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Abstract. In this paper, we propose the elimination of dependencies
to convert a given dependency quantified Boolean formula (DQBF) to
an equisatisfiable QBF. We show how to select a set of dependencies to
eliminate such that we arrive at a smallest equisatisfiable QBF in terms
of existential variables that is achievable using dependency elimination.
This approach is improved by taking so-called don’t-care dependencies
into account, which result from the application of dependency schemes
to the formula and can be added to or removed from the formula at
no cost. We have implemented this new method in the state-of-the-art
DQBF solver HQS. Experiments show that dependency elimination is
clearly superior to the previous method using variable elimination.

1 Introduction

Dependency quantified Boolean formulas (DQBFs) have received considerable
attention in research during the last years. They are a generalization of ordi-
nary quantified Boolean formulas (QBFs). While the latter have the restric-
tion that every existential variable depends on all universal variables in whose
scope it is, DQBFs allow arbitrary dependencies, which are explicitly specified
in the formula. This makes DQBFs more expensive to solve than QBFs – for
DQBF the decision problem is NEXPTIME-complete, for QBF ‘only’ PSPACE-
complete. However, there are practically relevant applications that require the
higher expressiveness of DQBF for a natural and tremendously more compact
modeling. Among them is the analysis of multi-player games with incomplete
information [22], the synthesis of safe controllers [4] and of certain classes of LTL
properties [8], and the verification of incomplete combinational and sequential
circuits [12,27,35].

Driven by the needs of the applications mentioned above, research on DQBF
solving has not only led to fundamental theoretical results on DQBF [1,3], but
also to first solvers like iDQ and HQS [10,11,13,32].

This work was partly supported by the German Research Council (DFG) as part
of the project “Solving Dependency Quantified Boolean Formulas” and by the
Max Planck Center for Visual Computing and Communication (www.mpc-vcc.org).
Ruben Becker is a member of the Saarbrücken Graduate School of Computer Science.

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 326–343, 2017.
DOI: 10.1007/978-3-319-66263-3 21

http://www.mpc-vcc.org


From DQBF to QBF by Dependency Elimination 327

While iDQ uses instantiation-based solving, i.e., it reduces deciding a DQBF
to deciding a series of SAT problems which correspond to partial universal expan-
sions, HQS [13] uses the elimination of universal variables to turn the DQBF at
hand into an equisatisfiable QBF, which can be solved by an arbitrary QBF solver.
The basic method is complemented by several preprocessing techniques for DQBF
[9,32,33] and the application of dependency schemes [34] for manipulating the
dependency sets of the DQBF formula without changing its truth value.

In this paper we improve on the state-of-the-art solver HQS by making the
following contributions:

(1)We introduceanoveltechniquecalled ‘dependencyelimination ’ for trans-
forming a DQBF into an equisatisfiable QBF. While [13] uses a minimal number of
universal expansions for turning a DQBF ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ
into an equisatisfiable QBF with linearly ordered dependency sets, dependency
elimination is able not only to remove universal variables xi completely from the
formula, but also to remove universal variables xi from single dependency sets Dyj

,
i.e., it works with a finer granularity. Dependency elimination is used with the goal
of producing fewer copies of existential variables in the final QBF.
(2) We provide a method for selecting an optimal elimination set. The
main ingredients of this method are:

(a) Dependencies can be represented in a natural way by a bipartite tourna-
ment graph, also called the dependency graph. Determination of an optimal
elimination set then corresponds to breaking cycles in this graph by flipping
a cost-minimal set of edges. A (non-linear) cost function takes into account
the number of existential variables after eliminating a set of dependencies.

(b) An exact and efficient solution for the optimization problem in (a) is pre-
sented. It is based on integer linear programming with dynamically added
constraints similar to the so-called cutting plane approach [36].

(c) The efficiency of the optimal elimination set computation is significantly
increased by integrating symmetry reduction. Symmetry reduction is based
on the observation that in typical applications the number of different
dependency sets is rather small. We prove that optimal solutions based on
symmetry-reduced graphs are optimal solutions for the original graphs as well.
Based on research on dependency schemes [34] we consider in our optimization
also dependencies which can be removed ‘free of charge’ without dependency
elimination, since their removal does not change the truth value of the DQBF.

(d) Furthermore, we prove that the problem of finding an optimal elimination set
for DQBFs with ‘don’t-care dependencies’ is NP-complete. Note that there
are related problems in the literature like ‘Minimal Feedback Arc Set’ (FAS)
for bipartite tournament graphs. FAS for bipartite tournament graphs has
been shown to be NP-complete as well in [14], but it differs from our problem
in two aspects: We are only allowed to flip a subset of all edges (only the
edges representing dependencies of existential variables on universal ones)
and our cost function does not simply count the number of flipped edges,
but it is more complicated and non-linear.
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(3) We perform an extensive experimental evaluation, proving that the
computation time for selecting an optimal elimination set is typically negligible,
the number of variable copies produced by the optimal dependency elimination
is much smaller compared to full universal variable elimination in many cases,
and – overall – that the performance of the solver HQS could be improved to a
great extent by the novel approach.

The paper is structured as follows: In the next section we introduce the neces-
sary foundations. Section 3 presents dependency elimination and our procedure
which selects an appropriate set of dependencies to eliminate. In Sect. 4 we exper-
imentally evaluate this novel method. Finally, in Sect. 5 we draw conclusions and
point out future work.

2 Foundations

For a finite set V of Boolean variables, A(V ) denotes the set of variable assign-
ments of V , i.e., A(V ) = {ν : V → B} with B = {0, 1}. Given quantifier-
free Boolean formulas φ and κ over V and a Boolean variable v ∈ V , φ[κ/v]
denotes the Boolean formula which results from φ by replacing all occurrences
of v simultaneously by κ (simultaneous replacement is necessary when κ contains
the replaced variable v).

Dependency quantified Boolean formulas are obtained by prefixing Boolean
formulas with so-called Henkin quantifiers [15].

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) ψ
over V has the form ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ, where Dyi
⊆

{x1, . . . , xn} is the dependency set of yi for i = 1, . . . ,m, and φ is a quantifier-
free Boolean formula over V , called the matrix of ψ.

We denote the existential variables of a DQBF ψ with V ∃
ψ = {y1, . . . , ym} and

its universal variables by V ∀
ψ = {x1, . . . , xn}. As the order of the variables in

the quantifier prefix Q does not matter, we can regard it as a set: For instance,
Q\{v} with a variable v ∈ V is the prefix which results from Q by removing the
variable v together with its quantifier (as well as its dependency set in case v is
existential, and all its occurrences in dependency sets if it is universal).

The semantics of a DQBF is typically defined in terms of so-called Skolem
functions.

Definition 2 (Semantics of DQBF). Let ψ be a DQBF as above. It is sat-
isfied if there are functions sy : A(Dy) → B for y ∈ V ∃

ψ such that replacing each
existential variable y by (a Boolean expression for) sy turns φ into a tautology.
The functions (sy)y∈V ∃

ψ
are called Skolem functions for ψ.

Deciding whether a given DQBF is satisfied is NEXPTIME-complete [22].

Definition 3 (Equisatisfiability of DQBFs). Two DQBFs ψ and ψ′ are
equisatisfiable iff they are either both satisfied or both not satisfied.
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The elimination of universal variables in solvers like HQS [13] is done by
universal expansion and leads to an equisatisfiable DQBF [1,5,6,12]:

Definition 4 (Universal Expansion). For a DQBF ψ = ∀x1 . . . ∀xn∃y1
(Dy1) . . . ∃ym(Dym

) : ϕ with Zxi
=

{
yj ∈ V ∃

ψ

∣
∣ xi ∈ Dyj

)
}
, the universal expan-

sion of variable xi ∈ V ∀
ψ is defined by

(
Q\{xi}

)∪{∃y′
j(Dyj

\{xi})
∣
∣ yj ∈ Zxi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈ Zxi
].

An important special case of DQBFs is known as quantified Boolean formulas.
They exhibit a linearly ordered quantifier prefix, where each existential variable
y depends on all universal variables in whose scope it is:

Definition 5 (Syntax of QBF, Equivalent QBFs). Let V = {x1, . . . , xn, y1,
. . . , ym} be a finite, non-empty set of Boolean variables, X1, . . . , Xk ⊆
{x1, . . . , xn} a partition of {x1, . . . , xn} such that Xi 	= ∅ for i = 2, . . . , k,
and Y1, . . . , Yk ⊆ {y1, . . . , ym} a partition of {y1, . . . , ym} such that Yi 	= ∅ for
i = 1, . . . , k − 1. Additionally let φ be a quantifier-free Boolean formula over V .

A quantified Boolean formula (QBF) Ψ (in prenex form) is given by

Ψ :=∀X1∃Y1∀X2∃Y2 . . . ∀Xk∃Yk : φ.

The QBF Ψ is equivalent to the DQBF ψ :=∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) :

φ, if Dyi
=

⋃L
�=1 X� such that L is the unique index with yi ∈ YL. In this case

we say that the DQBF ψ ‘can be written as a QBF Ψ ’ or the DQBF ψ ‘has an
equivalent QBF prefix’.

Lemma 1 ([13]). A DQBF ψ has an equivalent QBF prefix if Dy ⊆ Dy′ or
Dy′ ⊆ Dy holds for all y, y′ ∈ V ∃

ψ .

QBFs can be solved more efficiently than general DQBFs. For QBF, the
decision problem is “only” PSPACE-complete [21], and rather efficient solvers
for QBF are available like DepQBF [19,20], AIGSolve [23,24], Qesto [17],
RAReQS [16], to name just a few. Therefore the goal is to manipulate the DQBF
at hand – preserving the truth value – in a way such that the resulting formula
has an equivalent QBF prefix and can be solved by any available QBF solver.

3 Dependency Elimination

The DQBF solver HQS [13] uses universal expansion to turn the DQBF at hand
into an equisatisfiable QBF. It determines a smallest possible set of universal
variables whose elimination yields a QBF. This is done by solving a MAXSAT
problem. Using universal expansion has the drawback that it copies all variables
which depend on the eliminated universal variable.
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Example 1. The DQBF ∀x1∀x2∃y1(x1)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) : ϕ
does not have an equivalent QBF prefix. Therefore the expansion of either x1

or x2 is necessary. When x1 is eliminated, y1, y3, . . . , yn are doubled, creating
n − 1 additional existential variables. The elimination of x2 creates copies of
y2, y3, . . . , yn. However, only the dependencies of y1 on x1 and of y2 on x2 are
responsible for the formula not being a QBF.

Therefore we propose an alternative operation that we can use to obtain
an equisatisfiable DQBF with an equivalent QBF prefix, namely dependency
elimination, which allows to remove single dependencies from a formula.

Theorem 1 (Dependency Elimination). Assume ψ is a DQBF as in
Definition 1 and, w.l.o.g., x1 ∈ Dy1 . Then ψ is equisatisfiable to:

ψ′ := ∀x1 . . . ∀xn ∃y0
1

(
Dy1\{x1}

) ∃y1
1

(
Dy1\{x1}

) ∃y2
(
Dy2

)
. . . ∃ym

(
Dym

)
:

φ
[(

(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)
)
/y1

]
.

Proof. Assume ψ is satisfiable with Skolem functions syi
for yi (1 ≤ i ≤ m). We

have sy1 = (¬x1 ∧ sy1 |x1=0) ∨ (x1 ∧ sy1 |x1=1) for the negative cofactor sy1 |x1=0

w.r.t. x1 and the positive cofactor sy1 |x1=1 w.r.t. x1. Then ψ′ is satisfiable, too,
with Skolem functions syi

for yi (2 ≤ i ≤ m), sy1 |x1=0 for y0
1 and sy1 |x1=1 for

y1
1 . Conversely, if ψ′ is satisfiable with Skolem functions syi

for yi (2 ≤ i ≤ m),
sy0

1
for y0

1 and sy1
1

for y1
1 , then ψ is satisfiable with Skolem function sy1 =

(x1 ∧ sy1
1
) ∨ (¬x1 ∧ sy0

1
) for y1 and syi

for yi (2 ≤ i ≤ m). �
Example 2. Consider again the formula from Example 1. If we eliminate the
dependency of y1 on x1 we obtain the formula

∀x1∀x2∃y0
1(∅)∃y1

1(∅)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) : ϕ[(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)/y1].

This formula can be written as the QBF

∃y0
1∃y1

1∀x2∃y2∀x1∃y3 . . . ∃yn : ϕ[(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)/y1].

Instead of creating n−1 additional existential variables as in Example 1, we only
had to double y1 in order to obtain an equisatisfiable QBF.

The main question that we have to answer is which dependencies should be
eliminated in order to obtain an equisatisfiable QBF. If we eliminate n depen-
dencies of an existential variable y, we have to create 2n − 1 new copies of y.
Therefore it is typically not feasible to eliminate all dependencies, but we have to
take care to find a set of dependencies which requires the fewest variable copies
and still turns the formula into a QBF.
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3.1 Selecting Dependencies to Eliminate

In order to facilitate the selection of dependencies to eliminate we make use of
the following dependency graph:

Definition 6 (Dependency Graph). Let ψ be a DQBF as above. The depen-
dency graph Gψ =

(
Vψ, Eψ

)
is a directed graph with the set Vψ = V of variables

as nodes and edges

Eψ =
{
(x, y) ∈ V ∀

ψ × V ∃
ψ

∣
∣ x ∈ Dy

} ∪̇ {
(y, x) ∈ V ∃

ψ × V ∀
ψ

∣
∣ x /∈ Dy

}
.

Gψ is a so-called bipartite tournament graph [2,7,14]: The nodes can be
partitioned into two disjoint sets according to their quantifier and there are only
edges that connect variables with different quantifiers – this is the bipartiteness
property. We also write Gψ = (V ∀

ψ , V ∃
ψ , Eψ) to make the two disjoint node sets

apparent. Additionally, for each pair (x, y) ∈ V ∀
ψ × V ∃

ψ there is either an edge
from x to y or vice-versa – this property is referred to by the term ‘tournament’.

Theorem 2. Let ψ be a DQBF and Gψ its dependency graph. The graph Gψ is
acyclic iff ψ has an equivalent QBF prefix.

Proof. Assume that ψ has an equivalent QBF prefix. The left-to-right order of
this QBF prefix defines a total order ≺ on V with Dy = {x ∈ V ∀

ψ |x ≺ y} for
all y ∈ V ∃

ψ . Then for all edges (x, y) ∈ Eψ we have x ≺ y, and y ≺ x holds for
all edges (y, x) ∈ Eψ. That means all edges point to larger elements w.r.t. ≺.
Therefore Gψ is acyclic.

Now assume that Gψ is acyclic. Then we can find a topological order for
Gψ, i. e., there exists a total order ≺ on the nodes of Gψ such that we have:
If (v1, v2) ∈ Eψ then v1 ≺ v2. Now choose the QBF prefix from left to right
according to the total order ≺. If x ∈ Dy, then (x, y) ∈ Eψ, x ≺ y and x is to
the left of y; if x /∈ Dy, then (y, x) ∈ Eψ, y ≺ x and x is to the right of y. Thus
we have found an equivalent QBF prefix. �

Eliminating a dependency essentially corresponds to flipping the direction of
an edge (x, y) ∈ Eψ ∩ (V ∀

ψ × V ∃
ψ ) from a universal to an existential variable. The

cost of copying existential variables will be taken into account by choosing an
appropriate cost for flipping sets of edges. This cost will count the number of
existential variables after eliminating a set of dependencies. Our goal is to find a
cost-minimal set of edges such that flipping those edges makes the dependency
graph acyclic.

In the following, we will first determine a set R ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) of edges
whose deletion makes GR

del := (V ∀
ψ , V ∃

ψ , Eψ\R) acyclic. However, if R is such a
set of edges, then we can turn it into a set R′ ⊆ R such that flipping the
edges in R′ yields an acyclic graph: Let ≺ be a topological order of GR

del’s
nodes. Then we set R′ :=

{
(x, y) ∈ R

∣
∣ x ⊀ y

}
, i.e., we flip only those edges

of R which point backward according to ≺. Then ≺ is also a topological order
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of GR′
flip := (V ∀

ψ , V ∃
ψ , (Eψ\R′) ∪ {(y, x) | (x, y) ∈ R′}). Of course, ≺ is a topolog-

ical order of GR′
del := (V ∀

ψ , V ∃
ψ , Eψ\R′) as well and GR′

del is acyclic. Thus, if we

choose a minimal set Rmin ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) such that GRmin

del is acyclic, then
GRmin

flip is acyclic as well. So we can restrict our attention to removing edges from
Eψ ∩ (V ∀

ψ × V ∃
ψ ) for turning Gψ into an acyclic graph, as long as we remove a

minimal set of edges – although in our application (turning a DQBF into a QBF
by elimination of dependencies) we are only able to flip edges from V ∀

ψ to V ∃
ψ .

We define an elimination set as follows.

Definition 7 (Elimination set). A set R ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) is an elim-
ination set for the bipartite tournament graph Gψ = (V ∀

ψ , V ∃
ψ , Eψ) if GR

del =
(V ∀

ψ , V ∃
ψ , Eψ\R) is acyclic. An elimination set R is minimal if R\{e} is not an

elimination set for every e ∈ R.

Let R be a minimal elimination set. For y ∈ V ∃
ψ , we set Ry = {x ∈

V ∀
ψ | (x, y) ∈ R}. The cost of R is then given by cost(R) :=

∑
y∈V ∃

ψ
2|Ry|. The

cost of R corresponds to the number of existential variables in the formula after
the dependencies in R have been eliminated. Hence, our goal is to determine an
elimination set of minimal cost.

3.2 Symmetry Reduction

Before we look into the optimization problem of computing an elimination set of
minimal cost, we consider reducing the size of the dependency graph by exploit-
ing symmetries: The existential and universal variables are partitioned according
to the dependency sets. We define an equivalence relation ∼ by:

yi ∼ yj ⇔ Dyi
= Dyj

xi ∼ xj ⇔ {y� ∈ V ∃
ψ |xi ∈ Dy�

} = {y� ∈ V ∃
ψ |xj ∈ Dy�

}.

The dependency graph modulo ∼ is based on the equivalence classes [v]∼ of ∼
and is defined by G∼

ψ = (V ∼
ψ , E∼

ψ ) where

V ∼
ψ =

{
[v]∼

∣
∣ v ∈ V

}
and

E∼
ψ =

{
([xi]∼, [yj ]∼)

∣
∣ xi ∈ Dyj

} ∪̇ {
([yj ]∼, [xi]∼)

∣
∣ xi /∈ Dyj

}
.

By definition, the resulting graph G∼
ψ is a bipartite tournament graph again. It

is well defined: If ([x]∼, [y]∼) ∈ E∼
ψ holds for some x ∈ V ∀

ψ and y ∈ V ∃
ψ , then

x′ ∈ Dy′ holds for all x′ ∈ [x]∼ and all y′ ∈ [y]∼. If ([y]∼, [x]∼) ∈ E∼
ψ holds, then

x′ /∈ Dy′ for all x′ ∈ [x]∼ and all y′ ∈ [y]∼.
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A further reduction can be obtained by the following observation: Incident
edges of sources (i.e., nodes without incoming edges) and sinks (i.e., nodes with-
out outgoing edges) never need to be flipped, since they cannot occur on a cycle.
They can be removed from the graph, together with their incident edges. This
can be repeated until the graph does not change anymore. The result is again a
bipartite tournament graph.

If R∼ is the set of edges to be eliminated, transferring the cost function to
the reduced graph yields:

cost∼(R∼) =
∑

[y]∼∈V ∼
ψ

∣
∣[y]∼

∣
∣ · 2

∑
([x]∼,[y]∼)∈R∼ |[x]∼|.

The intuition behind the definition of cost∼(R∼) is that eliminating ([x]∼, [y]∼)
in G∼

ψ ‘means’ eliminating all edges (x′, y′) in Gψ with x′ ∈ [x]∼ and y′ ∈ [y]∼.
The following Theorem 3 justifies the application of symmetry reduction to

the dependency graph: A cost-optimal elimination set for the reduced graph
induces a cost-optimal elimination set for the original graph.

Theorem 3. (a) If R∼ is a minimal elimination set for G∼
ψ , then R =

{
(x, y) ∈

(V ∀
ψ × V ∃

ψ ) ∩ Eψ

∣
∣ ([x]∼, [y]∼) ∈ R∼}

is a minimal elimination set for Gψ such
that cost(R) = cost∼(R∼).

(b) If R is a minimal elimination set for Gψ, then the set R∼ :=
{
([x]∼, [y]∼)

∣
∣

(x, y) ∈ R
}

is a minimal elimination set for G∼
ψ such that cost(R) = cost∼(R∼).

Before we prove Theorem 3, we show the following Lemma 2.

Lemma 2. Let R be a minimal elimination set for Gψ. Then for all (x, y) ∈
V ∀

ψ × V ∃
ψ , we have (x, y) ∈ R iff [x]∼ × [y]∼ ⊆ R.

Proof (Lemma2). Let x1 → y1 → x2 → · · · → yk → x1 be a cycle of Gψ. Assume
that for all 1 ≤ i ≤ k [xi]∼ × [yi]∼ ⊆ R does not hold. Then for all 1 ≤ i ≤ k
there are (x′

i, y
′
i) with x′

i ∼ xi and y′
i ∼ yi such that (x′

i, y
′
i) /∈ R. According to

the definition of the relation ∼, Gψ contains the cycle x′
1 → y′

1 → x′
2 → · · · →

y′
k → x′

1 which is not broken by R. This contradicts our assumption that R is
an elimination set.

We conclude that for each cycle x1 → y1 → x2 → · · · → yk → x1 we have
[xi]∼ × [yi]∼ ⊆ R for some 1 ≤ i ≤ k. All other (xj , yj) with [xj ]∼ × [yj ]∼ 	⊆ R
are not needed to break cycles in Gψ and are thus not included in R due to
minimality of R. �

Proof (Theorem3). Proof of part (a): Let x1 → y1 → x2 → · · · → yk → x1

be an arbitrary cycle in Gψ (if there is no cycle in Gψ, then it trivially follows
that R is an elimination set). By definition of G∼

ψ , [x1]∼ → [y1]∼ → [x2]∼ →
· · · → [yk]∼ → [x1]∼ is a cycle in G∼

ψ . Since R∼ is an elimination set for G∼
ψ ,(

[xi]∼, [yi]∼
) ∈ R∼ for some i ∈ {1, . . . , k} and by definition of R we have
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(xi, yi) ∈ R. Therefore R is an elimination set. That the values of the cost
functions coincide is easy to see.

We still have to show that R is minimal. Assume the contrary, i.e., there is
(x1, y1) ∈ R such that R\{(x1, y1)

}
is still an elimination set. By construction,

([x1]∼, [y1]∼) ∈ R∼. Due to minimality of R∼, there has to be a cycle in G∼
ψ

containing ([x1]∼, [y1]∼). Let [x1]∼ → [y1]∼ → [x2]∼ → · · · → [yk]∼ → [x1]∼
be such a cycle without node repetitions (i.e., a simple cycle). By definition of
G∼

ψ , x1 → y1 → x2 → · · · → yk → x1 is a cycle in Gψ and (xi, yi) ∈ R for
some i ∈ {2, . . . , k}, since R\{

(x1, y1)
}

is an elimination set. By definition of R,
([xi]∼, [yi]∼) ∈ R∼ and ([xi]∼, [yi]∼) 	= ([x1]∼, [y1]∼), since the cycle is simple.
Therefore, all simple cycles broken by ([x1]∼, [y1]∼) are also broken by another
edge from R∼. That means, R∼ is not minimal, contradicting our assumption.

The proof of part (b) immediately follows from Lemma2. �

3.3 An Optimization Approach

The Underlying Optimization Problem. Our goal in the above described prob-
lem is to determine an elimination set R∼ of minimal cost cost∼(R∼). We can
determine such an elimination set by selecting one edge from each simple cycle
in the dependency graph. A cycle is called simple if it does not contain any sub-
cycle. This can be formulated as an optimization problem in a given arbitrary
bipartite tournament graph G with disjoint node sets X,Y and node weights
ω : X ∪Y → R>0. (Remember that in our application the nodes X ∪Y represent
equivalence classes [v]∼. Their weights correspond to the cardinality of [v]∼.)
We introduce a decision variable d(x,y) ∈ {0, 1} for each edge (x, y) ∈ EXY ,
where EXY = E ∩ (X ×Y ) with the interpretation that d(x,y) = 1 indicates that
(x, y) belongs to the elimination set. Let C denote the set of all simple cycles
c = x1 → y1 → x2 → · · · → yk → x1 such that xi ∈ X, yi ∈ Y for all i = 1, . . . , k
and xi 	= xj , yi 	= yj for i 	= j. Moreover, for a simple cycle c ∈ C, let us denote
with F (c) = E(c)∩ (X ×Y ), the set of all arcs in c that are directed from a node
in X to a node in Y . The optimization problem can then be formulated as

minimize
∑

y∈Y

ω(y) · 2
∑

x∈pre(y) ω(x)·d(x,y) (1a)

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C (1b)

d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY (1c)

Two challenges make solving this optimization problem difficult: First, the
objective function is non-linear as it is the sum of exponential functions. Second,
the number of cycles in the dependency graph may be prohibitively large.
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Solving the Optimization Problem. In order to bring the optimization problem
into a more convenient form, we first rewrite it by introducing variables fy ∈ Z

and zy ∈ Z for every y ∈ Y :

minimize
∑

y∈Y

ω(y) · zy (2a)

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C (2b)

∑

x∈pre(y)

ω(x) · d(x,y) = fy ∀y ∈ Y (2c)

zy ≥ 2fy ∀y ∈ Y (2d)
d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY (2e)

After this transformation, (2d) is the only non-linear constraint and the objec-
tive function is linear. We will handle these non-linear constraints dynamically
as follows. We first solve the optimization problem consisting only of (2b), (2c),
and (2e). These constraints form an integer linear program (ILP). Solving this
ILP yields a solution d̄, f̄ , z̄ that are not necessarily feasible for the complete
optimization problem (2). Thus, we check whether, for some y ∈ Y , the con-
straint z̄y ≥ 2f̄y is violated. In this case, we add a linear inequality (lazy con-
straint approach) that cuts off this infeasible solution, but none of the feasi-
ble points. Such an inequality is, e.g., the constraint that zy lies on or above
the tangent to the function 2fy in the current value f̄y of fy. This tangent is
described by t(fy) = 2f̄y · (1+ (fy − f̄y) · ln 2). Thus, we could add the inequality
zy ≥ 2f̄y · (

1 + (fy − f̄y) · ln 2
)
. However, such inequalities are not rational and

their closure yields non-integral extreme points. Instead, we can take the secants
through two adjacent extreme points of the convex hull of the integer points sat-
isfying (2d) (feasible solutions are integer). The secants through f̄y and f̄y + 1
and through f̄y − 1 and f̄y yield the constraints

zy ≥ 2f̄y (1 − f̄y + fy) and zy ≥ 2f̄y−1(2 − f̄y + fy).

Taken together, the two secant constraints are tighter than the tangent constraint
and moreover their description contains only integer coefficients. This is why the
secant constraints are preferable (see Fig. 1).

To further increase efficiency, we also relax the cycle constraints (2b) by
only adding constraints for C4, the set of all 4-cycles, first.1 The longer cycle
constraints are handled dynamically as well: If we obtain a solution, we check
by depth-first search whether the induced graph is acyclic. If it is not, we add
(2b) for the found cycle.2 The described approach leads to Algorithm1. Adding
1 Note that each cyclic bipartite tournament graph has a cycle of length 4.
2 The approach of dynamically or lazily adding constraints is similar to the cutting

plane approach [36] and is used as one of the main ingredients for efficiently solv-
ing many NP-hard problems for which only a description with exponentially many
constraints is at hand, as for example the traveling salesman problem.
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2 3 4

4

8

16

zy = 2f̄y(1 − f̄y + fy)

zy = 2f̄y−1 · (2−
f̄y + fy)

zy = 2fy

Fig. 1. The two secants on the function zy = 2fy at f̄y = 2. The shaded area denotes
the feasible region defined by the two inequalities corresponding to the two secants.

separation constraints dynamically is typically supported by ILP solvers like
Gurobi using call-back functions.

3.4 Don’t-Care Dependencies

During preprocessing, often dependencies can be identified, which are only
pseudo-dependencies (also called don’t-care dependencies), i.e., an existential
variable y contains a universal variable x in its dependency set, but it can be
shown that removing the dependency does not change the satisfiability of the
formula. Don’t-care dependencies correspond to edges in the dependency graph
which can be flipped without any costs.

Definition 8 (DQBF with Don’t-Care Dependencies). Let ψ = ∀x1 . . .
∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ be a DQBF as before and Syi
⊆ Dyi

for i =
1, . . . ,m. The sets Syi

are called don’t-care sets of ψ if ψ is equisatisfiable to

∀x1 . . . ∀xn∃y1(Dy1\Sy1) . . . ∃ym(Dym
\Sym

) : φ.

Detecting Don’t-Care Dependencies. Using the same proof idea as described in [26]
for QBF, we can show that deciding whether a dependency is a don’t-care depen-
dency has the same complexity as deciding DQBF itself. Therefore one usually
resorts to efficient approximations for computing don’t-care dependencies.

Lemma 3. Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : φ be a DQBF. Decid-

ing whether x ∈ Dy for x ∈ V ∀
ψ and y ∈ V ∃

ψ is a don’t-care dependency is
NEXPTIME-complete.

Don’t-care dependencies can be detected using so-called dependency schemes,
which provide over-approximations of the actually dependent variables, see
[25,28–30] for QBF and [32,34] for DQBF. Dependency schemes are based on
efficient syntactic criteria, and by over-approximating the dependent variables
they under-approximate the sets of don’t-care dependencies.
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Algorithm 1. SolveExact(G = (X,Y,E), ω)
C ← C4, P ← ∅
while True do

Determine (d̄, f̄ , z̄) as the optimal solution of

minimize
∑

y∈Y

ω(y) · zy

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C

∑

x∈pre(y)

ω(x) · d(x,y) = fy ∀y ∈ Y

zy ≥ 2f̄y (1 − f̄y + fy)

zy ≥ 2f̄y−1(2 − f̄y + fy)
∀(y, f̄y) ∈ P

d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY

constr added ← false
for y ∈ Y do

if z̄y < 2f̄y then
P ← P ∪ {(y, f̄y)}, constr added ← true

if cycle c exists in G′ := (X, Y, E\{(x, y) : d(x,y) = 1}) then
C ← C ∪ c, constr added ← true

if not constr added then
return (d̄, f̄ , z̄)

Exploiting Don’t-Care Dependencies. To exploit don’t-care dependencies, we
first have to refine the symmetry reduction to take not only the dependency
sets, but also the don’t-care dependencies into account. This yields the following
refined equivalence relation ≈ ⊆ V × V :

yi ≈ yj ⇔ Dyi
= Dyj

∧ Syi
= Syj

,

xi ≈ xj ⇔ {y ∈ V ∃
ψ |xi ∈ Dy} = {y ∈ V ∃

ψ |xj ∈ Dy}
∧ {y ∈ V ∃

ψ |xi ∈ Sy} = {y ∈ V ∃
ψ |xj ∈ Sy}.

The graph G≈
ψ , resulting from Gψ by merging equivalent nodes, is again a bipar-

tite tournament graph.
Let G = (X,Y,E) be the bipartite graph corresponding to a DQBF ψ with

don’t-care sets. We define the weight function ω : X∪Y → R as follows: ω(v) = 1
for all v ∈ X ∪ Y if the graph was not reduced, otherwise ω(v) =

∣
∣[v]≈

∣
∣ if we

have applied symmetry reduction using ≈. Let DC = {(x, y) |x ∈ Sy} be the set



338 R. Wimmer et al.

of all don’t-care dependencies and let R ⊆ EXY be an elimination set. Then we
just do not count the cost for eliminating don’t-care dependencies, i.e.,

cost(R) =
∑

y∈Y

ω(y) · 2
∑

(x,y)∈(R\DC) ω(x).

The don’t-care sets can easily be taken into account in Algorithm 1: Before
applying Algorithm1 we delete all edges in DC (i.e., all edges corresponding to
don’t-care dependencies) from the dependency graph, since those eliminations
are free of charge, and apply Algorithm1 without any other change. This means
that we implicitly start with R = DC and then add to the elimination set all
(x, y) ∈ V ∀

ψ × V ∃
ψ with d̄(x,y) = 1 in the solution returned by Algorithm1. The

resulting elimination set R is not necessarily minimal and thus eliminating all
those dependencies (which corresponds to flipping all edges in R) does not neces-
sarily make the dependency graph acyclic. However, we can find an appropriate
subset R′ ⊆ R such that flipping all edges from R′ makes the dependency graph
acyclic using the method from Sect. 3.1. (Another option would be to remove ele-
ments of DC from R one after the other as long as the resulting set R remains
an elimination set, finally arriving at a minimal elimination set.)

Finally, we provide a complexity result for computing cost-minimal elimina-
tion sets in the presence of don’t-care dependencies.

Lemma 4. Given a bipartite tournament graph Gψ =
(
(X,Y ), Eψ

)
, a set of

don’t-care dependencies Sψ ⊆ Eψ, and an integer c ≥ 0, deciding whether an
elimination set R with cost(R) ≤ c exists is NP-complete.

This lemma can be proven by a reduction from vertex cover [18]. It is easy
to see that Lemma 4 holds for symmetry-reduced graphs as well.

Since there is a one-to-one correspondence between dependency graphs and
DQBF prefixes, we can conclude:

Theorem 4. Given a DQBF with don’t-care dependencies and an integer c ≥ 0,
deciding whether there is an elimination set R with cost(R) ≤ c is NP-complete.

4 Experimental Evaluation

We have extended the DQBF solver HQS [13] to support dependency elimination
on its internal formula representation as an And-Inverter Graph (AIG). To deter-
mine an optimal elimination set, we use a Python script which is called by HQS
and which in turn calls the MILP solver Gurobi 7.0.2 to solve the optimization
problem as in Algorithm 1. We use our preprocessor HQSpre [33] to simplify
the instances before the actual solution process starts. Since the benchmarks
used for evaluation were generated from incomplete circuits and controller syn-
thesis problems, we run HQSpre in its gate-preserving mode. Additionally, we
apply the reflexive quadrangle resolution path dependency scheme [34] to iden-
tify don’t-care dependencies. As the last step of preprocessing, we use syntactic
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gate detection to reconstruct the underlying circuit structure; this removes vari-
ables which have been introduced artificially to obtain a formula in conjunctive
normal form and leads to more compact AIGs.

All experiments were run on one core of an Intel Xeon CPU E5-2450 (8 cores)
running at 2.10 GHz clock frequency and having 32 GB of main memory. Ubuntu
16.04 in 64 bit mode was used as the operating system. We aborted each experi-
ment which took more than 3600 s of CPU time or more than 10 GB of memory. We
used the same 4811 benchmark instances as in [13,31,32,34]. They mainly encom-
pass partial equivalence checking problems [12,27] for combinational circuits, con-
troller synthesis problems for sequential circuits and safety properties [4].

For the comparison of variable and dependency elimination, we switched off
the UNSAT filtering procedure, which is based on QBF abstractions [9]; it affects
both solution procedures in exactly the same way. Additionally we skipped those
instances which were solved by the preprocessor or which the preprocessor could
turn into QBFs. This led to a benchmark set of 3618 instances.

We solved all instances with the original version of HQS [13] using variable
elimination and by dependency elimination for a cost-minimal elimination set
as described in Sect. 3. In the latter case, if the elimination set contains, for
some universal variable x ∈ V ∀

ψ , all dependencies x is involved in, then we call
universal expansion for x instead as it has the same effect as first eliminating
the dependencies and then expanding x, but is slightly faster. Otherwise we
eliminate the selected dependencies according to Theorem 1. We distinguished
instances for which only universal expansion needed to be applied from those
which also required the elimination of dependencies.

For 3233 out of 3618 instances, the optimal elimination set removed univer-
sal variables from all dependency sets they were involved in, i.e., only universal
expansion was used. Those instances do not profit from dependency elimination
in terms of copied existential variables. From those instances, variable elimi-
nation as in [13] was able to solve 2429 instances, and the novel dependency
elimination 2411 instances. The reason for the small difference of 18 instances
is that both methods do not necessarily expand the same variables. Since the
selection procedures only consider the formula’s prefix and not the structure of
the matrix, there is no guarantee that an elimination set is found which leads to
small formulas during subsequent solution of the resulting QBF. This can also be
observed in Fig. 2 where we compare dependency and variable elimination. The
left plot compares the computation times, the right one the number of existential
variables in the resulting QBF.

For the remaining 385 instances, dependency elimination has an advantage
over variable elimination. It can yield an equisatisfiable QBF with fewer exis-
tential variables. Accordingly, using dependency elimination, we could solve
325 instances, while variable elimination succeeded only for 177. All instances
which could be solved using variable elimination were also solved using depen-
dency elimination. A more detailed comparison of the two methods on these 385
instances is shown in Fig. 3. We can distinguish two subsets of instances: There
are some for which the difference between variable and dependency elimination
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Fig. 2. Comparing the total computation times (in seconds) (left) and the number
of existential variables in the resulting QBF (right) after variable and dependency
elimination on the instances for which variable elimination is optimal.

10−2 10−1 100 101 102 103TOMO
10−2

10−1

100

101

102

103
TO

MO

Variable Elimination

D
ep

en
de
nc
y
E
lim

in
at
io
n SAT

UNSAT
UNKNOWN

100 101 102 103 104 105 ??
100

101

102

103

104

105

??

Variable Elimination

D
ep

en
de
nc
y
E
lim

in
at
io
n SAT

UNSAT
UNKNOWN

Fig. 3. Comparing the total computation times (in seconds) (left) and the number
of existential variables in the resulting QBF (right) after variable and dependency
elimination on the instances for which variable elimination is not optimal.

is small. Here the computation times are similar. Note that the number of exis-
tential variables in the QBF can even be slightly smaller for variable elimination
because during expansion often unit and pure variables are detected which are
immediately replaced by appropriate constants [13]. In contrast, dependency
elimination replaces an existential variable by the representation of a multi-
plexer. This is an efficient local operation on AIGs, but typically does not allow
to detect unit and pure variables. They are found later during the QBF solution
process.

For the other subset of instances, dependency elimination is by orders of mag-
nitude superior compared to variable elimination. While the latter runs exceed
the memory limit for most of the instances, dependency elimination was able to
solve them in little time and with much less memory consumption.

The computation times for selecting an optimal elimination set are negligible
in most cases and are always below 10 s for our benchmark set. One reason for the
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small computation times is that most benchmarks contain only a small number
of different dependency sets and thus our symmetry reduction from Sect. 3.2
works nicely; typically the reduced graphs consisted of 10–50 nodes only; the
largest one had 54 nodes.

In our current (preliminary) implementation the effect of don’t-care depen-
dencies is negligible. The reason for this lies (a) in a restricted preprocessing
that is tailored to our backend QBF solver AIGSolve and (b) in the structure of
most of our benchmarks. The dependency schemes find a considerable amount of
don’t-care dependencies on our set of benchmarks [34], but only after intensive
preprocessing including operations like blocked clause elimination. Since AIG-
Solve profits from structure extraction from a CNF, we omit such preprocessing
steps that destroy the structure. If we used a different backend QBF solver which
does not rely on structure extraction, then we could use the full power of pre-
processing, obtain many more don’t-care dependencies, and profit much more
from don’t-care dependencies than in the current scenario.

In summary, for instances where variable elimination is already optimal,
dependency elimination yields similar results. However, dependency elimination
can yield equisatisfiable QBF that are smaller by orders of magnitude and allows
to solve more instances in less time when variable elimination is not optimal.
Therefore, dependency elimination is clearly superior to variable elimination.

5 Conclusion

We have presented a novel method to turn a DQBF into an equisatisfiable QBF.
This is done by eliminating an appropriate set of dependencies from the formula,
which requires to create copies of the involved existential variables. To determine
an optimal elimination set that requires the fewest variable copies, we formulate
this problem as a constraint system with non-linear objective function. This
is solved using an MILP solver by handling the non-linearities by separation.
Experiments show that dependency elimination allows to solve more instances
with less memory consumption compared to variable elimination. Future research
will try to integrate the structure of the formula into the selection process (which
is currently only based on the quantifier prefix).
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