
Dependency Quantified Boolean Formulas: An
Overview of Solution Methods and Applications⋆

– Extended Abstract –

Christoph Scholl and Ralf Wimmer

Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{scholl | wimmer}@informatik.uni-freiburg.de

Abstract. Dependency quantified Boolean formulas (DQBFs) as a gen-
eralization of quantified Boolean formulas (QBFs) have received consider-
able attention in research during the last years. Here we give an overview
of the solution methods developed for DQBF so far. The exposition is
complemented with the discussion of various applications that can be
handled with DQBF solving.

1 Introduction

Dependency quantified Boolean formulas (DQBFs) [30] have received considerable
attention in research during the last years. They are a generalization of ordinary
quantified Boolean formulas (QBFs). While the latter have the restriction that
every existential variable depends on all universal variables in whose scope it
is, DQBFs allow arbitrary dependencies, which are explicitly specified in the
formula. This makes DQBFs more expensive to solve than QBFs – for DQBF
the decision problem is NEXPTIME-complete [29], for QBF ‘only’ PSPACE-
complete [28]. However, there are practically relevant applications that require
the higher expressiveness of DQBF for a natural and tremendously more compact
modeling. Among them is the analysis of multi-player games with incomplete
information [29], the synthesis of safe controllers [8] and of certain classes of LTL
properties [12], and the verification of incomplete combinational and sequential
circuits [33,17,39].

Driven by the needs of the applications mentioned above, research on DQBF
solving has not only led to fundamental theoretical results on DQBF analyzing
which proof calculi for QBF are still sound and/or complete for DQBF [3,5], but
also to first solvers like iDQ and HQS [15,16,18,36].

In this work, we give an overview of the solution methods for DQBF developed
during the last years as well as of various applications that can be handled with
DQBF solving.

⋆ This work was partly supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas”

scholl
Schreibmaschinentext
Preprint from 21th International Conference on Theory and Applications of Satisfiability Testing (SAT), July 2018, Oxford, UK

2 Notions and Problem Definition

In this section, we provide preliminaries and, in particular, we define dependency
quantified Boolean formulas as a generalization of quantified Boolean formulas.

For a finite set 𝑉 of Boolean variables, 𝒜(𝑉) denotes the set of variable
assignments of 𝑉 , i. e., 𝒜(𝑉) = {𝜈 : 𝑉 → B} with B = {0, 1}. Given quantifier-
free Boolean formulas 𝜙 and 𝜅 over 𝑉 and a Boolean variable 𝑣 ∈ 𝑉 , 𝜙[𝜅/𝑣]
denotes the Boolean formula which results from 𝜙 by replacing all occurrences of
𝑣 simultaneously by 𝜅 (simultaneous replacement is necessary when 𝜅 contains
the replaced variable 𝑣).

Quantified Boolean formulas are obtained by prefixing Boolean formulas with
a ‘linearly ordered’ quantifier prefix.

Definition 1 (Syntax of QBF). Let 𝑉 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚} be a finite
set of Boolean variables. A quantified Boolean formula (QBF) 𝜓 over 𝑉 (in
prenex form) is given by 𝜓 := ∀𝑋1∃𝑌1 . . . ∀𝑋𝑘∃𝑌𝑘 : 𝜙, where 𝑘 ≥ 1, 𝑋1, . . . , 𝑋𝑘

is a partition of the universal variables {𝑥1, . . . , 𝑥𝑛}, 𝑌1, . . . , 𝑌𝑘 is a partition of
the existential variables {𝑦1, . . . , 𝑦𝑚}, 𝑋𝑖 ̸= ∅ for 𝑖 = 2, . . . , 𝑘, and 𝑌𝑗 ̸= ∅ for
𝑗 = 1, . . . , 𝑘 − 1, and 𝜙 is a quantifier-free Boolean formula over 𝑉 , called the
matrix of 𝜓.

Dependency quantified Boolean formulas are obtained by prefixing Boolean
formulas with so-called Henkin quantifiers [21].

Definition 2 (Syntax of DQBF). Let 𝑉 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) 𝜓
over 𝑉 (in prenex form) has the form 𝜓 := ∀𝑥1 . . . ∀𝑥𝑛∃𝑦1(𝐷𝑦1) . . . ∃𝑦𝑚(𝐷𝑦𝑚) : 𝜙,
where 𝐷𝑦𝑖 ⊆ {𝑥1, . . . , 𝑥𝑛} is the dependency set of 𝑦𝑖 for 𝑖 = 1, . . . ,𝑚, and 𝜙 is
a quantifier-free Boolean formula over 𝑉 , called the matrix of 𝜓.

A QBF can be seen as a DQBF where the dependency sets are linearly or-
dered. A QBF 𝜓 := ∀𝑋1∃𝑌1 . . . ∀𝑋𝑘∃𝑌𝑘 : 𝜙 is equivalent to the DQBF 𝜓 :=
∀𝑥1 . . . ∀𝑥𝑛∃𝑦1(𝐷𝑦1) . . . ∃𝑦𝑚(𝐷𝑦𝑚) : 𝜙 with 𝐷𝑦𝑖 = ∪ℓ𝑗=1𝑋𝑗 iff 𝑌ℓ is the unique
set with 𝑦𝑖 ∈ 𝑌ℓ, 1 ≤ ℓ ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑚.

We denote the existential variables of a DQBF 𝜓 with 𝑉 ∃
𝜓 = {𝑦1, . . . , 𝑦𝑚}

and its universal variables with 𝑉 ∀
𝜓 = {𝑥1, . . . , 𝑥𝑛}. We often write 𝜓 = 𝑄 : 𝜙

with the quantifier prefix 𝑄 and the matrix 𝜙. As the order of the variables in a
DQBF quantifier prefix 𝑄 does not matter, we can regard it as a set: For instance,
𝑄 ∖ {𝑣} with a variable 𝑣 ∈ 𝑉 is the prefix which results from 𝑄 by removing the
variable 𝑣 together with its quantifier (as well as its dependency set in case 𝑣 is
existential, and all its occurrences in dependency sets if it is universal).

The semantics of a DQBF is typically defined in terms of so-called Skolem
functions.

Definition 3 (Semantics of DQBF). Let 𝜓 be a DQBF as above. It is satisfied
if there are functions 𝑠𝑦 : 𝒜(𝐷𝑦) → B for 𝑦 ∈ 𝑉 ∃

𝜓 such that replacing each
existential variable 𝑦 by (a Boolean expression for) 𝑠𝑦 turns 𝜙 into a tautology.
The functions (𝑠𝑦)𝑦∈𝑉 ∃

𝜓
are called Skolem functions for 𝜓.

Definition 4 (Equisatisfiability of DQBFs). Two DQBFs 𝜓 and 𝜓′ are
equisatisfiable iff they are either both satisfied or both not satisfied.

Deciding whether a given DQBF is satisfied is NEXPTIME-complete [29],
whereas deciding whether a given QBF is satisfied is ‘only’ PSPACE-complete [28].

3 Overview of Solution Methods

In this section, we give an overview of different solution methods to the DQBF
problem. After briefly discussing incomplete solution methods, we present various
sound and complete methods. Whereas search-based solvers using the conflict-
driven clause learning (CDCL) paradigm [34] seem to outperform other sound
and complete solution paradigms for the SAT problem, the situation is not that
clear for QBF solving and neither is it for DQBF solving.

3.1 Incomplete Approximations

An obvious approximation approach is an approximation of a DQBF by a QBF
formulation whose (implicitly given) dependency sets are supersets of the original
dependency sets in the DQBF. If there is no solution to the relaxed problem,
then there is also no solution to the original problem (see [33], e. g.). The QBF
approximation can even be approximated further by replacing (some or all)
universal variables by existential variables which may assume values from the
ternary domain {0, 1, 𝑋} [22,33]. Here 𝑋 represents an unknown value and is
propagated according to standard rules for unknowns [1].

The work of Finkbeiner and Tentrup [14] was the first one to increase the
exactness of the obvious QBF approximations by a series of more and more
complex QBF formulations.

Balabanov et al. [3] show that resolution together with universal reduction,
which is sound and complete for QBF, is no longer complete (but still sound) for
DQBF, leading to another incomplete method for DQBF.

3.2 Search-based Solution

A natural idea for DQBF solving is to generalize successful search-based QBF
solvers like DepQBF [25,26]. The problem with QBF solvers applied to DQBF
is that the solver assignments to existential variables depend on all universal
variables assigned before. That means that an unmodified search-based QBF
solver can only respect linearly ordered dependency sets. In [15], for a given
DQBF linearly ordered dependency sets are computed that over-approximate the
original dependency sets. A search-based QBF solver respecting those linearly
ordered dependency sets now has to consider additional constraints: In different
paths of the search tree that lead to the same existential variable 𝑦𝑖, but do not
differ in the assignments to the variables in 𝐷𝑦𝑖 , 𝑦𝑖 has to be assigned the same

value. In order to enforce those constraints, [15] extends the search-based QDPLL
algorithm by learning additional clauses, called Skolem clauses, after assignments
to existential variables 𝑦𝑖. The Skolem clauses just record an implication between
the current assignments to the variables in 𝐷𝑦𝑖 and the current assignment to 𝑦𝑖
for transporting this information into other paths of the search tree. Backtracking
in case of a conflict has to take these Skolem clauses into account and removes
them once they become invalid (which is in contrast to conventional learned
clauses that can remain after a conflict, since they are implied).

3.3 Abstraction-based Solution

In the QBF context there are rather strong solvers like RAReQS [23] and
Qesto [24] which work according to the CEGAR paradigm. Fröhlich et al. [16]
use a similar idea by solving a series of SAT instantiations. Their solver is based
on computing partial universal expansions, which yield over-approximations. If
a SAT solver determines that the over-approximation is unsatisfiable, they can
conclude the unsatisfiability of the DQBF. In case of satisfiability, they check if
the satisfying assignment is consistent with the dependencies of the DQBF; if
this is the case, the original DQBF is satisfied. Otherwise, the instantiation is
refined using the inconsistent assignment, and the check is repeated. It can be
shown that this process finally terminates.

3.4 Fork Resolution

In [32] information fork splitting is proposed as a basic concept for DQBF solving.
Information forks are clauses 𝐶 which can be split into two parts 𝐶1 and 𝐶2 that
depend on incomparable dependency sets 𝐷1 and 𝐷2. After splitting 𝐶 into 𝐶1

and 𝐶2, a fresh existential variable 𝑦𝑗 depending on 𝐷1 ∩𝐷2 is introduced, 𝑦𝑗 is
added to 𝐶1, ¬𝑦𝑗 to 𝐶2. [32] proves that information fork splitting together with
resolution and universal reduction forms a sound and complete proof calculus.
The proof idea for the completeness is based on the observation that existential
variables with incomparable dependency sets occurring in a single clause impede
variable elimination by resolution. So information fork splitting is done before.
To the best of our knowledge no practical implementation of a DQBF solver is
available so far which uses the information fork splitting idea.

3.5 Basic Approach Using Universal Expansion

Universal Expansion for QBF Already in the QBF context universal expan-
sion has been used as a basic operation to remove universal quantifiers [2,6].
Universal expansion for QBF is defined as follows:

Definition 5 (Universal Expansion for QBF). For a QBF 𝜓 = ∀𝑋1∃𝑌1 . . .
∀𝑋𝑘∃𝑌𝑘 : 𝜙, universal expansion of variable 𝑥𝑖 ∈ 𝑋ℓ (1 ≤ ℓ ≤ 𝑘) is defined by

∀𝑋1∃𝑌1 . . . ∀𝑋ℓ−1∃𝑌ℓ−1∀𝑋ℓ ∖ {𝑥𝑖}∃𝑌 ′
ℓ ∀𝑋ℓ+1∃𝑌 ′

ℓ+1 . . . ∀𝑋𝑘∃𝑌 ′
𝑘 :

𝜙[0/𝑥𝑖][𝑦
0
𝑗 /𝑦𝑗 for all 𝑦𝑗 ∈ 𝑌ℎ, ℎ ≥ ℓ]∧𝜙[1/𝑥𝑖][𝑦

1
𝑗 /𝑦𝑗 for all 𝑦𝑗 ∈ 𝑌ℎ, ℎ ≥ ℓ] .

with 𝑌 ′
ℎ = {𝑦0𝑗

⃒⃒
𝑦𝑗 ∈ 𝑌ℎ} ∪ {𝑦1𝑗

⃒⃒
𝑦𝑗 ∈ 𝑌ℎ}.

Existential variables to the right of 𝑥𝑖 (i. e., depending on 𝑥𝑖) result in two copies,
all other existential variables are not copied.

Universal Expansion for DQBF Universal expansion can be easily general-
ized to DQBF which has been observed, e. g., in [10,9,3,17].

Definition 6 (Universal Expansion for DQBF). For a DQBF 𝜓 = ∀𝑥1 . . .
∀𝑥𝑛∃𝑦1(𝐷𝑦1) . . . ∃𝑦𝑚(𝐷𝑦𝑚) : 𝜙 with 𝑍𝑥𝑖 =

{︀
𝑦𝑗 ∈ 𝑉 ∃

𝜓

⃒⃒
𝑥𝑖 ∈ 𝐷𝑦𝑗

}︀
, universal

expansion of variable 𝑥𝑖 ∈ 𝑉 ∀
𝜓 is defined by(︁

𝑄 ∖
(︁
{𝑥𝑖} ∪

⋃︁
𝑦𝑗∈𝑍𝑥𝑖

{𝑦𝑗}
)︁)︁

∪
{︀
∃𝑦𝑏𝑗(𝐷𝑦𝑗 ∖ {𝑥𝑖})

⃒⃒
𝑦𝑗 ∈ 𝑍𝑥𝑖 , 𝑏 ∈ {0, 1}

}︀
:

𝜙[0/𝑥𝑖][𝑦
0
𝑗 /𝑦𝑗 for all 𝑦𝑗 ∈ 𝑍𝑥𝑖] ∧ 𝜙[1/𝑥𝑖][𝑦

1
𝑗 /𝑦𝑗 for all 𝑦𝑗 ∈ 𝑍𝑥𝑖] .

As for QBFs universal expansion leads to an equisatisfiable formula.
By universally expanding all universal variables both QBFs and DQBFs can

be transformed into a SAT problem with a potential exponential increase in
variables. Thus, complete universal expansion followed by SAT solving has a
double exponential upper bound for the run-time. The upper bound is suboptimal
for QBF which is just PSPACE-complete (and can be solved by a simple search-
based algorithm in exponential time), whereas for DQBF (which is NEXPTIME-
complete) it is unknown whether there is an algorithm with a better worst-case
complexity.

3.6 Transformation into QBF

Due to the high cost of complete universal expansion, the solver HQS [18]
eliminates universal variables only until a QBF is obtained, which can be solved
by an arbitrary QBF solver then.

Transformation into QBF by Universal Expansion The basic observation
underlying the transformation of a DQBF into a QBF is the fact that a DQBF
𝜓 = ∀𝑥1 . . . ∀𝑥𝑛∃𝑦1(𝐷𝑦1) . . . ∃𝑦𝑚(𝐷𝑦𝑚) : 𝜙 can be written as a QBF if and only if
the dependency sets are all comparable, i. e., iff for all 𝑖, 𝑗 ∈ {1, . . .𝑚} 𝐷𝑦𝑖 ⊆ 𝐷𝑦𝑗

or 𝐷𝑦𝑗 ⊆ 𝐷𝑦𝑖 (⋆). If this condition (⋆) holds, a linear order of the dependency
sets w. r. t. ⊆ can be computed. Such a linear order immediately results in the
needed QBF prefix.

For each pair of existential variables 𝑦𝑖 and 𝑦𝑗 with incomparable dependency
sets, either the universal variables in 𝐷𝑦𝑖 ∖ 𝐷𝑦𝑗 or in 𝐷𝑦𝑗 ∖ 𝐷𝑦𝑖 have to be
eliminated. In [18] finding a minimum set 𝑈 ⊆ 𝑉 ∀ of elimination variables
leading to a QBF prefix is reduced to a MAXSAT problem. (For each universal
variable 𝑥 a variable 𝑚𝑥 is created in the MAXSAT solver such that 𝑚𝑥 = 1
means that 𝑥 needs to be eliminated. Soft clauses are used to get an assignment

with a minimum number of variables assigned to 1. Hard clauses enforce that
for all 𝑦𝑖, 𝑦𝑗 ∈ 𝑉 ∃, 𝑦𝑖 ̸= 𝑦𝑗 , either all variables in 𝐷𝑦𝑖 ∖𝐷𝑦𝑗 or in 𝐷𝑦𝑗 ∖𝐷𝑦𝑖 are
eliminated.)

Transformation into QBF by Dependency Elimination In [37] the method
of universal expansions turning a DQBF into a QBF is refined by so-called
dependency elimination. Dependency elimination is able not only to remove
universal variables 𝑥𝑖 completely from the formula, but also to remove universal
variables 𝑥𝑖 from single dependency sets 𝐷𝑦𝑗 , i. e., it works with a finer granularity.
Dependency elimination is used with the goal of producing fewer copies of
existential variables in the final QBF.

The basic transformation removing a universal variable 𝑥𝑖 from a single
dependency set 𝐷𝑦𝑗 is based on the following theorem:

Theorem 1 (Dependency Elimination). Assume 𝜓 is a DQBF as in Defi-
nition 2 and, w. l. o. g., 𝑥1 ∈ 𝐷𝑦1 . Then 𝜓 is equisatisfiable to:

𝜓′ := ∀𝑥1 . . . ∀𝑥𝑛 ∃𝑦01
(︀
𝐷𝑦1 ∖ {𝑥1}

)︀
∃𝑦11
(︀
𝐷𝑦1 ∖ {𝑥1}

)︀
∃𝑦2
(︀
𝐷𝑦2

)︀
. . . ∃𝑦𝑚

(︀
𝐷𝑦𝑚

)︀
:

𝜑
[︁(︀

(¬𝑥1 ∧ 𝑦01) ∨ (𝑥1 ∧ 𝑦11)
)︀
/𝑦1

]︁
.

The following example shows that dependency elimination is able to transform
a DQBF into an equisatisfiable QBF with much fewer copies of existential variables
than needed for universal expansion:

Example 1. The DQBF ∀𝑥1∀𝑥2∃𝑦1(𝑥1)∃𝑦2(𝑥2)∃𝑦3(𝑥1, 𝑥2) . . . ∃𝑦𝑛(𝑥1, 𝑥2) : 𝜙 does
not have an equivalent QBF prefix. Therefore the expansion of either 𝑥1 or 𝑥2
is necessary. When universal expansion of 𝑥1 is performed, 𝑦1, 𝑦3, . . . , 𝑦𝑛 are
doubled, creating 𝑛− 1 additional existential variables. The universal expansion
of 𝑥2 creates copies of 𝑦2, 𝑦3, . . . , 𝑦𝑛.

However, only the dependencies of 𝑦1 on 𝑥1 and of 𝑦2 on 𝑥2 are responsible
for the formula not being a QBF. If we eliminate the dependency of 𝑦1 on 𝑥1,
e. g., we obtain the formula

∀𝑥1∀𝑥2∃𝑦01(∅)∃𝑦11(∅)∃𝑦2(𝑥2)∃𝑦3(𝑥1, 𝑥2) . . . ∃𝑦𝑛(𝑥1, 𝑥2) : 𝜙[(¬𝑥1∧𝑦01)∨(𝑥1∧𝑦11)/𝑦1] .

This formula can be written as the QBF

∃𝑦01∃𝑦11∀𝑥2∃𝑦2∀𝑥1∃𝑦3 . . . ∃𝑦𝑛 : 𝜙[(¬𝑥1 ∧ 𝑦01) ∨ (𝑥1 ∧ 𝑦11)/𝑦1] .

Instead of creating 𝑛− 1 additional existential variables, we only have to double
𝑦1 in order to obtain an equisatisfiable QBF.

In order to facilitate the selection of dependencies to eliminate, [37] makes
use of the following dependency graph:

Definition 7 (Dependency Graph). Let 𝜓 be a DQBF as above. The depen-
dency graph 𝐺𝜓 =

(︀
𝑉𝜓, 𝐸𝜓

)︀
is a directed graph with the set 𝑉𝜓 = 𝑉 of variables

as nodes and edges

𝐸𝜓 =
{︀

(𝑥, 𝑦) ∈ 𝑉 ∀
𝜓 × 𝑉 ∃

𝜓

⃒⃒
𝑥 ∈ 𝐷𝑦

}︀
∪̇
{︀

(𝑦, 𝑥) ∈ 𝑉 ∃
𝜓 × 𝑉 ∀

𝜓

⃒⃒
𝑥 /∈ 𝐷𝑦

}︀
.

𝐺𝜓 is a so-called bipartite tournament graph [4,11,20]: The nodes can be par-
titioned into two disjoint sets according to their quantifier and there are only
edges that connect variables with different quantifiers – this is the bipartiteness
property. Additionally, for each pair (𝑥, 𝑦) ∈ 𝑉 ∀

𝜓 × 𝑉 ∃
𝜓 there is either an edge

from 𝑥 to 𝑦 or vice-versa – this property is referred to by the term ‘tournament’.

Theorem 2 ([37]). Let 𝜓 be a DQBF and 𝐺𝜓 its dependency graph. The graph
𝐺𝜓 is acyclic iff 𝜓 has an equivalent QBF prefix.

Eliminating a dependency essentially corresponds to flipping the direction of
an edge (𝑥, 𝑦) ∈ 𝐸𝜓 ∩ (𝑉 ∀

𝜓 × 𝑉 ∃
𝜓) from a universal to an existential variable. Our

goal is to find a cost-minimal set of edges such that flipping those edges makes
the dependency graph acyclic.

The cost of a flipping set 𝑅 ⊆ 𝐸𝜓∩(𝑉 ∀
𝜓×𝑉 ∃

𝜓) corresponds to the number of exis-
tential variables in the formula after the dependencies in𝑅 have been eliminated. It
is given by cost(𝑅) :=

∑︀
𝑦∈𝑉 ∃

𝜓
2|𝑅𝑦|. where for 𝑦 ∈ 𝑉 ∃

𝜓 𝑅𝑦 = {𝑥 ∈ 𝑉 ∀
𝜓 | (𝑥, 𝑦) ∈ 𝑅}.

In spite of this non-linear cost function, the computation of a cost-minimal flip-
ping set can be reduced to integer linear programming with dynamically added
constraints similar to the so-called cutting plane approach [40]. The efficiency of
the optimal elimination set computation is significantly increased by integrating
symmetry reduction. Symmetry reduction is based on the observation that in
typical applications the number of different dependency sets is rather small.

Don’t-Care Dependencies Moreover, based on research on dependency schemes
[38], we consider in our optimization also dependencies which can be removed
‘free of charge’ without dependency elimination, since their removal does not
change the truth value of the DQBF.

3.7 The Role of Preprocessing

Part of the success of SAT and QBF solving is due to efficient preprocessing of
the formula under consideration. The goal of preprocessing is to simplify the
formula by reducing/modifying the number of variables, clauses and quantifier
alternations, such that it can be solved more efficiently afterwards. For SAT and
QBF, efficient and effective preprocessing tools are available like SatELite [13],
Coprocessor [27] for SAT and squeezeBF [19], bloqqer [7] for QBF. In [36] we
demonstrated that preprocessing is an essential step for DQBF solving as well.
Standard preprocessing techniques were generalized and adapted to work with a
DQBF solver core. Those techniques include

– using backbones, monotonic variables, and equivalent literals;
– reducing dependency sets based on dependency schemes [38];
– universal reduction, variable elimination by resolution, universal expansion

as preprocessing steps;
– blocked clause elimination with hidden and covered literal addition; and
– structure extraction that leads to circuit representations of the matrix instead

of a CNF representation.

An important observation made in [36] is that different preprocessing strategies
are advisable depending on the DQBF solver core used (e. g., CNF-based vs.
circuit-based solvers).

3.8 Computing Skolem Functions

Computing Skolem functions is important both for proof checking of satisfied
DQBFs and for various applications such as the ones mentioned in the next section.
In [35] we demonstrated how Skolem functions can be obtained from our DQBF
solver HQS. The approach computes Skolem functions for the original formula,
even taking all preprocessing steps from [36] into account. The computation of
Skolem functions can be done with very little overhead compared to the mere
solution of the formula.

4 Applications

Here we give three applications that can be formulated as DQBF problems in
a natural way. For the first and the third one we can even prove that they are
equivalent to DQBF which means that each DQBF problem can be translated
into the corresponding problem class in polynomial time. Moreover, this means
for those applications that they are NEXPTIME-complete as well [17,39].

In all applications mentioned below the translation into DQBF is based on
an observation that has been summarized by Rabe [32] as ‘DQBF can encode
existential quantification over functions’.

4.1 Partial Equivalence Checking for Combinational Circuits

As a first application we look into partial equivalence checking for combinational
circuits [33]. As a specification we consider a complete combinational circuit
𝐶spec. As an implementation we consider an incomplete combinational circuit
𝐶impl containing missing parts, so-called ‘Black Boxes’. Missing parts may result
from abstraction or they are not yet implemented so far. For each Black Box only
the interface of the Black Boxes, i. e., their input and output signals, are known,
their functionality is completely unknown. The Partial Equivalence Checking
(PEC) problem answers the following question:

Definition 8 (Partial Equivalence Checking Problem (PEC)). Given an
incomplete circuit 𝐶impl and a (complete) specification 𝐶spec, are there implemen-
tations of the Black Boxes in 𝐶impl such that 𝐶impl and 𝐶spec become equivalent
(i. e., they implement the same Boolean function)?

Assume that the specification 𝐶spec implements a Boolean function 𝑓 spec(𝑥)
with primary input variables 𝑥. For each Black Box BB𝑖 the input signals are
denoted by 𝐼𝑖, its output signals by 𝑂𝑖. Let us further assume that the Black
Boxes can be sorted topologically (otherwise there are replacements leading to

cycles in the combinational circuit), w. l. o. g. in the order BB1, . . . ,BB𝑛. Then
the input cone computing the input signals 𝐼𝑖 of BB𝑖 represents a vector of
Boolean functions 𝐹 𝑖(𝑥,𝑂1, . . . ,𝑂𝑖−1). The incomplete implementation 𝐶impl

implements a Boolean function 𝑓 impl(𝑥,𝑂1, . . . ,𝑂𝑛) depending on the primary
inputs and the Black Box outputs.

The following DQBF is satisfied iff there is an appropriate implementation of
the Black Boxes:

∀𝑥∀𝐼1 . . . ∀𝐼𝑛∃𝑂1(𝐼1) . . . ∃𝑂𝑚(𝐼𝑚) :

(︃
𝑛⋀︁
𝑖=1

𝐼𝑖 ≡ 𝐹 𝑖

)︃
⇒ (𝑓 spec ≡ 𝑓 impl) .

We have to ask that for all valuations of the primary inputs 𝑥 and all input
signals of the Black Boxes 𝐼1, . . . , 𝐼𝑛 of the Black Boxes there is a choice for
the output signals 𝑂1, . . . ,𝑂𝑛 of the Black Boxes such that specification and
implementation are equivalent, i. e., 𝑓 spec(𝑥) ≡ 𝑓 impl(𝑥,𝑂1, . . . ,𝑂𝑛). However,
this is only required for all valuations to the signals that are consistent with the
given circuit, i. e., only if

⋀︀𝑛
𝑖=1 𝐼𝑖 ≡ 𝐹 𝑖(𝑥,𝑂1, . . . ,𝑂𝑖−1) holds. The requirement

that the Black Box output signals are only allowed to depend on the Black Box
input signals is simply expressed by the dependency sets 𝐼𝑖 of the corresponding
output signals 𝑂𝑖.

4.2 Controller Synthesis

In [8] SAT- and QBF-based techniques for controller synthesis of safety specifi-
cations are considered. A footnote in [8] gives a hint how a simple and elegant
DQBF formulation can be used for that purpose as well.

In the controller synthesis problem a sequential circuit with a vector of present
state bits 𝑠 and a vector of next state bits 𝑠′ is considered. The next state is
computed by a transition function 𝛬(𝑠,𝑥, 𝑐). Here 𝑥 are uncontrollable primary
inputs and 𝑐 are controllable inputs which are computed by a controller on
the basis of the present state bits and the uncontrollable primary inputs. We
consider invariant properties inv(𝑠,𝑥) which are required to hold at any time.
The controller synthesis problem asks whether there is an implementation of
the controller such that the resulting sequential circuit satisfies the invariant
inv(𝑠,𝑥) in all states that are reachable from the circuit’s initial state(s), given
as a predicate init.

The DQBF formulation of controller synthesis is based on the notion of a
‘winning set’.

Definition 9. Let 𝑆 be the state set of the sequential circuit. A subset 𝑊 ⊆ 𝑆
is a winning set if all states in 𝑊 satisfy the invariant and, for all values of the
primary inputs, the controller can ensure (by computing appropriate values for
the controlled inputs) that the successor state is again in 𝑊 .

An appropriate controller can be found iff there is a winning set that includes
the initial states of the sequential circuit. This can be formulated as a DQBF.
To encode the winning sets, we introduce two existential variables 𝑤 and 𝑤′; 𝑤

depends on the current state and is supposed to be true for a state 𝑠 if 𝑠 is in
the winning set. The variable 𝑤′ depends on the next state variables 𝑠′ and has
the same Skolem function as 𝑤 (but defined over 𝑠′ instead of 𝑠). To ensure that
𝑤 and 𝑤′ have the same semantics the condition

(︀
𝑠 ≡ 𝑠′ ⇒ 𝑤 ≡ 𝑤′)︀ is used.

Using those two encodings of the winning set the controller synthesis problem is
reduced to the following DQBF [8]:

∀𝑠∀𝑠′∀𝑥 ∃𝑤(𝑠) ∃𝑤′(𝑠′)∃𝑐(𝑠,𝑥) :(︀
init(𝑠) ⇒ 𝑤

)︀
∧
(︀
𝑤 ⇒ inv(𝑠,𝑥)

)︀
∧
(︀
𝑠 ≡ 𝑠′ ⇒ 𝑤 ≡ 𝑤′)︀ ∧(︁(︀

𝑤 ∧ (𝑠′ ≡ 𝛬(𝑠,𝑥, 𝑐))
)︀
⇒ 𝑤′

)︁
. (1)

The controlled input variables 𝑐 are allowed to depend on the current state
variables 𝑠 and uncontrolled inputs 𝑥 only. If the DQBF is satisfied, then the
Skolem functions for 𝑐 provide a suitable controller implementation. (Note that
the solver HQS can compute Skolem functions with very little overhead compared
to the mere solution of the formula [35].)

4.3 Realizability Checking for Sequential Circuits

The controller synthesis problem can be seen as a special sequential problem
with the controller as a single Black Boxes having access to all state bits and all
primary circuit inputs. Here we look into a generalization where sequential circuits
may contain an arbitrary number of Black Boxes and the exact interface of the
Black Boxes, i. e., the signals entering and leaving the Black Boxes, is strictly
taken into account [39]. That means that Black Boxes are not necessarily able to
read all primary inputs and state bits. We confine ourselves to combinational
Black Boxes or Black Boxes with bounded memory. The even more general
problem considering distributed architectures containing several Black Boxes
with unbounded memory is undecidable [31].

Black Boxes with bounded memory can be reduced to combinational Black
Boxes, simply by extracting the memory elements out of the Black Box into
the known part of the circuit, such that the incoming and outgoing signals of
these memory elements are written and read only by the Black Boxes. Thus, we
assume w. l. o. g. sequential circuits with arbitrary combinational Black Boxes in
the circuit implementing their transition function.

As in Sect. 4.1, we assume 𝑛 Black Boxes BB1, . . . ,BB𝑛 with input signals 𝐼𝑖
and output signals 𝑂𝑖, respectively. Again, the input cone computing the input
signals 𝐼𝑖 of BB𝑖 represents a vector of Boolean functions 𝐹 𝑖(𝑥,𝑂1, . . . ,𝑂𝑖−1).
The transition function depending on the current state variables 𝑠, the primary
inputs 𝑥 and the Black Box outputs 𝑂1, . . . ,𝑂𝑛 is given by 𝛬(𝑠,𝑥,𝑂1, . . . ,𝑂𝑛).
As before, the transition function computes new valuations to the next state
variables 𝑠′.

We investigate the following problem:

Definition 10. The realizability problem for incomplete sequential circuits
(RISC) is defined as follows: Given an incomplete sequential circuit with multiple

combinational (or bounded-memory) Black Boxes and an invariant property, are
there implementations of the Black Boxes such that in the complete circuit the
invariant holds at all times?

In order to formulate the realizability problem as a DQBF problem, we slightly
modify Definition 9 into:

Definition 11. A subset 𝑊 ⊆ 𝑆 is a winning set if all states in 𝑊 satisfy the
invariant and, for all values of the primary inputs, the Black Boxes can ensure
(by computing appropriate values) that the successor state is again in 𝑊 .

Similarly to the controller synthesis problem, a given RISC is realizable iff there
is a winning set that includes the initial states of the circuit. This leads us to
the following theorem (using the same encoding of the winning set by existential
variables 𝑤 and 𝑤′ depending on the current state variables 𝑠 and next state
variables 𝑠′, respectively):

Theorem 3. Given a RISC as defined above, the following DQBF is satisfied if
and only if the RISC is realizable:

∀𝑠∀𝑠′∀𝑥 ∀𝐼1 . . . ∀𝐼𝑛 ∃𝑤(𝑠) ∃𝑤′(𝑠′) ∃𝑂1(𝐼1) . . . ∃𝑂𝑛(𝐼𝑛) :(︀
init(𝑠) ⇒ 𝑤

)︀
∧
(︀
𝑤 ⇒ inv(𝑠,𝑥)

)︀
∧
(︀
𝑠 ≡ 𝑠′ ⇒ 𝑤 ≡ 𝑤′)︀ ∧(︁(︃

𝑤 ∧

[︃
𝑛⋀︁
𝑖=1

𝐼𝑖 ≡ 𝐹 𝑖(𝑥,𝑂1, . . . ,𝑂𝑖−1)

]︃
∧ (𝑠′ ≡ 𝛬(𝑠,𝑥,𝑂1, . . . ,𝑂𝑛))

)︃
⇒ 𝑤′

)︁
.

The main difference to (1) consists in the following fact: The requirement
that the successor state of a winning state is again a winning state obtains
an additional precondition (similar to the DQBF for PEC in Sect. 4.1). The
requirement is only needed for signal assignments that are completely consistent
with the circuit functionality, i. e., only if the Black Box inputs are assigned
consistently with the values computed by their input cones and, of course, the
next state variables 𝑠′ are assigned in accordance with the transition function 𝛬.

The Black Box outputs 𝑂𝑖 of Black Box BB𝑖 are only allowed to depend on
the Black Box inputs 𝐼𝑖 and, if the DQBF is satisfied, the Skolem functions for
𝑂𝑖 provide an appropriate implementation for BB𝑖.

5 Conclusion and Future Challenges

Dependency quantified Boolean formulas are a powerful formalism for a natural
and compact description of various problems. In this paper, we provided an
overview of several solution methods for DQBFs.

In the future, the scalability of the solvers has to be further improved and
they might be tuned towards specific applications. Further optimizing the single
solution methods as well as combining advantages of different solution strategies
seems to be an interesting and rewarding task. This should be combined with
more powerful preprocessing techniques as well. Moreover, it will be interesting

in the future to look into sound but incomplete approximations both disproving
and proving the satisfiability of DQBFs.

We hope that with the availability of solvers more applications of these
techniques will become feasible or will be newly discovered, thereby inspiring
further improvements of the solvers – just as it is/was the case for propositional
SAT solving and for QBF solving.

Acknowlegment

We are grateful to Bernd Becker, Ruben Becker, Andreas Karrenbauer, Jennifer
Nist, Sven Reimer, Matthias Sauer, and Karina Wimmer for heavily contributing
to the contents summarized in this paper.

References

1. Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital systems testing and testable
design. Computer Science Press (1990)

2. Ayari, A., Basin, D.A.: QUBOS: deciding quantified Boolean logic using proposi-
tional satisfiability solvers. In: FMCAD. LNCS, vol. 2517, pp. 187–201. Springer
(Nov 2002). https://doi.org/10.1007/3-540-36126-x 12

3. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formulae:
A certification perspective of DQBF. Theoretical Computer Science 523, 86–100
(2014). https://doi.org/10.1016/j.tcs.2013.12.020

4. Beineke, L.W., Little, C.H.C.: Cycles in bipartite tournaments. J. Comb. Theory,
Ser. B 32(2), 140–145 (1982). https://doi.org/10.1016/0095-8956(82)90029-6

5. Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M.: Lifting QBF resolution calculi
to DQBF. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
490–499. Springer, Bordeaux, France (Jul 2016). https://doi.org/10.1007/978-3-
319-40970-2 30

6. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Vancouver, BC, Canada (May 2004).
https://doi.org/10.1007/11527695 5

7. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer (2011). https://doi.org/10.1007/978-3-642-22438-6 10

8. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety
specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
1–20. Springer, San Diego, CA, USA (Jan 2014). https://doi.org/10.1007/978-3-
642-54013-4 1

9. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D.
thesis, University of Paderborn, Germany (2010)

10. Bubeck, U., Kleine Büning, H.: Dependency quantified Horn formulas: Models and
complexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–
211. Springer, Seattle, WA, USA (Aug 2006). https://doi.org/10.1007/11814948 21

11. Cai, M., Deng, X., Zang, W.: A min-max theorem on feedback ver-
tex sets. Mathematics of Operations Research 27(2), 361–371 (2002).
https://doi.org/10.1287/moor.27.2.361.328

https://doi.org/10.1007/3-540-36126-x_12
https://doi.org/10.1016/j.tcs.2013.12.020
https://doi.org/10.1016/0095-8956(82)90029-6
https://doi.org/10.1007/978-3-319-40970-2_30
https://doi.org/10.1007/978-3-319-40970-2_30
https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/11814948_21
https://doi.org/10.1287/moor.27.2.361.328

12. Chatterjee, K., Henzinger, T.A., Otop, J., Pavlogiannis, A.: Distributed syn-
thesis for LTL fragments. In: FMCAD 2013. pp. 18–25. IEEE (Oct 2013).
https://doi.org/10.1109/FMCAD.2013.6679386

13. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75.
Springer, St. Andrews, UK (Jun 2005). https://doi.org/10.1007/11499107 5

14. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Vienna, Austria (Jul 2014).
https://doi.org/10.1007/978-3-319-09284-3 19

15. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Int’l Workshop on Pragmatics of SAT (POS) 2012. Trento, Italy (2012)

16. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Le Berre, D. (ed.) Int’l Workshop on Pragmatics of SAT (POS) 2014.
EPiC Series, vol. 27, pp. 103–116. EasyChair, Vienna, Austria (Jul 2014)

17. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equiv-
alence checking of partial designs using dependency quantified Boolean formu-
lae. In: ICCD 2013. pp. 396–403. IEEE CS, Asheville, NC, USA (Oct 2013).
https://doi.org/10.1109/ICCD.2013.6657071

18. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: DATE 2015. IEEE, Grenoble, France
(Mar 2015). https://doi.org/10.7873/date.2015.0098

19. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor
for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.)
SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Edinburgh, UK (Jul 2010).
https://doi.org/10.1007/978-3-642-14186-7 9

20. Guo, J., Hüffner, F., Moser, H.: Feedback arc set in bipartite tourna-
ments is NP-complete. Information Processing Letters 102(2-3), 62–65 (2007).
https://doi.org/10.1016/j.ipl.2006.11.016

21. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods: Proc.
of the 1959 Symp. on Foundations of Mathematics. pp. 167–183. Pergamon Press,
Warsaw, Panstwowe (Sep 1961)

22. Jain, A., Boppana, V., Mukherjee, R., Jain, J., Fujita, M., Hsiao, M.S.: Testing,
verification, and diagnosis in the presence of unknowns. In: IEEE VLSI Test
Symposium (VTS) 2000. pp. 263–270. IEEE Computer Society, Montreal, Canada
(2000). https://doi.org/10.1109/VTEST.2000.843854

23. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with
counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 114–128. Springer, Trento, Italy (Jun 2012).
https://doi.org/10.1007/978-3-642-31612-8 10

24. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q.,
Wooldridge, M. (eds.) IJCAI 2015. pp. 325–331. AAAI Press, Buenos Aires, Ar-
gentina (2015), http://ijcai.org/Abstract/15/052

25. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on
Satisfiability, Boolean Modelling and Computation 7(2-3), 71–76 (2010)

26. Lonsing, F., Egly, U.: Incremental QBF solving by DepQBF. In: Hong, H., Yap, C.
(eds.) Int’l Congress on Mathematical Software (ICMS) 2014. LNCS, vol. 8592, pp.
307–314. Springer, Seoul, South Korea (Aug 2014). https://doi.org/10.1007/978-3-
662-44199-2 48

27. Manthey, N.: Coprocessor 2.0 – A flexible CNF simplifier – (tool presentation).
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441.
Springer, Trento, Italy (Jun 2012). https://doi.org/10.1007/978-3-642-31612-8 34

https://doi.org/10.1109/FMCAD.2013.6679386
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.1109/ICCD.2013.6657071
https://doi.org/10.7873/date.2015.0098
https://doi.org/10.1007/978-3-642-14186-7_9
https://doi.org/10.1016/j.ipl.2006.11.016
https://doi.org/10.1109/VTEST.2000.843854
https://doi.org/10.1007/978-3-642-31612-8_10
http://ijcai.org/Abstract/15/052
https://doi.org/10.1007/978-3-662-44199-2_48
https://doi.org/10.1007/978-3-662-44199-2_48
https://doi.org/10.1007/978-3-642-31612-8_34

28. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential
time: Preliminary report. In: STOC 1973. pp. 1–9. ACM Press (1973).
https://doi.org/10.1145/800125.804029

29. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Computers & Mathematics with Applications
41(7–8), 957–992 (Apr 2001). https://doi.org/10.1016/S0898-1221(00)00333-3

30. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Annual Symp. on Foun-
dations of Computer Science (FOCS). pp. 348–363. IEEE Computer Society, San
Juan, Puerto Rico (Oct 1979). https://doi.org/10.1109/SFCS.1979.25

31. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthe-
size. In: Annual Symp. on Foundations of Computer Science 1990. pp.
746–757. IEEE Computer Society, St. Louis, Missouri, USA (Oct 1990).
https://doi.org/10.1109/FSCS.1990.89597

32. Rabe, M.N.: A resolution-style proof system for DQBF. In: Gaspers, S., Walsh, T.
(eds.) SAT. LNCS, vol. 10491, pp. 314–325. Springer, Melbourne, VIC, Australia
(2017). https://doi.org/10.1007/978-3-319-66263-3 20

33. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In:
DAC 2001. pp. 238–243. ACM Press, Las Vegas, NV, USA (Jun 2001).
https://doi.org/10.1145/378239.378471

34. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999).
https://doi.org/10.1109/12.769433

35. Wimmer, K., Wimmer, R., Scholl, C., Becker, B.: Skolem functions for DQBF. In:
Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 395–411.
Springer, Chiba, Japan (Oct 2016). https://doi.org/10.1007/978-3-319-46520-3 25

36. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer,
Austin, TX, USA (Sep 2015). https://doi.org/10.1007/978-3-319-24318-4 13

37. Wimmer, R., Karrenbauer, A., Becker, R., Scholl, C., Becker, B.: From DQBF to
QBF by dependency elimination. In: SAT 2017. LNCS, vol. 10491, pp. 326–343.
Springer, Melbourne, VIC, Australia (Aug 2017). https://doi.org/10.1007/978-3-
319-66263-3 21

38. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 473–489.
Springer, Bordeaux, France (Jul 2016). https://doi.org/10.1007/978-3-319-40970-
2 29

39. Wimmer, R., Wimmer, K., Scholl, C., Becker, B.: Analysis of incomplete cir-
cuits using dependency quantified Boolean formulas. In: Reis, A.I., Drech-
sler, R. (eds.) Advanced Logic Synthesis, pp. 151–168. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-67295-3 7

40. Wolsey, L.A.: Integer programming. Wiley-Interscience, New York, NY, USA (1998)

https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1007/978-3-319-66263-3_20
https://doi.org/10.1145/378239.378471
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-319-46520-3_25
https://doi.org/10.1007/978-3-319-24318-4_13
https://doi.org/10.1007/978-3-319-66263-3_21
https://doi.org/10.1007/978-3-319-66263-3_21
https://doi.org/10.1007/978-3-319-40970-2_29
https://doi.org/10.1007/978-3-319-40970-2_29
https://doi.org/10.1007/978-3-319-67295-3_7

	Dependency Quantified Boolean Formulas: An Overview of Solution Methods and Applications

