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Abstract

We describe a thoroughly interweaved forward and backward version of PDR/IC3 called fbPDR. Motivated by the com-
plementary strengths of PDR and Reverse PDR, fbPDR enables beneficial collaboration between the two and lifts the
combination to a new level. We lay the theoretical foundations for sharing information between PDR and Reverse PDR
and demonstrate the effectiveness of our approach on benchmarks from the Hardware Model Checking Competition.

1 Introduction

Nowadays PDR (or IC3) [1] [2] is considered as one of
the most powerful methods in hardware verification. Un-
like others it does not unroll a transition relation. It in-
crementally strengthens a proof until a safe invariant or a
counterexample is found. PDR in its usual definition has a
‘fixed direction’: It considers overapproximations of state
sets reachable from the initial states in k or less steps.
This work is motivated by observations already made in [3]
showing that a combination of (forward) PDR and (back-
ward) Reverse PDR is worthwile. Reverse PDR computes
over-approximations of state sets which can reach unsafe
states in k or less steps. In [4] we examine Reverse PDR
thoroughly and enable communication between PDR and
Reverse PDR via proof obligations.
In our most recent work we lift the combination of PDR
and Reverse PDR to a next level [5]. Our algorithm really
intertwines PDR and Reverse PDR reasoning by strength-
ening one trace using blocked cubes learnt from the other.
We show that both communication via proof obligations
and strengthening one trace with information from the
other can indeed be used successfully in combination.
Here we describe our forward and backward version of
PDR/IC3 called fbPDR. Both PDR and Reverse PDR profit
from all the information gathered by its counterpart and we
observe a significant speedup in both finding counterexam-
ples as well as safe inductive invariants.

2 Communication via Proof Obliga-
tions

One kind of information exchange between the two direc-
tions of PDR takes place on the basis of proof obligations.
Sets of proof obligations of the original forward PDR rep-
resent underapproximations of the set of states from which
the unsafe states (or unsafe) can be reached.
The reason for this is that a proof obligation (s,k,d) in
time frame k is a state s for which it has been shown that
there is a path of length d from s to unsafe. Therefore
PDR is obliged to prove that s is unreachable within ≤ k
steps from the initial states (or init). Hence, in Reverse

PDR the set of unsafe states can be extended by the proof
obligations from forward PDR as a “target enlargement”.
Extending unsafe in Reverse PDR has two effects:
1.) During Reverse PDR, the intersection of a cube s
that can be reached from init (i.e., of a proof obligation
in Reverse PDR) with the extended unsafe may now
be non-empty, because of a non-empty intersection of s
with a proof obligation from forward PDR. Due to this
non-empty intersection, a counterexample, i.e., a trace
from init to unsafe, has been found where the first part of
the trace (reaching s from init) has been constructed by
Reverse PDR and the second part (reaching unsafe from s)
has been constructed by forward PDR.
2.) Sometimes in (Reverse) PDR the generalization of
blocked cubes (learnt clauses) s into ŝ1 for unreachable
proof obligations (technically, this corresponds to unsatis-
fiable SAT solver calls that allow for literal dropping, see
e.g. [2]) may be unnecessarily large such that it prevents
early convergence of the procedure. In the combined
algorithm unnecessary large generalizations are restricted
by the stronger requirement that a generalized cube ŝ2
does not intersect the extended unsafe states, not only
unsafe as in the original Reverse PDR. If a larger ŝ1 that
contains states from which unsafe can be reached (as
has been proved by forward PDR) would be removed by
learning clause ¬ŝ1, this clause could not be part of any
safe inductive invariant (since it excludes states which
reach unsafe eventually).

Of course, a dual argumentation is possible for trans-
ferring information from Reverse PDR to PDR: Sets of
proof obligations of Reverse PDR represent underapprox-
imations of the set of states which can be reached from
init. So in the original PDR the set of initial states can be
extended by these proof obligations.

3 Learning new Lemmas from Re-
verse PDR

Basically, PDR gathers information in terms of proof obli-
gations and learnt clauses (lemmas). In the previous sec-
tion we presented the capabilities of sharing the proof obli-



gation part of this information. Now we want to focus on
learning new clauses (lemmas) for PDR from lemmas in
Reverse PDR.
Note that in the following our analysis considers only the
transfer of information from Reverse PDR to PDR. How-
ever, all procedures also apply the other way around con-
sidering the characteristics of PDR and Reverse PDR.
Reverse PDR maintains a trace RR0,RR1, . . . ,RRN of
clause sets. RRn represents an overapproximation of states
which are able to reach unsafe within 0≤ j≤ n steps. PDR
maintains a trace R0,R1, . . . ,RN of clause sets where Rn
represents an overapproximation of states reachable from
init within 0≤ j ≤ n steps. It holds that all clause sets are
supersets of the ones with higher indices, i.e., Ri w Ri+1
and RRi w RRi+1. In contrast, if we consider Ri (RRi) se-
mantically as the state sets represented by the correspond-
ing clause sets, we have Ri ⊆ Ri+1 and RRi ⊆ RRi+1.
For a Reverse PDR clause (lemma) c ∈ RRN−i with c = s̄
it is not clear how to make use of this information in PDR
where we work with underapproximations of states reach-
ing unsafe (i.e., proof obligations) and overapproximations
of states reachable from init (i.e., lemmas). In contrast, by
looking at sets RRN−i as a whole, we can extract useful
information:

Theorem 1. Given a Reverse PDR trace of length N and
a PDR trace of length N′. Let s be an arbitrary cube s ⊆
RRN−(i+1) with 0 ≤ i ≤ N− 2. If we strengthen the PDR
trace by blocking s in all frames 1 ≤ k ≤ min(i,N′), i.e.
by setting Rk = Rk ∧ s, then in the resulting PDR trace the
state sets Ri with 0 ≤ i ≤ N still overapproximate the sets
of states reachable from init in ≤ i steps. Moreover, the
property of syntactical inclusion of clause sets Ri+1 v Ri
for 1 ≤ i ≤ N− 1 and semantical inclusion Ri ⊆ Ri+1 for
0≤ i≤ N−1 is preserved by the strengthening.

A comprehensive proof can be found in [5]. The intuition
behind this is that RRN−(i+1) (after discharging all proof-
obligations for the trace RR0, . . . ,RRN−1) excludes an over-
approximation of the states which are reachable from init
within ≤ i steps. Thus RRN−(i+1) is an underapproxima-
tion of all states which are not reachable from init within
≤ i steps. Excluding (blocking) such states from Rk with
1≤ k ≤min(i,N′) in forward PDR maintains the property
that Rk overapproximates the states reachable from init in
≤ k steps.
To strengthen a PDR trace according to Thrm. 1 we have
to extract subcubes from RRN−(i+1) provided by Reverse
PDR. RRN−(i+1) is given as a CNF, thus extracting all
subcubes amounts to a CNF to DNF conversion, and ex-
tracting a restricted number of good, i.e., short, subcubes
means computing only a part of the corresponding DNF.
The naive way of CNF to DNF conversion using the law of
distributivity can lead to an exponential growth. Another
possibility is to negate the CNF, use Plaisted-Greenbaum-
Transformation [6] for translating the DNF into CNF, and
negate the result again. However, this method may have
disadvantages as well: The number of computed cubes is
linear in the size of the CNF, but we may be interested in
even more condensed information to be transferred. More-
over, we have to introduce new auxiliary variables which

act as additional state space variables.
Thus we are using a SAT-based method to pick a small
number of preferably short and informative subcubes [5].

4 fbPDR

Our implementation fbPDR1 runs PDR and Reverse PDR
in alternation (30s slices) and implements both commu-
nication methods presented in Sects. 2 and 3. We also
implemented the feature that PDR and Reverse PDR
traces with length N and N′ can always be extended to
length max(N,N′) and all proof-obligations which repre-
sent counterexamples of length≤max(N,N′) can immedi-
ately be discharged.
Experiments of the benchmark set of HWMCC’15 and
’17 show promising results comparing the latest version of
fbPDR to the version only communicating via proof obli-
gations [4] as well as the default configuration of ABC’s
PDR2 and ic3ref3 (see Fig. 1).
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