF case. The correctness proofs for all described
techniques are available in this paper.

All techniques have been implemented in our (D)QBF preprocessor HQSpre.1. Frequently,
the efficiency of good solvers and preprocessors does not only rely on sound theoretical
foundations, but also on sophisticated implementation details and optimizations. Therefore
we provide a detailed description of the implementation as well, including remarks on data
structures, on the order of applied preprocessing techniques, on the frequency of their
application (depending on cost) etc. Moreover, we demonstrate that the applied techniques
have to be chosen with care depending on the solving techniques applied in the solver core.
For example, BCE prevents an effective undoing of Tseitin transformation [75], which is
used to transform a formula into conjunctive normal form (CNF). Therefore, it is better to
disable BCE if the underlying solver core does not rely on a formula in CNF, and to use
BCE if undoing Tseitin transformation is not possible because the solver core requires a
formula in CNF.

HQSpre has been successfully used by the winners of the DQBF track, and, even more
interestingly, the QBF tracks of QBFEVAL’18. In our experiments we thoroughly evaluate
the effect of HQSpre on different QBF and DQBF solvers from QBFEVAL’18. The results
show that HQSpre significantly increases the number of solved instances for all considered
solvers and in that way our preprocessor makes a considerable contribution to the success of
state-of-the-art QBF and DQBF solvers.

Structure of this paper The next section introduces the necessary foundations of DQBF.
Section 3 reviews incomplete, but cheap decision procedures for DQBF, Section 4 presents

1.HQSpre is available as an open source tool. The most recent version can be downloaded from
https://projects.informatik.uni-freiburg.de/projects/dqbf/files
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the theoretical foundations of the preprocessing techniques for (D)QBF that we apply in
our tool to simplify the DQBF at hand, as well as details on the implementation of the tool.
Section 6 gives an experimental evaluation, and Section 7 concludes the paper.

2. Preliminaries

In this section, we briefly review the necessary foundations regarding dependency quantified
Boolean formulas.

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and v ∈ V . We
denote by ϕ[κ/v] the Boolean formula which results from ϕ by replacing all occurrences
of v (simultaneously) by κ. For a set V ′ ⊆ V we denote by A(V ′) the set of Boolean
assignments for V ′, i. e., A(V ′) =

{
ν
∣∣ ν : V ′ → {0, 1}

}
. As usual, for a Boolean assignment

ν : V ′ → {0, 1} and V ′′ ⊆ V ′ we denote the restriction of ν to V ′′ by ν|V ′′ . A Boolean
function with the set of input variables V ′ is a mapping f : A(V ′) → {0, 1}. For each
formula ϕ over V , a variable assignment ν to the variables in V induces a truth value 0 or 1
of ϕ, which we call ν(ϕ).

Definition 1 (DQBF) Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean variables. A
dependency quantified Boolean formula (DQBF) ψ over V has the form

ψ := ∀x1∀x2 . . . ∀xn∃y1(Dψ
y1)∃y2(Dψ

y2) . . . ∃ym(Dψ
ym) : ϕ (1)

where Dψ
yi ⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi, and ϕ is a quantifier-

free Boolean formula over V , the matrix of ψ.

To simplify the notation, we often write ψ = Q : ϕ with the quantifier prefix Q and
the matrix ϕ. We denote its set of universal variables by V ψ

∀ = {x1, . . . , xn} and its set

of existential variables by V ψ
∃ = {y1, . . . , ym}. If we do not need to distinguish between

existential and universal variables, we write v ∈ V . Q \ {v} denotes the prefix that results
from removing a variable v ∈ V from Q together with its quantifier. If v is existential, then
its dependency set is removed as well; if v is universal, then all occurrences of v in the
dependency sets of existential variables are removed. Similarly we use Q∪

{
∃y(Dψ

y )
}

to add
existential variables to the prefix. The order in which the variables appear in the prefix
is irrelevant. We introduce the dependency function depψ : V → 2V by depψ(v) = Dψ

v if

v ∈ V ψ
∃ , and depψ(v) = {v} for v ∈ V ψ

∀ .

Definition 2 (Semantics of DQBF) Let ψ be a DQBF with matrix ϕ as above. ψ is

satisfiable iff there are functions syi : A(Dψ
yi) → {0, 1} for 1 ≤ i ≤ m such that replacing

each yi by (a Boolean expression for) syi turns ϕ into a tautology. Then the functions
(syi)i=1,...,m are called Skolem functions for ψ.

Definition 3 (Equisatisfiability and Equivalence of DQBFs) Two DQBFs ψ and ψ′

are called equisatisfiable (written ψ ≈ ψ′) if they are either both unsatisfiable or both
satisfiable. Two DQBFs ψ and ψ′ are called equivalent (written ψ ≡ ψ′) if they are either
both unsatisfiable or both satisfiable with exactly the same sets of Skolem functions.

6



The (D)QBF Preprocessor HQSpre – Underlying Theory and Its Implementation

Definition 4 (QBF) A quantified Boolean formula (QBF)2. is a DQBF ψ such that Dψ
y ⊆

Dψ
y′ or Dψ

y′ ⊆ D
ψ
y holds for any pair y, y′ ∈ V ψ

∃ of existential variables.

Usually, the quantifier prefix of a QBF is represented by a series of universal and existential
quantifications where for each existential variable y the dependency set Dψ

y is exactly the
set of universal variables written to the left of y.

In the following we assume, unless explicitly stated differently, that the matrix ϕ is given
in conjunctive normal form (CNF). A formula is in CNF if it is a conjunction of clauses; a
clause is a disjunction of literals, and a literal is either a variable v or its negation ¬v. We
identify a formula in CNF with its set of clauses and a clause with its set of literals, e. g., we
write

{
{x1,¬x2}, {x2,¬x3}

}
for the formula (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3). A clause C subsumes

a clause C ′ iff C ⊆ C ′. For a literal `, var(`) denotes the corresponding variable, i. e.,
var(v) = var(¬v) = v and depψ(`) = depψ

(
var(`)

)
. For a clause C, var(C) =

⋃
`∈C{var(`)}

and depψ(C) =
⋃
`∈C depψ(`). We ignore double negations, i. e., v = ¬¬v. Moreover, we

define the “sign” of a literal as sgn(v) = 1 and sgn(¬v) = 0.
Each DQBF can be transformed such that the matrix is in CNF. While transforming the

matrix directly into CNF can cause an exponential blow-up in size, Tseitin transformation
[75] can do this with only a linear increase in size at the cost of additional existential
variables. The idea is to introduce auxiliary existential variables that store the truth value
of sub-expressions. Since the values of these variables are uniquely determined by the
sub-expression, they can simply depend on all universal variables.

We assume that none of the clauses of the CNF ϕ under consideration is tautological,
i. e., there is no variable v such that {v,¬v} ⊆ C for all C ∈ ϕ. The preprocessing operations
we present check the modified or added clauses whether they are tautologies and, if this is
the case, remove or ignore them.

Propositional resolution is a central operation on formulas in CNF:

Definition 5 (Resolution) Let ϕ be a formula in CNF, ` a literal, and C,C ′ ∈ ϕ clauses
such that ` ∈ C and ¬` ∈ C ′. The resolvent of C and C ′ w. r. t. to the pivot literal ` is
given by C ⊗` C ′ :=

(
C \ {`}

)
∪
(
C ′ \ {¬`}

)
.

Resolvents are implied by the formula, i. e., if R is a resolvent of two clauses in ϕ, then ϕ
and ϕ ∪ {R} are equivalent [5, Section 3.2.1].

A few solvers for DQBF have been proposed in the literature: An extension of the DPLL
algorithm, typically applied for solving SAT and QBF formulas, has been described in [20].
However, no implementation thereof is available. iDQ [21] uses instantiation-based solving,
i. e., it reduces deciding a DQBF to deciding a series of SAT problems. iDQ can be seen as
a specialization of the solver iProver [44] to the purely propositional domain. Nevertheless,
iProver itself, which is able to solve Effectively Propositional Logic (EPR) formulas [47],
can be used for solving DQBFs as well by translating each DQBF into an EPR formula
in a simple manner (using an extension of a translation from QBF to EPR [67]). dCAQE
is another DQBF solver based on the QBF solver CAQE [74]. Finally, there is the solver
HQS [28], which applies quantifier elimination on And-Inverter Graphs (AIGs) to solve the
formula. An AIG is essentially a circuit which consists of AND and inverter gates only.

2.We only consider closed QBFs in prenex form here, i. e., QBFs in which all variables are bound by a
quantifier and in which the quantifiers precede the matrix.
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Although HQS reads a CNF-based input format as other solvers, too, its back-end can
handle Boolean formulas of arbitrary structure.

3. Incomplete, but Cheap Decision Procedures

Before we present our preprocessing techniques for QBF and DQBF, we review incomplete,
but cheap decision procedures for such formulas. Using such techniques as a preprocessing
step can help decide formulas without actually calling a (D)QBF solver. We call such
techniques “filters”. Since the complexity of solving the formulas involved in these filters is
lower than of solving the actual problem, running filters before calling the (D)QBF solver is
often beneficial.

We start with SAT-based filters which are suitable for both QBF and DQBF and proceed
with QBF-based filters suitable for DQBF.

3.1 SAT-based Filters for QBF and DQBF

SAT checks over the matrix are used in order to find trivially (un)satisfiable formulas [12].

A (D)QBF is trivially unsatisfiable if the matrix ϕ is already unsatisfiable for an arbitrary
but fixed assignment of the universal variables. In HQSpre we use for this check an assignment
of the universal variables which satisfies the fewest clauses, i. e., we assign x to 1 if x occurs
in fewer clauses than ¬x.

A (D)QBF is trivially satisfiable if, after removing each occurrence of a universal literal
within the matrix ϕ, the resulting matrix ϕ′ is satisfiable. The correctness of this statement
immediately follows from the fact that removing each occurrence of universal literals in
the matrix corresponds to removing all universal variables from the dependency sets of
existential variables followed by universal reduction, see Section 4.4.1. That means, we
consider a restriction of the Skolem functions to constants. If we find Skolem functions in
this way, then they work for the original formula as well.

Of course, if a (D)QBF formula does not contain any universal variables at all, we
immediately employ a SAT solver for deciding the formula. This situation rarely occurs in
the very beginning, but rather after universal expansions, see Section 4.2.4.

3.2 QBF-based Filters for DQBF

For DQBF we check whether we can prove satisfiability or unsatisfiability based on QBF
solving, which usually needs much less resources than solving the DQBF. Our approach
is as follows: First we apply preprocessing for DQBF, which is helpful for both the filter
technique and the actual solver core. Then we run a filter technique to prove unsatisfiability,
and only if it finishes with an inconclusive result, we apply the solver core.

The filter is based on QBF approximations: By using an appropriate quantifier prefix
and the same matrix, a DQBF ψ can be over-approximated by a QBF Ψ↑ such that the
unsatisfiability of Ψ↑ implies the unsatisfiability of ψ [27]. Similarly one can construct an
under-approximation Ψ↓ such that the satisfiability of Ψ↓ implies the satisfiability of ψ. As
the under-approximation was inconclusive for all instances in our experiments, we focus
on over-approximations, which allow to show unsatisfiability of DQBFs. The theory for
under-approximations is analogous as for over-approximations.
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Definition 6 (QBF over-approximation) A QBF Ψ↑ = Q′ : ϕ is an over-approximation

of ψ (written ψ v Ψ↑) if DΨ↑
y ⊇ D

ψ
y holds for all existential variables y ∈ V ψ

∃ .

Lemma 1 Let ψ be a DQBF and ψ v Ψ↑. If Ψ↑ is unsatisfiable, so is ψ.

This lemma directly follows from the fact that Skolem functions for ψ are Skolem functions
for Ψ↑, too.

Typically, there are several QBF over-approximations of a DQBF. They can be more or
less precise. Let Ψ↑1 = Q1 : ϕ and Ψ↑2 = Q2 : ϕ be two QBF over-approximations of the same

DQBF ψ = Q : ϕ. We call Ψ↑1 stronger than Ψ↑2 (written Ψ↑1 v Ψ↑2) if for all y ∈ V ψ
∃ we have

D
Ψ↑1
y ⊆ D

Ψ↑2
y . If Ψ↑1 v Ψ↑2 and Ψ↑2 is unsatisfiable, so is Ψ↑1. A QBF over-approximation is

a strongest QBF over-approximation if there is no different QBF over-approximation that
is stronger. Strongest over-approximations are as close to the original DQBF w. r. t. the
dependency sets as possible. Therefore it is desirable to solve a strongest over-approximation
as an incomplete decision procedure for DQBF.

QBF approximations as defined above choose an appropriate QBF prefix for the DQBF
at hand, but leave the matrix and the set of variables unchanged. More powerful QBF
filters can be obtained by allowing modifications of the matrix and the variables. Finkbeiner
and Tentrup [19] propose a series of more and more precise QBF formulas, starting with
a strongest QBF over-approximation. Their construction uses k ≥ 1 copies of the matrix
and its variables. For k = 1 it reduces to a strongest QBF over-approximation as described
above. For k > 1 it is required that the existential variables are assigned consistently over all
copies and that all copies of the matrix are satisfied. Consistent means that if the universal
variables in the dependency set of an existential variable are assigned the same values in
two copies, then the existential variables have to carry the same value. This is expressed
with the following formula:

Cons(Y, k) :=
∧
y∈Y

k∧
i=1

k∧
j=i+1

(
(yi ≡ yj) ∨

∨
x∈Dψy

(xi 6≡ xj)
)
.

Let Q be the prefix of a strongest QBF approximation Ψ↑ of the DQBF ψ and Qi be
created from Q by replacing all variables v by their i-th copy vi. We define the QBF Ψ(k)
for a parameter k ≥ 1 by3.:

Ψ(k) := Q1Q2 . . . Qk : Cons
(
V ψ
∃ , k

)
∧

k∧
i=1

ϕi .

Theorem 1 ([19]) The DQBF ψ is unsatisfiable iff Ψ(k) is unsatisfiable for some k ≥ 1.

Experiments show that this technique can identify many unsatisfiable instances with
fairly small values of k (with the majority of unsatisfiable instances identified already by
k = 1 when Ψ(k) is equal to a strongest QBF over-approximation). Since the sizes of the
QBF instances grow considerably with increasing values of k, in most cases only values k ≤ 3
seem beneficial. For more details we refer the reader to [19].

3.For consistency reasons we have negated the formula compared to [19].
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4. Theoretical Background of Preprocessing Techniques for DQBF

In this section, we describe techniques which can be applied to preprocess a DQBF.

Before we look into (D)QBF simplifications by (1) variable elimination, (2) clause
elimination, (3) clause strengthening, and (4) minimizing dependency sets, we consider gate
detection and structure extraction, which are especially successful when the matrix originally
results from a circuit or a Boolean expression that was transformed into CNF.

4.1 Detecting Gate Definitions and Structure Extraction

The (D)QBF’s matrix in CNF is often created from a circuit or a Boolean expression by Tseitin
transformation [75], where a new existential variable ve is created for each sub-expression (or
gate output) e. Clauses encoding the relationship ve ≡ e are added and the sub-expression
e is replaced by the variable ve. For example, a k-input AND gate y ≡ AND(`1, . . . , `k)
has a Tseitin encoding consisting of (k + 1) clauses {¬y, `1}, . . . , {¬y, `k}, {y,¬`1, . . . ,¬`k}.
In such a functional definition y ≡ f(`1, . . . , `k), y is called the defined variable, f is the
definition of y, and the clauses corresponding to the relationship y ≡ f(`1, . . . , `k) are the
defining clauses.

For solvers that do not rely on a matrix in CNF (like the DQBF solver HQS [28] or the
QBF solver AIGsolve [57]) transformation steps introducing gate definitions can be undone.
Here all artificially introduced variables are removed and circuit structure is extracted
from the CNF: If a relationship y ≡ f(`1, . . . , `k) is detected which does not lead to cyclic
dependencies, y can be removed from the prefix and the defining clauses can be removed
from the matrix. Additionally, a data structure is used which assigns to each defined variable
its definition. To create an AIG representation that can be passed to a non-CNF-based
solver core like HQS or AIGsolve, the remaining clauses are converted into an AIG and then
the defined variables are substituted by their definitions. Those structure extraction steps
can only be performed, if a certain condition on the dependency sets of the defined variable
and the variables occurring in the defining clauses are fulfilled:

Theorem 2 Let ψ = Q : ϕ be a DQBF and ϕf ⊆ ϕ the defining clauses for the relationship
y ≡ f(`1, . . . , `k). Then ψ is equisatisfiable with

Q \ {y} : (ϕ \ ϕf )[f(`1, . . . , `k)/y]

if the following conditions are satisfied:

1. y ∈ V ψ
∃ ,

2. for i = 1, . . . , k we have depψ(`i) ⊆ depψ(y).

Proof. We set ψ′ := Q \ {y} : (ϕ \ ϕf )[f(`1, . . . , `k)/y] and show that ψ and ψ′ are equisatisfiable.
First assume that ψ is unsatisfiable. Then there is no set of Skolem functions which turns

ϕ into a tautology. In particular sets of Skolem functions for which sy = f(`1, . . . , `k)[sy′/y
′ for

y′ ∈ {var(`1), . . . , var(`k)} ∩ V ψ∃ ] holds do not turn ϕ into a tautology. (Note that sy defined in
that way is an admissible Skolem function due to condition 2. in the theorem.) Hence, Q \ {y} :
ϕ[f(`1, . . . , `k)/y] is unsatisfiable. Since ϕf is equivalent to y ≡ f(`1, . . . , `k), ϕf [f(`1, . . . , `k)/y] is

10
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a tautology. Therefore ϕ[f(`1, . . . , `k)/y] and (ϕ \ ϕf )[f(`1, . . . , `k)/y] are equivalent. This shows
that ψ′ is unsatisfiable.

Now assume that ψ is satisfiable. This implies that there are Skolem functions sy1 , . . . , sym for
y1, . . . , ym. Because of the defining clauses that encode y ≡ f(`1, . . . , `k), the Skolem function sy for

y satisfies the relationship sy = f(`1, . . . , `k)[sy′/y
′ for y′ ∈ V ψ∃ \ {y}]. Thus {sy1 , . . . , sym} \ {sy} is

a set of Skolem functions for Q\{y} : ϕ[f(`1, . . . , `k)/y]. This means that Q\{y} : ϕ[f(`1, . . . , `k)/y]
is satisfiable. Satisfiability of Q \ {y} : ϕ[f(`1, . . . , `k)/y] implies satisfiability of Q \ {y} : (ϕ \
ϕf )[f(`1, . . . , `k)/y]. �

Even if the solver back-end requires a matrix in CNF, detecting gate definitions may
be useful for eliminating the defined variable (see Section 4.2.3), for detecting equivalent
variables (see Section 4.2.2), and for manipulating dependency sets of existential variables
(see Section 4.5).

4.2 Variable Elimination Routines

First of all, we describe techniques that reduce the number of variables in the formula.

4.2.1 Unit and Pure Literals, Backbones, and Monotonic Variables

Unit and pure variables are well-known concepts from SAT and QBF solving. In the context
of DQBF solving, pure literals have first been discussed in [20]. Both unit and pure literals
can be replaced by constant values without influencing the formula’s truth value. Typically
a literal is defined as unit if the matrix contains a clause consisting only of this literal. A
variable is pure if it occurs in the whole matrix either only positive or only negative:

Definition 7 (Unit and pure literals) A literal ` is a unit literal if {`} ∈ ϕ; ` is a pure
literal if ¬` does not appear in any clause of ϕ.

These are syntactic criteria that can be checked efficiently. This is necessary because in
particular the detection of unit literals is one of the main operations of search-based SAT
and QBF solvers as a part of Boolean constraint propagation (BCP) [5]: Given a set L of
unit literals, BCP finds all literals L′ that become unit because of the assignment enforced
by the literals in L (written BCPϕ(L) = L′). The same process also detects when a clause
becomes unsatisfied because of the unit literals in L. The latter is called a conflict and
denoted by BCPϕ(L) = ⊥.

For (D)QBF preprocessing, it is possible to use more expensive checks to determine
variables which may be replaced by constants. Therefore we give a more general semantic
definition:

Definition 8 (Backbones and monotonic variables) A variable v ∈ V is a positive
(negative) backbone if ϕ[0/v] (ϕ[1/v], resp.) is unsatisfiable. A literal ` is a backbone, if
` = v and v a positive backbone, or if ` = ¬v and v a negative backbone.

A variable v ∈ V is positive (negative) monotonic if ϕ[0/v] ∧ ¬ϕ[1/v] (ϕ[1/v] ∧ ¬ϕ[0/v],
resp.) is unsatisfiable.

The following lemma says that backbones generalize unit literals and monotonic variables
generalize pure literals:

11
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Lemma 2 Unit literals are backbones, and pure literals monotonic.

Proof. Let ` be a literal such that {`} ∈ ϕ, i. e., ϕ = ϕ′ ∪
{
{`}
}

. W. l. o. g. we assume sgn(`) = 1.

Replacing ` by 0 yields ϕ[0/`] = ϕ′[0/`] ∪
{
{0}
}

, which is unsatisfiable as the clause {0} is false.
Therefore ` is a backbone.

Now consider the case that ϕ does not contain ¬`. Then we can partition ϕ into the clauses
ϕ` which contain ` and the clauses ϕ∅ not containing `, i. e., ϕ = ϕ` ∧ ϕ∅. We can write ϕ as
ϕ = (` ∨ ϕ̃`) ∧ ϕ∅ with an appropriate formula ϕ̃` that does not contain `. We have

ϕ[0/`] ∧ ¬ϕ[1/`] = (0 ∨ ϕ̃`) ∧ ϕ∅ ∧ ¬
(
(1 ∨ ϕ̃`) ∧ ϕ∅

)
= ϕ̃` ∧ ϕ∅ ∧ ¬ϕ∅

= 0.

Hence, ` is monotonic. �

The following theorem states how we can exploit backbones and monotonic variables to
reduce the size of the formula:

Theorem 3 Let ψ = Q : ϕ be a DQBF and v ∈ V a backbone or a monotonic variable.
If v is a positive or negative backbone and universal, ψ is unsatisfiable. Otherwise ψ is

equisatisfiable with ψ′ where
• ψ′ = Q \ {v} : ϕ[1/v] if v is existential and either a positive backbone or positive

monotonic, or v is universal and negative monotonic;
• ψ′ = Q \ {v} : ϕ[0/v] if v is existential and either a negative backbone or negative

monotonic, or v is universal and positive monotonic.

Proof. Let Q : ϕ be the DQBF

ψ = ∀x1∀x2 . . . ∀xn∃y1(Dψ
y1)∃y2(Dψ

y2) . . . ∃ym(Dψ
ym) : ϕ.

• First assume, v is existentially quantified and a positive backbone. W. l. o. g. we assume v = y1.
ψ is satisfiable iff there are Skolem functions sy1 , . . . , sym such that

ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym))

is a tautology. We prove that sy1 = 1 whenever ψ is satisfiable. This implies the equisatisfiability
of Q \ {v} : ϕ[1/v] and ψ . We prove this statement by contradiction and assume that ψ is
satisfiable with Skolem functions sy1 , . . . , sym , but sy1 is not the constant 1 function. Then
there exists an assignment ν of the universal variables such that sy1(ν(Dy1)) = 0 holds. We
have:

ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ(ν(x1), . . . , ν(xn), 0, sy2(ν(Dy2)), . . . , sym(ν(Dym)))

≡ ϕ[0/y1](ν(x1), . . . , ν(xn), sy2(ν(Dy2)), . . . , sym(ν(Dym)))

≡ 0 .

The last step holds since v = y1 is a positive backbone. ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)),
. . . , sym(ν(Dym))) = 0 contradicts the assumption that ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym))
is a tautology and thus sy1 has to be the constant 1 function. The proof in case that v is
existentially quantified and a negative backbone can be executed analogously.

12
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• Now let v = x1 be universally quantified and a positive backbone. Q : ϕ is satisfiable iff there are
Skolem functions sy1 , . . . , sym such that ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym)) is a tautology.
Now choose an arbitrary assignment ν of the universal variables with ν(x1) = 0. We have

ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ(0, . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ[0/x1](ν(x2), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ 0 .

Again, the last step holds due to the assumption that v = x1 is a positive backbone. Since
ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym)) must be 1 for each assignment of x1, . . . xn, Q : ϕ is not
satisfiable. The case that v is universally quantified and a negative backbone is analogous.

• Let v = x1 be universally quantified and positive monotonic, i. e., ϕ[0/x1] ∧ ¬ϕ[1/x1] is
unsatisfiable. This expression is equivalent to ϕ[0/x1] ⇒ ϕ[1/x1] being a tautology and to
every satisfying assignment of ϕ[0/x1] being also a satisfying assignment of ϕ[1/x1].

If Q \ {x1} : ϕ[0/x1] is unsatisfiable, then also Q : ϕ. So let Q \ {x1} : ϕ[0/x1] be satisfiable.
Then there are Skolem functions sy1 , . . . , sym for the existential variables y1, . . . , ym such
that ϕ[0/x1](x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym)) is a tautology (with D′yi = Dyi \ {x1}). By

assumption, ϕ[1/x1]
(
x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym)

)
is a tautology, too, and therefore(

x1 ∧ ϕ[1/x1](x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym))
)
∨(

¬x1 ∧ ϕ[0/x1](x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym))
)

≡ ϕ(x1, . . . , xn, sy1(D′y1), . . . , sym(D′ym))

is a tautology as well. Therefore, if Q \ {x1} : ϕ[0/x1] is satisfiable, then also Q : ϕ. The proof
for negative monotonic universal variables can be carried out analogously.

• Finally let v = y1 be existentially quantified and positive monotonic. That means, as for
universal positive monotonic variables that every satisfying assignment of ϕ[0/y1] is also a
satisfying assignment of ϕ[1/y1].

Assume that Q \ {∃y1} : ϕ[1/y1] is satisfiable. So there are Skolem functions sy2(Dy2), . . . ,
sym(Dym) such that ϕ[1/y1](x1, . . . , xn, sy2(Dy2), . . . , sym(Dym)) is a tautology. This is equiv-
alent to ϕ(x1, . . . , xn, 1, sy2(Dy2), . . . , sym(Dym)) being a tautology. Therefore sy1(Dy1) = 1 is
a Skolem function for y1 in ψ.

Now let ψ := Q : ϕ be satisfiable. We have to show that sy1(Dy1) = 1 is a Skolem function
for y1 in ψ. If ψ is satisfiable, there are Skolem functions sy1(Dy1), . . . , sym(Dym) with

ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym)) being a tautology. Let ν : V ψ∀ → {0, 1} be an arbitrary
assignment of the universal variables. Then we have

ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym))) = 1.

If sy1(ν(Dy1)) = 0 holds, then ν is a satisfying assignment of ϕ[0/y1]
(
x1, . . . , xn, sy2(Dy2), . . . ,

sym(Dym)
)

and therefore by assumption also of ϕ[1/y1](x1, . . . , xn,
sy2(Dy2), . . . , sym(Dym)). If sy1(ν(D1)) = 1 holds, then ν is a satisfying assignment of
ϕ[1/y1](x1, . . . , xn, sy2(Dy2), . . . , sym(Dym)).

Hence every assignment ν satisfies ϕ[1/y1](x1, . . . , xn, sy2(Dy2), . . . , sym(Dym)), and sy2(Dy2),
. . . , sym(Dym) are Skolem functions of Q \ {y1} : ϕ[1/y1].

The proof for existential negative monotonic variables is similar. �
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The truth value of backbone and monotonic variables v can be fixed and propagated
through ϕ using Boolean constraint propagation.

Checks whether a variable is a backbone or monotonic can be done using a SAT solver.
As already mentioned, in the SAT and QBF context typically efficient (sound but not
complete) syntactic criteria are applied to detect backbones and monotonic variables.

Another cheap criterion to identify backbones uses the binary implication graph of a
formula (which is later also used to identify equivalent literals):

Definition 9 Let ϕ2 =
{
C ∈ ϕ

∣∣ |C| = 2
}

be the set of binary clauses. The binary
implication graph of ψ is the directed graph BIP(ψ) = (L,E) with the set L = {v,¬v | v ∈ V }
of literals as its set of nodes and E =

{
(¬`, k), (¬k, `)

∣∣ {`, k} ∈ ϕ2
}

the set of edges.

Paths in the binary implication graph have useful properties:

Lemma 3 Let BIP(ψ) = (L,E) be the binary implication graph of ψ = Q : ϕ and `1, `2 ∈ L
two literals. If there is a path from `1 to `2 in BIP(ψ), then ϕ implies the clause {¬`1, `2}.

Proof. Let `1 = k1 → k2 → · · · → kp = `2 be a path in BIP(ψ) from `1 to `2. This means
that ϕ contains the clauses Ci := {¬ki, ki+1} for i = 1, . . . , p − 1. We set r1 = {¬k1, k2} and
ri = ri−1 ⊗ki Ci = {¬k1, ki+1} for i = 2, . . . , p− 1. So we can derive rk−1 = {¬k1, kp} = {¬`1, `2}
from C1, . . . , Cp−1 by resolution. As resolvents are implied by the formula, this shows the claim. �

This directly implies the following lemma:

Lemma 4 A literal ` is a backbone if there is a path in BIP(ψ) from ¬` to `.

Proof. Assume that there is a path in BIP(ψ) from ¬` to `. Then we can derive the clause
{¬¬`, `} = {`} by resolution according to Lemma 3. Therefore Q : ϕ is equivalent to Q : ϕ ∧ {`}. By
Definition 7 we have that ` is unit in ϕ ∧ {`}. Hence ` is a backbone in ϕ ∧ {`} and also in ϕ. �

Unit and pure literals according to Definition 7 and backbones according to Lemma 4
can be determined efficiently by traversing the matrix or, respectively, the binary implication
graph. Since solving a DQBF is much harder than solving a SAT (or even QBF) problem
and the gain by eliminating one variable is larger, it often pays off to additionally use
semantic checks (cf. Definition 8) for backbones and monotonic variables, which are based
on solving a sequence of (incremental) SAT problems. For backbones in the QBF context
this observation has already been made in [58].

4.2.2 Equivalent Variables

Another well-known variable elimination technique is the detection of equivalences, i. e.,
determining whether a literal ` is logically equivalent to another literal k. In this case,
one of the variables can be eliminated by replacing all occurrences with the other one. In
the (D)QBF case one has to take into account the quantifiers and the dependencies of the
affected variables.

Definition 10 (Equivalent literals) The literals ` and k are equivalent w. r. t. a propo-
sitional formula ϕ iff ϕ is equivalent to ϕ ∧ (` ≡ k).

14
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Theorem 4 Let ` and k be equivalent literals. We assume w. l. o. g. that sgn(`) = 1.

• If var(`), var(k) ∈ V ψ
∀ , then ψ is unsatisfiable.

Otherwise, we assume w. l. o. g. that var(`) ∈ V ψ
∃ .

• If var(k) ∈ V ψ
∀ and var(k) 6∈ Dψ

var(`), then ψ is unsatisfiable.

• If var(k) ∈ V ψ
∀ and var(k) ∈ Dψ

var(`), then ψ is equisatisfiable with Q\
{

var(`)
}

: ϕ[k/`].

• If var(`), var(k) ∈ V ψ
∃ , then ψ is equisatisfiable with

ψ′ :=
(
Q \ {var(k), var(`)}

)
∪
{
∃ var(k)(Dψ

var(k) ∩D
ψ
var(`))

}
: ϕ[k/`] .

Note that in the last case, the intersection of var(`) and var(k)’s dependencies has to be
taken. When ` and k are equivalent, the same Skolem function (modulo negation) must be
used for both variables. Since the Skolem function for var(`) must only depend on var(`)’s
dependencies and the Skolem function for var(k) only on var(k)’s dependencies, their joint
Skolem function may depend only on the dependencies var(`) and var(k) have in common.

Theorem 4 can be proved as follows:

Proof. Assume that ` and k are equivalent, i. e., ϕ is equivalent to ϕ ∧ (¬` ∨ k) ∧ (` ∨ ¬k), which is
the same as ϕ ∧ (` ≡ k).

• We first consider the case where var(`), var(k) ∈ V ψ∀ .
Since (` ≡ k) does not contain an existential variable and universal quantifiers distribute over
∧, ψ is equivalent to (

Q : ϕ
)
∧
(
∀ var(`)∀ var(k) : (` ≡ k)

)
.

Obviously, (` ≡ k) is not a tautology, and therefore ψ is unsatisfiable.

• Next, let var(`) ∈ V ψ∃ , var(k) ∈ V ψ∀ , and var(k) 6∈ Dψ
var(`).

Assume ψ were satisfiable. Then there were Skolem functions that turn ϕ ∧ (` ≡ k) into a
tautology. The only Skolem function for var(`) which is able to turn (` ≡ k) into a tautology is
svar(`) = k (note that we assume sgn(`) = 1). However, this Skolem function is not admissible

as var(k) 6∈ Dψ
var(`). Therefore ψ is unsatisfiable.

• Now consider the case that var(`) ∈ V ψ∃ , var(k) ∈ V ψ∀ , and var(k) ∈ Dψ
var(`).

With a similar argumentation as in the previous case, we can derive that if ψ is satisfiable,
the only Skolem function for var(`) is svar(`) = k, which is admissible. Therefore, replacing `
by k again yields a satisfiable formula. On the other hand, if ψ is unsatisfiable, replacing the
existential variables by any admissible function does not turn ϕ into a tautology. Therefore
replacing ` by k yields an unsatisfiable formula again.

• Finally, we consider var(`), var(k) ∈ V ψ∃ .
First assume that ψ is unsatisfiable, i. e., there is no set of Skolem functions for the existential
variables which turns the matrix into a tautology. In particular, this also holds for all sets
of Skolem functions in which svar(`) and svar(k) are identical (modulo negation). Therefore
replacing ` by k and restricting the dependency set accordingly yields an unsatisfiable formula
again.

Now assume that ψ is satisfiable. To simplify the notations assume w. l. o. g. that not only
sgn(`) = 1, but also sgn(k) = 1. (The proof for sgn(k) = 0 is analogous.) Because the Skolem
functions for var(`) and var(k) have to turn (` ≡ k) into a tautology, they have to be equal
because of (` ≡ k). Since the Skolem function must be admissible for var(`), it must not

depend on Dψ
var(k) \D

ψ
var(`). Similarly, because it has to be admissible for var(k), it must not
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depend on Dψ
var(`) \D

ψ
var(k). Therefore it may only depend on Dψ

var(`) ∩D
ψ
var(k). So we may

replace ` by k if we restrict var(k)’s dependency set to Dψ
var(`) ∩D

ψ
var(k).

�

To detect equivalent literals, we exploit the following lemma:

Lemma 5 Two literals `, k are equivalent if there is a path in BIP(ψ) from ` to k and vice
versa.

Proof. The path from ` to k allows us, according to Lemma 3, to derive the clause {¬`, k}, the path
from k to ` the corresponding clause {¬k, `}. Both clauses may be added to ϕ as they are resolvents.
This implies according to Definition 10 that ` and k are equivalent. �

We decompose BIP(ψ) into strongly connected components (SCCs) using Tarjan’s
SCC algorithm [73]. SCCs have the property that there is a path between each pair of
nodes in an SCC. Therefore all literals within one SCC are equivalent. They are replaced
by one representative by applying Theorem 4. This procedure was described, e. g., in
[8, 23, 26, 33, 50] for SAT preprocessing and also for QBF preprocessing.

Another easy way to detect equivalent variables is based on gate definitions. If the matrix
contains clauses encoding the two gate definitions y1 ≡ f(`1, . . . , `k) and y2 ≡ f(`1, . . . , `k),
y1 is apparently equivalent to y2 and Theorem 4 can be applied to remove one of the two
variables.

Of course, even SAT checks based on Definition 10 may be beneficial in the (D)QBF
context for detecting equivalent literals.

4.2.3 Eliminating Defined Variables

Gate definitions y ≡ f(`1, . . . , `k) can be used for variable elimination as well. If the solver
core does not rely on a matrix in CNF, the defined variable can be removed by replacing
it by its definition as described in Section 4.1. If the solver core only works on CNFs, the
same thing can be done (including removal of the defining clauses), but afterwards the
matrix has to be transformed into CNF again. Substitution and transformation into CNF
can be simulated by a series of resolutions [17]; the exploitation of gate definitions usually
yields fewer resolvents than a “standard” elimination of y by resolution, see Section 4.2.4.
Nevertheless it can produce very large formulas in some cases, and hence it is only performed,
if the formula does not grow above a user-given bound, for details see Section 5.

If the elimination of gate definitions fails due to size limits, gate rewriting can be
used instead. Gate rewriting has been introduced (without proof) for QBF in [29]. The
generalization to DQBF is straightforward. It adds a new existential variable y′ with the same
dependency set as y. For the implication direction f(`1, . . . , `k)⇒ y of the Tseitin encoding
of the gate, y is replaced by y′. The negative occurrences of y in the part of the matrix
without the defining clauses are replaced by ¬y′. (The transformation can be interpreted as
replacing a Tseitin transformation by a double Plaisted-Greenbaum encoding [59].) Gate
rewriting is based on the following theorem:

Theorem 5 (Gate Rewriting) Let ψ = Q : ϕ be a DQBF,

ϕ = ϕy⇒f ∪̇ ϕf⇒y ∪̇ ϕy ∪̇ ϕ¬y ∪̇ ϕ∅,
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where ϕy⇒f are the clauses representing the relationship y ⇒ f(`1, . . . , `k), ϕf⇒y the clauses
representing the relationship f(`1, . . . , `k) ⇒ y, ϕy = {C ∈ ϕ \ (ϕy⇒f ∪ ϕf⇒y) | y ∈ C},
ϕ¬y = {C ∈ ϕ \ (ϕy⇒f ∪ ϕf⇒y) | ¬y ∈ C}, and ϕ∅ = ϕ \ (ϕy⇒f ∪ ϕf⇒y ∪ ϕy ∪ ϕ¬y). Let

y ∈ V ψ
∃ and depψ(`i) ⊆ depψ(y) for i = 1, . . . , k.

Then ψ is equisatisfiable with

ψ′ = Q ∪
{
∃y′(Dψ

y )
}

: ϕy⇒f ∪ ϕf⇒y[y′/y] ∪ ϕy ∪ ϕ¬y[y′/y] ∪ ϕ∅.

Proof. In a first step we prove that ψ′ is equisatisfiable with

ψ′′ = Q ∪
{
∃y′(Dψ

y )
}

: ϕy⇒f ∪ ϕf⇒y ∪ ϕy⇒f [y′/y] ∪ ϕf⇒y[y′/y] ∪ ϕy ∪ ϕ¬y[y′/y] ∪ ϕ∅.

Since ψ′′ results from ψ′ by adding clauses, the satisfiability of ψ′′ implies the satisfiability of ψ′. Now
let us assume that ψ′ is satisfiable, i. e., there are Skolem functions syi for all existential variables
yi (i = 1, . . . ,m) such that replacing yi by syi turns the matrix ϕ′ of ψ′ into a tautology. From the
Skolem functions syi of ψ′ we derive Skolem functions s′yi of ψ′′ by the following definitions:

s′z = sz, if z 6= y and z 6= y′. For an arbitrary assignment ν : V ψ∀ → {0, 1} of the universal
variables we define4.

s′y(ν|depψ′ (y)) =

{
1, if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) = 1,

sy(ν|depψ(y)), if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) = 0,

and

s′y′(ν|depψ′ (y)) =

{
0, if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) = 0,

sy′(ν|depψ′ (y)), if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) = 1.

Note that s′y and s′y′ are well-defined and admissible for ψ′′, since depψ′(`i) ⊆ depψ′(y) = depψ′(y
′)

for i = 1, . . . , k.
Now we have to prove that the functions defined in that way are Skolem functions for ψ′′.

Consider an arbitrary assignment ν : V ψ∀ → {0, 1} of the universal variables.

• First consider the clauses from ϕy⇒f . They are in included both in ϕ′, the matrix of ψ′, and in
ϕ′′, the matrix of ψ′′. Since ϕ′ with the existential variables replaced by Skolem functions of ψ′

is a tautology, we have ν(ϕy⇒f [syi/yi for i = 1, . . . ,m]) = 1. Since ϕy⇒f is equivalent to y ⇒
f(`1, . . . , `k) and s′y(ν|depψ′ (y)) 6= sy(ν|depψ′ (y)) only if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i =

1, . . . , k]) = ν(f(`1, . . . , `k)[s′var(`i)/ var(`i) for all i = 1, . . . , k]) = 1, we can conclude that

ν(ϕy⇒f [s′yi/yi for i = 1, . . . ,m]) = 1 as well.

• ϕf⇒y is included in ϕ′′, but not in ϕ′. ϕf⇒y is equivalent to f(`1, . . . , `k)⇒ y. By construction
of s′y we have s′y(ν|depψ′ (y)) = 1, if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) =

ν(f(`1, . . . , `k)[s′var(`i)/ var(`i) for all i = 1, . . . , k]) = 1, and thus

ν
(

(f(`1, . . . , `k)⇒ y) [s′var(`i)/ var(`i) for all i = 1, . . . , k][s′y/y]
)

=

ν
(
ϕf⇒y[s′var(`i)/ var(`i) for all i = 1, . . . , k][s′y/y]

)
= 1.

• ϕy⇒f [y′/y] is included in ϕ′′, but not in ϕ′. The proof for ϕy⇒f [y′/y] is similar to the
previous case: ϕy⇒f [y′/y] is equivalent to y′ ⇒ f(`1, . . . , `k). By construction of s′y′ we have

4.To simplify notations in this proof we define for universal variables var(`i) ∈ V ψ∀ : svar(`i) := var(`i).
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s′y′(ν|depψ′ (y)) = 0, if

ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) =

ν(f(`1, . . . , `k)[s′var(`i)/ var(`i) for all i = 1, . . . , k]) = 0,

and thus

ν
(

(y′ ⇒ f(`1, . . . , `k)) [s′var(`i)/ var(`i) for all i = 1, . . . , k][s′y′/y
′]
)

=

ν
(
ϕy⇒f [y′/y][s′var(`i)/ var(`i) for all i = 1, . . . , k][s′y/y

′]
)

= 1.

• The clauses in ϕf⇒y[y′/y] are included both in ϕ′ and in ϕ′′. Using our precondition, we have
ν(ϕf⇒y[y′/y][syi/yi for i = 1, . . . ,m]) = 1. Since ϕf⇒y[y′/y] is equivalent to f(`1, . . . , `k)⇒ y′

and s′y′(ν|depψ′ (y)) 6= sy′(ν|depψ′ (y)) only if ν(f(`1, . . . , `k)[svar(`i)/ var(`i) for all i = 1, . . . , k]) =

ν(f(`1, . . . , `k)[s′var(`i)/ var(`i) for all i = 1, . . . , k]) = 0, we can conclude ν(ϕf⇒y[y′/y][s′yi/yi
for i = 1, . . . ,m]) = 1 as well.

• The clauses in ϕy contain only positive occurrences of y and no occurrences of y′. Since s′y ≥ sy
and s′z = sz for z ∈ V ψ

′

∃ \{y, y′}, ν(ϕy[syi/yi for i = 1, . . . ,m]) = 1 implies ν(ϕy[s′yi/yi for i =
1, . . . ,m]) = 1.

• The clauses in ϕ¬y[y′/y] contain only negative occurrences of y′ and no occurrences of y.

Since s′y′ ≤ sy′ and s′z = sz for z ∈ V ψ
′

∃ \ {y, y′}, ν(ϕy[syi/yi for i = 1, . . . ,m]) = 1 implies
ν(ϕy[s′yi/yi for i = 1, . . . ,m]) = 1.

• The clauses in ϕ∅ do not have any occurrences of y or y′. Since s′z = sz for z ∈ V ψ
′

∃ \ {y, y′},
we have ν(ϕy[s′yi/yi for i = 1, . . . ,m]) = ν(ϕy[syi/yi for i = 1, . . . ,m]).

Now it is easy to see that ψ′′ is equivalent to

ψ′′′ = Q ∪
{
∃y′(Dψ

y )
}

: (y ≡ f(`1, . . . , `k)) ∧ (y′ ≡ f(`1, . . . , `k)) ∧ ϕy ∧ ϕ¬y[y′/y] ∧ ϕ∅.

(y ≡ f(`1, . . . , `k)) ∧ (y′ ≡ f(`1, . . . , `k)) implies y ≡ y′ and by Theorem 4 we can conclude that
replacing y′ by y in ψ′′′ results in an equisatisfiable DQBF (remember that depψ′(y) = depψ′(y

′)).
The resulting DQBF is equivalent to ψ, which finishes the proof. �

In fact, introducing a copy y′ of y does the contrary to eliminating variables, but the
hope is that the transformation pays off by triggering simplifications later on during the
work of the preprocessor and the solver core. The purpose of the transformation is to favor
the detection of pure literals when the clauses including y or ¬y (the clauses including y′

or ¬y′) evaluate to true and to increase the chance that clauses are blocked [6] during the
solver run.

4.2.4 Resolution and Universal Expansion

Finally, there are techniques for the elimination of existential and universal variables by
applying resolution and universal expansion, respectively. For both, the QBF version has
been described in [5]. Generally speaking, both methods eliminate a variable at the cost of
expanding the formula.

For QBF, resolution together with universal reduction [43] is able to derive the empty
clause iff the formula is unsatisfiable. This does not hold for DQBF [1]. While adding
resolvents is sound without any further restrictions for DQBF as well, eliminating existential
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variables by resolution [17] has to be handled with care. Here we give a set of sufficient
conditions which allow variable elimination by resolution for DQBF. In particular when
the formula is created by Tseitin transformation [75], variable elimination by resolution is
applicable to a large subset of the formula’s existential variables.

Theorem 6 (Variable elimination by resolution) Let y ∈ V ψ
∃ be an existential vari-

able of ψ. We partition ϕ into the sets ϕy = {C ∈ ϕ | y ∈ C}, ϕ¬y = {C ∈ ϕ | ¬y ∈ C}, and
ϕ∅ = ϕ \ (ϕy ∪ ϕ¬y).
If one of the following conditions is satisfied:

1. for all C ∈ ϕy and all k ∈ C we have depψ(k) ⊆ depψ(y),
2. for all C ′ ∈ ϕ¬y and all k ∈ C ′ we have depψ(k) ⊆ depψ(y), or
3. y is the defined variable of a functional definition, i. e., there are clauses encoding the

relationship y ≡ f(V ′) for some function f and arguments V ′ ⊆ V \ {y}, depψ(v) ⊆
depψ(y) for all v ∈ V ′ (cf. Section 4.1),

then ψ is equisatisfiable with

ψ′ := Q \ {y} : ϕ∅ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′ .

Proof. Since the variable y does not occur in ϕ∅ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y C ⊗y C ′, it is clear that

Q \ {y} : ϕ∅ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′

and
Q : ϕ∅ ∧

∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′︸ ︷︷ ︸
ϕ′

(2)

are equisatisfiable. So we have to prove the equisatisfiability of Q : ϕ and Q : ϕ′ = Q : ϕ∅ ∧∧
C∈ϕy

∧
C′∈ϕ¬y C ⊗y C ′.

First let ϕ be satisfiable. Since adding resolvents of ϕ to ϕ does not change ϕ, we have

Q : ϕ ≡ Q : ϕ ∧
∧
C∈ϕy

∧
C′∈ϕ¬y

C ⊗y C ′.

Since deleting clauses from a satisfiable formula yields a satisfiable formula again, we can conclude
that (2) is satisfiable.

Now let (2) be satisfiable. We show that this implies the satisfiability of Q : ϕ if one of the conditions
in the theorem is satisfied.

1. First assume that depψ(k) ⊆ depψ(y) holds for all C ∈ ϕy and all k ∈ C. If (2) is satisfiable,
there are Skolem functions s′yi for all existential variables yi (i = 1, . . . ,m) such that replacing
yi by s′yi turns ϕ′ into a tautology. We define the following set of Skolem functions for ϕ:

sz =

{
s′z, if z 6= y,

¬ϕy[0/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y], if z = y.
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That means: for all existential variables except y we use the Skolem functions from (2). The
Skolem function for y is chosen such that it assigns 1 to y iff there is a clause in ϕy which is
not already satisfied by (the Skolem functions of) the other literals. sy defined in the given
way depends on a subset of variables from depψ(y), since we have depψ(k) ⊆ depψ(y) for all
C ∈ ϕy and all k ∈ C.

Clearly, sy1 , . . . , sym satisfy the clauses in ϕ∅. We distinguish two cases for proving that
sy1 , . . . , sym satisfy all clauses in ϕy and ϕ¬y as well (for all variable assignments to the
universal variables). Consider an arbitrary assignment ν of values to the universal variables.

• Case 1:
Each clause C ∈ ϕy contains a literal k 6= y such that svar(k)(ν|depψ(k)) = sgn(k), if k ∈ V ψ∃ ,

and ν(var(k)) = sgn(k), if k ∈ V ψ∀ , i. e., the formula ϕy evaluates to 1, if we replace
existential variables by Skolem functions and evaluate w. r. t. ν. This is independent
from the value for y. According to the definition of sy = ¬ϕy[0/y][s′yi/yi for all i =
1, . . . ,m with yi 6= y] we then have sy(ν|depψ(y)) = 0. Thus, all clauses in ϕ¬y evaluate
to 1, if we replace existential variables by Skolem functions and evaluate w. r. t. ν, since
all those clauses contain ¬y.

• Case 2:
There is a clause C ∈ ϕy such that for all literals k ∈ C with k 6= y it holds
svar(k)(ν|depψ(k)) = ¬ sgn(k), if k ∈ V ψ∃ , and ν(var(k)) = ¬ sgn(k), if k ∈ V ψ∀ , i. e., the
formula ϕy would evaluate to 0, if we would replace y by 0. According to the definition
of sy = ¬ϕy[0/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y] we then have sy(ν|depψ(y)) = 1
and thus all clauses in ϕy evaluate to 1 for ν after replacing existential variables by
Skolem functions. We have to show that in this case all clauses in ϕ¬y evaluate to 1
as well. Assume the opposite, i. e., there is a clause C ′ ∈ ϕ¬y that does not evaluate
to 1. Then consider the resolvent C ⊗y C ′. As for all literals k in C \ {y} it holds

svar(k)(ν|depψ(k)) = ¬ sgn(k), if k ∈ V ψ∃ , ν(var(k)) = ¬ sgn(k), if k ∈ V ψ∀ , and for all

literals ` in C ′ \{¬y} it holds svar(k)(ν|depψ(`)) = ¬ sgn(`), if ` ∈ V ψ∃ , ν(var(`)) = ¬ sgn(`),

if ` ∈ V ψ∀ , the resolvent (C ⊗y C ′)[syi/yi for all i = 1, . . . ,m] as well evaluates to 0 for
assignment ν. This contradicts the assumption that (2) is satisfiable with the Skolem
functions s′yi (C ⊗y C ′ does not contain y and the Skolem functions syi are equal to s′yi
for all yi 6= y). Thus ϕ¬y[syi/yi for all i = 1, . . . ,m] evaluates to 1 for assignment ν.

2. The second condition is dual to the first one. As Skolem functions for ϕ we choose syi = s′yi
for all i = 1, . . . ,m with yi 6= y and

sy = ¬ϕ¬y[1/y][s′yi/yi for all i = 1, . . . ,m with yi 6= y].

3. The third condition requires that there are clauses which define the relationship y ≡ f(V ′) and
depψ(v) ⊆ depψ(y) for all v ∈ V ′. This implies that given Skolem functions for the remaining
existential variables in (2), there is only one Skolem function for y, which is given by the gate

definition. Therefore we can increase depψ(y) to V ψ∀ without changing the truth value of the

DQBF, i. e., we set the dependency set depψ(y) := V ψ∀ . Then both conditions 1. and 2. are
satisfied which completes the proof. �

Theorem 6 does not provide a decision algorithm for arbitrary DQBFs, since it is possible
that the conditions do not hold for any existential variable. Moreover, eliminating all
existential variables fulfilling the conditions of Theorem 6 is in general not feasible because
the number of clauses can grow considerably during elimination. More details on addressing
this problem will be found in Section 5.
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The following remark shows how the number of variables that can be eliminated by
resolution can be increased using dependency schemes (see Section 4.5.2):

Remark 1 Dependency schemes (see Section 4.5.2) allow to modify the dependencies of an
existential variable while preserving satisfiability by identifying so-called pseudo-dependencies.
Pseudo-dependencies are dependencies between universal and existential variables which can
be added to or removed from the formula without changing its satisfiability. They can be used
to increase the number of existential variables that satisfy the prerequisites of Theorem 6:
Before checking whether a variable y satisfies condition 1 or 2, the dependency sets of
the variables that occur together with y or ¬y in a clause are reduced by deleting all their
identified pseudo-dependencies, and y’s dependency set is increased by adding all missing
pseudo-dependencies that were identified by the dependency scheme.

Theorem 6 is formulated for the general case of DQBFs. It is interesting to note that its
specialization to QBF even generalizes the QBF version known from the literature [5]. There
variable elimination by resolution is only allowed if both conditions 1 and 2 are fulfilled, i. e.,
if there is no clause containing y together with variables to the right of y in the quantifier
prefix. In fact, we could prove that it is sufficient to require that either condition 1 or
condition 2 holds.

Other attempts from the literature to weaken the needed conditions failed however:

Remark 2 In Section 3.3 of paper [29] on the QBF preprocessor SqueezeBF, a generalization
of [5] has been given for QBF: The authors claim that an existential variable y may be
eliminated by resolution, if none of the created resolvents contains both v and ¬v for a
variable v that occurs to the right of y in the QBF quantifier prefix (i. e., which has a strictly
larger dependency set than y). The claim is unsound for both QBF and DQBF. Here we
give a counterexample that refutes this claim.

At first, we rephrase the claim as follows:

Claim 1 ([29]) Let ψ = Q : ϕ be a QBF. Given an existential variable y and two clauses
C1 = {y∨`1∨· · ·∨`n} and C2 = {¬y∨`′1∨· · ·∨`′m} such that ¬`i 6= `′j when depψ(y) ( depψ(`i)
or depψ(y) ( depψ(`′j), let the clause C = {`1∨· · ·∨`m∨`′1∨· · ·∨`′m} be called the resolvent
of C1 and C2 (on the variable y), denoted by C1⊗yC2. If ϕy (resp. ϕ¬y) is the set of clauses
in which y (resp. ¬y) occurs, let Q-resolution between ϕy and ϕ¬y be defined as the set of
clauses

ϕy ⊗y ϕ¬y := {Cy ⊗y C¬y |Cy ∈ ϕy ∧ C¬y ∈ ϕ¬y}.
Assuming we can perform the resolution of each clause in ϕy with each clause in ϕ¬y, we can
replace the clauses in ϕy ∪ ϕ¬y with the clauses in ϕy ⊗y ϕ¬y and delete y and its quantifier
from the prefix, resulting in an equisatisfiable problem.

Lemma 6 Claim 1 is unsound.

Proof. A counterexample for Claim 1 is given in Table 1.5. The centered clauses are common to
both formulas. The red clauses (¬y3, y5, y7) and (y2, y3,¬y4, y5, y6) in the left column are the only

5.The counterexample was the result of our effort to integrate Claim 1 into HQSpre. This extension led to
incorrect results for some benchmarks. In order to find the implementation bug, we used HQSpre (without
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Table 1. Counterexample for out-of-order resolution (Claim 1).

Unsatisfiable Satisfiable

∃y1∃y2∃y3∃y4 ∀x1∀x2 ∃y5∃y6∃y7 : ∃y1∃y2∃y4 ∀x1∀x2 ∃y5∃y6∃y7 :
C1 (x1,¬x2,¬y7)
C2 (¬x1, y5,¬y6)
C3 (¬y2, x1,¬y5)
C4 (¬x2,¬y5)
C5 (y5, y6, y7)
C6 (y1, x2, y5)
C7 (y1, y4,¬x1, y5)
C8 (¬y1,¬x1,¬y5)
C9 (¬x1, x2, y5,¬y7)
C10 (¬y3, y5, y7)

(y2,¬y4, y5, y6, y7) C ′11C11 (y2, y3,¬y4, y5, y6)

ones that contain y3 or ¬y3. Resolving them w. r. t. y3 yields the red clause (y2,¬y4, y5, y6, y7) in
the right column, which is not a tautology, i. e., eliminating y3 by resolution is allowed according to
Claim 1. That means, the formula in the right column is created from the left one by eliminating y3,
and according to Claim 1 both formulas are equisatisfiable. However, the formula in the left column
is unsatisfiable, the one in the right column is satisfiable.

We can see that the formula in the right column is satisfiable by using the following Skolem
functions:

Variable y1 y2 y4 y5 y6 y7
Skolem 0 0 1 ¬x2 ¬x1 x1

It is easy to check that replacing the existential variables with their Skolem functions turns each
clause into a tautology.

The formula in the left column is unsatisfiable. A Q-resolution proof that derives the empty
clause from this QBF is shown in Figure 1. For the derived clauses, universal reduction [43] has been
applied in each step after resolution. �

Another technique which has been proposed to be used in combination with resolution is
fork extension [60]. Fork extension splits clauses consisting of two parts C1 and C2 with
incomparable dependency sets, i. e., depψ(C1) 6⊆ depψ(C2) and depψ(C2) 6⊆ depψ(C1), based
on the following lemma [60]:

Lemma 7 (Splitting, [60]) Let ψ = Q : φ ∧ (C1 ∪ C2) be a DQBF containing a clause
C1 ∪ C2 and let y be a new variable not occurring in ψ. Then ψ and Q ∪

{
∃y(depψ(C1) ∩

depψ(C2))
}

: φ ∧ (C1 ∪ {y}) ∧ (C2 ∪ {¬y}) are equisatisfiable.

Remark 3 Theorem 1 in [60] claims that resolution, the generalization of universal reduction
[43] to DQBF (see also Section 4.4.1), and fork extension form a sound and complete proof

the extension) to reduce the counterexample until we could check it by hand. It turned out, however, that
the error was not on the implementation side.
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∅

(y1)

(¬y1)

(y1,¬y4) (y1, y4)

C8 : (¬y1,¬x1,¬y5) (¬x1, x2, y5)

(¬x1, x2, y5, y6)C2 : (¬x1, y5,¬y6)

C5 : (y5, y6, y7) C9 : (¬x1, x2, y5,¬y7)

(y2,¬y4) (y1,¬y2) C4 : (¬x2,¬y5) C7 : (y1, y4,¬x1, y5)

(¬y3)

(¬y3, x1,¬x2, y5)

C1 : (x1,¬x2,¬y7)C10 : (¬y3, y5, y7)

C4 : (¬x2,¬y5)

C6 : (y1, x2, y5) C3 : (¬y2, x1,¬y5)(y2, y3,¬y4)

(y2, y3,¬y4,¬x1, y5)

C11 : (y2, y3,¬y4, y5, y6)C2 : (¬x1, y5,¬y6)

Figure 1. Q-resolution proof of unsatisfiability for the formula in Table 1 (left). The original
clauses are marked in red.

calculus for DQBF. Unfortunately, the completeness part is incorrect. Nevertheless, fork
extension is useful for deciding certain non-trivial subclasses of DQBF [66].

Universal expansion [10, 9, 1, 27] is the corresponding method for eliminating universal
variables. Universal expansion of a universal variable x allows to remove x by introducing a
copy y′ for every existential variable y depending on x, which has to depend on the same
variables as y. Therefore every clause in which y occurs has to be copied, too, such that y
is replaced by y′ in the copy. Every occurrence of x in the original part of the formula is
now replaced by 1, and every occurrence in the copied part is replaced by 0 (or vice versa)
resulting in an equisatisfiable formula. Universal expansion is the main operation that is
used by the solver HQS [28] to transform the DQBF at hand into an equisatisfiable QBF.
This QBF can be solved by an arbitrary QBF solver.

Theorem 7 (Universal expansion) Let xi ∈ V ψ
∀ , and Eψxi =

{
yj ∈ V ψ

∃
∣∣xi ∈ Dψ

yj

}
.

Then ψ is equisatisfiable with(
Q \ {xi}

)
∪
{
∃y′j(Dψ

yj \ {xi})
∣∣ yj ∈ Eψxi} : ϕ[1/xi] ∧ ϕ[0/xi][y

′
j/yj for all yj ∈ Eψxi ] .

Proof. We write �sat ψ here to indicate that ψ is satisfiable. To simplify notation, w. l. o. g. assume
i = 1, i. e., we eliminate x1. Then we have:

�sat ψ ⇔ ∃sy1(D1), . . . , sym(Dm) with �sat ∀x1 . . . ∀xn : ϕ[syj (Dj)/yj ∀yj ∈ V ψ∃ ]

⇔ ∃sy1(D1), . . . , sym(Dm) with

�sat ∀x2 . . . ∀xn : ϕ[syj (Dj)/yj ∀yj ∈ V ψ∃ ][0/x1]

∧ ϕ[syj (Dj)/yj ∀yj ∈ V ψ∃ ][1/x1]

⇔ ∃sy1(D1), . . . , sym(Dm) with

�sat ∀x2 . . . ∀xn :

ϕ[0/x1][syk(Dk)/yk ∀yk ∈ V ψ∃ \ Ex1 ][syj (Dj)|x1=0/yj ∀yj ∈ Ex1 ]

∧ ϕ[1/x1][syk(Dk)/yk ∀yk ∈ V ψ∃ \ Ex1
][syj (Dj)|x1=1/yj ∀yj ∈ Ex1

]
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⇔ ∃sy1(D1), . . . , sym(Dm) with

�sat ∀x2 . . . ∀xn :
(
ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1

]
)

[syk(Dk)/yk ∀yk ∈ V ψ∃ \ Ex1 ]

[syj (Dj)|x1=0/yj ∀yj ∈ Ex1 ][syj (Dj)|x1=1/y
′
j ∀yj ∈ Ex1 ]

⇔ �sat ∀x2 . . . ∀xn ∃yk(Dk)︸ ︷︷ ︸
for all yk 6∈Ex1

∃yj(Dj \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸
for all yj∈Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1
]

⇔ �sat ∀x2 . . . ∀xn
∃y1(D1 \ {x1}) . . . ∃ym(Dm \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸

for all yj ∈ Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1 ].

�

In order to avoid unnecessary variable copies, we try to reduce the dependency sets as much
as possible. Reducing dependency sets without changing the satisfiability of the DQBF can
be achieved using so-called dependency schemes, see Section 4.5.

4.3 Clause Elimination Routines

Under clause elimination routines [34] we understand techniques which eliminate a clause
C ∈ ϕ such that deleting C yields an equisatisfiable formula.

4.3.1 Tautology Elimination

The simplest form of clause elimination is tautology elimination (TE): A clause C ∈ ϕ is a
tautology iff {v,¬v} ⊆ C for some variable v. Tautological clauses can be eliminated from
ϕ. This condition is independent from the quantifier and hence can be applied for QBF and
DQBF without any restrictions.

4.3.2 Subsumption Elimination

Another well-known technique is subsumption elimination (SE) [5]. A clause C ∈ ϕ is
subsumed if there exists another clause C ′ ∈ ϕ such that the set of occurring literals in C ′ is
a subset of those in C, i. e., if ∃C ′ ∈ ϕ : C ′ ⊆ C. In this case, C ∧ C ′ is logically equivalent
to C ′, and C can be removed from ϕ.

Whenever we add a new clause C to the formula or strengthen a clause C, we perform a
restricted version of subsumption checking called backward subsumption, which is rather
inexpensive, see Section 5. We only check whether there is a clause C ′ already in the formula
with C ⊆ C ′. If yes, then we replace C ′ by C.

Subsumption can be applied without any restrictions in the same manner for QBF as for
DQBF as it yields a logically equivalent matrix.
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4.3.3 Blocked Clause Elimination

The concept of blocked clauses has been introduced by Kullmann [45] and used by Järvisalo
et al. [41] for simplifying SAT instances. Later is has been generalized to QBF by Biere
et al. in [6]. Blocked clauses can be removed from a formula without changing its truth
value. Before checking whether a clause is blocked, it can be extended by so-called hidden
and covered literals [31, 32, 6]. This does not change the truth value of the formula, but
increases the chance that the clause is blocked.

In this section, we first generalize the notion of blocked clauses to DQBF such that
blocked clauses satisfy the same properties as in SAT and QBF. In the following section, we
investigate how to generalize hidden and covered literals to DQBF.

For a QBF Q : ϕ ∧ C, a clause C containing an existential literal ` ∈ C can be omitted
(resulting in an equisatisfiable formula), if “` is blocking for C”, which means that for all
C ′ ∈ ϕ with ¬` ∈ C ′ there is a variable k such that {k,¬k} ⊆ C ⊗` C ′ and k precedes
` in the quantifier prefix (which means in DQBF notions: depψ(k) ⊆ depψ(`)). In the
QBF context the intuitive background of blocked clause elimination is simple: Consider a
solving approach to QBF which always removes the innermost existential quantifiers (which
depend on all universal ones) by resolution6. and the innermost universal quantifiers (upon
which no existential variable depends) by universal reduction until all quantifiers have been
removed [3]. If ` is blocking for C, all resolvents resulting from C contain {k,¬k}, i. e., are
tautological, and their addition makes no contribution. The condition “k precedes ` in the
quantifier prefix” ensures that var(k) has not been removed before ` in the process sketched
above, i. e., the reason {k,¬k} for the resolvents being tautological has not been removed.
This implies that we can alternatively remove C from ϕ ∧ C in the very beginning without
changing the result of the solving process.

Fortunately, we can show that the notion of blocked clauses has a natural generalization
to DQBF. However, the proof idea of blocked clause elimination sketched above does
not work anymore, since in DQBF there is no linear order for the quantifiers such that
“removing quantifiers starting with the innermost” does not have a counterpart in DQBF; the
correctness proof has to be re-done for DQBF carefully taking into account that arbitrary
dependencies may be defined in a DQBF. We first give the generalized definition of blocked
clauses:

Definition 11 (Blocked clauses) Let Q : ϕ ∧ C be a DQBF, C a clause, and ` ∈ C.
Literal ` is a blocking literal for C if ` is existential, and for all C ′ ∈ ϕ with ¬` ∈ C ′ there
is a variable k such that {k,¬k} ⊆ C ⊗` C ′ and depψ(k) ⊆ depψ(`). A clause is blocked if
it contains a blocking literal.

Now we can prove results that are analogous to QBF and SAT.

Theorem 8 (Blocked clause elimination, BCE) Let Q : ϕ ∧ C be a DQBF with a
blocked clause C. Then Q : ϕ ∧ C and Q : ϕ are equisatisfiable.

Proof. If Q : ϕ ∧ C is satisfiable, then Q : ϕ is satisfiable as well, because ϕ results from ϕ ∧ C
by removing a conjunctive constraint. Thus, the hard part is to prove that satisfiability of Q : ϕ

6.Adding all possible resolvents with pivot variable v and then removing all clauses containing v or ¬v
corresponds to existential quantification of v.
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implies satisfiability of Q : ϕ ∧ C. This holds, if it is always possible to construct Skolem functions
for Q : ϕ ∧ C from Skolem functions of Q : ϕ. Exactly this is shown in the following Lemma 8. �

Similar to the QBF case, which is described in [35], Lemma 8 is based on the notion of
an “outer formula”, given by the following definition:

Definition 12 (Outer clause, outer formula) Let ψ = Q : ϕ be a DQBF, C ∈ ϕ a
clause, and ` ∈ C a literal of C. The outer clause of C on ` is given by

OC(ψ,C, `) =
{
k ∈ C

∣∣ k 6= ` ∧ depψ(k) ⊆ depψ(`)
}
.

Let ` be a literal in a DQBF ψ. The outer formula of ψ on ` is given by

OF(ψ, `) =
{
OC(ψ,D,¬`)

∣∣D ∈ ϕ ∧ ¬` ∈ D}.
Lemma 8 (Blocked clause elimination) Let ψ = Q : ϕ be a DQBF with ϕ = ϕ′ ∧ C
and let the clause C be blocked w. r. t. the existential literal ` ∈ C. Let ψ′ = Q : ϕ′. If
(s′y)y∈V ψ∃

are Skolem functions for ψ′, then (sy)y∈V ψ∃
are Skolem functions for ψ where

sy =

{
s′y, if y 6= var(`),

ITE
(
OF(ψ, `)[s′z/z for z ∈ V ψ

∃ ], sgn(`), s′y
)
, if y = var(`).

Proof. Remember that ` is existential. Let y∗ = var(`). First we have to show that sy∗ is an
admissible Skolem function, i. e., that it depends only on variables in y∗’s dependency set. By
definition, OF(ψ, `) contains only variables v ∈ V with depψ(v) ⊆ depψ(y∗). These are either
universal variables upon which y∗ depends or existential variables whose dependency set is a subset
of Dy∗ . Therefore the support of OF(ψ, `)[s′z/z for z ∈ V ψ∃ ] is a subset of Dy∗ . Furthermore, sgn(`)
is a constant, and s′y∗ depends on Dy∗ by assumption. Therefore s∗y is admissible.

Now we show that (sy)y∈V ψ∃
is a set of Skolem functions for ψ. Let ν̃ : V ψ∀ → B be an arbitrary

variable assignment of the universal variables. For ψ′ we extend ν̃ to a complete assignment of all
variables in V ψ∀ ∪V

ψ
∃ by setting ν′(x) = ν̃(x) for x ∈ V ψ∀ and ν′(y) = s′y(ν̃|depψ(y)) for y ∈ V ψ∃ . In the

same way we extend ν̃ for ψ to a complete assignment for V ψ∀ ∪ V
ψ
∃ by ν(x) = ν̃(x) for x ∈ V ψ∀ and

ν(y) = sy(ν̃|depψ(y)) for y ∈ V ψ∃ . Since (s′y)y∈V ψ∃
are Skolem functions for ψ′, we know that ν′(ϕ′) = 1

and have to show that ν(ϕ) = 1. We partition the set ϕ into three subsets of clauses:

ϕ` = {D ∈ ϕ | ` ∈ D},
ϕ¬` = {D ∈ ϕ | ¬` ∈ D},
ϕ∅ = ϕ \ (ϕ` ∪ ϕ¬`).

Now we distinguish two cases:

• Case 1: ν
(
OF(ψ, `)

)
= 1:

In this case we have ν(y∗) = sy∗(ν) = sgn(`). All clauses in ϕ∅ ∪ ϕ¬` are satisfied – those in
ϕ∅ because they also appear in ϕ′, they are independent of y∗, and ν′ satisfies all clauses in ϕ′.
The clauses in ϕ¬` are satisfied because ν(OF(ψ, `) = 1 implies ν(OC(ψ,D,¬`)) = 1 for all
D ∈ OF(ψ, `) and this in turn ν(D) = 1 as OC(ψ,D,¬`) ⊆ D.

Setting ν(y∗) = sy∗(ν) = sgn(`) satisfies all remaining clauses in ϕ`, which contain `.
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• Case 2: ν
(
OF(ψ, `)

)
= 0:

Here we have ν(y∗) = sy∗(ν) = s′y∗(ν) = ν′(y∗). By assumption, all clauses D ∈ ϕ \ {C} are

satisfied, as ν(z) = ν′(z) for all z ∈ V ψ∃ and ϕ \ {C} = ϕ′. We have to show that ν(C) = 1.

Since ν
(
OF(ψ, `)

)
= 0, there is some D ∈ ϕ¬l with ν

(
OC(ψ,D,¬`)

)
= 0. Since C is blocked,

we can conclude that OC(ψ,C, `) ∪ OC(ψ,D,¬`) is a tautology. That means there is a literal
k such that k ∈ OC(ψ,C, `) and ¬k ∈ OC(ψ,D,¬`). Since ν

(
OC(ψ,D,¬`)

)
= 0, we have

ν(¬k) = 0 or equivalently ν(k) = 1. Since k ∈ C, ν(C) = 1 holds.

Therefore (sz)z∈V ψ∃
are Skolem functions for ψ. �

Lemma 9 BCE for DQBF has a unique fixed point.

Proof. The proof is similar as for BCE on SAT problems [41]: If ψ := Q : ϕ ∧ C is a DQBF and C
a blocked clause w. r. t. ψ, then any clause C ′ ∈ ϕ which is blocked w. r. t. ψ is also blocked w. r. t.
Q : ϕ. Therefore the result of BCE is independent of the order in which the clauses are removed,
and hence BCE has a unique fixed point. �

That means that the result of elimination does not depend on the order in which the
clauses are considered.

4.3.4 Hidden and Covered Literals

The purpose of the following techniques is to extend clauses by redundant literals. This
increases the chance that the clause is tautological, subsumed, or blocked, and hence can
be deleted. If the clause extension does not result in clause deletion, the additional literals
are removed again. Exploiting hidden literals was proposed in the context of SAT in [31],
covered literals in [32]. For an overview of clause elimination techniques for SAT and QBF,
we refer the reader to [34].

Definition 13 (Hidden literals) Let Q : ϕ ∧ C be a DQBF. A literal ` 6∈ C is a hidden
literal for C if there is a clause {`1, . . . , `n,¬`} ∈ ϕ such that {`1, . . . , `n} ⊆ C.

Theorem 9 (Hidden literal addition, HLA) Let Q : ϕ∧C be a DQBF and ` a hidden
literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {`}

)
are equivalent.

The idea of hidden literal addition is based on self-subsuming resolution [17]. The resolvent
(C ∪ {`}) ⊗` {`1, . . . , `n,¬`} is equal to C and subsumes C ∪ {`}. Thus after adding the
resolvent C, C ∪ {`} can be removed, leading to an equivalent formula. Note that the
argument for hidden literal addition is based on a consideration of the matrix only, thus
in this case the argumentation is exactly the same as for SAT and QBF. More formally,
Theorem 9 is proved as follows:

Proof. Assume that ` is a hidden literal for C according to Definition 13. We set C ′ := C ∪ {`}. `
being a hidden literal for C means that there is a clause D := {`1, . . . , `n,¬`} ∈ ϕ with {`1, . . . , `n} ⊆
C ⊆ C ′. For the resolvent of C ′ and D w. r. t. ` we have C ′ ⊗` D = C. Adding a resolvent to a CNF
yields an equivalent CNF, i. e.,

ϕ ∧ C ′ ≡ ϕ ∧ C ′ ∧ C.
C subsumes C ′ = C ∪ {`}; therefore C ′ can be removed from the formula. Hence, ϕ ∧ C and ϕ ∧ C ′
are logically equivalent. Replacing the matrix of a DQBF with an equivalent formula does not change
the truth value of a DQBF. �
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The situation for hidden literal addition is in contrast to “covered literal addition”
described in the following. For covered literals we need a careful generalization of the QBF
definition together with a non-trivial proof of the generalization to DQBF.

Definition 14 (Covered literals) Let ψ = Q : ϕ∧C be a DQBF and let ` be an existential
literal with ` ∈ C. The set of resolution candidates for C w. r. t. ` is the set

Rψ(C, `) =
{
C ′ ∈ ϕ

∣∣¬` ∈ C ′ ∧ @v ∈ V : ({v,¬v} ⊆ C ⊗` C ′ ∧ depψ(v) ⊆ depψ(`))
}
.

A literal k is a covered literal for C w. r. t. ` if depψ(k) ⊆ depψ(`) and k ∈
⋂
Rψ(C, `) \

{¬`}.

Theorem 10 (Covered literal addition, CLA) Let Q : ϕ∧C be DQBF and k a covered
literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧

(
C ∪ {k}

)
are equisatisfiable.

A rough basic intuition for covered literal addition is as follows: “If a literal k is
already contained in all non-tautological resolvents of a clause C with pivot literal `, then
k may be added to C resulting in an equisatisfiable formula.” In addition to this basic
idea, we need the condition depψ(k) ⊆ depψ(`) and a bigger set of resolution candidates
Rψ(C, `) =

{
C ′ ∈ ϕ

∣∣¬` ∈ C ′ ∧@v ∈ V : ({v,¬v} ⊆ C ⊗`C ′ ∧ depψ(v) ⊆ depψ(`))
}

instead
of Rψ(C, `) =

{
C ′ ∈ ϕ

∣∣¬` ∈ C ′∧ @v ∈ V : {v,¬v} ⊆ C⊗`C ′
}

in order to be able to perform
the (rather involved) proof of Theorem 10.

Proof. If Q : ϕ∧C is satisfiable, then Q : ϕ∧
(
C∪{k}

)
is satisfiable as well, because Q : ϕ∧

(
C∪{k}

)
results from ϕ ∧ C by weakening a clause. Thus, the hard part is to prove that satisfiability of
Q : ϕ ∧

(
C ∪ {k}

)
implies satisfiability of Q : ϕ ∧ C. This holds, if it is always possible to construct

Skolem functions for Q : ϕ ∧C from Skolem functions of Q : ϕ ∧
(
C ∪ {k}

)
. Exactly this is shown in

the following Lemma 10. �

Just as Lemma 8, Lemma 10 is formulated based on the notion of an “outer formula”,
see Definition 12.

Lemma 10 (Covered literal addition) Let ψ = Q : ϕ with ϕ = ϕ̃∧C be DQBF and k a
covered literal for C w. r. t. an existential literal `. Let ψ′ = Q : ϕ′ with ϕ′ = ϕ̃ ∧

(
C ∪ {k}

)
.

If (s′y)y∈V ψ∃
are Skolem functions for ψ′, then (sy)y∈V ψ∃

are Skolem functions for ψ where

sy =

{
s′y, if y 6= var(`),

ITE
(
OF(ψ, `)[s′z/z for z ∈ V ψ

∃ ], sgn(`), s′y
)
, if y = var(`).

Proof. Remember that ` is existential. Let y∗ = var(`). For the proof that the Skolem function sy∗

for y∗ is admissible, see the proof for blocked clause elimination (Lemma 8).
We show that (sy)y∈V ψ∃

is a set of Skolem functions for ψ.

Let ν̃ : V ψ∀ → B be an arbitrary variable assignment of the universal variables. For ψ′ we extend

ν̃ to a complete assignment of all variables in V ψ∀ ∪ V
ψ
∃ by setting ν′(x) = ν̃(x) for x ∈ V ψ∀ and

ν′(y) = s′y(ν̃|depψ(y)) for y ∈ V ψ∃ . In the same way we extend ν̃ for ψ to a complete assignment for

V ψ∀ ∪ V
ψ
∃ by ν(x) = ν̃(x) for x ∈ V ψ∀ and ν(y) = sy(ν̃|depψ(y)) for y ∈ V ψ∃ . Since (s′y)y∈V ψ∃

are Skolem

functions for ψ′, we know that ν′(ϕ′) = 1 and have to show that ν(ϕ) = 1.
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We partition the set ϕ into three subsets of clauses:

ϕ` = {D ∈ ϕ | ` ∈ D},
ϕ¬` = {D ∈ ϕ | ¬` ∈ D},
ϕ∅ = ϕ \ (ϕ` ∪ ϕ¬`).

We distinguish the following two cases:

• Case 1: ν(OF(ψ, `)) = 1:
In this case ν(y∗) = sy∗(ν) = sgn(`). All clauses in ϕ¬` are satisfied, because OF(ψ, `) is
satisfied by ν. The clauses in ϕ∅ are satisfied, because they contain neither y∗ nor ¬y∗ and ν
coincides with ν′ for all variables but y∗. Finally, the clauses in ϕ` are satisfied because they
contain ` and ν(`) = 1.

• Case 2: ν(OF(ψ, `)) = 0:
In this case ν(y∗) = sy∗(ν) = s′y∗(ν) = ν′(y∗). As OF(ψ, `) is not satisfied by ν, there is a
clause D ∈ ϕ such that ¬` ∈ D and OC(ψ,D,¬`) is violated by ν. As ν = ν′, ν′ satisfies all
clauses in ϕ′, and ϕ \ ϕ′ = {C}, we just have to show that ν satisfies C.

We distinguish two cases:

– Case 2.1: D ∈ Rψ(C, `):
Since k is a covered literal for C w. r. t. `, we have that k ∈ D\{¬`} and depψ(k) ⊆ depψ(`),
i. e., k ∈ OC(D,¬`). Since OC(D,¬`) is violated, ν(k) = 0. We have ν(v) = ν′(v) for all
v ∈ V , i. e., ν(k) = ν′(k), and ν′ satisfies C ∪ {k}. This implies that ν satisfies C.

– Case 2.2: D ∈ ϕ¬` \Rψ(C, `):
This implies that there is a variable v ∈ V such that {v,¬v} ∈ C ⊗` D and depψ(v) ⊆
depψ(`). W. l. o. g. we assume v ∈ D and ¬v ∈ C. Since depψ(v) ⊆ depψ(`), we have
v ∈ OC(ψ,D,¬`). Since ν does not satisfy OC(ψ,D,¬`), we have ν(v) = 0 and therefore
ν(¬v) = 1. As ¬v ∈ C, C is satisfied by ν.

This concludes the proof.

�

In order to reduce the size of the formula, we determine for each clause C the set H of
hidden and the set K of covered literals. Then we check if C ∪H ∪K is blocked, subsumed,
or tautological. If this is the case, C is removed; otherwise C remains unchanged. This is
iterated until we reach a fixed point.

Note that if a hidden or covered literal is universal, its addition can be helpful not
only because it can make a clause blocked. If a CNF-based solver core uses elimination of
universal variables to decide the formula, all clauses which contain an existential variable
that depends on the eliminated universal variable have to be doubled [27]. If the clause
contains the universal variable to be eliminated, one of these copies is satisfied and can
therefore be omitted (cf. [36]).

4.4 Clause Strengthening Routines

Clause strengthening routines try to eliminate literals from a clause while preserving the
truth value of the formula. We identify three main ways to do so.
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4.4.1 Universal Reduction

Universal reduction removes a universal variable from a clause if the clause does not contain
any existential variable which depends upon it. This technique has already been generalized
to DQBF in [1, 21].

Lemma 11 (Universal reduction, [1, 21]) Let Q : ϕ ∧ C be a DQBF and ` ∈ C a
universal literal such that for all k ∈ C with k 6= ` we have var(`) 6∈ depψ(k). Then Q : ϕ∧C
and Q : ϕ ∧

(
C \ {`}

)
are equivalent.

4.4.2 Self-subsuming Resolution

Self-subsuming resolution [17] identifies two clauses C1 and C2 with ` ∈ C1, ¬` ∈ C2 and
C2 \ {¬`} ⊆ C1 \ {`}, i. e., C2 “almost subsumes” C1 with the exception of exactly one
literal `, which is contained in the opposite polarity. Resolution of C1 and C2 with the pivot
literal ` leads to Cr = C1 \ {`}. By adding Cr to the formula, C1 is “self-subsumed” by Cr;
therefore C1 can be removed after this addition. Our implementation simply removes ` from
C1, which has the same effect. This technique leads to a logically equivalent matrix and
is therefore independent of the quantification type and the dependencies of the variables;
hence it can be applied to QBF and DQBF without any restrictions.

4.4.3 Vivification

A further technique which replaces the matrix with a logically equivalent formula is called
vivification [56]. It extensively uses Boolean constraint propagation (BCP). For a set φ
of clauses and a set D of literals, BCPφ(D) returns the set of literals that are implied by
assigning the value true to the literals in D. BCPφ(D) = ⊥ denotes that the matrix becomes
unsatisfiable when assigning the value true to the literals in D.

Let C = {`1, . . . , `k} ∈ ϕ be a clause and ∅ 6= D ( C. We distinguish three cases,
depending on the result of calling BCPϕ\{C}(¬D):

1. If BCPϕ\{C}(¬D) = ⊥, we can replace C by D, because one of the literals in D must
be true in order to avoid the conflict. Therefore we can add the clause D and remove
C because D subsumes C.

2. If BCPϕ\{C}(¬D) = L with some `j ∈ L∩ (C \D), we can replace C by D ∪ {`j}. For
each satisfying assignment of ϕ either a literal in D is true and therefore D ∪ {`j}, or
all literals in D are false, therefore `j is true and thus D ∪ {`j} is true. In this case we
can alternatively choose not to strengthen C, but to eliminate the clause C, since for
each satisfying assignment of ϕ \ {C} either a literal in D is true and therefore also C,
or all literals in D are false, but then C is satisfied by `j .

3. If BCPϕ\{C}(¬D) = L with ¬`j ∈ L for some `j ∈ C \D, then we can delete `j from C.
For each satisfying assignment of ϕ either a literal in D is true and therefore C \ {`j},
or all literals in D are false, therefore `j is false and thus C \ {`j} has to be satisfied
as well.

Since vivification replaces the formula’s matrix by an equivalent matrix, it can be applied to
SAT, QBF, and DQBF.
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4.5 Reduction of Dependency Sets

In a DQBF, a universal variable x ∈ V ψ
∀ may be contained in the dependency set Dψ

y of an

existential variable y ∈ V ψ
∃ , but actually, due to the structure of the matrix, the (potential)

Skolem functions for y do not need to exploit the information about x’s value to satisfy
the formula. If such a situation is detected, x can be removed from Dψ

y . At the first sight
removing universal variables from dependency sets does not simplify the DQBF, but if we
consider this operation when universal expansion according to Theorem 7 is used for solving
a DQBF, it potentially reduces the number of copies of existential variables.

Definition 15 An existential variable y ∈ V ψ
∃ is independent of a universal variable x ∈ V ψ

∀
if either x 6∈ Dψ

y or replacing Dψ
y by Dψ

y \ {x} does not change the truth value of ψ.

An example for a situation when dependency sets may be reduced is when a circuit
is transformed into CNF by Tseitin transformation. The dependency set Dψ

y of a Tseitin
variable y can be an arbitrary superset of the universal variables in its cone-of-influence.
The variables in Dψ

y that are not in the cone-of-influence of y can be removed from Dψ
y

without affecting the truth value of the formula.

Deciding whether two variables are independent has the same complexity as deciding
the DQBF itself:

Theorem 11 Let ψ = Q : ϕ be a DQBF, x ∈ V ψ
∀ , and y ∈ V ψ

∃ with x ∈ Dψ
y . Deciding

whether y is independent of x is NEXPTIME-complete.

Proof. Checking whether y is independent of y can be done by first solving ψ and then ψ without
the dependency of y on x. Iff both formulas have the same truth value, y is independent of x. Since
solving a DQBF is in NEXPTIME, deciding independence is in NEXPTIME as well.

For showing the NEXPTIME-hardness, we reduce deciding satisfiability of a DQBF to checking
independence of two variables. Let ψ = Q : ϕ be the DQBF whose satisfiability is to be determined.
Let a, b be fresh variables that do not appear in ψ and consider the formula ψ′ := ∀aQ∃b(a) : ϕ∧(a ≡
b). We check whether a and b are independent. If ψ is unsatisfiable, then ψ′ is unsatisfiable as well
– independent of whether b depends on a or not. Therefore a and b are independent. If ψ is satisfiable,
then ψ′ is satisfied if we use sb(a) = a as additional Skolem function for b, i. e., if b is allowed to
depend on a. In this case a and b are not independent. So we can use the check for independence to
decide satisfiability of DQBFs. �

The corresponding theorem for QBF – deciding independence of two variables in a QBF is
PSPACE-complete – has been shown with the same argumentation in [64].

Because of the high complexity one resorts to sufficient criteria to show independence.
Here we consider two methods for reducing dependency sets: the detection of gate definitions
and dependency schemes.

4.5.1 Detecting Gate Definitions for Dependency Set Reduction

Suppose the DQBF matrix in CNF encodes a relationship y ≡ f(`1, . . . , `k) and the conditions

of Theorem 2 are satisfied, i. e., y ∈ V ψ
∃ and depψ(`i) ⊆ depψ(y) for i = 1, . . . , k. If⋃k

i=1 depψ(`i) ( Dψ
y , then Dψ

y can be replaced by
⋃k
i=1 depψ(`i). The proof that we can

replace Dψ
y by

⋃k
i=1 depψ(`i) is easy: If there are Skolem functions for the DQBF ψ, then the
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constraint y ≡ f(`1, . . . , `k) enforces that sy results from applying f to (possibly negated)
Skolem functions svar(`i) (1 ≤ i ≤ k).7. Thus, the Skolem function sy only depends on⋃k
i=1 depψ(`i).

4.5.2 Dependency Schemes

Another simple sufficient criterion to show independence is based on the incidence graph of
the matrix:

Definition 16 The variable-clause incidence graph GV,ϕ = (V ∪ ϕ,E) of the formula is an
undirected graph with E =

{
{v, C} ∈ V × ϕ

∣∣ v ∈ C ∨ ¬v ∈ C}.

The following theorem generalizes a theorem from [64]:

Theorem 12 (Standard dependency scheme) An existential variable y ∈ V ψ
∃ is inde-

pendent of a universal variable x ∈ V ψ
∀ if there is no path in GV,ϕ between x and y, visiting

only variables in {z ∈ V ψ
∃ |x ∈ D

ψ
z } in between.

Instead of providing a direct proof of Theorem 12, we will conclude its correctness from the
more general Theorem 13 given below.

In the QBF context more powerful dependency schemes have been devised, which can
possibly identify more variables as independent, see, e. g., [64, 63, 48, 24, 70, 72]. Among these
dependency schemes the “reflexive quadrangle resolution path dependency scheme” [72, 80]
is currently the most effective dependency scheme that is sound for both QBF and DQBF.
Thus, this scheme is used in HQSpre for reducing dependency sets and saving variable copies
during universal expansion.

For defining the reflexive quadrangle resolution path dependency scheme we have to
define “connections” between clauses which go beyond paths in GV,ϕ:

Definition 17 (Resolution path connected) Let ψ = Q : ϕ be a DQBF. A resolution
Z-path for Z ⊆ V between two clauses C,C ′ ∈ ϕ is a sequence C1, . . . , Cn of clauses
with C = C1, C ′ = Cn such that for all 1 ≤ i < n there is a literal li with var(li) ∈ Z,
li ∈ Ci, ¬li ∈ Ci+1, and for all 1 ≤ i < n − 1 we have var(li) 6= var(li+1).8. The sequence
var(l1), . . . , var(ln−1) is called a connecting sequence of the resolution Z-path. Two clauses

C,C ′ ∈ ϕ are resolution path connected w. r. t. Z (written C
Z←→
rp

C ′) if there is a resolution

Z-path between C and C ′.

Definition 18 (Reflexive Quadrangle Resolution Path Dependency Scheme) Let

ψ be a DQBF. Furthermore, let x∗ ∈ V ψ
∀ and y∗ ∈ V ψ

∃ such that x∗ ∈ Dψ
y∗. We set

Zx∗ := {z ∈ V ψ
∃ |x

∗ ∈ Dψ
z }.

7.If var(`j) is universal, we define svar(`j) = var(`j).
8.In [24] there is an additional constraint “the resolvent of Ci and Ci+1 w. r. t. li is non-tautological”.

This constraint has to be removed according to [70, 71]. If it is not removed, resolution path dependencies
are not sound.
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For the reflexive quadrangle resolution path dependency scheme, (x∗, y∗) ∈ rqdeprp(ψ)
holds iff there are clauses C1, C2, C3, C4 ∈ ϕ with x∗ ∈ C1, ¬x∗ ∈ C2, y∗ ∈ C3, and ¬y∗ ∈ C4

such that

(C1
Zx∗←−→
rp

C3 ∧ C2
Zx∗←−→
rp

C4) ∨ (C1
Zx∗←−→
rp

C4 ∧ C2
Zx∗←−→
rp

C3).

The next step is to prove that rqdeprp is sound for DQBF.

Theorem 13 Let x∗ ∈ V ψ
∀ and y∗ ∈ V ψ

∃ such that x∗ ∈ Dψ
y∗ . If (x∗, y∗) /∈ rqdeprp(ψ), then

y∗ is independent of x∗.

For the proof, we assume that y∗ is not independent of x∗ and show that then (x∗, y∗) ∈
rqdeprp(ψ). The main idea of the proof consists of using universal expansion on the DQBF
until the following Theorem 14 on the “quadrangle resolution path dependency scheme”
qdeprp for QBFs becomes applicable. This result then implies (x∗, y∗) ∈ rqdeprp(ψ).

The quadrangle resolution path dependency scheme9. is similar to the reflexive quadrangle
resolution path dependency scheme with the only difference that the considered resolution
paths are defined w. r. t. Zx∗ \ {y∗} instead of Zx∗ , i. e., the connecting sequences of those
paths are not allowed to contain y∗. Thus, the quadrangle resolution path dependency
scheme is defined as follows:

Definition 19 (Quadrangle Resolution Path Dependency Scheme)

Let ψ be a DQBF. Furthermore, let x∗ ∈ V ψ
∀ and y∗ ∈ V ψ

∃ such that x∗ ∈ Dψ
y∗. We set

Zx∗ := {z ∈ V ψ
∃ |x

∗ ∈ Dψ
z }.

For the quadrangle resolution path dependency scheme, (x∗, y∗) ∈ qdeprp(ψ) holds iff
there are clauses C1, C2, C3, C4 ∈ ϕ with x∗ ∈ C1, ¬x∗ ∈ C2, y∗ ∈ C3, and ¬y∗ ∈ C4 such
that

(C1
Zx∗\{y∗}←−−−−→

rp
C3 ∧ C2

Zx∗\{y∗}←−−−−→
rp

C4) ∨ (C1
Zx∗\{y∗}←−−−−→

rp
C4 ∧ C2

Zx∗\{y∗}←−−−−→
rp

C3).

The following theorem for QBFs [24, 70] is then needed for proving Theorem 13:

Theorem 14 ([24, 70]) Let ψ = Q : ϕ be a QBF. Let x∗ ∈ V ψ
∀ and y∗ ∈ V ψ

∃ such that

x∗ ∈ Dψ
y∗ . If (x∗, y∗) /∈ qdeprp(ψ) and the DQBF which results from ψ by removing x∗ from

Dψ
y∗ is a QBF as well, then y∗ is independent of x∗.

Before we finally come to the proof of Theorem 13, we have to consider the following
technical lemma on DQBFs resulting from universal expansion:

Lemma 12 Let ψ = Q : ϕ be a DQBF and ψ′ = Q′ : ϕ′ a DQBF derived from ψ by
universally expanding some variables in ψ. If there exists a resolution Z-path from C1 ∈ ϕ′
to C2 ∈ ϕ′, then the connecting sequence y1, . . . , yn (see Definition 17) does not include a
pair (yi, yi+1) where yi and yi+1 are two copies of the same existential variable in ψ.

9.The quadrangle resolution path dependency scheme has originally been introduced as “resolution path
dependency scheme” in [24, 70, 71]. For a clearer categorization, however, we prefer to call it the “quadrangle
resolution path dependency scheme” qdeprp.
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Proof. Assume that the resolution Z-path has a connecting sequence with a pair (yi, yi+1) where yi
and yi+1 are two copies of the same existential variable in ψ. According to the definition of resolution
Z-paths, yi 6= yi+1, i. e., yi and yi+1 are two different copies of the same existential variable in ψ.
Then there exists a clause C ∈ ϕ′ with yi, yi+1 ∈ var(C), yi 6= yi+1. This contradicts the definition
of universal expansion (see Theorem 7), since clauses in a universal expansion can contain at most
one copy of the same original variable. �

Now we come to the proof of Theorem 13. In the proof we use the notion ψ 	 (x, y) for

x ∈ V ψ
∀ and y ∈ V ψ

∃ . ψ 	 (x, y) denotes the formula that results from ψ by removing the
dependency of y on x, i. e., by replacing Dy with Dy \ {x}.

Proof. (Theorem 13) Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ be a DQBF. W. l. o. g. assume
that x1 ∈ Dy1 and y1 is not independent of x1. We have to prove that (x1, y1) ∈ rqdeprp(ψ).

Since, in ψ, y1 is not independent of x1, ψ has to be satisfiable and ψ 	 (x1, y1) is unsatisfiable.
In ψ, we universally expand on the remaining universal variables x2, . . . , xn. Let yindep be the copies
of existential variables yi (i ∈ {2, . . . ,m}) with x1 /∈ Dyi , ydep be the copies of existential variables
yi (i ∈ {2, . . . ,m}) with x1 ∈ Dyi , and y11 , . . . , y

k
1 the copies of y1 with k = 2|Dy1 |−1. Thus, universal

expansion results in the following QBF ψ′:

ψ′ = ∃yindep∀x1∃y11 . . . ∃yk1∃ydep : ϕ′.

Now we start to move copies yi1 from the right of x1 to the left of x1. Since ψ	(x1, y1) is unsatisfiable,
ψ′ will get unsatisfiable when all y11 . . . y

k
1 have been moved to the left of x1. So there exists a

maximal subset ymov
1 ( {y11 , . . . , yk1} (with ystay

1 = {y11 , . . . yk1} \ ymov
1 containing the remaining

variables from {y11 . . . yk1}) with the property that

ψ′′ = ∃yindep∃ymov
1 ∀x1∃ystay

1 ∃ydep : ϕ′

is satisfiable and, in ψ′′, each variable from ystay
1 is not independent of x1. That means that moving

an arbitrary variable from ystay
1 to the left of x1 will turn ψ′′ from satisfiable to unsatisfiable. The

set ystay
1 is not empty, since otherwise y1 would be independent of x1 in ψ. Choose an arbitrary

existential variable yj1 in ystay
1 . Since ψ′′ is a QBF where yj1 is not independent of x1, we have

(x1, y
j
1) ∈ qdeprp(ψ′′) due to Theorem 14, i. e., ∃C1, C2, C3, C4 ∈ ϕ′ with x1 ∈ C1, ¬x1 ∈ C2, yj1 ∈ C3,

¬yj1 ∈ C4, and – w. l. o. g. – C1

Zx1\{y
j
1}←−−−−−→

rp
C3 and C2

Zx1\{y
j
1}←−−−−−→

rp
C4 with Zx1 = ystay

1 ∪ ydep.

Now we make use of a simple property of the process of universal expansion in order to turn the
two constructed resolution (Zx1

\ {yj1})-paths for ψ′′ into suitable resolution paths for the original
DQBF ψ proving that (x1, y1) ∈ rqdeprp(ψ): Each clause C in a universal expansion can be mapped
back to a clause Corig of the original formula “it results from” by (1) adding universal literals
which have been removed by the universal expansion, since they are unsatisfied in the copy of
the clause at hand, and by (2) replacing copies of existential literals ` by the existential literals
`orig in the original formula. Now consider one of the constructed resolution (Zx1

\ {yj1})-paths
D1, . . . , Dn with D1 = C1 and Dn = C3 (or D1 = C2 and Dn = C4). For all 1 ≤ i < n there is
a literal `i with var(`i) from Zx1

\ {yj1} = ydep ∪ (ystay
1 \ {yj1}), `i ∈ Ci, ¬`i ∈ Ci+1. It is easy

to see that Dorig
1 , . . . , Dorig

n is a resolution Z ′x1
-path for ψ with Z ′x1

= {y ∈ V ψ∃
∣∣x1 ∈ Dy}: For all

1 ≤ i < n there is a literal `origi with var(`origi ) ∈ Z ′x1
, `origi ∈ Ci, ¬`origi ∈ Ci+1. (Note that `origi may

also be y1 or ¬y1, since the connecting sequence of D1, . . . , Dn may contain a copy of y1 which is
different from yj1.) Due to Lemma 12, var(`i) and var(`i+1) are copies of different existential variables

and thus var(`origi ) 6= var(`origi+1) for all 1 ≤ i < n. Altogether we have proven that there are two

resolution Z ′x1
-paths for ψ with Z ′x1

= {y ∈ V ψ∃
∣∣x1 ∈ Dy} leading from Corig

1 ∈ ϕ with x1 ∈ Corig
1 to
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Corig
3 ∈ ϕ with y1 ∈ Corig

3 and from Corig
2 ∈ ϕ with ¬x1 ∈ Corig

2 to Corig
4 ∈ ϕ with ¬y1 ∈ Corig

4 . Thus
(x1, y1) ∈ rqdeprp(ψ).10. �

Now we can reduce the proof of Theorem 12 to Theorem 13:

Proof. (Theorem 12) The correctness of Theorem 12 follows easily from Theorem 13. According to
Definition 18 of the reflexive quadrangle resolution path dependency scheme and Definition 17 of
“resolution path connected”, (x∗, y∗) ∈ rqdeprp(ψ) directly implies that there is a path in GV,ϕ from

x∗ to y∗ that visits only variables in {z ∈ V ψ∃ |x∗ ∈ Dψ
z } in between. That means, in case that there

is no such path, we conclude (x∗, y∗) /∈ rqdeprp(ψ) and thus y∗ is independent of x∗ according to
Theorem 13. �

5. Implementation of HQSpre

While the previous section provided the theoretical background of preprocessing for (D)QBF,
this section looks into the question how the presented techniques are combined into an
efficient tool. For an efficient implementation several factors are essential: Appropriate
heuristics which determine whether, when, and how intensively certain techniques are applied,
an appropriate order of the techniques, efficient data structures, and an adaption to different
solver cores, to name just a few criteria.

5.1 Data structures

We start with some remarks on the data structures used in our implementation.

A clause is essentially stored as a sorted array of literals. For an efficient access to
all clauses in which a literal ` occurs, we keep complete occurrence lists for each literal.
Furthermore, we redundantly hold for each literal ` a list of all binary clauses in which ¬`
occurs, since many of our syntactic methods, such as gate and equivalence detection, employ
binary clauses.

We re-use unused variable IDs, i. e., whenever a variable was removed, we mark the index
as “open” such that it can be re-used. This avoids very large variable IDs and gaps in the
data structure, which is crucial during universal expansion where many existential variables
are newly introduced as a copy.

We tested different data structures for manipulating clauses. Structures based on
std::set have the advantage of sorted ranges, which is beneficial for, e. g., subsumption and
hidden/covered literal addition, but comes with the downside of more expensive access and
insertion costs. On the other hand, a std::vector has constant access time, but checking
the occurrence of a literal in a clause gets more expensive. To overcome this issue we
implemented a data structure which marks already occurring literals in the current clause.
This “seen” data structure is also implemented as a std::vector with the length of the
maximal literal ID. By doing so, we have efficient access to clause data, and checking whether
a literal occurs in the clause or whether a resolvent is a tautology becomes very cheap (linear
in the length of the involved clauses). By using this structure, we have measured a speed-up
compared to std::set-based clauses of up to a factor of 4.

10.The construction does not lead to (Z′x1 \ {y1})-paths and thus (x1, y1) ∈ qdeprp(ψ) cannot be proven.
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Algorithm 1 Outline of the main preprocessing routine. Note that after each routine, a
fast formula simplification procedure is called. Universal reduction and subsumption checks
are performed for each added or modified clause.

Preprocess((D)QBF ψ = Q : ϕ)
begin

simplify(ψ) (1)

iteration ← 1 (2)

repeat (3)

if iteration ≤ 2 then (4)

gates ← gateDetection(ψ) (5)

gateSubstitutionAndRewriting(ψ, gates); simplify(ψ) (6)

end if (7)

eliminateClauses(ψ); simplify(ψ) / Hidden/covered TE/SE/BCE (8)

selfsubsumingResolution(ψ); simplify(ψ) (9)

vivify(ψ); simplify(ψ) (10)

variableEliminationByResolution(ψ); simplify(ψ) (11)

syntacticConstants(ψ); simplify(ψ) (12)

if first iteration then (13)

semanticConstants(ψ); simplify(ψ) (14)

trivialMatrixChecks(ψ) (15)

end if (16)

universalExpansion(ψ); simplify(ψ) (17)

iteration ← iteration + 1 (18)

until ψ has not been changed anymore or ψ is decided (19)

return ψ (20)

end

5.2 Algorithmic overview

Now we have a closer look into the actual preprocessing routine.
First of all, we always apply tautology checks, universal reduction, and backward

subsumption checks when we insert a clause C into the clause database or when we strengthen
a clause C as a result of some preprocessing step. Backward subsumption looks for clauses
C ′ with C ⊆ C ′ that are already included in the clause database. Apparently, we can restrict
the search for such a clause C ′ to the shortest occurrence list among the literals in C.

In Algorithm 1 we give an overview of the main preprocessing routine, which calls the
different techniques in a loop until the formula does not change anymore.

The basic (syntactic) detection and propagation of constant and pure literals as well as
equivalent literals (see Section 4.2.1) can be (and were) implemented very efficiently and
turned out to be a necessary feature to let preprocessing scale. Hence, in our implementation
we apply these three methods11. after each and every more complex technique until a fixed-
point is reached. This is referred to as the simplify() method in Algorithm 1. simplify()
is also called in the very beginning of the preprocessing algorithm.

11.The syntactic constant detection using transitive implication chains is not included.
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After eliminating unit, pure, and equivalent literals, we start the main preprocessing loop
by applying gate detection (see Algorithm 1, line 5 and Section 4.1). By looking for certain
clause patterns, we identify definitions of logical gates within the formula. In particular,
we seek for AND gates with an arbitrary number of inputs, 2-input XOR gates [57], and
multiplexers. For all of them we allow arbitrary negations on both inputs and output.12. As
many (D)QBF instances result from applications with circuits, the number of detectable
gates can be very large. It is important that this technique is applied early, since many other
methods, in particular the clause elimination methods, might eliminate gate defining clauses.
It is also important to note that the exploitation of gate definitions has to be completely
different depending on the solver used after preprocessing:

• If the subsequent solver works on a matrix in CNF representation, we make use of
gate substitution followed by re-transformation into CNF. As already mentioned in
Section 4.2.3, substitution and transformation into CNF is simulated by a series of
resolutions w. r. t. the defined variable [17]. Since this step may lead to a huge number
of resolvents, it is only performed if the formula does not grow above a user-given
bound. More precisely, we proceed as follows, when we have to resolve (w. r. t. `) all
clauses from a clause set S0 with all clauses from a clause set S1, followed by removing
S0 and S1: First of all, we remember the size sizeorig of S0∪S1, counted by the number
of literals in S0 ∪ S1. Then we estimate the size sizeest of S0 ⊗` S1 from above just by
computing the number of literals which would result from producing all resolvents of
pairs in S0 and S1. If sizeest > ε0 ·sizeorig +c0, we do not perform resolutions at all and
leave S0 and S1 unchanged in the CNF (in our implementation we use ε0 = 1.0 and
c0 = 200). Otherwise we have a closer look into the resolution process: Tentatively, we
perform resolutions between S0 and S1 without counting literals in tautological clauses
or literals that will be removed by universal reduction. If the current size sizecurrent

during this process exceeds ε1 · sizeorig + c1, we stop again. If we can handle all pairs
in S0 × S1 in that way without exceeding ε1 · sizeorig + c1, we add the resolvents to
the CNF and remove S0 and S1 (in our implementation we use ε1 = 1.0 and c1 = 100).
If the elimination of gate definitions failed due to size limits, gate rewriting is used
instead as mentioned in Section 4.2.3.

• If the subsequent solver works with a circuit (e. g., AIG) representation instead of
CNF, the detected gate definitions are used to transform the CNF into a circuit
representation after preprocessing. For this reason we have to protect the detected
gate-defining clauses from being removed by subsequent preprocessing steps. This is
done by applying the concept of frozen variables and clauses [46] for gate definitions,
i. e., these variables and clauses are excluded from elimination methods (with the
exception of unit, pure, and equivalent literal detection).

The next step in the algorithm applies all clause elimination routines (tautology elim-
ination, subsumption elimination, and blocked clause elimination supported by hidden /
covered literal addition, see Section 4.3) in a loop until a fixed-point is reached, i. e., until
no further changes to the formula can be made (see Algorithm 1, line 8). To do so, we keep
a queue of clause candidates, which are updated after removing a clause from the formula.

12.Note, this covers also OR gates with arbitrarily negated inputs and output.
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Whenever a clause c = {`1, . . . , `n} has been removed, every clause in which at least one of
the literals `1,¬`1, . . . , `n,¬`n occurs becomes a new candidate to be removed by one of the
above methods.

Afterwards, the algorithm applies self-subsuming resolution (Algorithm 1, line 9, see also
Section 4.4.2). In our implementation, we iterate over all clauses in order to identify such
self-subsumptions until a fixed-point is reached. To do so efficiently, we keep a queue of
candidates that is updated after deleting a literal. Whenever a literal `i is removed from a
clause C = {`1, . . . , `n}, each clause containing at least one of ¬`1, . . . ,¬`i−1,¬`i+1, . . . ,¬`n
is potentially self-subsuming with C.

Subsequently, we try to further strengthen the clauses one after the other by applying
vivification (cf. Section 4.4.3). We only consider clauses having a minimum length (in our
experiments: at least 4 literals). For efficiency reasons, we implemented BCP for vivification
using the two watched literals scheme [53], which is standard in modern SAT solvers. It
determines all unit clauses and detects conflicts resulting from the assignment of a subset
of the formula’s variables without modifying the formula. As an alternative to SAT-based
BCP, one could use the watched literal schemes that have been developed for QBF [25] and
DQBF [20], which take universal reduction into account. They can generally identify more
implications, but are also more costly.

When vivification considers a clause C ∈ ϕ, we select literals from C in a random order
(in fact, we use a fixed random seed in order to ensure reproducibility) and propagate one at
a time until BCP’s result either allows us to delete or shorten C or all literals of C have
been considered.

The third clause strengthening method, universal reduction, does not appear explicitly
in Algorithm 1, since it is applied eagerly for every added clause as well as for every clause
that was strengthened.

The remaining operations in lines 11 to 17 of the main loop in Algorithm 1 are variable
elimination routines which are able to fix the truth values of variables v and propagate them
through ϕ using BCP. In contrast to the BCP implementation used in vivification, which
does not modify the formula, here we simplify the formula by deleting satisfied clauses and
unsatisfied literals.

The first one is variable elimination by resolution. Variable elimination by resolution is
not performed for every eligible existential variable according to Theorem 6, since it may lead
to a considerable blow-up of the CNF size. Rather, we use exactly the same size estimation
as described for the special case of gate substitution by resolution and apply it only when
the size of the formula does not grow beyond a threshold.

We exploit a special case of resolution which is efficiently detected and always leads to
a smaller CNF. Therefore, we perform these resolutions more frequently – namely during
BCP and blocked clause elimination. If an existential literal `∃ only occurs in exactly one
binary clause {`∃, `}, then resolution of the pivot literal `∃ yields resolvents in which ¬`∃
is replaced by ` w. r. t. the original clauses. In our implementation we simply remove the
clause {`∃, `} and replace ¬`∃ with ` in every clause. According to Theorem 6, elimination
of `∃ by resolution is sound as long as var(`) is also existential and Dvar(`) ⊆ Dvar(`∃) or

var(`) is universal and var(`∃) depends on it. Interestingly, for soundness ¬`∃ can occur in
an arbitrary number of clauses and together with arbitrary literals, since we could prove that
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either condition 1 or condition 2 of Theorem 6 has to hold, not both as in QBF versions of
the theorem known from the literature [5].

In the next step (line 12 of Algorithm 1), the syntactic constant detection or backbone
detection using transitive implication chains in binary clauses (based on Lemma 4) is
performed, followed by eliminating unit, pure, and equivalent literals as usual.

We detect “semantic constants” (line 14), i. e., backbones and monotonic variables, using
incremental SAT solver calls as described in Section 4.2.1 only in the first iteration of the
main loop (due to the cost of this operation).

Due to the needed cost, the SAT-based checks for trivial satisfiability and unsatisfiability
(see Section 3.1 and line 15 of the algorithm) are performed only in the first main loop
iteration as well.

As a last step in the main loop we apply universal expansion (Section 4.2.4 and line 17).
In our DQBF benchmark set, the number of depending existential variables is often very
large and therefore we obtain a huge blow-up of the formula. Hence, in our implementation
we do not apply universal expansion for DQBF.13. In contrast, in QBF many benchmark
classes have quite small universal quantifier blocks. In this case, it turns out that the
elimination of a complete universal block is often very beneficial, whereas expansion of single
variables in large blocks does have a rather small impact. Therefore, we try to expand
blocks with small sizes (< 20). We always try to expand the whole block as long as the
blow-up of the formula is at most 50 % per variable and less than 100 % in total. After
each expansion step we also apply variable elimination by resolution in order to reduce
the potential number of copied existential variables in the next steps as suggested in [11].
During universal expansion, we utilize the reflexive quadrangle resolution path dependency
scheme (Section 4.5), which is currently the most effective dependency scheme that is
sound for both QBF and DQBF. Before expanding a universal variable x, we identify its
pseudo-dependencies, i. e., the dependencies that can be removed without changing the
satisfiability of the formula. All existential variables forming a pseudo-dependency with x do
not have to be copied and neither have the clauses to be doubled in which only existential
variables with pseudo-dependencies and variables independent of x occur. This often leads
to significantly smaller formulas after the expansion. Finally, if a formula does not contain
any universal variables after universal expansion, we immediately employ a SAT solver for
deciding the resulting formula.

The main loop of Algorithm 1 is finished whenever no further changes in the formula arise
during the latest iteration. Moreover, we immediately exit the loop and return the result
whenever a routine was able to decide the (D)QBF. Otherwise, if the formula is undecided
and not a QBF, Algorithm 1 is followed by the QBF-based filter, which was described in
Section 3.2.

As mentioned above, some preprocessing operations are restricted by the amount of
additional memory we are allowed to use for representing the matrix resulting from the
operation (in particular in case of resolution and universal expansion). Moreover, we also
apply restrictions in terms of “run time” invested into the different preprocessing operations:
For each potentially expensive operation like vivification, blocked clause elimination, and
self-subsuming resolution, we have a counter that is initialized with the maximum number

13.Depending on the subsequent solver used after preprocessing, universal expansions are moved to the
solver core, however.
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Figure 2. iDQ with and without preprocessing using HQSpre.

of steps allowed for the execution of the operation. For each step that the operation does
(e. g., computing the resolvent of two clauses during blocked clause elimination), the counter
is decreased. When the counter value becomes negative, the operation is aborted. Having
a limit on the number of steps instead of a time limit for the different operations has the
advantage that the result is reproducible. The initial values for the counters are chosen
such that potentially expensive operations are aborted after a few seconds on an average
computer.

6. Experimental Results

We have implemented the described techniques in C++ in the preprocessor HQSpre, which
supports both QBF and DQBF preprocessing. To support different back-end solvers, it is
able to write the resulting formula into a file in DQDIMACS format, which is the standard
file format of the DQBF track at the QBF Evaluation.

As benchmark instances we use the 334 DQBF instances from the DQBF track at the
QBFEVAL’1814. and the 463 QBF instances from the PCNF track.

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz, running
Ubuntu Linux 16.04 in 64-bit mode as operating system. We aborted all experiments whose
computation time exceeded 900 seconds or which required more than 4 GB of memory.

For solving DQBFs, we use the three publicly available solvers iDQ [21], iProver [44],
and HQS [78, 28] and run them with and without preprocessing using HQSpre. Figures 2, 3,
and 4 show cactus plots comparing the computation times including loading, preprocessing,
and solving the formulas.

It is interesting to note that HQSpre alone already solves 88 out of 334 DQBF instances.
iDQ without preprocessing solves 75 instances, but with preprocessing it solves 36 instances
(48.0 %) more. The situation for iProver is similar. iProver without preprocessing solves
some instances more than iDQ without preprocessing (101 instead of 75 instances) and
with preprocessing by HQSpre it again solves 20 instances (19.8 %) more. In both cases we

14.see http://www.qbflib.org/qbfeval18.php
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Figure 3. iProver with and without preprocessing using HQSpre.
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Figure 4. HQS with and without preprocessing using HQSpre / HQSpreg.

used HQSpre configured for CNF-based preprocessing. In contrast, we tried two variants
of HQSpre for the solver core HQS: The original HQSpre and a special version HQSpreg

which preserves gate definitions for a later extraction of circuit structure from the CNF,
see Section 5.2. HQS without preprocessing solves 111 instances, HQS with the CNF-
based preprocessor HQSpre 126 instances (13.5 % more), and HQS with HQSpreg solves
161 instances, i. e., 45.0 % more instances than HQS without preprocessing. In both cases,
the solver core HQS tries to extract circuit structure from the CNF. The original CNF-based
HQSpre has advantages and disadvantages for the solver HQS: The positive effect of helping
to solve more instances by simplifying the formula still predominates, but on the other hand
HQSpre often destroys gate definitions such that a later circuit extraction does not work as
well as before. For that reason HQSpreg is much more successful. It simplifies the formula,
but without destroying gate definitions. Since HQS works on AIGs as its internal data
structure and heavily relies on the success of extracting circuit information, the combination
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Figure 5. AIGSolve with and without preprocessing using Bloqqer and HQSpre / HQSpreg.
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Figure 6. Qute with and without preprocessing using Bloqqer and HQSpre.

of HQS with HQSpreg is clearly the most successful. To conclude, HQSpre turned out to be
highly successful as a preprocessor for DQBF solving. This is true for all considered solvers.
The experiment with HQS showed that for obtaining best results different preprocessing
techniques should be applied, depending on the solver core used after preprocessing.

For solving QBFs, we use the QBF solvers AIGSolve [57, 58], QUTE [54]15., DepQBF 6.0.3 [49],
QESTO 1.0 [40], RAReQS 1.1 [38], and CAQE [74]15. We compare their running times alone
and in combination with the preprocessors Bloqqer 37 [6] and HQSpre. The results are given
in Figs. 5 to 10.

First of all, we observe that Bloqqer by itself already solves 58 out of 463 QBF instances.
With a number of 157, HQSpre solves considerably more instances.

15.Version from the GitHub repository, checked out at November 7, 2018
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Figure 7. DepQBF with and without preprocessing using Bloqqer and HQSpre.
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Figure 8. QESTO with and without preprocessing using Bloqqer and HQSpre.

In Fig. 5 we consider the results of the solver AIGSolve, which relies on circuit extraction,
like the DQBF solver HQS. Therefore we also try HQSpreg in addition to Bloqqer and
HQSpre. AIGSolve without preprocessing solves 128 instances. Fig. 5 shows that surprisingly
the application of the preprocessor Bloqqer before AIGSolve has a negative effect. The
combination of Bloqqer and AIGSolve solves 61 instances (47.7 %) fewer instances than
AIGSolve alone. Apparently, for AIGSolve the preprocessor Bloqqer is too aggressive in
destroying gate definitions, e. g., by blocked clauses elimination. On the other hand, even
the CNF-based version HQSpre of our preprocessor has clearly a positive effect on AIGSolve
in sum. Using the gate-preserving version HQSpreg the combination is even more successful
and solves 84 (65.6 %) instances more than AIGSolve alone.

All other QBF solvers are CNF based. Thus, we only compare the solvers without
preprocessing to the solvers with Bloqqer and HQSpre. For all considered solvers we have a
consistent picture: Using Bloqqer is beneficial and using HQSpre is even more beneficial.
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Figure 9. RAReQS with and without preprocessing using Bloqqer and HQSpre.
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Figure 10. CAQE with and without preprocessing using Bloqqer and HQSpre.

Qute (see Fig. 6) solves 93 instances without preprocessing, together with Bloqqer it solves
78 (83.9 %) instances more, with HQSpre even 154 (165.6 %) instances more. Without
preprocessing DepQBF solves 135 instances, with Bloqqer 48 (35.6 %) more, with HQSpre
124 (91.9 %) more (see Fig. 7). Qesto (Fig. 8) solves 94 instances without preprocessing and
102 (108.5 %) instances more when using Bloqqer, 181 (192.6 %) instances more when using
HQSpre. Similarly, the number of 134 solved instances for RAReQS (Fig. 9) is increased
by 91 (67.9 %) using Bloqqer and 164 (122.4 %) using HQSpre. Finally, considering CAQE
(Fig. 10) we observe that Bloqqer increases the number of 139 solved instances by 117
(84.2 %), whereas HQSpre increases it by 167 (120.1 %).

The experiments also show that the quality of a solver is highly determined by the
question of how well it may be assisted by preprocessing. For instance, CAQE, the winner
of the competition QBFEVAL18, solves only 4 instances more than DepQBF (139 vs. 135
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instances) without preprocessing, but with HQSpre as preprocessor it solves 47 instances
more (306 vs. 259 instances).

Taken together, we observe that preprocessing is essential also for QBF solving. Whereas
Bloqqer is already successful by increasing the number of solved instances by up to 84.2 %,
depending on the solver core used, HQSpre clearly outperforms Bloqqer and increases the
solved instances by up to 192.6 %.

It is difficult to make reliable statements about the exact reasons for the advantage of
HQSpre without accessing the internals of both HQSpre and Blogger. We believe that the
advantage of HQSpre even for QBF instances can be explained by the facts that HQSpre
implements almost all known preprocessing techniques for QBF (and DQBF), in particular
exploiting gate definitions and strong dependency schemes allow to reduce the cost of variable
elimination. HQSpre applies generalized preprocessing techniques based on the specialization
of DQBF techniques to QBF, and it benefits from a well-coordinated combination of all
individual techniques.

7. Conclusion

We have shown how preprocessing techniques for SAT and QBF can be generalized to DQBF.
For all techniques we provided rigorous proofs. For some techniques, the theoretical parts of
the paper even advance the field of QBF preprocessing by generalizing known results, by
proving results which have been given without proof in the literature, and by disproving
wrong statements made in the literature. Based on the theoretical results we presented the
preprocessor HQSpre together with implementation details contributing to the efficiency
of the preprocessor. Experiments demonstrate that our preprocessor successfully reduces
the running time of the actual solving process to a great extent, both for CNF-based and
non-CNF-based solver cores. This observation holds both for DQBF and for QBF solving.

In the future, we plan to further enhance the preprocessing techniques. Moreover, based
on a better understanding of how different preprocessing techniques assist solver cores
working with different solution paradigms, we will try to tune our preprocessor for different
solvers, leading to an even better co-operation between preprocessor and solver cores. A
further topic for future work is to extend the current version of HQSpre by integrating
the computation of Skolem functions for the input formula, given Skolem functions for the
formula obtained after preprocessing. This will be based on work already presented in [76]
which has to be extended by a rigorous result validation in case of unsatisfiable DQBF
formulas as well.
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[20] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. A DPLL algorithm for solving
DQBF. In Int’l Workshop on Pragmatics of SAT (POS), Trento, Italy, 2012.
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