
Combining PDR and Reverse PDR
for Hardware Model Checking

Tobias Seufert
University of Freiburg, Germany

Email: seufert@informatik.uni-freiburg.de

Christoph Scholl
University of Freiburg, Germany

Email: scholl@informatik.uni-freiburg.de

Abstract—In the last few years IC3 resp. PDR attracted a lot of
attention as a SAT-based hardware verification approach without
needing to unroll the transition relation as in Bounded Model
Checking (BMC). Motivated by different strengths of forward
and backward traversal already observed in BDD based model
checking and by an exponential complexity gap between original
PDR and its reverted counterpart ‘Reverse PDR’ (which starts
its analysis with the initial states instead of the unsafe states
as in the original PDR), we take a closer look at Reverse PDR
and we present a combined forward/backward version of PDR
that inherits the advantages of both original and Reverse PDR.
Our experimental results on benchmarks from the Hardware
Model Checking Competition demonstrate clear benefits of the
combined approach.

I. INTRODUCTION

Sequential circuits still pose a significant challenge in for-
mal hardware verification. With the introduction of bounded
model checking (BMC) [1] as an alternative to BDD based
methods, SAT based methods have become more and more
popular. Interpolation based model checking, introduced in
2003 [2], has been considered the strongest amongst these for a
long time. In 2011 though PDR resp. IC3 – as called in its first
implementation [3] – caused a stir beating sophisticated multi-
engine solvers in hardware model checking competitions. The
idea of PDR is to avoid the unrolling of the transition relation
and to rather replace small numbers of large and hard SAT
problems by many small and easy SAT problems based on
a single instance of the transition relation only. A proof
is repeatedly strengthened until an inductive invariant or a
counterexample is found. Hereby the success of PDR heavily
relies on the strength of modern incremental SAT solvers such
as [4].

The work in this paper is based on observations already
made in the context of BDD based symbolic model check-
ing which showed that sometimes forward model checking
starting from the initial states and sometimes backward model
checking starting from the ‘unsafe states’ (all states violating
a given invariant property) performs better [5], [6]. PDR in its
usual definition has however a ‘fixed direction’: It considers
overapproximations of state sets reachable from the initial
states in k or less steps. (However the overapproximation
is guided by the goal to get rid of spurious error paths
up to a fixed length to the unsafe states.) For this reason,
we take a closer look into ‘Reverse PDR’ that considers
overapproximations of state sets from which we can reach
the unsafe states in k or less steps and the overapproximations
are guided by paths starting from the initial states. We analyze
which optimizations from PDR can be used in Reverse PDR
as well. In particular we give a detailed analysis showing why
the methods used in PDR for generalizing proof obligations
cannot be transferred to Reverse PDR and we present a
new method based on structural arguments. We make an

experimental evaluation comparing prototypes of the original
and Reverse PDR empirically and thereby show the potential
for a combination of the two methods. This is in addition
to theoretical results showing an exponential complexity gap
between PDR and Reverse PDR (and vice versa). Finally, we
present a combined forward/backward version of PDR which
inherits the advantages of both original and Reverse PDR.
The combined forward/backward version of PDR performs
steps of original and Reverse PDR for certain time periods in
alternation and exchanges information between both methods.
The combined approach is intensively evaluated as well.

Related work: Since the introduction of PDR [3], there
have been several improvements on the efficiency of the orig-
inal algorithm. The authors of [7], e.g., propose the utilization
of ternary simulation techniques to have faster and better
generalization of newly encountered proof obligations. Tack-
ling the generalization of blocked cubes, [8] introduces the
concept of counterexamples to generalization (CTG). These
are explanations for failed attempts to generalize blocked
cubes. A better generalization exploits the fact that some CTGs
may be unreachable though. [9] modifies the core functionality
of PDR, e.g., by more aggressively pushing so-called may-
proof-obligations forward. Moreover, [9] extends the initial
states by additional reachable states which are basically may-
proof-obligations that could be proved to be reachable from the
initial states. Extending initial states is done in our approach
as well, but in our case the initial states are extended due
to information transferred from Reverse PDR to PDR. In
addition, in our approach the Reverse PDR component extends
the unsafe states due to information learnt from PDR.

Whereas a basic version of Reverse PDR has already been
proposed in [7] and [8], a really intensive analysis as well as
optimizations of Reverse PDR have been missing in our view.
[10] uses a similar idea of reverting PDR in the context of
automated planning with the interesting insight that reverting
the direction generally yields better results in finding plans
resp. counterexamples in this special application context.

Other approaches combine ideas of PDR and interpolation
based model checking into a unified approach [11] or extend
the strength of PDR by combining it with abstraction refine-
ment [12]–[14].

Using bidirectional approaches for BDD based model
checking [5], [6] has motivated our approach of combining the
original PDR and Reverse PDR. In [15] a bidirectional SAT
based verification technique is presented which is based on
interpolation instead of PDR. The forward-backward algorithm
calculates sequences of intersections between the overapprox-
imations of forward resp. backward reachable states and tries
to show that these do not represent a counterexample by
strengthening with interpolants.

To the best of our knowledge, a combined bidirectional PDR

Preprint from Proceedings of Design, Automation and Test in Europe (DATE), March 2018

approach has not been presented and analyzed before.
Structure of the paper: In Sect. II we give some prelim-

inaries needed for this paper. In Sect. III we give a detailed
analysis of optimizations that cannot be transferred from PDR
to Reverse PDR and propose an alternative optimization. In
Sect. IV we present a combined approach after motivating
it by an exponential gap between PDR and Reverse PDR.
An experimental evaluation is given in Sect. V and Sect. VI
summarizes the results with directions for future research.

II. PRELIMINARIES

A. Basic Notions

We discuss the verification of sequential boolean circuits.
A sequential boolean circuit consists of a vector of current
state variables ~s corresponding to memory elements (flip-

flops), a vector of input variables ~i, and a vector of output
variables ~o. A sequential boolean circuit represents an FSM

M := (B|~s|,B|~i|,B|~o|, δ, λ, init) where the transition function

δ :B|~s|×B
|~i|→B

|~s ′| and the output function λ :B|~s|×B
|~i|→

B
|~o| are defined by a combinational circuit with inputs ~s and

~i and outputs ~s ′ and ~o. Here the variables ~s ′ are called
next state variables (|~s| = |~s ′|). The predicate init :B|~s| →B

defines the possible initial states of the FSM. As usual, the
transition function can also be represented by a predicate

T :B|~s| ×B
|~i| ×B

|~s ′| → B for the corresponding transition
relation.

For simplicity, we only consider invariant properties over
state variables in this paper. Invariants are predicates over state
variables and an invariant P holds for an FSM M , if all states
occurring on traces starting from some initial state satisfy P .
We call the complement of the states represented by P the
‘unsafe states’, represented by a predicate unsafe = ¬P . Thus,
our verification goal is to prove (or disprove) that unsafe states
cannot be reached from initial states by following transitions
of the FSM.

When v is a boolean variable, then v and ¬v are called liter-
als. Cubes are conjunctions of literals, clauses are disjunctions
of literals. The negation of a cube is a clause and vice versa.
A boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. As usual, we often represent a clause as
a set of literals and a CNF as a set of clauses. In the following,
we abbreviate cubes over current (next) state variables by
letters s (s′). By minterms we denote cubes containing literals
for all state variables. We assume that the transition relation
T of an FSM M has been translated into CNF by standard
methods like [16]. Modern SAT solvers are able to check the
satisfiability of boolean formulas in CNF.

B. PDR and Reverse PDR

The method we will further use and adapt is called property
directed reachability (PDR) [7] or IC3 as in its original
implementation [3]. PDR produces stepwise reachability infor-
mation in time-frames without unrolling the transition relation.
Each time-frame k corresponds to a predicate Rk represented
as a set of clauses, leading to predicates R0, . . . , RN in main
loop N of PDR.1 Rk always overapproximates the set of
states which can be reached from init in up to k steps. This
invariant holds, since in the first main loop R0 is initialized

1In the following we often identify predicates Rk with the state sets
represented by them.

by init (and always remains unchanged), R1 is initialized
by 1 (representing the set of all possible states), and later
steps only exclude states s from Rk, if there is provably no
transition from Rk−1 (which overapproximates – by induction
assumption – the set of states which can be reached from init
in up to k − 1 steps) to s.

Let us consider main loop N when PDR has constructed
time frames R0, . . . , RN . PDR starts main loop N by extract-
ing satisfying cubes from RN∧unsafe by calling a SAT solver.
It generalizes (⋆1) a satisfying assignment of RN ∧unsafe into
a cube s, thus s represents unsafe states for which it has not
yet been proven that they can not be reached from init in up
to N steps. A new proof obligation (s,N) is inserted. It has
to be proven that it is not possible to reach the states in s
from init in up to N steps (otherwise an unsafe state would
be reachable from init). Discharging this proof obligation is
done by asking for SAT?[RN−1 ∧ T ∧ s′] (which corresponds
to an pre-image computation) where the cube s′ is identical
to s, but uses next state variables instead of current state
variables.2 If this SAT check is unsatisfiable, then the proof
obligation has been discharged and s is excluded from RN by
adding ¬s to the clauses in RN . If possible, s is generalized
(⋆2) before. If the SAT check is satisfiable, a predecessor
minterm m is extracted from the satisfying assignment, m
is ‘generalized’ (⋆3) to a cube ŝ, and the proof-obligation
(ŝ, N − 1) is produced. Again, (ŝ, N − 1) may be proved
by an unsatisfiable call SAT?[RN−2 ∧ T ∧ ŝ′] or may produce
new recursive proof obligations at earlier time frames. Before
a new proof obligation is added, PDR always checks whether
its cube intersects init. If yes, then PDR stops, since there is
a path from init to unsafe, i.e., a counterexample (the reason
for inserting a proof obligation (s̃, k) is exactly the fact that
unsafe can be reached from all states covered by s̃).

When all proof obligations are discharged and RN ∧unsafe
becomes unsatisfiable, it has been proven that there is no path
of length ≤ N from init to unsafe. Then a new time frame
RN+1 with RN+1 = 1 (represented by the empty clause set)
is added, and a new main loop is started. If Rk−1 and Rk are
equivalent, then Rk is an inductive invariant and the proof that
there is no trace from init to unsafe is complete.

As already observed in [7] and [8], there is a simple way
to arrive at an implementation of Reverse PDR based on the
observation that there is a path from init to unsafe using a
transition relation T iff there is a path from unsafe to init
using the ‘reverted transition relation’. Thus, a basic version of
Reverse PDR is obtained just by exchanging init with unsafe
and interpreting the predicate for T ‘the other way round’.
In that way, Reverse PDR starts its analysis with the initial
states init instead of the unsafe states unsafe and computes
overapproximations RR0, . . . , RRN with RRk overapproxi-
mating the set of states from which unsafe can be reached in
up to k steps. SAT solver calls of type SAT?[RN ∧unsafe] are
replaced by SAT?[RRN ∧ init] and SAT solver calls of type
SAT?[Rk−1 ∧ T ∧ s′] are replaced by SAT?[s ∧ T ∧ RR′

k−1
]

(here the clauses from RR′
k−1

are formulated with next state
variables instead of current state variables, the cube s with
current state variables instead of next state variables), i.e., pre-
image computations are replaced by image computations.

2Here we review only the basic idea of PDR and omit detailed improve-
ments like strengthening the query by conjunction with ¬s.

Many optimizations proposed in the literature including
generalizations (⋆1) and (⋆2) (see [3], [7], [8], e.g.) contribute
to the efficiency of PDR and can be easily transferred to Re-
verse PDR. Unfortunately, the generalization (⋆3) mentioned
above cannot be directly transferred from PDR to Reverse
PDR, since it makes use of the fact that in the verification
of sequential circuits the transition relation T results from a
circuit, i.e., from transition functions, which is not the case
for the reverted transition relation in Reverse PDR. Since this
generalization of minterms into larger cubes is essential for
the efficiency, we will have a closer look into this issue in the
next section.

III. OPTIMIZATION OF REVERSE PDR

We start with considering the original PDR approach in
order to make clear why and where a simple transfer of the
methods from original to Reverse PDR fails in case (⋆3) from
the previous section. In the original PDR approach a satisfiable
query SAT?[Rk−1 ∧ T ∧ s′] provides a satisfying minterm
m (expressed with current state variables) which may be
generalizable to a satisfying subcube ŝ (forming a new proof
obligation). The question whether m can be generalized to a
satisfying subcube ŝ can – in principle – be reduced to a certain
QBF problem. In the original PDR approach this QBF problem
is approximately (and more efficiently) solved either by an
appropriate SAT check [17] or by ternary simulation [7]. Both
methods rely on the fact that the transition relation T results
from a combinational circuit with current state variables and
primary inputs as inputs and next state variables as outputs. We
will show that the trick of approximate solving such a QBF
problem does not work for Reverse PDR, neither with SAT
checking nor with ternary simulation. Therefore for Reverse
PDR we resort to a structural method.

δ

ŝ

~r

~i

s
′

~t′

m

Fig. 1: Notions for PDR

Suppose that in the original
PDR the query SAT?[Rk−1 ∧
T ∧ s′] is satisfiable by an as-
signment m to the present state

variables and î to the primary
inputs. We would like to check
whether we can generalize the
proof obligation (m, k − 1) to a proof obligation (ŝ, k − 1)
by removing literals from m. This amounts to answering the
question whether for each state in the cube ŝ there is an

assignment to the primary inputs ~i that leads to a next state in
the cube s′. Let ~r be the vector of present state variables not

occurring in the cube ŝ and ~t′ be the vector of next state
variables not occurring in the cube s′, see Fig. 1 for the
notations. Thus, we have to check whether the QBF problem

∀~r ∃~i ∃~t′ : ŝ ∧ T ∧ s′ (1) is satisfiable. We approximate this
QBF step by step and in the end we get rid of the quantifier
alternation. In a first step we restrict the choice for the primary

inputs to the fixed assignment î from the original satisfying
assignment above. Thus we arrive at an approximate QBF

∀~r ∃~t′ : î∧ŝ∧T∧s′ (2). Now we consider a fixed assignment r̂
to the variables in ~r. Since T results from a circuit and î∧ r̂∧ ŝ
assigns values to all inputs of the circuit, î ∧ r̂ ∧ ŝ ∧ T has

exactly one satisfying assignment. Thus, ∃~t′ : î∧ r̂∧ ŝ∧T ∧s′

is equivalent to ∀~t′ : (̂i ∧ r̂ ∧ ŝ ∧ T) ⇒ s′ and Eqn. (2)

is equivalent to ∀~r ∀~t′ : (̂i ∧ ŝ ∧ T) ⇒ s′ (3). Eqn. (3) is

satisfiable iff its negation ∃~r ∃~t′ : î ∧ ŝ ∧ T ∧ ¬s′ (4) is

unsatisfiable which corresponds exactly to the SAT formula
used in [17]. Unsatisfiability of Eqn. (4) implies satisfiability
of QBF formula from Eqn. (1). Minimizing the length of the
subcube ŝ is reduced to unsatisfiable core techniques.

An alternative approximation of Eqn. (1) can be obtained by

ternary simulation [7]: We assign î to the primary inputs and ŝ
to a subset of the state inputs. The inputs in ~r are replaced by
the unknown value X . If ternary simulation does not propagate
the X-values to outputs with literals occurring in s′, then the
original minterm m can be replaced by ŝ.

Unfortunately, both methods can not be transferred to Re-
verse PDR.

Ternary simulation can not be transferred, since we would
need to introduce unknown values X at the circuit outputs
which cannot simply be ‘simulated’, since the circuit specify-
ing T has a ‘fixed direction’ and cannot simply be ‘reverted’.

δ

s ŝ
′

~r′

m
′

~t

~i

Fig. 2: Reverse PDR

In Reverse PDR, a satisfy-
ing valuation of SAT?[s ∧ T ∧
RR′

k−1
] yields a minterm m′

in the image of the cube s.
The question whether the proof
obligation (m′, k − 1) can be
generalized to (ŝ′, k − 1) with
a subcube ŝ′ amounts to the question whether ŝ′ is completely
included in the image of s. Again, this can be formulated as

a QBF problem: Let ~r′ be the vector of next state variables
not occurring in the cube ŝ′ and ~t be the vector of present
state variables not occurring in the cube s, see Fig. 2 for
the notations. We have to check whether the QBF problem

∀~r′ ∃~i ∃~t : s ∧ T ∧ ŝ′ (5) is satisfiable. In contrast to the
original PDR, a transformation analogous to the transition
from Eqn. (2) to Eqn. (3) is not an equivalence transformation
anymore, since we can not use the circuit-based argument as
before. Nevertheless, a SAT check that is analogous to Eqn. (4)
could be an approximation to the QBF from Eqn. (5). The

analogous SAT formula ∃~r′ ∃~t : î ∧ ¬s ∧ T ∧ ŝ′ (6) is not
an approximation due to a subtle reason: Unsatisfiability of
Eqn. (6) guarantees the following: If for a valuation r̂′ to the

removed variables ~r′ there is a predecessor of (ŝ′, r̂′) under

primary input assignment î, then it is included in s. However,
since it is not guaranteed that there is any predecessor of

(ŝ′, r̂′) under input î at all, it is not guaranteed that (ŝ′, r̂′)
occurs in the image of s. This means that it is not sound to
use unsatisfiablity of Eqn. (6) for reducing a minterm m′ to a
subcube ŝ′.

Using the QBF from Eqn. (5) for checking whether
minterms in proof obligations can be shortened to subcubes
does not seem to be advisable however, since QBF solving is
much harder than SAT solving in practice and repeated QBF
queries not only for a fixed ŝ′, but for minimizing the size of
the subcube ŝ′ causes too much overhead. On the other hand,
generalizing satisfiable cases has been proven to be heavily
effective in [7]. For that reason we use a structural method
as a rough approximation which nevertheless is successful in
practice as experimental results in Sect. V show. A related and
slightly simpler structural check has been used in the context
of SAT based image computation [18].3

3For SAT based image computation the sizes of cubes in the image have
to be maximized in order to make the enumeration of image cubes more
effective.

The subcube ŝ′ has to fulfill the following condition: In the
part of the image of s where the next state variables which
are not removed have the valuation ŝ′ (i.e. exactly the same

valuation as in m′), all possible combinations from B
|~r′| occur

for the values of ~r′.
A sufficient condition (*) implying this condition is:

Let δi|s(~t,~i) be the cofactors of transition functions
δi with state variables fixed to s, supp(δi|s) their
(structural) support sets. For all δij computing r′j we

have supp(δij |s) ∩ supp(δi|s) = ∅ ∀i 6= ij and δij |s is
different from the constant functions 0 and 1.

The idea of condition (*) is as follows: Assume that we
fix the primary inputs and the current state variables such that
s occurs at the inputs and ŝ′ occurs at the outputs of the

transition function ~δ. Due to the conditions for the support
sets in (*) we can change the variables in the support sets of
δij |s computing r′j arbitrarily without changing ŝ′. Since the

support sets of those transition functions δij |s are in addition
disjoint from each other and they are not constant, we can
produce arbitrary value combinations at their outputs without
changing ŝ′.

If SAT?[s ∧ T ∧ RR′
k−1

] is satisfiable with the satisfying
minterm m′, we consider a bipartite graph G = (V,E)
for checking which literals can be removed from m′: V is
partitioned into two disjoint node sets V1 and V2. The nodes

in V1 correspond to variables from (~t,~i), the nodes in V2

correspond to the cofactors δi|s of the transition functions,
{v1, v2} ∈ E with v1 ∈ V1, v2 ∈ V2 iff v1 ∈ supp(v2).
According to condition (*) we can remove a literal from m′,
if it corresponds to a non-constant function δi|s whose node
v2 ∈ V2 is only connected to nodes v1 ∈ V1 with degree 1
(**).

Fixing additional variables from (~t,~i) to the constants
from the satisfying assignment increases the chance to obtain
disjoint support sets (of course at the risk of turning δi|s into
constant functions). We use the following heuristics: In step 1
we set all v1 ∈ V1 with degree(v1) > k1 to constants (k1 is
a constant and chosen as 0.5 × |V2| in our implementation).
Those nodes v1 and their outgoing edges are removed from
G. The intuition is that a node v1 with a high degree prevents
many literals from being removed from m′. In step 2 we
consider for each node v2 ∈ V2 whether condition (**) ‘almost
holds’. Let D1 = {v1 ∈ V1 | (v1, v2) ∈ E, degree(v1) = 1}
and D2 = {v1 ∈ V1 | (v1, v2) ∈ E, degree(v1) > 1}. If

|D1|
|D1|+|D2|

> k2, then the variables from D2 are set to constants

and they are removed from G. (In our implementation k2 =
0.95.) After steps 1 and 2 we obtain the literals to be removed
from m′ by checking condition (**). In our implementation
non-constant functions are determined approximately by sim-
ulating 20 randomly chosen input vectors.

IV. COMBINING PDR AND REVERSE PDR

A. Relation between PDR and Reverse PDR

Our experiments in Sect. V show that it is worthwhile to
consider both original and Reverse PDR, since they outperform
each other on different benchmark instances. There may be
even an exponential gap between PDR and Reverse PDR:

Theorem 1: There are sequential circuits for which PDR
causes exponentially more SAT queries than Reverse PDR and
vice versa.

The proof is omitted due to lack of space and can be found
in [19]. These observations motivate a combination of PDR
and Reverse PDR into a single algorithm that inherits the
advantages of both directions.

B. Combined Algorithm

In Alg. 1 we present our algorithm combining the original
(or forward) PDR with the Reverse (or backward) PDR. Basi-
cally, it runs the original PDR for some time limit tlimitfw,
then Reverse PDR for some time limit tlimitbw, afterwards
it resumes the original PDR again for time tlimitfw etc..
Whenever one of the two directions finishes with the result
“safe” or “unsafe” (lines 5 or 9 of Alg. 1), the combined
algorithm finishes with this result.

1 init_PDR(init , unsafe); init_RPDR(init , unsafe);
2 pofw := ∅; pobw := ∅;
3 while true do

4 (res, new_pofw) := resume_PDR(pobw, tlimitfw);
5 if res 6= unknown then return res;

6 pofw := pofw ∪ new_pofw;

7 compress(pofw, slimitfw);
8 (res, new_pobw) := resume_RPDR(pofw, tlimitbw);
9 if res 6= unknown then return res;

10 pobw := pobw ∪ new_pobw;

11 compress(pobw, slimitbw);

Algorithm 1: Combined forward and backward PDR.

Information exchange between the two directions of PDR
takes place on the basis of proof obligations. Sets of proof
obligations pofw of the original PDR represent underapproxi-
mations of the set of states from which the unsafe states can be
reached. Therefore, in Reverse PDR the set of unsafe states
can be extended by the proof obligations pofw as a “target
enlargement”. Extending unsafe in Reverse PDR by pofw has
two effects:

1) During Reverse PDR, the intersection of a cube s
that can be reached from init (i.e., of a proof obligation
in Reverse PDR) with the extended unsafe may now be
non-empty, because of a non-empty intersection of s with a
proof obligation from forward PDR. Due to this non-empty
intersection, a counterexample, i.e., a trace from the initial
states to unsafe , has been found where the first part of the
trace (reaching s from init) has been constructed by Reverse
PDR and the second part (reaching unsafe from s) has been
constructed by forward PDR.

2) Sometimes in (Reverse) PDR the generalization of cubes
s into ŝ1 for unsatisfiable cases (see Sect. II) may be un-
necessarily large such that it prevents early convergence of
the procedure. In the combined algorithm unnecessary large
generalizations are restricted by the stronger requirement that
a generalized cube ŝ2 does not intersect the extended unsafe
states, not only the unsafe states as in the original Reverse
PDR. If a larger ŝ1 that includes states from which unsafe
can be reached (as has been proved by forward PDR) is
removed from RRk, then the procedure cannot converge with
RRk ≡ RRk+1, since the sets RRi overapproximate the set
of states from which unsafe can be reached in i steps and
thus some of the excluded states have to be added later on, at
higher time frames.

Of course, a dual argumentation is possible for transferring
information from Reverse PDR to PDR: Sets of proof obliga-
tions pobw of Reverse PDR represent underapproximations of
the set of states which can be reached from the initial states.

Fig. 5: Detailed analysis of solved benchmarks.

PDR benchm. time learnt cl. opened fr. cex len.

comb. 6s406rb111 562.3s 890 15 -
orig. 6s406rb111 timeout 8892 15 -
rev. 6s406rb111 timeout 68 11 -

comb. beemskbn2f1 1578.5s 3589 49 116
orig. beemskbn2f1 2025.6s 4116 54 126
rev. beemskbn2f1 timeout 3966 21 -

comb. 6s284rb1 1978.3s 5065 31 125
orig. 6s284rb1 timeout 24471 22 -
rev. 6s284rb1 1514.9s 7381 31 108

TABLE I: Benchmarks: 6s406rb111 (unsat), beemskbn2f1 (sat),
6s284rb1 (sat).

all solved benchmarks9. The combined algorithm successfully
combines the advantages of PDR and Reverse PDR in the
sense that its run times are usually in the order of the doubled
minimum of the run times for PDR and Reverse PDR, or below
that. The communication between original and Reverse PDR
via proof obligations enables the combined algorithm to run
even faster (sometimes significantly faster) than the doubled
minimum of the run times for PDR and Reverse PDR. In a
few cases even both standalone approaches run into a timeout
whereas the combined approach solves the benchmark. We
take a closer look at some of the benchmarks in Tab. I. For
6s406rb111, both standalone methods have a timeout whereas
the combined algorithm terminates with an inductive invariant
during the original PDR part after 562.3 seconds with a total
of 890 learnt clauses (blocked cubes) in contrast to 8892
blocked cubes just before timeout when using standalone
original PDR. Looking at benchmark beemskbn2f1 it turns
out that the combined algorithm finishes its analysis with a
counterexample of length 116 during execution of the original
PDR part after 1578.5 seconds and 49 main iterations (time
frames) while original PDR requires 54 main iterations and
2025.6 seconds for a counterexample of length 126. Reverse
PDR does not terminate after 3600 seconds. 6s284rb1 is solved
by the Reverse PDR part of the combined approach whereas
the original PDR has a timeout. Note that the combined PDR
approach is able to produce counterexamples much longer than
the trace by pushing proof obligations into later time frames
(as in the original PDR) and by using information learnt from
the opposite direction. We also tested how generalization of
proof obligations (see Sect. III) within Reverse PDR affects
original PDR run times in the combined approach. We found
out that there are indeed positive effects. Again we present
two exemplary benchmarks in Tab. II; they are solved by the

9We provide result tables and binaries under http://bit.ly/2wXZNFd

PDR benchm. time learnt cl. opened fr. cex len.

with gen. oski1rub03i 692.2s 210 10 -
without oski1rub03i 1665.53 1978 17 -

with gen. 6s320rb0 1282.6s 8316 9 9
without 6s320rb0 1756.7s 10531 9 9

TABLE II: Benchmarks: oski1rub03i (unsat), 6s320rb0 (sat).

original PDR part of the combined approach.

VI. CONCLUSIONS AND FUTURE WORK

We showed that there is not only a theoretical complexity
gap between original PDR and Reverse PDR, but also a prac-
tical gap in the execution of the latest HWMCC benchmark
suite. We put this fact to use by implementing a combined
algorithm which is able to solve a lot more benchmarks than
each standalone PDR variant. By exchanging proof obligations
we developed a way in which original and Reverse PDR can
profit from each other while being executed alternately.

We showed that there is optimization potential for Reverse
PDR in the generalization of proof obligations even though
known generalization approaches from original PDR do not
apply.

Apparently there is still work to do in analyzing and
optimizing Reverse PDR. Furthermore, communication and
cooperation between original and Reverse PDR may have not
been utilized to its full potential yet, leaving this a promising
field of research.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS, 1999, pp. 193–207.

[2] K. L. McMillan, “Interpolation and SAT-based model checking,” in CAV,
2003, pp. 1–13.

[3] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
ser. LNCS, vol. 6538. Springer, 2011, pp. 70–87.

[4] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003,
pp. 502–518.

[5] G. Cabodi, S. Nocco, and S. Quer, “Mixing forward and backward
traversals in guided-prioritized BDD-based verification,” in CAV, ser.
LNCS, vol. 2404. Springer, 2002, pp. 471–484.

[6] C. Stangier and T. Sidle, “Invariant checking combining forward and
backward traversal,” in FMCAD, 2004, pp. 414–429.

[7] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in FMCAD, 2011, pp. 125–134.

[8] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in FMCAD, 2013, pp. 157–164.

[9] A. Ivrii and A. Gurfinkel, “Pushing to the top,” in FMCAD, 2015, pp.
65–72.

[10] M. Suda, “Property directed reachability for automated planning.” J.
Artif. Intell. Res.(JAIR), vol. 50, pp. 265–319, 2014.

[11] Y. Vizel and A. Gurfinkel, “Interpolating property directed reachability,”
in CAV, ser. LNCS, vol. 8559. Springer, 2014, pp. 260–276.

[12] Y. Vizel, O. Grumberg, and S. Shoham, “Lazy abstraction and SAT-
based reachability in hardware model checking,” in FMCAD. IEEE,
2012, pp. 173–181.

[13] J. Baumgartner, A. Ivrii, A. Matsliah, and H. Mony, “IC3-guided
abstraction,” in FMCAD, 2012, pp. 182–185.

[14] J. Birgmeier, A. R. Bradley, and G. Weissenbacher, “Counterexample to
induction guided abstraction refinement (CTIGAR),” in CAV, ser. LNCS,
vol. 8559. Springer, 2014, pp. 831–848.

[15] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined forward-backward
reachability analysis using interpolants,” in TACAS, ser. LNCS, vol.
7795. Springer, 2013, pp. 308–323.

[16] G. Tseitin, “On the complexity of derivations in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logics, 1968.

[17] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in FMCAD, 2011, pp. 135–143.

[18] P. Chahan, E. Clarke, and D. Kroening, “Using SAT based image
computation for reachability analysis,” Carnegie Mellon University,
Tech. Rep. CMU-CS-03-151, September 2003.

[19] T. Seufert and C. Scholl, “Sequential verification using Reverse PDR,”
in MBMV, 2017, pp. 79–89.

