Sequential Verification Using Reverse PDR

Tobias Seufert Christoph Scholl
Department of Computer Science Department of Computer Science
University of Freiburg, Germany University of Freiburg, Germany
Email: seufert@informatik.uni-freiburg.de Email: scholl @informatik.uni-freiburg.de

Abstract. In the last few years IC3 resp. PDR made a great stir as a SAT-based hardware verifi-
cation approach without needing to unroll the transition relation as in Bounded Model Check-
ing (BMC). Motivated by different strengths of forward and backward traversal observed in
BDD based model checking, we consider Reverse PDR which starts its analysis with the ini-
tial states instead of the unsafe states as in original PDR. We show great benefits of Reverse
PDR both by a theoretical and an experimental analysis. Finally, we profit from parallelism of-
fered by modern multi-core processors and use a portfolio approach combining the advantages
of Reverse and original PDR.

1. Introduction

Sequential circuits still pose a significant challenge in formal hardware verification. With the
introduction of bounded model checking (BMC) [1] as an alternative to BDD based methods,
SAT-based methods have become more and more popular. Interpolation based model-checking,
introduced 2003 [8], has been considered the strongest amongst these for a long time. In 2011
though PDR resp. IC3 — as called in its first implementation [2] — caused a stir beating sophisticated
multi-engine solvers in hardware model checking competitions. The idea of PDR is to avoid the
unrolling of the transition relation and to rather replace small numbers of large and hard SAT
problems by many small and easy SAT problems based on a single instance of the transition relation
only. A proof is repeatedly strengthened until an inductive invariant or a counterexample is found.
Hereby the success of PDR heavily relies on the strength of modern incremental SAT solvers such
as [5].

The work in this paper is based on observations already made in the context of BDD-based
symbolic model checking which showed that sometimes forward model checking starting from the
initial states and sometimes backward model checking starting from the ‘unsafe states’ (all states
violating a given invariant property) performs better. PDR in its usual definition has however a
‘fixed direction’: It considers overapproximations of state sets reachable from the initial states in
k or less steps. (However the overapproximation is guided by the goal to get rid of spurious error
paths up to a fixed length to the unsafe states.) For this reason, we investigate (both theoretically
and experimentally) also the other direction: We consider overapproximations of state sets from
which we can reach the unsafe states in k or less steps and the overapproximations are guided by
the initial states. We call the method turning around the original direction of PDR ‘Reverse PDR’.
In detail we make the following contributions:

e We give a proof showing an exponential complexity gap between PDR and Reverse PDR
(and vice versa).

e We analyze the optimization potential for Reverse PDR, in particular we present a new
method for generalizing proof obligations in Reverse PDR.

e We make an experimental evaluation comparing prototypes of the original and Reverse PDR
empirically.

e The evaluation includes a combination of PDR and Reverse PDR in a portfolio approach.

Related work Since the introduction of PDR, there have been several improvements on effi-
ciency [4, 6]. Besides that, PDR has been lifted to the theory of reals using a SMT-solver [7] and
has been transferred to other applications like automated planning [9] and software verification [3].
Interestingly, [9] uses a similar idea of reverting PDR in the context of automated planning with
the insight, that reverting the direction generally yields better results in finding plans resp. coun-
terexamples in this special application context.

In Sect. 2 we give some preliminaries needed for this paper. Then we present a theoretical
analysis and optimizations of Reverse PDR in Sect. 3. An experimental evaluation is given in
Sect. 4 and Sect. 5 summarizes the results.

2. Preliminaries

2.1. Basic Notions

We discuss the verification of sequential boolean circuits. A sequential boolean circuit consists
of a vector of current state variables § corresponding to memory elements (flip-flops), a vector
of input variables i ang a vector of output variables 0. A sequential boolean (iircuit represents
an FSM M = (]B|§|,]B|i|,]BL5|,5,ﬂ,init) where the transition function ¢ : B! x Bl — BI¥" and the
output function A : B'x Bl - Bl are defined by a combinational circuit with inputs § and i and
outputs 5’ and 0. Here the variables 5’ are called next state variables (|5] = |s”]). The predicate
init: Bl - B defines the possible initial states of the FSM. As usual, the transition function can

also be represented by a predicate T : BI¥'xBl!IxBI* — B for the corresponding transition relation.

For simplicity, we only consider invariant properties over state variables in this paper. Invariants
are predicates over state variables and an invariant P holds for an FSM M, if all states occurring on
traces starting from some initial state satisfy P. We call the complement of the states represented
by P the ‘unsafe states’, represented by a predicate unsafe = —P. Thus, our verification goal is to
prove (or disprove) that unsafe states cannot be reached from initial states by following transitions
of the FSM.

When v is a boolean variable, then v and —v are called literals. Cubes are conjunctions of
literals, clauses are disjunctions of literals. The negation of a cube is a clause and vice versa. A
boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. As usual, we
often represent a clause as a set of literals and a CNF as a set of clauses. In the following, we
abbreviate cubes over current (next) state variables by letters s (s”). By minterms we denote cubes
containing literals for all state variables. We assume that the transition relation 7 of an FSM M has

been translated into CNF by standard methods like [10]. Modern SAT solvers are able to check the
satisfiability of boolean formulas in CNF.

2.2. Property Directed Reachability

The method we will further use and adapt is called property directed reachability (PDR) [4] or IC3
as in its original implementation [2]. PDR produces stepwise reachability information in time-
frames without unrolling the transition relation. Each time-frame k corresponds to a set of clauses
Ry. Ry is the negation of the disjunction over all cubes which have already been proven unreachable
from the initial states in up to k steps, i.e., Ry is an overapproximation of the states reachable from
the initial states in k steps or less. Ry plays a special role and always represents the initial states.
In round N of the main loop, we have N + 1 time frames Ry, ...,Ry. In each main loop the sets
Ry are refined step by step using so-called ‘proof obligations’. The proof obligations are produced
and discharged by SAT checks: A SAT solver call SAT?[Ry A unsafe] extracts unsafe cubes s and
produces proof obligations (s, N). The proof obligation (s, k) means that we have to prove that s
can not be reached from init in up to k steps. For discharging a proof obligation (s,k) a second
type of SAT check SAT?[Ry—1 AT As’] is used (s’ results from s by replacing current state variables
by next state variables). If this SAT problem is unsatisfiable, the proof obligation is discharged and
the clause —s may be added to Ry, otherwise a satisfying assignment gives us a cube §, leading to
a new proof obligation (§,k — 1). When all proof obligations have been discharged and no further
unsafe cube can be extracted from Ry A unsafe, the proof that unsafe states can not be reached
within N steps is complete. Then a new time frame Ry, initialized by the empty clause set, is
added and a new iteration of the main loop starts. The algorithm ends when we have to insert a
proof obligation whose cube intersects init (in this case a trace from init to unsafe has been found)
or when two sets R;_; and R; become equivalent (in this case Ry_; is an inductive invariant and
the property holds).

3. Reverse PDR

3.1. Basic Approach

Reverse PDR starts its analysis with the initial states init instead of the unsafe states unsafe. Instead
of pre-image computations as in original PDR, it uses image computations for cubes of states.
Reverse PDR computes overapproximations RRy,. .., RRy.! By definition, RR, always represents
the unsafe states. RR; always overapproximates the set of states from which unsafe can be reached
in up to k steps. This invariant holds, since in the first main loop RRy is initialized by unsafe, RR;
is initialized by 1 (representing the set of all possible states), and in later steps we only exclude
states s from RRy, if there is provably no transition from s into RRj_; (which overapproximates —
by induction assumption — the set of states from which unsafe can be reached in up to k — 1 steps).

Let us consider main loop N when Reverse PDR has constructed time frames RRy,...,RRy.
Reverse PDR starts by extracting satisfying cubes from RRy A init by calling a SAT solver. It
generalizes a satisfying assignment of RRy A init into a cube s of initial states for which it has not
yet been proven that unsafe can not be reached from them in up to N steps (see Sect. 3.2.2). A new

IAs sets of clauses, RRy are predicates. In the following we often identify those predicates with the state sets
represented by them.

proof obligation (s, N) is inserted. It has to be proven that it is not possible to reach unsafe in up
to N steps from the states in s. Discharging this proof obligation works similar to original PDR:
We start by asking for SAT?[s AT A RR),_,] (which corresponds to an image computation) where
the clauses in RR),_, are formulated with next state variables instead of current state variables. If
this SAT check is unsatisfiable, then the proof obligation has been discharged (as in original PDR)
and s is excluded from RRy by adding —s to the clauses in RRy. If possible, s is generalized
before, see Sect. 3.2.1. If the SAT check is satisfiable, a successor minterm m is extracted from
the satisfying assignment, m is ‘generalized’ to a cube §, and the proof-obligation (§,N — 1) is
produced. Again, (§, N — 1) may be proved by an unsatisfiable call SAT?[§ AT A RR),;_,] or may
produce new recursive proof obligations at earlier time frames. The idea of generalizing proof
obligations is to combine the proof obligation with others that would occur later on anyway; more
details will follow in Sect. 3.2.2. Before we add a new proof obligation, we always check whether
its cube intersects unsafe. If yes, then we stop, since there is a path from init to unsafe, i.e., a
counterexample (the reason for inserting a proof obligation (§, k) is exactly the fact that all states
covered by § can be reached from inir).

As in original PDR we keep the invariant that for all £ the clause set RRy is even syntactically
included in RRy_; (and thus the state set represented by RRy_ is a subset of the state set repre-
sented by RRy). The invariant holds in the beginning of the algorithm. If SAT?[s AT A RR_] is
unsatisfiable, the same SAT check is also unsatisfiable for k replaced by i with 1 <i < k—1 (since
the state set RR;_; is a subset of RRj_1). Therefore we can exclude s (by adding —s to the clause
set) from RR; with 1 <i < k — 1 as well. The state set represented by RRy remains always equal
to unsafe. It is a subset of RRy (1 < k < N), since no proof obligations (s, k) with s intersecting
unsafe are generated and thus it never happens that an unsafe state is excluded from RRy.

When all proof obligations are discharged and RRy A init becomes unsatisfiable, a new time
frame RRy 1 with RRy41 = 1 (represented by the empty clause set) is added as in original PDR,
and a new main loop is started.

Immediately before starting a new main loop, a propagation phase takes place: Starting with
k = 2 and ending with k = N + 1, for each clause —s in RRy;_; we check by SAT?[s AT A RR;{_I]
whether the cube s can also be blocked in RR;, i.e., whether —s can also be added to RR;,. After
this, by construction, RR;_; is logically equivalent to RRy, iff they have become syntactically equal.
If RRy—1 and RR; are equal, then the proof that there is no trace from init to unsafe is complete.
This follows from the following facts: (1) The preimage of RR;_; is always included in RR;, since
the only possibility for a cube s to be excluded from RR; is unsatisfiability of s AT A RR/_,. Since
RRy_1 = RRy, the preimage of RRy_; is included in RRj_;. (2) Since unsafe is included in the
state set RRy_1, there is no backward trace starting from unsafe to a state outside RRy_;. (3) Since
after a main loop the last time frame does not intersect with init any more and since in the course
of the algorithm only cubes are removed from the sets RR;, RR;_; does not contain initial states.
Thus, there is no trace from init to unsafe.

We will have a closer look at some specific optimizations for Reverse PDR in the next section.
Other technical details are directly inherited from original PDR, e.g.: (a) The clause sets for RRy
can be optimized by removing subsumed clauses. (b) When inserting the proof obligation (s, k),
we know that all states in the cube s can be reached from init. Therefore we can insert also proof
obligations (s,/) with k </ < N, since traces from s to unsafe of lengths larger than k should also
be excluded, if the property holds. Thus, instead of recursive calls for proof obligations we handle
a queue of proof obligations and dequeue proof obligations in smaller time frames first.

3.2. Optimizations
3.2.1. Generalizing Cubes in Unsatisfiable Cases

If a SAT problem SAT?[s AT A RR,_,] is unsatisfiable, then we can try to derive a subcube § of s
that is sufficient to make the SAT problem unsatisfiable. If we can find such a subcube § of s, we
can block the larger subcube § in RR; (i.e., add —§ to RRy). The generalization works based on
unsatisfiable cores or on final conflict clauses in SAT solvers where s is specified by assumptions
[5]. Furthermore, s can be minimized by a series of SAT checks [4]. The generalization method
for unsatisfiable cases is basically the same as in original PDR.

3.2.2. Generalizing Cubes in Satisfiable Cases

SAT?[RRy Ninit]: If SAT?[RRy Ainit] is satisfiable, the SAT solver returns a satisfying minterm
m of RRy A init. Using ternary simulation on a circuit representation of RRy A init, m can be
reduced to a subcube § containing satisfying assignments only, leading to a generalized proof
obligation as in original PDR [4].

SAT?[s NT A RR;C_I]: In the original PDR approach a satisfiable query SAT?[Ry—1 AT A 5]
provides a satisfying minterm m (expressed with current state variables) which can be generalized
to a satisfying subcube § by ternary simulation as well [4]. The ternary simulation relies on the
fact that the transition relation 7 results from a combinational circuit with current state variables
and primary inputs as inputs and next state variables as outputs. If some state variable s; in m is
replaced by the unknown value X and ternary simulation does not propagate the X -value to outputs
with literals occurring in s’, then s; resp. —s; can be removed from m. Unfortunately, this method
can not be generalized to Reverse PDR, since the circuit specifying 7" has a ‘fixed direction’ and
cannot be simply ‘reverted’. On the other hand, generalizing satisfiable cases has been proven to
be heavily effective in [4].

In Reverse PDR, a satisfying valuation of SAT?[s A T A RR;_,] yields a minterm m’ in the
image of the cube s. The question whether m’ can be generalized to a subcube §’ amounts to the
question whether §” is completely included in the image of s and in RR;_,. An exact solution
to this question can be obtained by solving a QBF problem: Assume that the vector of primary

inputs is i = (i1,...,in), the vector of current state variables is 5§ = (sy,...,s,) and the next state
variables not occurring in §” are sgl ey s;l. Then m’ can be generalized to §’ iff the QBF
ngl ...Vsl'-lEIE’Hi :SATARR, _{A§ (1)

is satisfiable. However, QBF solving is much harder than SAT solving in practice and repeated
QBF queries not only for a fixed §’, but for minimizing the size of the subcube §’ seem to cause
too much overhead. For that reason we use a rough approximation which nevertheless helps in
practice as experimental results in Sect. 4 show.

The subcube §” has to fulfill the following conditions: (1) In the part of the image of s where the
next state variables in {s7,. . ., s;l}\{slf1 .. s;l } have exactly the same valuations as in m’, all possible
combinations from B/ occur for the values of s e s;]. (2) The subcube §’ is completely contained
in RR;{_I. A sufficient condition (1”) for fulfilling condition (1) is: The transition functions ;;

computing s’ all have (structural) support sets that are disjoint from the (structural) support sets
J

of all other transition functions and their support sets do not contain any variable occurring in the
cube s. Moreover, these transition functions 5,-j are different from the constant functions O and 1.
The idea of condition (1) is as follows: Assume that we fix the primary inputs and the current state
variables such that s occurs at the inputs and §’ occurs at the outputs of the transition function 5.
Due to the conditions (1°) for the support sets we can change the variables in the support sets of 6;;
computing slfj arbitrarily without changing §’. Since the support sets of those transition functions
d;; are in addition disjoint, we can produce arbitrary value combinations at their outputs without
changing §’.
Our implementation for finding subcubes of m’ fulfilling condition (1°) works as follows:

1. In a preprocessing step, find the set D of all non-constant transition functions ¢; whose struc-
tural support set is disjoint from the structural support set of all other transition functions.

2. If SAT?[s/\T/\RR;(_l] is satisfiable, then find the transition functions ¢; € D whose structural
support sets do not contain variables occurring in the cube s. Let C = {s;.l e ees s}k} be the
set of next states variables computed by those transition functions. The variables from C are
candidates for being removed from the satisfying minterm m’ of SAT?[s AT A RR; _,].

Whether a variable from C can really be removed from m’ in order to obtain a shorter generalized
subcube §’, depends on condition (2). To account for condition (2) we use ternary simulation as
in the case ‘SAT?[RRy A init] satisfiable’: We consider RR;(_1 as a circuit and try to replace in
m’ variables from C by the unknown value X. As long as the X-value does not propagate to the
output of RR) _,, we can remove this variable from m’. Finally, we arrive at a generalized subcube
§" of m’. Note that omitting condition (2) neither leads to wrong results nor impedes termination
of Reverse PDR: Without condition (2), § may contain states which have already been blocked in
time frame k — 1, but at least one new state to be blocked (namely m”). Therefore generalizing m’

to §’ can not produce a larger number of proof obligations in the following steps.

3.2.3. Adding —s’ to the query

For the original PDR, Bradley [2] introduced strengthened queries SAT?[Rx—1 A A=s AT A 5]
instead of SAT?[R;_1 AT A s’] making the queries more likely to be unsatisfiable which improves
the chances to discharge proof obligations. Here we show that for Reverse PDR a corresponding
strengthening, turning SAT?[s AT A RR; _,]into SAT?[s AT A RR_, A —s'], is sound as well. We
argue that whenever s AT A RR; | A —s’ is unsatisfiable, it is not possible to reach unsafe from s
in up to k steps, i.e., s can be removed from RR;. Assume s AT A RR;{_1 A —s’ is unsatisfiable
(and therefore also s AT A RR!_| A =s” with 1 <7 < k). We differentiate between two cases:

e Case 1: s AT A RR)_, is unsatisfiable as well. Then we have nothing to prove.

e Case2: s AT A RR,’(_I is satisfiable. Then the only states in RR;_; which can reached from
s lie inside s.

We continue our argumentation with k — 1 instead of k etc.. Case 1 applies at latest when we
arrive at k = 1, since RRy = unsafe, unsafe A s is unsatisfiable (otherwise we would not have
added a proof obligation with s, but we would have stopped with a counterexample) and thus
s AT AN RRy A =s” = s AT A RR),. Altogether there is no trace of length up to k from s to unsafe
and we can thus remove s from RR; by adding the clause —s.

3.3. PDR and Reverse PDR

Our experiments in Sect. 4 show that it is worthwhile to consider both original and Reverse PDR,
since they outperform each other on different benchmark instances. Here we show that there may
be even an exponential gap between PDR and Reverse PDR:

Theorem 1 There are sequential circuits for which PDR causes exponentially more SAT queries
than Reverse PDR.

Proof: Consider a sequential circuit consisting of two modulo-2" counters in parallel with state
bits s = (so,...,5,—1) and ¢ = (to,...,1,-1), respectively. Both counters read the same primary input
i1. If i1 = 0, the counter values remain the same, if i; = 1, the counters increment their values
(modulo 2"). Assume that the initial states init are given by s # ¢ and the unsafe states are given
by s = t. It is clear that the design fulfills the safety property, since the counters always count in
parallel, thus from different counter values we can never reach identical counter values.

We first consider original PDR: In its first time frame, PDR starts with R; = 1 and picks satisfy-
ing assignments of R| Aunsafe until the formula becomes unsatisfiable. Each satisfying assignment
consists of a new pair of identical counter values s and ¢, all 2" possible value combinations with
s = t have to be enumerated and blocked until R; A unsafe becomes unsatisfiable. No satisfying
assignment can be generalized, since omitting any literal would lead to a cube with a non-empty
intersection with init = (s # t). Thus, already in the first time frame we have an exponential
number of SAT queries.

Now we look at Reverse PDR: Reverse PDR starts in its first time frame by enumerating satis-
fying assignments of RR; A init, init = (s # t). Using generalization by ternary simulation, it pro-
duces 2-n cubes as proof obligations in frame 1: sgA—tg, 7SoALQ, . . ., Sp—1 Aty—1,Sp—1 Atp—1. All
2 - n generalized proof obligations (c, 1) are immediately discharged by unsatisfiable SAT checks
of type SAT?[c AT A RR(] with RR|, = unsafe = (s = t), since we can not reach identical counter
values from different ones. At the end, we have RR| = /\;’:—01 ((—s; Vi) A (si V —t;)) (which is log-
ically equivalent to unsafe) and no satisfying assignment remains. Then, before starting a second
main loop, the frame RR; is initialized by 1 and Reverse PDR tries to propagate all blocked cubes
(resp. all clauses) from RR| to RR;. This amounts to 2 - n SAT checks of type SAT?[c AT A RR’I].
Since RR; is logically equivalent to unsafe as RRy, all blocked cubes can be propagated, RR; is
syntactically equal to RR; and Reverse PDR has completed the safety proof. Altogether, Reverse
PDR needs 6 - n SAT checks for completing the proof.2 U

4. Experimental Results

Our implementation of original PDR is derived from [4] and augmented to support Reverse PDR,
too. The transition relation is represented as a Tseitin-transformed CNF [10], preprocessed with
variable elimination. We use one MiniSar v2.2.0 [5] instance per time frame. Note that our im-
plementation is a prototype, not yet being able to fully compete with the IC3 implementation [2].
Currently our implementation of PDR is still by factor 3.01 slower than the IC3 reference imple-
mentation [2].

2If we exchange init and unsafe, the same example can prove exponentially more SAT checks for Reverse PDR than
for original PDR.

1000 Wi
| runtime + . b,
++
+ .
100 | * .
+ 1
+++ + 0+
+
+ + I
e L + + + + |
a 10 i ¥]
L + tos o+ F
ﬁ + + =+
=
g + o4 + .
o 1r ooy E
+ H# o T+ +F
s * T
. + + +H
++ 4 ++ o+ T +
4t 4 4
0l ¢ 1
Ool N P N P N Ll N Ll L P
0.01 0.1 1 10 100 1000

Reverse FDRE

Figure 1: Comparison of Reverse PDR and original PDR on HWMCC’ 11 benchmarks. The x-axis shows
Reverse PDR execution times, the y-axis shows original PDR execution times. The scale is loga-
rithmic.

The Reverse PDR implementation uses the same code base as our original PDR implementation.
All experiments have been run with constrained resources — 7 GB on memory and 900 s on exe-
cution time. We have used an Intel Xeon CPU E5-2643 with 3.3 GHz. All experiments have been
run on HWMCC’ 11 benchmarks excluding the access-restricted Intel benchmarks.

4.1. Comparison of original PDR and Reverse PDR

The scatter plot in Fig. 1 displays the required execution time of all benchmarks for original and
Reverse PDR. The wide spreading suggests that there are lots of benchmarks on which Reverse
PDR outruns the original version by magnitude and the other way around. Although usual hard-
ware verification approaches are confined to the original PDR, this results justifies a further con-
sideration of both versions of PDR. Fig. 2 shows slight advantages for original PDR in overall
solved benchmarks with emphasis on the earliest few seconds.

4.1.1. Using a portfolio approach

To complete the analysis of Reverse PDR’s benefit we implemented a portfolio approach, meaning
that we let original and Reverse PDR run concurrently and stop when the first procedure finished
the benchmark. Fig. 2 displays a comparison between the portfolio approach and original PDR
showing a major increase in solved benchmarks for the portfolio implementation. The mean over-

PDR

300 I | I T |
Original PDR ———— | : : ;
" 250 H Portfolio PDR T e
Q Reverse PDR ---------- . : : : :
4] : : : : : : : ;]
5 | | VPP NSRS SU S S S
=] L : : : : : : : :
0 i | i | i | i |

0 100 200 300 400 500 600 700 800 900

time in seconds

Figure 2: Comparison of Reverse PDR, original PDR, and the portfolio approach on HWMCC’11 bench-
marks. The x-axis shows execution times, the y-axis displays the number of solved benchmarks.

head of the portfolio implementation — i.e. the runtime effort monitoring the concurrent execution
and terminating the slower procedure — amounts to less than 0.01 %.

4.2. Comparison of Reverse PDR with and without structural generalization of proof
obligations

In the previous experiments we used the generalization of proof obligations by the structural
method according to condition (1) from Sect. 3.2.2.3 To evaluate the effect of this structural
generalization procedure we compare versions of Reverse PDR with and without the structural
generalization. In Fig. 3a we present the results. Apparently, when applicable, the heuristics
speeds up Reverse PDR almost every time. In very few cases though it seems that the overhead
of the procedure outweighs its benefit - producing some results above the diagonal. The mean
overhead of the structural optimization amounts to 0.6 % of Reverse PDR execution time. The
mean overall execution time improvement using structural optimization amounts to 5.7 %.

The reason for execution time improvements lies in the ability of structural optimization to reduce
the number of proof-obligations which have to be discharged. Fig. 3b compares the number of
processed proof-obligations of Reverse PDR with and without additional structure-based general-
ization of proof obligations leaving us similar results to comparing the execution times.

5. Conclusions and Future Work

We proved a theorem showing an exponential complexity gap between original PDR and its re-
verted variant — Reverse PDR. We also observed this complexity gap practically in the execution
of a HWMCC benchmark suite.

3In our implementation we omit checking condition (2), see Sect. 3.2.2.

1000 100000

' ' j: [#proofobligations __+ |
E

10000 F #

1000 | g;

100 | 7

100 | pt
10 | FA s

10 t #

01 |

Reverse FDR with structural generalization
Y
&,
e
+ -_;—_H'+
i
Reverse PDR with structural generalization

O‘O:L i i 1 1 0.0l i i i i i 1
0.01 0.1 1 10 100 1000 0.01 0. 1 10 100 1000100000000

Reverse FDR Reverse FDR

(a) The x-axis shows Reverse PDR execution times, (b) The x-axis shows Reverse PDR processed proof-
the y-axis shows execution times of Reverse PDR obligations, the y-axis shows processed proof-
with structural generalization. The scale is loga- obligations of Reverse PDR with structural gen-
rithmic. eralization. The scale is logarithmic.

Figure 3: Comparison of Reverse PDR with and without the structural generalization.

Overall it seems that original PDR is more powerful in the sheer number of solved benchmarks
than Reverse PDR. However, considering the many benchmarks on which original PDR is vastly
outperformed by Reverse PDR, the reverted variant still brings significant benefit — especially
when used in a portfolio approach in combination with original PDR. We showed that there is
optimization potential for Reverse PDR in the generalization of proof obligations even though
ternary simulation does not apply in Reverse PDR.

Apparently there is still work to do in analyzing and optimizing Reverse PDR, leaving this a
promising field of research.

References

[1] Biere, Armin, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu: Symbolic model check-
ing without bdds. In International conference on tools and algorithms for the construction
and analysis of systems, pages 193-207. Springer Berlin Heidelberg, 1999.

[2] Bradley, Aaron R.: Sat-based model checking without unrolling. In Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VMCAI 201 1, Austin,
TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer
Science, pages 70-87. Springer, 2011.

[3] Cimatti, Alessandro and Alberto Griggio: Software model checking via IC3. In Madhusudan,
P. and Sanjit A. Seshia (editors): Computer Aided Verification - 24th International Confer-
ence, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lec-
ture Notes in Computer Science, pages 277-293. Springer, 2012, ISBN 978-3-642-31423-0.
http://dx.doi.org/10.1007/978-3-642-31424-7_23.

[4] Eén, Niklas, Alan Mishchenko, and Robert K. Brayton: Efficient implementation of property
directed reachability. In International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, pages 125-134.
FMCAD Inc., 2011.

[5] Eén, Niklas and Niklas Sorensson: An extensible sat-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers, pages 502-518, 2003.

[6] Hassan, Zyad, Aaron R. Bradley, and Fabio Somenzi: Better generalization in IC3. In Formal
Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013, pages 157-164, 2013.

[7] Hoder, Krystof and Nikolaj Bjgrner: Generalized property directed reachability. In Cimatti,
Alessandro and Roberto Sebastiani (editors): Theory and Applications of Satisfiability Test-
ing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceed-
ings, volume 7317 of Lecture Notes in Computer Science, pages 157-171. Springer, 2012,
ISBN 978-3-642-31611-1. http://dx.doi.org/10.1007/978-3-642-31612-8_13.

[8] McMillan, Kenneth L.: Interpolation and sat-based model checking. In Computer Aided
Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,
Proceedings, pages 1-13, 2003.

[9] Suda, Martin: Property directed reachability for automated planning. J. Artif. Intell.
Res.(JAIR), 50:265-319, 2014.

[10] Tseitin, G.: On the complexity of derivations in propositional calculus. In Studies in Con-
structive Mathematics and Mathematical Logics. 1968.

