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Abstract

Dependency quantified Boolean formulas (DQBFs) are a pow-
erful formalism, which subsumes quantified Boolean formulas
(QBFs) and allows an explicit specification of dependencies
of existential variables on universal variables. This enables a
succinct encoding of decision problems in the NEXPTIME
complexity class. As solving general DQBFs is NEXPTIME
complete, in contrast to the PSPACE completeness of QBF
solving, characterizing DQBF subclasses of lower compu-
tational complexity allows their effective solving and is of
practical importance.
Recently a DQBF proof calculus based on a notion of fork
extension, in addition to resolution and universal reduction,
was proposed by Rabe in 2017. We show that this calculus
is in fact incomplete for general DQBFs, but complete for a
subclass of DQBFs, where any two existential variables have
either identical or disjoint dependency sets over the universal
variables. We further characterize this DQBF subclass to be
ΣP

3 complete in the polynomial time hierarchy. Essentially us-
ing fork extension, a DQBF in this subclass can be converted
to an equisatisfiable 3QBF with only a linear increase in for-
mula size. We exploit this conversion for effective solving of
this DQBF subclass and point out its potential as a general
strategy for DQBF quantifier localization. Experimental re-
sults show that the method outperforms state-of-the-art DQBF
solvers on a number of benchmarks, including the 2018 DQBF
evaluation benchmarks.

1 Introduction
During the last two decades an enormous progress in the
solution of quantifier-free Boolean formulas (SAT) has been
observed. Nowadays, SAT solving is successfully used in
many application areas, e. g., in planning (Rintanen, Heljanko,
and Niemelä 2006), automatic test pattern generation (Eg-
gersglüß and Drechsler 2012; Czutro et al. 2010), and formal
verification of hard- and software systems (Biere et al. 2003;
Clarke et al. 2001; Ivancic et al. 2008). Motivated by the suc-
cess of SAT solvers, efforts, e. g., (Lonsing and Biere 2010;
∗This work was partly supported by the German Research Foun-
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Boolean Formulas’ and the Ministry of Science and Technology of
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Janota et al. 2012; Janota and Marques-Silva 2015; Tentrup
and Rabe 2015), have been made to consider the more general
formalism of quantified Boolean formulas (QBFs).

Although QBFs are capable of encoding decision prob-
lems in the PSPACE complexity class, they are not pow-
erful enough to succinctly encode many natural and prac-
tical problems that involve decisions under partial infor-
mation. For example, the analysis of games with incom-
plete information (Peterson, Reif, and Azhar 2001), topo-
logically constrained synthesis of logic circuits (Balabanov,
Chiang, and Jiang 2014), synthesis of safe controllers (Bloem,
Könighofer, and Seidl 2014), synthesis of fragments of
linear-time temporal logic (Chatterjee et al. 2013), and
verification of partial designs (Scholl and Becker 2001;
Gitina et al. 2013) fall into this category and require an
even more general formalism known as dependency quanti-
fied Boolean formulas (DQBFs) (Peterson, Reif, and Azhar
2001).

Unlike QBFs, where an existential variable implicitly de-
pends on all the universal variables preceding its quantifica-
tion level, DQBFs admit the dependency sets being explicitly
specified. Essentially the dependency specifiable quantifica-
tions correspond to Henkin quantifiers (Henkin 1961). The se-
mantics of a DQBF can be interpreted from a game-theoretic
viewpoint as a game played by one universal player and
multiple non-cooperative existential players with incomplete
information, each partially observing the moves of the uni-
versal player as specified by his/her own dependency set.
A DQBF is true if and only if the existential players have
winning strategies. This specificity of dependencies allows
DQBF encodings to be exponentially more compact than their
equivalent QBF counterparts. In contrast to the PSPACE-
completeness of QBF, the decision problem of DQBF is
NEXPTIME-complete (Peterson, Reif, and Azhar 2001).

Driven by the needs of the applications mentioned above,
research on DQBF solving has emerged in the past few years,
leading to solvers such as IDQ (Fröhlich et al. 2014) and
HQS (Gitina et al. 2015; Wimmer et al. 2015; 2017). Due to
the high worst-case complexity of DQBF solving, identifying
special DQBF structures, as we do in this paper, may provide
insights for solver improvement.

As an example for a DQBF, consider the formula
∀x1∀x2∃y1(x1)∃y2(x2) : (x1 ∧ x2) ≡ (y1 ≡ y2)

from (Rabe 2017), which we will use as a running example
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throughout this paper. The DQBF asks whether there are
choices for y1 only depending on the value of x1, denoted
y1(x1), and for y2 only depending on x2, denoted y2(x2),
such that the Boolean formula after the quantifier prefix eval-
uates to true for all assignments to x1 and x2.1 The Boolean
formula in turn states that the existential variables y1 and y2
have to be equal iff x1 and x2 are true. Since y1 can only
‘see’ x1 and y2 only x2, y1 and y2 ‘cannot coordinate’ to
satisfy the constraint. Thus, the formula is false. However,
a straightforward translation of this DQBF into a QBF with
only implicit dependency sets will not work. Changing the
quantifier prefix into a QBF quantifier prefix ∀x1∃y1∀x2∃y2
means that y1 may depend on x1, but y2 may depend on x1
and x2. In that case the formula would be true. Changing the
prefix into ∀x2∃y2∀x1∃y1 has a similar effect.

In this paper, we look into a technique for DQBF solving
called fork extension, which has been presented in (Rabe
2017). Rabe uses fork extension in an attempt to turn resolu-
tion and universal reduction (Kleine Büning, Karpinski, and
Flögel 1995) into a complete proof system for DQBF, which
he calls fork resolution. Here we show that (in contrast to the
statement in (Rabe 2017)) fork resolution is incomplete.

However, we use the technique of fork extension to show
that a certain non-trivial subclass of DQBF (DQBF with pair-
wise disjoint or identical dependency sets) is in PSPACE (or
more precisely: it is ΣP

3 complete). In fact, we show that for-
mulas from this subclass can be converted into equisatisfiable
QBFs with three quantifier levels, needing only a linear in-
crease in formula size. Note that the above example falls into
this DQBF subclass. In addition, for practical application we
point out the potential usage of fork extension as a general
strategy for DQBF quantifier localization.

To obtain a better characterization of subclasses of
DQBF which are in PSPACE and others which are already
NEXPTIME-complete, we consider a ‘slightly extended’ sub-
class (allowing dependency sets with all universal variables in
addition) and show that this subclass is already NEXPTIME-
complete. In addition, we prove that for both considered
subclasses of DQBF the proof system with fork extension is
complete.

Finally, we exploit the formula conversion technique to
improve DQBF solvers by solving formulas efficiently in
case that an initial test reveals that they belong to the spe-
cial subclasses. Experimental results show that our method
outperforms state-of-the-art DQBF solvers on a number of
benchmarks, including the 2018 DQBF evaluation bench-
marks (Pulina and Seidl 2018). The contributions of this
work are thus twofold: providing a better understanding of
DQBF complexity on the theoretical side and advancing
DQBF solver technology on the practical side.

The paper is structured as follows: Sect. 2 presents the
foundations of DQBF and Rabe’s fork resolution calculus.
In Sect. 3 we prove that the fork resolution calculus is in-
complete. We present and analyze two sub-classes of DQBF
regarding their complexity in Sect. 4. Sect. 5 shows that fork

1We can interpret this as a game played by y1 and y2 against
x1 and x2, where y1 and y2 only have incomplete information on
actions of x1, x2, respectively.

resolution is complete for these classes. Experimental results
are presented in Sect. 6. Sect. 7 concludes this paper and
outlines future work.

2 Foundations
2.1 DQBF and QBF
Dependency quantified Boolean formulas are obtained by
prefixing Boolean formulas with the so-called Henkin quan-
tifiers (Henkin 1961).

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn,
y1, . . . , ym} be a finite set of Boolean variables. A
dependency quantified Boolean formula (DQBF) ψ
over V has the form ψ := Q : φ, where
Q = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym), with Dyi ⊆
{x1, . . . , xn} being the dependency set of yi for i =
1, . . . ,m, is called the (quantifier) prefix, and φ, a quantifier-
free Boolean formula over V , is called the matrix of ψ.

We denote the set of universal variables by V ∀
ψ =

{x1, . . . , xn} and the set of existential variables by V ∃
ψ =

{y1, . . . , ym}. We define the dependency function dep :
V → 2V to be dep(v) = Dv if v ∈ V ∃

ψ , and dep(v) = {v}
if v ∈ V ∀

ψ . Moreover, as the order of the variables in the
prefix Q does not matter due to the explicit specification of
dependency sets, we regard Q as a set. Thereby, the notation
Q \ {v} with a variable v ∈ V denotes the prefix resulting
from Q by removing the variable v together with its quan-
tifier (as well as its dependency set in case v is existential,
and all its occurrences in dependency sets if it is universal).
Similarly, the notation Q ∪

{
∃y(Dy)

}
denotes adding an

existential variable y (and universal quantifiers for variables
that are in Dy but not in V ∀

ψ ) to the prefix.
The semantics of a DQBF is typically defined in terms of

so-called Skolem functions. Let [[V ]] denote the set of truth
assignments to variables V .

Definition 2 (Semantics of DQBF). A DQBF ψ defined as
above is satisfiable if and only if there exist functions sy :
[[Dy]]→ B for y ∈ V ∃

ψ , called Skolem functions of ψ, such
that replacing in φ each existential variable y with (a Boolean
expression over Dy for) sy turns φ into a tautology.

Deciding whether a given DQBF is satisfiable is
NEXPTIME-complete (Peterson, Reif, and Azhar 2001).

Definition 3 (Equisatisfiability of DQBFs). Two DQBFs ψ
and ψ′ are called equisatisfiable if they are either both satis-
fiable or both unsatisfiable.

An important special case of DQBFs is known as quanti-
fied Boolean formulas. They exhibit a linearly ordered quan-
tifier prefix, where each existential variable y depends on all
universal variables in whose scope it is:

Definition 4 (Syntax of QBF, Equivalent DQBF). Let
V = {x1, . . . , xn, y1, . . . , ym} be a finite, non-empty set
of Boolean variables, X1, . . . , Xk ⊆ {x1, . . . , xn} a par-
tition of {x1, . . . , xn} such that Xi 6= ∅ for i = 2, . . . , k,
and Y1, . . . , Yk ⊆ {y1, . . . , ym} a partition of {y1, . . . , ym}
such that Yi 6= ∅ for i = 1, . . . , k − 1. Additionally let



φ be a quantifier-free Boolean formula over V . A quanti-
fied Boolean formula (QBF) Ψ (in prenex form) is given
by Ψ := ∀X1∃Y1∀X2∃Y2 . . . ∀Xk∃Yk : φ. The QBF Ψ
is equivalent to the DQBF ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . .

∃ym(Dym) : φ, with Dyi =
⋃L
`=1X` such that L is the

unique index with yi ∈ YL. In this case we say that the
DQBF ψ ‘can be written as a QBF Ψ’ or the DQBF ψ ‘has
an equivalent QBF prefix’.

Lemma 1 ((Gitina et al. 2015)). A DQBF ψ has an equiv-
alent QBF prefix if Dy ⊆ Dy′ or Dy′ ⊆ Dy holds for all
y, y′ ∈ V ∃

ψ .

QBFs, with PSPACE-complete complexity (Meyer and
Stockmeyer 1973), can be solved more efficiently than gen-
eral DQBFs. There are well-known QBF solvers, such as
DepQBF (Lonsing and Biere 2010; Lonsing and Egly 2014),
AIGSolve (Pigorsch and Scholl 2009; 2010), RAReQS (Jan-
ota et al. 2012), Qesto (Janota and Marques-Silva 2015), and
CAQE (Tentrup and Rabe 2015).

In the following we assume that the matrix φ is given in
conjunctive normal form (CNF). A formula is in CNF if it is
a conjunction of clauses; a clause is a disjunction of literals,
and a literal is either a variable v or its negation ¬v. We view
a formula in CNF as a set of clauses and a clause as a set of
literals, e. g., we write

{
{x1,¬x2}, {x2,¬x3}

}
for the for-

mula (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3). We assume that none of the
clauses of the CNF φ under consideration is tautological, i. e.,
there is no variable v such that {v,¬v} ⊆ C for all C ∈ φ.
For a literal `, var(`) denotes the corresponding variable, i. e.,
var(v) = var(¬v) = v and dep(`) = dep

(
var(`)

)
. More-

over, for a clause C = {`1, . . . , `k} we define dep(C) =
∪ki=1 dep(`i) and for a CNF φ = {C1, . . . , Cn} we define
dep(φ) = ∪ni=1 dep(Ci).

Note that a DQBF can be transformed such that its ma-
trix is in CNF. While transforming the matrix directly into
CNF without introducing new variables can cause an ex-
ponential blow-up in formula size, Tseitin transformation
(Tseitin 1970) provides an alternative with only a linear in-
crease in size at the cost of having additional existential
variables. The idea is to introduce auxiliary existential vari-
ables that store the truth values of sub-expressions. Because
the values of these variables are uniquely determined by the
sub-expressions, they may depend on all universal variables.

2.2 Universal Expansion, Resolution, Universal
Reduction, and Fork Extension

We give an overview on relevant techniques that are used in
the literature in the context of DQBF solving.

Universal expansion, which has been defined for QBF, can
be easily generalized to DQBF as observed, e. g., in (Bubeck
and Kleine Büning 2006; Bubeck 2010; Balabanov, Chiang,
and Jiang 2014; Gitina et al. 2013).

Definition 5 (Universal Expansion for DQBF). For a
DQBF ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : φ with
Zxi =

{
yj ∈ V ∃

ψ

∣∣xi ∈ Dyj

}
, performing universal ex-

pansion on variable xi ∈ V ∀
ψ in ψ yields a new prefix(

Q \
(
{xi} ∪

⋃
yj∈Zxi

{yj}
))
∪
{
∃ybj(Dyj \ {xi})

∣∣ yj ∈

Zxi , b ∈ {xi, xi}
}

and a new matrix φ[0/xi][y
xi
j /yj ] ∧

φ[1/xi][y
xi
j /yj ] for all yj ∈ Zxi

, where φ[κ/v] denotes the
Boolean formula resulting from φ by replacing all occur-
rences of variable v by Boolean expression κ.

Definition 6 (Resolution). Let φ be a formula in CNF, ` a
literal, and C,C ′ ∈ φ clauses such that ` ∈ C and ¬` ∈ C ′.
The resolvent of C and C ′ w. r. t. to the pivot literal ` is given
by C ⊗` C ′ :=

(
C \ {`}

)
∪
(
C ′ \ {¬`}

)
.

Resolvents are implied by the formula, i. e., if R is a resol-
vent of two clauses in φ, then φ and φ ∪ {R} are logically
equivalent (Biere et al. 2008, Sect. 3.2.1).

In (Wimmer et al. 2015) it has been proven that resolution
can be used to eliminate existential variables from a DQBF
under certain conditions (we mention only a subset here):

Theorem 1 (Variable elimination by resolution). Let y ∈ V ∃
ψ

be an existential variable of ψ. We partition the matrix φ into
the clause sets φy = {C ∈ φ | y ∈ C}, φ¬y = {C ∈
φ | ¬y ∈ C}, and φ∅ = φ \ (φy ∪ φ¬y).
If one of the following conditions is satisfied
1. for all C ∈ φy and all k ∈ C we have dep(k) ⊆ dep(y),
2. for all C ′ ∈ φ¬y and all k ∈ C ′ we have dep(k) ⊆

dep(y),
then ψ is equisatisfiable with ψ′ := Q \ {y} : φ∅ ∧∧
C∈φy

∧
C′∈φ¬y

C ⊗y C ′.

Universal reduction removes a universal variable from a
clause if the clause does not contain any existential variable
which depends upon it. This technique has been generalized
to DQBF in (Balabanov, Chiang, and Jiang 2014; Fröhlich et
al. 2014).

Lemma 2 (Universal reduction). Let Q : φ ∧ C be a DQBF
and ` ∈ C a universal literal such that for all k ∈ C with
k 6= ` we have var(`) 6∈ dep(k). Then Q : φ ∧ C and
Q : φ ∧

(
C \ {`}

)
are equisatisfiable.

It has been shown that resolution together with universal
reduction (which is called Q-Resolution or QRes for short)
provides a complete proof system for QBF (Kleine Büning,
Karpinski, and Flögel 1995). This result means that a QBF
Ψ is unsatisfiable if and only if QRes can derive the empty
clause from Ψ. This statement is not true for DQBF as has
been shown in (Balabanov, Chiang, and Jiang 2014). Rabe
made the attempt to extend resolution with universal reduc-
tion to a complete proof system by adding a new operation
called fork extension. Fork extension is based on the follow-
ing lemma (Rabe 2017):

Lemma 3 (Splitting). Let ψ = Q : φ∧(C1∪C2) be a DQBF
containing a clause C1 ∪ C2 and let y be a new variable not
occurring in ψ. Then ψ andQ∪

{
∃y(dep(C1)∩dep(C2))

}
:

φ ∧ (C1 ∪ {y}) ∧ (C2 ∪ {¬y}) are equisatisfiable.

Rabe applies the above splitting rule on clauses consisting
of two parts C1 and C2 with incomparable dependency sets,
i. e., dep(C1) 6⊆ dep(C2) and dep(C2) 6⊆ dep(C1). We
denote the proof system proposed by Rabe as QResSplit.



3 Incompleteness of QResSplit
Theorem 1 in (Rabe 2017) claims that QResSplit is a sound
and complete proof calculus for DQBF. Unfortunately, the
completeness part is incorrect.
Theorem 2. QResSplit is incomplete for DQBF.

Proof. We show that QResSplit cannot deduce the unsatisfia-
bility of the following DQBF:

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)∃y3(x1, x3) :

(x1 ∧ x2 ∧ x3) ≡ (y1 ⊕ y2 ⊕ y3) .

where the symbol ‘⊕’ denotes the exclusive OR (XOR) opera-
tion. The unsatisfiability of the DQBF can be seen as follows.
We first rewrite the matrix as the conjunction of

(x1 ∧ x2 ∧ x3)→ (y1 ⊕ y2 ⊕ y3) (1a)
(x1 ∧ x2 ∧ x3)← (y1 ⊕ y2 ⊕ y3) (1b)

Eq. (1b) can be written as the conjunction of
(¬x1)→ ¬(y1 ⊕ y2 ⊕ y3) (2a)
(¬x2)→ ¬(y1 ⊕ y2 ⊕ y3) (2b)
(¬x3)→ ¬(y1 ⊕ y2 ⊕ y3) (2c)

By universally expanding on all universal variables the
DQBF with its matrix re-expressed by Eq. (1a), (2a), (2b),
(2c) can be rewritten as the conjunction of the following
linear equations over GF(2) (Han and Jiang 2012).

yx1x21 ⊕ yx2x32 ⊕ yx1x33 = 1 (3a)

yx1 x21 ⊕ yx2 x32 ⊕ yx1 x33 = 0 (3b)

yx1 x21 ⊕ yx2x32 ⊕ yx1x33 = 0 (3c)

yx1x21 ⊕ yx2x32 ⊕ yx1 x33 = 0 (3d)

yx1x21 ⊕ yx2x32 ⊕ yx1x33 = 0 (3e)

yx1x21 ⊕ yx2 x32 ⊕ yx1x33 = 0 (3f)

yx1x21 ⊕ yx2x32 ⊕ yx1x33 = 0 (3g)

yx1x21 ⊕ yx2x32 ⊕ yx1x33 = 0 (3h)
It can be verified through Gaussian elimination that the sys-

tem of linear equations has no solution, and thus the original
DQBF is unsatisfiable.

On the other hand, to see the limitation of QResSplit, the
matrix of the DQBF should be expressed in CNF with the
following clauses

(y1 ∨ y2 ∨ y3 ∨ x1 ∨ x2 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1 ∨ x2 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1 ∨ x2 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1 ∨ x2 ∨ x3)

(y1 ∨ y2 ∨ y3 ∨ x1) (y1 ∨ y2 ∨ y3 ∨ x2) (y1 ∨ y2 ∨ y3 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1) (y1 ∨ y2 ∨ y3 ∨ x2) (y1 ∨ y2 ∨ y3 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1) (y1 ∨ y2 ∨ y3 ∨ x2) (y1 ∨ y2 ∨ y3 ∨ x3)
(y1 ∨ y2 ∨ y3 ∨ x1) (y1 ∨ y2 ∨ y3 ∨ x2) (y1 ∨ y2 ∨ y3 ∨ x3)

The following observations can be made.
1. Universal reductions are not applicable to any clause,

since in each clause all universal variables occur in the
dependency sets of the existential variables.

2. All resolvents for pairs of clauses are tautologies.
3. Fork extension is inapplicable, because any partition of a

clause C into two parts C1 and C2 does not yield incompa-
rable dependency sets, that is, either dep(C1) ⊆ dep(C2)
or dep(C2) ⊆ dep(C1).

Consequently, it is not possible to derive the empty clause by
QResSplit from this DQBF.

4 Classes DQBFde, DQBFde+, and DQBFdec

In this section, we define two main non-trivial sub-classes
of DQBFs which we call DQBFde and DQBFdec.2 DQBFde

contains all DQBFs where the dependency sets of the existen-
tial variables are either pairwise equal or disjoint. DQBFdec

extends DQBFde by additionally allowing dependency sets
containing all universal variables. Formally,

Definition 7 (DQBFde and DQBFdec). A DQBF ψ :=
∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : φ with φ in CNF be-
longs to DQBFde iff for all pairs of existential variables yi
and yj (1 ≤ i, j ≤ m) Dyi = Dyj or Dyi ∩ Dyj = ∅. ψ
belongs to DQBFdec iff for all pairs of existential variables
yi and yj (1 ≤ i, j ≤ m) Dyi = Dyj or Dyi ∩Dyj = ∅ or
Dyi = {x1, . . . , xn} or Dyj = {x1, . . . , xn}.

In the following, we prove that DQBFde can be reduced
to QBF and is thus in PSPACE. In contrast, the ‘slightly
extended’ class DQBFdec turns out to be an NEXPTIME
complete subclass of DQBF (i. e., it is equivalent to DQBF
in terms of complexity).

Theorem 3. DQBFde is in PSPACE.

The proof is constructive and transforms a DQBF in
DQBFde into an equisatisfiable QBF. The conversion pro-
ceeds according to the following Alg. 1.

input :DQBF ψ := Q : φ, ψ ∈ DQBFde,
Q := ∀x1 . . .∀xn∃y1(Dy1) . . .∃ym(Dym),
φ in CNF, clauses in φ universally reduced

output :Equisatisfiable 3QBF
1 while ∃C ∈ φ, `1 ∈ C ∩ V ∃ψ with dep(`1) 6= ∅ and

dep(C) \ dep(`1) 6= ∅ do
2 C1 := {` ∈ C | dep(`) ⊆ dep(`1)}; C2 := C \ C1;
3 t := new variable with dep(t) = ∅;
4 φ := (φ \ C) ∪ {C1 ∪ {t}} ∪ {C2 ∪ {¬t}};
5 Q := Q ∪ {∃t(∅)};
6 {t1, . . . tk} := {v ∈ Q | v ∈ V ∃ψ , dep(v) = ∅};
7 {w1, . . . wm′} := {v ∈ Q | v ∈ V ∃ψ , dep(v) 6= ∅};
8 return ∃t1, . . .∃tk∀x1 . . .∀xn∃w1 . . .∃wm′ : φ;

Algorithm 1: Convert DQBFde into 3QBF.

Proof. We consider a DQBF in DQBFde as given in Alg. 1.
W. l. o. g. we assume that the clauses in φ are already univer-
sally reduced according to Lemma 2. The dependency sets
of y1, . . . , ym form k non-empty disjoint sets D1, . . . , Dk or
k non-empty disjoint sets D1, . . . , Dk together with ∅.

In lines 1–5 we apply fork extension to ψ as long as
φ contains a clause C with an existential literal `1 ∈ C,
dep(`1) 6= ∅, and dep(C) \ dep(`1) 6= ∅. In that case (due
to universal reduction) C has to contain at least a second ex-
istential literal `2 with dep(`2) 6= ∅ and dep(`2) 6= dep(`1)
(and thus dep(`2)∩ dep(`1) = ∅, since ψ is in DQBFde). By
fork extension we split C into C1 ∪ {t} and C2 ∪ {¬t} (t is
a new existential variable). C1 contains all existential literals

2‘de’ stands for ‘disjoint or equal dependency sets’ and ‘dec’ for
‘disjoint, equal, or complete dependency sets’.



from C with the same dependency set as `1, all existential
literals from C with empty dependency sets, and all univer-
sal literals from C which are in dep(`1). By construction,
dep(C1) ∩ dep(C2) = ∅ and therefore dep(t) = ∅. Fork
extension is performed until the condition mentioned above
does not hold for any clause. We call the result after all fork
extensions ψ′ and the corresponding matrix φ′.

The clauses of φ′ can now be partitioned into k + 1
sets P0, P1, . . . , Pk. P0 is possibly empty and contains only
clauses C with dep(C) = ∅. Each Pi with 1 ≤ i ≤ k is
non-empty and contains only clauses Ci with dep(Ci) = Di,
i. e., for all existential literals ` ∈ Ci we have dep(`) = Di

or dep(`) = ∅, for all universal literals µ ∈ Ci we have
var(µ) ∈ Di. Now it is easy to see that all existential vari-
ables y occurring in Pi with 1 ≤ i ≤ k and dep(y) = Di can
be eliminated by resolution according to Thrm. 1. Clauses Ci
with y or ¬y only occur in Pi. As shown above, for all literals
k ∈ Ci we have dep(k) ⊆ Di = dep(y) and thus, y satisfies
conditions 1) and 2) of Thrm. 1; 1) or 2) would already be
sufficient according to Thrm. 1. Let P yi = {C ∈ Pi | y ∈ C},
P¬y
i = {C ∈ Pi | ¬y ∈ C}, and P ∅

i = Pi \(P yi ∪P
¬y
i ). It is

important to note that elimination of y by resolution replaces
Pi by P ′

i = P ∅
i ∧

∧
C∈Py

i

∧
C′∈P¬y

i

C ⊗y C ′ and therefore after

elimination of y we still have the property that all literals
k in P ′

i have dependency sets dep(k) ⊆ Di. Thus, variable
elimination of existential variables can be performed in any
arbitrary order for all existential variables with non-empty
dependency sets Di.

The consideration above implies that replacing all depen-
dency setsDi 6= ∅ in ψ′ by the set {x1, . . . , xn} of all univer-
sal variables leads to an equisatisfiable DQBF. This simply
follows from the fact that variable elimination by resolution
for y depending on Di and for y depending on {x1, . . . , xn}
would lead to exactly the same results. After this transforma-
tion ψ′ has three groups of variables: Existential variables
depending on ∅, including the new variables introduced by
fork extension and called t1, . . . tk in line 6 of Alg. 1, univer-
sal variables x1, . . . , xn, and existential variables depending
on {x1, . . . , xn}, called w1, . . . wm′ in line 7. Now it is easy
to see that this DQBF can be written as a QBF ψ′′ with only
three quantifier levels, see line 8.

The size of ψ′′ is linear in the size of the original DQBF ψ,
since the number of needed fork extensions is limited by the
number of occurrences of existential literals with non-empty
dependency sets in ψ. Since the decision problem for QBF is
in PSPACE, DQBFde is in PSPACE as well.

Example 1. We consider the DQBF

∀x1∀x2∃y1(x1)∃y2(x2) : (x1 ∧ x2) ≡ (y1 ≡ y2).

which is in DQBFde. Translating the matrix φ into CNF
results in

(y1 ∨ y2 ∨ x1 ∨ x2) ∧ (y1 ∨ y2 ∨ x1 ∨ x2) ∧ (y1 ∨ y2 ∨ x1)

∧ (y1 ∨ y2 ∨ x2) ∧ (y1 ∨ y2 ∨ x1) ∧ (y1 ∨ y2 ∨ x2).

Because the first clause C = y1 ∨ y2 ∨ x1 ∨ x2 contains
variables with incomparable dependency sets, we have to
split it into C1 = y1∨x1 and C2 = y2∨x2 and replace it by

t1∨y1∨x1 and t1∨y2∨x2 with a new variable t1 depending
on dep(C1) ∩ dep(C2) = ∅. Applying fork extension to all 6
clauses results in 12 clauses with 6 new variables t1, . . . , t6,
all with empty dependency sets:

(t1 ∨ y1 ∨ x1)
(t2 ∨ y1 ∨ x1)
(t3 ∨ y1 ∨ x1)
(t4 ∨ y1)
(t5 ∨ y1 ∨ x1)
(t6 ∨ y1)

(t1 ∨ y2 ∨ x2)
(t2 ∨ y2 ∨ x2)
(t3 ∨ y2)
(t4 ∨ y2 ∨ x2)
(t5 ∨ y2)
(t6 ∨ y2 ∨ x2)

The new matrix φ′ can be partitioned into two sets P1 and
P2. P1 corresponds to the left block of clauses above; P2 cor-
responds to the right one. All clauses in P1 have dependency
set {x1}; all clauses in P2 have dependency set {x2}.

According to Thrm. 1 we can remove y1 by resolution from
P1 (and thus from φ′) and we can remove y2 from P2 (φ′).
This means that we can replace the dependency sets of y1
and y2 by {x1, x2} and we can write the DQBF as a QBF
∃t1 . . . ∃t6∀x1∀x2∃y1∃y2 : φ′.

By having a closer look at the proof of Thrm. 3 we imme-
diately observe that the theorem holds for an extended class
DQBFde+:
Definition 8 (DQBFde+). A DQBF ψ := ∀x1 . . . ∀xn
∃y1(Dy1) . . . ∃ym(Dym) : φ with φ in CNF belongs to
DQBFde+ iff for all pairs of existential variables yi and yj
(1 ≤ i, j ≤ m) occurring together in some clause of φ we
have Dyi = Dyj or Dyi ∩Dyj = ∅.
Corollary 1. DQBFde+ is in PSPACE and each DQBF ψ in
DQBFde+ can be transformed into an equisatisfiable 3QBF
(a QBF with 3 quantifier levels).

The proof of Thrm. 3 actually gives us a precise character-
ization of DQBFde+ (or DQBFde) within the polynomial time
hierarchy (Stockmeyer 1976): On the one hand, each DQBF
ψ in DQBFde+ can be transformed in polynomial time into an
equisatisfiable 3QBF (a QBF with 3 quantifier levels). There-
fore DQBFde+ is in ΣP

3 . On the other hand, each 3QBF can
be viewed as a DQBF in DQBFde+, showing the ΣP

3 -hardness
of DQBFde+. Together we have:
Corollary 2. DQBFde+ is ΣP

3 complete.
In contrast, Thrm. 3 does not hold anymore, if we replace

DQBFde by the ‘slightly extended’ class DQBFdec. In fact,
we have:
Theorem 4. DQBFdec is NEXPTIME complete.

Proof. DQBFdec is in NEXPTIME, since DQBFdec is a sub-
class of DQBF and DQBF is in NEXPTIME. Now we show
that DQBFdec is NEXPTIME hard by showing that each
DQBF formula can be transformed into an equisatisfiable
formula in DQBFdec by a polynomial transformation. The
proof can be led by considering that – according to (Gitina
et al. 2013) – each DQBF formula can be regarded as a Par-
tial Equivalence Checking Problem (PEC) and each PEC
can be backtranslated into a DQBF. The backtranslation from
(Gitina et al. 2013) in fact produces a formula from DQBFdec.

More specifically, we give a direct transformation. Let
ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : φ be a DQBF.
Let Dyj = {xj1 , . . . , xjkj

}. Introduce for each such variable



xji a new copy xjji , leading to a new dependency set D′
yj =

{xjj1 , . . . , x
j
jkj
}. Since the dependency sets contain only new

variable copies, it is clear that they are disjoint. It is easy to
see that the non-CNF DQBF

ψ′ := ∀x1 . . .∀xn∀x111 . . .∀x
1
1k1

. . .∀xmm1
. . .∀xmmkm

∃y1(D′y1) . . .∃ym(D′ym) :
( m∧
j=1

kj∧
l=1

(xjjl ≡ xjl)
)
→ φ (4)

and ψ are equisatisfiable. (The idea is that we require φ only
to hold for assignments to the universal variables, where the
copied variables have the same values as the original vari-
ables.) The matrix of ψ′ can be transformed into CNF either
using the laws of distributivity (with a potential exponential
blow-up in size) or using Tseitin transformation with new
Tseitin variables depending on all universal variables. The
second option leads to an equisatisfiable formula in DQBFdec

which is polynomial in the size of the original formula ψ.

The proof shows that in Def. 7 it was essential to restrict
DQBFde to formulas with the matrix in CNF. The described
transformation in Eq. (4) allows us to make the dependency
sets of all existential variables disjoint with a polynomial
blowup of the formula – but it does not preserve the CNF
structure of the matrix. If it did, Thrm. 3 would imply that
NEXPTIME = PSPACE.

Quantifier Localization The 3QBFs resulting from fork
extension in the proof of Thrm. 3 have a special structure
which allows to ‘localize quantifiers’, i. e., to restrict the
scope of quantifiers to subformulas of the matrix, leading to
a non-prenex formula. QBF and DQBF solvers relying on
formula rewriting like Q-Resolution and universal expansion
profit from quantifier localization to a great extent, since the
rewriting has to be done only for smaller subformulas.

For each set Pi from the partition of clauses mentioned
in the proof of Thrm. 3, the existential variables depending
on Di as well as the universal variables from Di can be
quantified locally to Pi. E. g. for the DQBF from Ex. 1, after
fork extension the clauses are partitioned into two sets P1

and P2 with dep(P1) = {x1} and dep(P2) = {x2}. With
quantifiers localized to P1 and P2, the DQBF can be rewritten
into ∃t1 . . . ∃t6 :

(
[∀x1∃y1 : P1] ∧ [∀x2∃y2 : P2]

)
.

Skolem Functions For many applications not only DQBF
solving, but also the computation of Skolem functions is
needed. Despite the equisatisfiability between the converted
3QBFs and their original DQBFs in DQBFde+, Skolem func-
tions derived by QBF solving may not necessarily meet the
dependency set requirements due to the relaxed QBF depen-
dency conditions. Fortunately, using the special structure of
the converted 3QBFs allowing partitioning the matrix into
sets Pi, it is easy to prove that Skolem functions with the
originally intended dependency sets can be recovered by sim-
ply substituting the extra dependency variables in the 3QBF
Skolem functions with arbitrary Boolean constants.

5 QResSplit for DQBFde and DQBFdec

In Sect. 3 we have shown that the proof system QResSplit
is not complete for DQBF. Having a closer look at the proof
of Thrm. 3, we immediately see that QResSplit is complete
both for DQBFde / DQBFde+ and for DQBFdec. The proof is
straightforward and much less involved than the (incorrect)
proof attempt for Theorem 1 in (Rabe 2017).

Theorem 5. QResSplit is complete for DQBFde+ and for
DQBFdec.

Proof. Let us consider a DQBF
ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : φ in DQBFdec.
First, the existential variables depending on all universal vari-
ables can be eliminated by resolution according to Thrm. 1.3

The result is a DQBF ψ′ in DQBFde ⊆ DQBFde+ (which
may be exponentially larger than ψ). For each DQBF ψ′ in
DQBFde+ fork extension exactly as in the proof of Thrm. 3
leads to a DQBF ψ′′. It has been shown that all existential
variables with non-empty dependency sets can be eliminated
by resolution from ψ′′. The resulting DQBF ψ′′′ contains
only universal variables and existential variables with empty
dependency sets. Then the universal variables can be removed
by universal reduction, see Lemma 2. Finally, the remaining
clauses to be considered form a SAT problem. There is a
resolution proof deriving an empty clause from those clauses
iff the remaining SAT problem is unsatisfiable.

6 Experiments
For our experiments we have used one core of an Intel Xeon
CPU E5-2650v2 with 2.6 GHz. The runtime of all experi-
ments was limited to 1800 s and the memory to 4 GB.

We start our experimental analysis by considering two sets
of parameterized benchmarks with disjoint dependency sets.
Both sets are generalizations of the DQBF in Ex. 1.

For the first set of parameterized benchmarks we defined
a family of DQBFde formulas F0, F1, . . ., with the matrix
translated into CNF in a straigthforward manner. Fn is de-
fined as Fn := QFn :

(∧n
i=0(xi1 ∧ xi2)

)
≡
(
yn1 ≡ yn2

)
.

The prefix QFn contains universal variables from the sets
Xn

1 = {x01, . . . , xn1}, Xn
2 = {x02, . . . , xn2}. The existential

variables yn1 and yn2 depend on Xn
1 and Xn

2 , respectively. Fn
has 2n+2 universal and 2 existential variables. The second
set G0, G1, . . . is defined similarly, but Gn has n2+3n+2
universal and 2n+ 2 existential variables. Gn is defined as
Gn := QGn :

∧n
i=0 ϕi with ϕi = (

∧i
j=0

(
xij,1 ∧ xij,2)

)
≡(

yi1 ≡ yi2
)
. For 0≤ i≤n the prefix QGn contains univer-

sal variables from the sets Xi
1 = {xi1,1, . . . , xii,1}, Xi

2 =

{xi1,2, . . . , xii,2} and existential variables yi1 and yi2 depend-
ing on Xi

1 and Xi
2, resp. Note that both F0 and G0 coincide

with our running example, which is a shortened version (Rabe
2017) of the formula used in (Balabanov, Chiang, and Jiang
2014) to prove that QRes is not complete for DQBF.

3For this completeness consideration, we actually do not have
to remove clauses during ‘variable elimination by resolution’. The
corresponding theorem just says that we do not need to consider the
removed clauses in any attempt to derive the empty clause.
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Figure 1: DQBF Solvers vs. QBF Solvers for Family Fn.
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Figure 2: DQBF Solvers vs. QBF Solvers for Family Gn.
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Figure 3: DQBF Solvers on Competition Benchmarks.

We implemented the translation of DQBF formulas from
DQBFde+ into QBF as shown in Sect. 4 and applied it to
the families Fn and Gn. For Fn we generated benchmarks
with n increasing in steps of 10 from 0 to 2000, for Gn
with n increasing from 0 to 300 in steps of 2. We evaluated
the runtimes of the DQBF solvers HQS (Gitina et al. 2015)
(which was the winner of the DQBF track of the QBFE-
VAL’18 competition) and IDQ (Fröhlich et al. 2014) applied
to the original formulas and compared them to the runtimes
of the state-of-the-art QBF solvers DepQBF (Lonsing and
Biere 2010), RAReQS (Janota et al. 2012), Qesto (Janota and
Marques-Silva 2015), and CAQE (Tentrup and Rabe 2015)
applied to the QBFs resulting from translation. The CPU
times for the QBF solvers include the times for translating
the DQBFs into QBFs using fork extension.

In Fig. 1 we present the results for formulas Fn, in Fig. 2
for formulas Gn. The x-axis represents the value n, the y-
axis the CPU time in seconds. HQS can only solve F0 and
F10, but fails already for F20. IDQ solves all instances until
F510 and exceeds the memory limit starting with F520. In
contrast, all QBF solvers work pretty well on all generated
instances. All of them can solve the instances up to F2000.
The maximum runtimes for solving the instances lie between
20.9 s for DepQBF and 7.2 s for RAReQS. This impressively
shows the success of our conversion method for DQBFde

formulas. The results are confirmed by experiments for Gn
as well. Here both HQS and IDQ can solve the instances
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Figure 4: Competition Benchmarks, DQBFde+.

until G86 (for G88 HQS exceeds the time limit, iDQ the
memory limit), but with higher runtimes for HQS (HQS needs
1694.1 s for G86, IDQ 18.0 s). CAQE, DepQBF, and Qesto
solve all benchmarks up to G300 with a maximum CPU time
between 103.3 s for CAQE and 150.4 s for Qesto. RAReQS
performs a little bit worse on this benchmark set; it exceeds
the memory limit for G300 and solves G298 within 1300.8 s,
but still performs much better than the DQBF solvers.

Encouraged by those results we enhanced the DQBF solver
HQS (Wimmer et al. 2017) by a special treatment of formu-
las from DQBFde+. Whenever we detect that a DQBF be-
longs to DQBFde+ we translate it into a QBF and process it
further by QBF solving. We call the resulting solver HQS-
DE.4 As a benchmark set we used the complete set of 334
instances from the DQBF track of the QBFEVAL’18 com-
petition (Pulina and Seidl 2018). Fig. 3 shows a cactus plot
comparing the performance of HQS-DE to HQS and IDQ on
the complete set of DQBF benchmarks. It shows that HQS
clearly outperforms IDQ on this set of benchmarks. HQS
is able to solve 171 benchmarks, whereas IDQ only solves
77. Interestingly, HQS-DE in turn outperforms HQS, solving
even 12 benchmarks more than HQS within 1800 s.

For the QBFEVAL’18 benchmarks, there are 34 out of 334
instances falling into the DQBFde+ class. Fig. 4 shows a scat-

4Available at https://abs.informatik.
uni-freiburg.de/src/projects_view.php?
projectID=21.



ter plot with runtimes of HQS-DE and HQS for this subset of
benchmarks. We see that HQS-DE clearly outperforms HQS
on the DQBFde+ benchmarks. It is faster than HQS for all
but one benchmark, and solves 28 benchmarks in contrast to
only 14 solved by HQS. IDQ solves 18 out of 34 benchmarks.
Although IDQ is slightly better than HQS on the DQBFde+

benchmarks, it is still strongly inferior to HQS-DE.

7 Conclusions and Future Work
Through our theoretical investigation on special classes of
DQBFs, we have shown that the insights lead to improve-
ments of state-of-the-art DQBF solvers by providing a spe-
cialized solution using fork extension. Experiments on two
parameterized benchmark sets and the DQBF competition
instances have shown the benefits of the proposed method.

For the future, we plan to look into fork extension for en-
abling quantifier localization in a more general setting, not
only restricted to formulas from DQBFde+. Moreover, we
plan to complement the successful approach of the solver
HQS which uses partial universal expansion and so-called de-
pendency elimination (Wimmer et al. 2017) for transforming
a DQBF into a QBF by a technique that alternatively trans-
forms the DQBF into an equisatisfiable DQBF in DQBFde+,
enabling a translation into 3QBF by fork extension.
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