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Abstract. We consider the problem of computing Skolem functions for
satisfied dependency quantified Boolean formulas (DQBFs). We show
how Skolem functions can be obtained from an elimination-based DQBF
solver and how to take preprocessing steps into account. The size of the
Skolem functions is optimized by don’t-care minimization using Craig
interpolants and rewriting techniques. Experiments with our DQBF solver
HQS show that we are able to effectively compute Skolem functions with
very little overhead compared to the mere solution of the formula.

1 Introduction

Solver-based techniques have proven successful in many areas, ranging from
formal verification of hard- and software systems [6,1] over automatic test pattern
generation [14,12] to planning [36]. While research on solving quantifier-free
Boolean formulas (the famous SAT-problem [10]) has reached a certain level of
maturity, designing and improving algorithms for quantified Boolean formulas
(QBFs) is in the focus of active research. However, there are applications like
the verification of partial circuits [37,18], the synthesis of safe controllers [7], and
the analysis of games with incomplete information [32] for which QBF is not
expressive enough to provide a compact and natural formulation. The reason is
that QBF requires linearly ordered dependencies of the existential variables on
the universal ones: Each existential variable implicitly depends on all universal
variables in whose scope it is. Relaxing this condition yields so-called dependency
quantified Boolean formulas (DQBFs). DQBFs are strictly more expressive than
QBFs in the sense that an equivalent QBF formulation can be exponentially
larger than a DQBF formulation. This comes at the price of a higher complexity
of the decision problem: DQBF is NEXPTIME-complete [32], compared to QBF,
which is “only” PSPACE-complete. Encouraged by the success of SAT and QBF
solvers and driven by the mentioned applications, research on solving DQBFs has
started during the last few years [16,17,19,41], yielding first prototypic solvers
like iDQ [17] and HQS [19].

All currently available DQBF solvers are restricted to a pure yes/no answer
regarding the satisfiability of the formula, allowing to decide whether an incom-
plete circuit is realizable, whether a controller with certain properties can be
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synthesized, and whether a player has a winning strategy in a game. But typically
a pure yes/no answer is not satisfactory: In case a circuit is realizable, one wants
to have an implementation; if a controller is synthesizable, one wants to get
a realization of it; and in a game, where a player has a winning strategy, one
wants to know such a winning strategy. These implementations, realizations, and
strategies all correspond to so-called Skolem functions for the existential variables
in a DQBF. While for different paradigms to solve QBFs, Skolem functions can
be computed (see below for an overview of related work), we are not aware of
any paper that considers the computation of Skolem functions for DQBF.

So, this is the first paper that shows how Skolem functions can be obtained
from elimination-based QBF or DQBF solvers like AIGsolve [33,34] or HQS [19].
We do not only take into account the core operations for eliminating variables [19],
but also the preprocessing steps [41], which are essential for an efficient solution
of the formula. We propose to apply don’t-care minimization to reduce the
representation size of the computed Skolem functions. We have implemented the
described techniques in our DQBF solver HQS; preliminary experiments show
not only that we have found a feasible approach to Skolem function computation,
but also that the overhead during the solution of the formulas is small.

Due to space restrictions we are only able to give short proof sketches for the
main theorems. Detailed proofs are available in a technical report [40].

Related work. Computing Skolem functions has not been studied for DQBF so
far. Therefore we concentrate on related work in QBF solving.

sKizzo [5] and Squolem [25] are QBF solvers which are based on Skolem-
ization: The existential variables are replaced by an encoding of the Skolem
functions’ unknown truth tables. In case of sKizzo, the entries of the truth tables
are variables, resulting in an (exponentially larger) SAT problem. This SAT
problem is represented compactly using OBDDs [39] and solved by an adapted
SAT solver. A satisfying assignment corresponds to Skolem functions for the
QBF. Squolem is based on eliminating variables v in the QBF prefix from right
to left by considering clauses containing v which describe the function table of
v’s Skolem function.

Balabanov and Jiang [3] and Goultiaeva et al. [20] laid the foundations for
extracting Skolem functions from SAT/UNSAT proofs for QBFs in form of
term/clause resolution trees. Such proofs can be obtained from search-based
QBF solvers like DepQBF [29,31]. However, this approach is not applicable to
DQBF: resolution is – in contrast to QBF – not a complete decision procedure
for DQBF [2]; in general it is not possible to decide a DQBF using resolution.

Heule et al. [23] consider the extraction of Skolem functions when prepro-
cessing is applied before the actual solving process. They represent the different
preprocessing steps in a unified framework, called QRAT. Such QRAT logs can
be used to derive Skolem functions for the original formula.

CAQE [38] is a very recent QBF solver, which is based on decomposing the
QBF into a sequence of simpler propositional formulas. CAQE also supports the
computation of Skolem functions.

Structure of this paper. In the next section, we introduce the necessary foundations
on DQBFs, Skolem functions, and don’t-care minimization of Boolean functions.



In Section 3 we consider the main elimination operations, which are used in the
solver core of HQS. The following section shows how preprocessing steps can be
taken into account. We present experimental results in Section 5 and conclude
the paper in Section 6.

2 Foundations

The Boolean values are denoted by B = {0, 1}. For a set V of Boolean variables,
the set of all variable assignments of V is A(V ) = {ν : V → B}. We extend
variable assignments ν ∈ A(V ) to quantifier-free Boolean formulas φ: ν(φ) is the
value obtained by replacing all variables v occurring in φ with their value ν(v)
and applying the usual rules of Boolean algebra.

A literal ` is either a Boolean variable v ∈ V or its negation ¬v. The sign
of a literal is given by sign(v) = 1 and sign(¬v) = 0 for v ∈ V . A clause is a
disjunction of literals, and a formula is in conjunctive normal form (CNF) if it is
a conjunction of (non-tautological) clauses. We often identify a clause with its set
of literals, and a CNF with its set of clauses. For quantifier-free Boolean formulas
φ and ψ over variables V and a variable v ∈ V , the notation φ[ψ/v] denotes the
formula which results from replacing all occurrences of v in φ simultaneously by
ψ. var(φ) is the set of variables occurring in φ. We treat var(φ) as a variable if
it is a singleton. We sometimes identify φ with its represented function fφ: for
ν ∈ A(V ), we set fφ(ν) := ν(φ). A formula φ is a representation of a Boolean
function g iff g = fφ. Each Boolean function can be represented as a formula. By
ITE we denote the if-then-else function, i. e., ITE(a, b, c) = (a ∧ b) ∨ (¬a ∧ c).

2.1 Dependency quantified Boolean formulas

Dependency quantified Boolean formulas are obtained by prefixing quantifier-free
Boolean formulas with so-called Henkin quantifiers [21].

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) Ψ
over V has the form Ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : φ, where Dyi ⊆
{x1, . . . , xn} is the dependency set of yi for i = 1, . . . ,m, and φ is a quantifier-free
Boolean formula over V , called the matrix of Ψ .

UΨ = {x1, . . . , xn} is the set of universal and EΨ = {y1, . . . , ym} the set of
existential variables. A literal ` is existential (universal, resp.) iff var(`) ∈ EΨ
(var(`) ∈ UΨ ). Sometimes we assume that φ is given in CNF.

A QBF (in prenex normal form) is a DQBF such that Dy ⊆ Dy′ or Dy′ ⊆ Dy

holds for any two existential variables y, y′ ∈ EΨ .
To simplify notation, we define a dependency function depΨ : V → 2UΨ as

follows: depΨ (v) = {v} if v is universal and depΨ (v) = Dv if v is existential.
The semantics of a DQBF is typically defined by so-called Skolem functions.

Definition 2 (Semantics of DQBF). Let Ψ be a DQBF as above. It is satis-
fiable if there are functions sy : A(Dy)→ B for y ∈ EΨ such that replacing each
y ∈ EΨ by (a Boolean expression representing) sy turns φ into a tautology. Such
functions (sy)y∈EΨ are called Skolem functions for Ψ .



Deciding whether a given DQBF is satisfiable is NEXPTIME-complete [32].

Definition 3 (Equisatisfiability, equivalence of DQBFs). Let Ψi = Qi : φi
for i = 1, 2 be two DQBFs over variables V . Ψ1 and Ψ2 are equisatisfiable
(Ψ1 , Ψ2), if Ψ1 is satisfiable iff Ψ2 is. Ψ1 and Ψ2 are logically equivalent
(Ψ1 ≡ Ψ2) if Q1 = Q2 and ν(φ1) = ν(φ2) for all ν ∈ A(V ).

Logically equivalent formulas that are satisfiable have the same Skolem functions.
The main operations used by elimination-based solvers like HQS [19] to

solve DQBFs are variants of variable elimination. For standard Boolean logic,
elimination of variables can be performed in different ways, resulting in logically
equivalent formulas of typically different sizes and structures:

Lemma 1 ([24]). Let φ be a Boolean formula and x a variable of φ. We have:

∃x : φ , φ[0/x] ∨ φ[1/x] ≡ φ
[
φ[1/x]/x

]
≡ φ

[
¬φ[0/x]/x

]
.

This lemma will be used later to obtain formulas for the Skolem functions of
existential variables in DQBFs. As we will see later, don’t-care minimization can
be applied to these Skolem functions to obtain some with a small representation.

2.2 Don’t-care minimization of Boolean functions

Definition 4 (Incompletely specified Boolean function). Let V be a set
of Boolean variables. An incompletely specified Boolean function f is given
by a don’t-care set DC(f) ⊆ A(V ) and an on-set ON(f) ⊆ A(V ) such that
DC(f) ∩ ON(f) = ∅. We additionally define the off-set OFF(f) := A(V ) \
(DC(f) ∪ON(f)).

Of course it suffices to specify any two sets of ON(f), OFF(f), and DC(f).

Definition 5 (Complete extension). Let f be an incompletely specified Boolean
function. A function f∗ : A(V )→ B is a complete extension of f iff f∗(ν) = 1
for all ν ∈ ON(f) and f∗(ν) = 0 for all ν ∈ OFF(f).

The goal of don’t-care minimization is: Given an incompletely specified
Boolean function f , find a complete extension f∗ of f with a small representation
by a circuit or an and-inverter graph (AIG) [27]. This can be done, e. g., by using
Craig interpolants.

Definition 6 (Craig interpolant, [11]). Let φ = φA ∧ φB be a (quantifier-
free) Boolean formula that is unsatisfiable. A Craig interpolant for (φA, φB) is
a Boolean formula φI such that: (a) φI contains only variables which appear in
both φA and φB, (b) φA ⇒ φI is a tautology, and (c) φI ∧ φB is unsatisfiable.

Lemma 2. Let f be an incompletely specified function over V and ϕON(f),
ϕOFF(f) be Boolean formulas for ON(f) and OFF(f), respectively, i. e., for every
assignment ν ∈ A(V ), we have ν(ϕOFF(f)) = 1 iff ν ∈ OFF(F ) and ν(ϕON(f)) = 1
iff ν ∈ ON(f).

Then every Craig interpolant for (ϕON(f), ϕOFF(f)) represents a complete
extension of f .



This lemma will be exploited for don’t-care minimization when eliminating
existential variables.

Lemma 3 ([24]). Let φ be a Boolean formula and x a variable in φ. Then each
Craig interpolant φI w. r. t. φA := ¬φ[0/x] ∧ φ[1/x] and φB := ¬φ[1/x] ∧ φ[0/x]
satisfies ∃x : φ , φ[φI/x].

Craig interpolants can be derived from a resolution tree which shows the unsatis-
fiability of the formula [35]. They find numerous applications in system design,
see e. g., [30].

3 Undoing elimination steps

In the following we assume that a DQBF of the form:

Ψ0 = ∀x1 . . . ∀xn∃y1(D0
y1) . . . ∃ym(D0

ym) : φ0

is given with dependency sets D0
yi ⊆ {x1, . . . , xn} for i = 1, . . . ,m. We abbreviate

the quantifier prefix by Q0 and write Ψ0 = Q0 : φ0.
DQBF preprocessors and elimination-based DQBF solvers execute a sequence

of transformation steps on the formula until a pure SAT problem is obtained.
Thereby we obtain a sequence of equisatisfiable formulas Ψ i = Qi : φi for
i = 1, . . . , k∗ such that Ψ i results from Ψ i−1 by applying one transformation step
and Ψk

∗
is an existential formula that can be solved using a SAT solver.

For Ψk
∗
, Skolem functions are simply given by a satisfying assignment. The

main idea of the paper is to show how Skolem functions for Ψ i−1 can be derived
from Skolem functions for Ψ i, finally resulting in Skolem functions for the original
formula Ψ0.

In the following, we consider the quantifier prefix as a set of tuples formed
by quantifiers, variables, and – for existential variables – their dependency sets.
The set of universal variables in Ψ i is denoted by U i and the set of existential
variables by Ei. For a variable y ∈ Ei, Di

y is its dependency set in Ψ i, i. e.,

Qi = {∀x |x ∈ U i} ∪ {∃y(Di
y) | y ∈ Ei}.

3.1 Universal expansion

Universal expansion [9,18] eliminates a universal variable x∗ from a DQBF. If
any existential variables depend upon x∗, they have to be copied to allow them
taking different values for x∗ = 0 and x∗ = 1.

Lemma 4 (Universal expansion). Let (sky)y∈Ek be Skolem functions for the

existential variables in Ψk and assume that Ψk was obtained from Ψk−1 by
expanding the universal variable x∗ ∈ Uk−1 such that, for y ∈ Ek−1 with x∗ ∈
Dk−1
y , y′ is the copy of y appearing in the 1-cofactor w. r. t. x. In detail:

Qk : φk =
(
Qk−1 \

(
{∀x∗} ∪ {∃y(Dk−1

y ) | y ∈ Ek−1 ∧ x∗ ∈ Dk−1
y }

))
∪
{
∃y(Dk−1

y \ {x∗}),∃y′(Dk−1
y \ {x∗})

∣∣ y ∈ Ek−1 ∧ x∗ ∈ Dk−1
y

}
:(

φk−1[0/x∗] ∧ φk−1[1/x∗][y′/y for all y ∈ Ek−1 with x∗ ∈ Dk−1
y ]

)
.



Then (sk−1y )y∈Ek−1 with sk−1y = sky if x∗ /∈ Dk−1
y , and sk−1y = ITE(x∗, sky′ , s

k
y) if

x∗ ∈ Dk−1
y are Skolem functions for the existential variables in Ψk−1.

Proof sketch. We replace the existential variables with their Skolem functions
and show that the resulting formula, which only contains universal variables, is a
tautology for both x∗ = 0 and x∗ = 1. To do so, one can exploit the fact that
(sky)y∈Ek are Skolem functions for the formula after elimination. For a detailed
proof see [40]. ut

3.2 Elimination of existential variables

Elimination of existential variables is done like in QBF. It is applicable for
variables which depend upon all universal variables [19].

Lemma 5. Let (sky)y∈Ek be Skolem functions for the existential variables in

Ψk and assume that Ψk was obtained from Ψk−1 by eliminating the existential
variable y∗ ∈ Ek−1 (which requires Dk−1

y∗ = Uk−1). In detail:

Qk : φk = Qk−1 \
{
∃y∗(Dk−1

y∗ )
}

:
(
φk−1[0/y∗] ∨ φk−1[1/y∗]

)
Then (sk−1y )y∈Ek−1 with sk−1y = sky if y 6= y∗, and sk−1y∗ = φk−1

[
1/y∗

][
skz/z for z ∈ Ek

]
are Skolem functions for the existential variables in Ψk−1.

Proof sketch. We replace the existential variables by their Skolem functions and
show that the resulting formula, which contains only universal variables, is a
tautology. For this we assume an arbitrary assignment ν of the universal variables
and distinguish the cases where ν(sk−1y∗ ) = 0 and where ν(sk−1y∗ ) = 1. In both
cases simple equivalence transformations show that ν satisfies the formula. ut

Remark 1 (Blockwise elimination). For improving efficiency of variable elimina-
tion, typically sets of variables are eliminated en bloc without creating intermedi-
ate results. For existential variable sets, these intermediate results, however, are
required for Skolem function computation. A possible way to deal with this is to
redo the quantification variable by variable if in the end the formula is satisfied
and Skolem functions are to be computed.

Remark 2 (Alternative Skolem function). As a Skolem function for y∗, we could
also use sk−1y∗ := ¬φk−1

[
0/y∗

][
sky/y for y ∈ Ek

]
. The proof is analogous to the

proof of Lemma 5.

Remark 3 (Don’t-care minimization of Skolem functions). Any complete exten-
sion of the following incompletely specified Boolean function can be used as a
Skolem function for y∗ in Lemma 5:

ON(sk−1y∗ ) =
(
φk−1

[
1/y∗

]
∧ ¬φk−1

[
0/y∗

])[
sky/y for y ∈ Ek

]
,

OFF(sk−1y∗ ) =
(
¬φk−1

[
1/y∗

]
∧ φk−1

[
0/y∗

])[
sky/y for y ∈ Ek

]
,

DC(sk−1y∗ ) =
(
φk−1

[
1/y∗

]
∧ φk−1

[
0/y∗

])[
sky/y for y ∈ Ek

]
.



The don’t-care set DC(sk−1y∗ ) can be exploited to minimize the size of sk−1y∗ ’s
representation, e. g., by using Craig interpolation, cf. Lemma 3.

Remark 4 (Skolem functions for SAT problems). If the result of the elimination
process is a pure SAT problem with only existential quantifiers, we can solve it
using a SAT solver. In case the formula is satisfiable, any satisfying assignment
corresponds to (constant) Skolem functions for the existential variables.

Example 1. Consider the DQBF Ψ0 = ∀x1∀x2∃y1(x1)∃y2(x2) : φ0(x1, x2, y1, y2).
Elimination yields the following sequence of matrices:

φ0(x1, x2, y1, y2)
∀x1−−→ φ1(x2, y1, y

′
1, y2)

∃y2−−→ φ2(x2, y1, y
′
1)
∀x2−−→ φ3(y1, y

′
1).

φ3(y1, y
′
1) is a SAT-Problem. Assume that the SAT-solver returns y1 = a and

y′1 = b as a satisfying assignment. We need to compute Skolem functions for y1
and y2 in φ0. The following table shows the Skolem functions for the individual
formulas:

Skolem function for
Formula y1 y′

1 y2

Ψ3 a b n/a
Ψ2 a b n/a
Ψ1 a b φ1(x2, a, b, 1)
Ψ0 (¬x1 ∧ a) ∨ (x1 ∧ b) n/a φ1(x2, a, b, 1)

4 Handling pre- and inprocessing steps

Typically preprocessing is used to simplify the formula before the actual solution
process starts. It is well known that preprocessing can reduce the computation
times for solving the formula by orders of magnitude [41]. Thereby the set of
variables occurring in the formula as well as its set of clauses change. For details
about the preprocessing steps for DQBF, we refer the reader to [41].

The procedure for taking preprocessing steps into account is the same as
for the elimination steps: We assume that Skolem functions (sky)y∈Uk for Ψk are

given and show how to obtain Skolem functions (sk−1y )y∈Uk−1 for the formula

Ψk−1 before applying a preprocessing operation.

4.1 Equivalence transformations and universal reduction

All operations which replace the formula Ψk−1 by a logically equivalent formula
Ψk (see Definition 3) preserve Skolem functions and can essentially be ignored
for the computation of Skolem functions. This applies (among others) to the
following preprocessing techniques: addition of resolvents, deletion of subsumed
clauses, and hidden literal addition [41,22].

Universal reduction removes a variable x∗ ∈ Uk−1 from a clause C ∈ φk−1
if C does not contain an existential variable which depends on x∗. In general,
the resulting matrix φk is not logically equivalent to φk−1. However, universal
reduction changes neither the set of existential variables nor their Skolem functions.
Therefore universal reduction steps can be ignored when computing Skolem
functions.



4.2 Replacing variables by constants

Different techniques identify variables in the formula which must or may be
replaced by constants: unit and failed literals, contradicting implication chains,
backbones (variables which have the same value in all satisfying assignments of
the matrix) [26], pure literals, or more generally, monotonic literals. For these
techniques, Skolem functions can be derived using the following lemma.

Lemma 6 (Replacement by constants). Assume that Ψk is created from
Ψk−1 by replacing an existential variable y∗ ∈ Ek−1 by a constant value c ∈ B,
i. e., Qk : φk = Qk−1 \

{
∃y∗(Dk−1

y∗ )
}

: φk−1[c/y∗].

If (sky)y∈Ek are Skolem functions for Ψk, then (sk−1y )y∈Ek−1 are Skolem functions

for Ψk−1, where sk−1y = sky for y 6= y∗, and sk−1y∗ = c.

While for backbones, the constant Skolem function is the only possibility,
for monotonic variables other Skolem functions might be available. However, a
constant function has a representation of minimum size and is therefore preferred.

4.3 Equivalent variables

If the preprocessor detects that the existential variable y∗ ∈ Ek−1 is equivalent
to the literal `, then either the whole formula is unsatisfied if ` is universal and
y∗ does not depend on `. Otherwise all occurrences of y∗ can be replaced by `.
For the Skolem function of y∗ the following lemma holds:

Lemma 7 (Equivalent literals). Let Ψk result from Ψk−1 by replacing the
existential variable y∗ ∈ Ek−1 by the literal `, i. e.,

Qk : φk = Qk−1 \
{
∃y∗(Dk−1

y∗ )
}

: φk−1[`/y∗].

If (sky)y∈Ek are Skolem functions for Ψk, then (sk−1y )y∈Ek−1 are Skolem functions

for Ψk−1, where

sk−1y =


sky , if y 6= y∗,

`, if y = y∗ and var(`) ∈ Uk−1,
skvar(`), if y = y∗ and var(`) ∈ Ek−1 and sign(`) = 1,

¬skvar(`), if y = y∗ and var(`) ∈ Ek−1 and sign(`) = 0.

4.4 Structure extraction

For solvers which do not rely on a CNF-representation of the formula, the
reconstruction of the Boolean expression from which the CNF was generated
is often beneficial. This is particularly the case if Tseitin transformation was
applied to a circuit. Thereby clauses are detected which represent the equivalence
y∗ ≡ η where η is the function computed by a logical gate and y∗ the existential
variable introduced by Tseitin transformation for the output of the gate. In the
resulting representation y∗ is replaced by η. Accordingly, a Skolem function for
y∗ can be obtained from the Skolem functions of the existential variables var(η):



Lemma 8 (Structure extraction). Let Ψk result from Ψk−1 by replacing
y∗ ∈ Ek−1 by the expression η such that y∗ /∈ var(η) and⋃

y∈var(η)∩Ek−1

Dk−1
y ⊆ Dk−1

y∗ .

That means Qk : φk = Qk−1 \
{
∃y∗(Dk−1

y∗ )
}

: φk−1[η/y∗]. If (sky)y∈Ek are Skolem

functions for Ψk, then (sk−1y )y∈Ek−1 are Skolem functions for Ψk−1 where sk−1y =

sky if y 6= y∗, and sk−1y∗ = η[skz/z, for z ∈ var(η) ∩ Ek].

4.5 Variable elimination by resolution

In QBF, an existential variable y∗ can be eliminated by resolution if it belongs
to the inner-most quantifier block3. Thereby all clauses containing y∗ or ¬y∗
are replaced by all possible resolvents w. r. t. y∗. Having a closer look at how
a Skolem function can be obtained for y∗, we can see that the condition of y∗

being in the inner-most quantifier block can be strengthend such that it is also
applicable to DQBF, where there is in general no linear order on the variables.

Let y∗ ∈ Ek−1 be an existential variable. We partition the set φk−1 of
clauses into φk−1y∗ = {C ∈ φk−1 | y∗ ∈ C}, φk−1¬y∗ = {C ∈ φk−1 | ¬y∗ ∈ C}, and

φk−1∅ = φk−1 \ (φk−1y∗ ∪ φk−1¬y∗ ).

Lemma 9 (Resolution). Assume that Ψk results from Ψk−1 by eliminating
variable y∗ using resolution, i. e.,

Qk : φk = Qk−1 \ {∃y∗(Dk−1
y∗ )} : φk−1∅ ∪ {C ⊗y∗ C ′ |C ∈ φk−1y∗ ∧ C ′ ∈ φk−1¬y∗ },

where C ⊗y∗ C ′ denotes the resolvent of C and C ′ w. r. t. y∗. This can be done if
one of the following conditions holds:

– Case 1: depΨk−1(y∗) ⊇
⋃
C∈φk−1

y∗

⋃
`∈C\{y∗} depΨk−1(`),

– Case 2: depΨk−1(y∗) ⊇
⋃
C′∈φk−1

¬y∗

⋃
`∈C′\{¬y∗} depΨk−1(`).

If (sky)y∈Ek are Skolem functions for Ψk, then (sk−1y )y∈Ek−1 are Skolem functions

for Ψk−1 where, for the two cases, sk−1y is defined as follows:

sk−1y =


sky , if y 6= y∗,

¬φk−1y∗ [0/y∗][skz/z for z ∈ Ek], if y = y∗ and Case 1 applies,

¬φk−1¬y∗ [1/y∗][skz/z for z ∈ Ek], if y = y∗ and Case 2 applies.

For a proof see [41]. If both cases apply, we can use don’t-care minimization to
reduce the AIG size of the Skolem function sk−1y∗ for the eliminated variable y∗.

Variable elimination by resolution is sound for DQBF also in a third case when
an existential variable y∗ ∈ Ek−1 fulfills the conditions for structure extraction
[41]. (Depending on the solver back-end, one might prefer elimination by resolution
instead of structure extraction in order to preserve the CNF structure of the
matrix.) It is easy to see that in this case the Skolem function sk−1y∗ can simply

computed from (sky)y∈Ek as in Sect. 4.4.

3 If the inner-most quantifier block is universal, it can be removed by universal reduction.



4.6 Blocked clause elimination (BCE)

BCE [22] allows to delete certain clauses C from a formula without changing its
truth value. This is the case if all resolvents of C w. r. t. one of its existential
literals ` ∈ C are tautologies and if the dependency set of the variable that makes
the resolvent a tautology is a subset of var(`)’s dependency set [41].

Definition 7 (Outer clause, outer formula). Let ψ = Q : φ be a DQBF,
C ∈ φ a clause, and ` ∈ C a literal of C. The outer clause of C on ` is given by

OC(ψ,C, `) =
{
κ ∈ C

∣∣κ 6= ` ∧ depψ(κ) ⊆ depψ(`)
}
.

Let ` be a literal in a DQBF ψ. The outer formula of ψ on ` is given by

OF(ψ, `) =
{
OC(ψ,D,¬`)

∣∣D ∈ φ ∧ ¬` ∈ D}.
Now we can define blocked clauses for DQBF [41]:

Definition 8 (Blocked clause). Let ψ = Q : φ be a DQBF, C ∈ φ a
clause. The clause C is blocked if there is an existential literal ` ∈ C such
that OC(ψ,C, `) ∪ OC(ψ,D,¬`) is a tautology for all D ∈ φ with ¬` ∈ D.

It is known that blocked clauses can be deleted from a DQBF without changing
its truth value [41].

Similar to the QBF case, which is described in [23], we can derive Skolem
functions in case of blocked clause elimination using the following lemma:

Lemma 10 (Blocked clause elimination). Let Ψk be created from Ψk−1 by
deleting the clause C, which is blocked in Ψk−1 w. r. t. the existential literal ` ∈ C,
i. e., Qk : φk = Qk−1 : φk−1 \ {C}. If (sky)y∈Ek are Skolem functions for Ψk, then

(sk−1y )y∈Ek−1 are Skolem functions for Ψk−1 where

sk−1y =

{
sky , if y 6= var(`),

ITE
(
OF(Ψk−1, `)[skz/z for z ∈ Ek], sign(`), sky

)
, if y = var(`).

Proof sketch. Let y∗ := var(`). First, sk−1y∗ depends only on variables in Dk−1
y∗

because OF(Ψk−1, `) contains only variables v with depΨk−1(v) ⊆ depΨk−1(y∗).
Second, we have to show that φk−1[sk−1z /z for z ∈ Ek−1] is a tautology. We

show ν
(
φk−1[sk−1z /z for z ∈ Ek−1]

)
= 1 for every assignment ν ∈ A(Uk−1). We

partition the clauses into those which contain `, those which contain ¬`, and the
remaining ones. We distinguish the cases where ν

(
OF(Ψk−1, `)

)
is 0 and where

it is 1, and prove that in both cases all clauses are satisfied. Details can be found
in [40]. ut

The effectiveness of blocked clause elimination is often increased by adding
hidden and covered literals before testing whether a clause is blocked. Adding
hidden literals yields an equivalent DQBF (see Section 4.1), but the addition of
covered literals has to be taken into account when computing Skolem functions.

For detailed information how to handle covered literal addition, we refer the
reader to the extended version [40] of this paper.



5 Experimental results

We extended our DQBF solver HQS [19]4 by the possibility to compute Skolem
functions for satisfied DQBFs. The computation of Skolem functions works in
two phases: During the solution process we collect the necessary data and store
it on a stack. When the satisfiability of the formula has been determined, we free
the other data structures of the solver and extract the Skolem functions from the
collected data. During the extraction phase, HQS supports optimizing the Skolem
functions of eliminated existential variables according to Remarks 2 and 3. If
don’t-care optimization using Craig interpolation is enabled, we choose a Skolem
function for the eliminated existential variable y∗ ∈ Ek−1 among φk−1[1/y∗],
¬φk−1[0/y∗], and the computed interpolant, taking one with minimal AIG size.
If interpolation is disabled, we only choose among the first two options.

Additionally, in a post-processing step, we can use the tool ABC [8] to further
optimize the Skolem function representations. It supports AIG rewriting based
on so-called internal don’t cares. In contrast to the external don’t cares that we
proposed in Remark 3, they encompass values which cannot appear at internal
signals of the AIG.

HQS is accompanied by a proof checker, which verifies that the Skolem
functions depend only on the allowed variables and that replacing the existential
variables in the formula by their Skolem function indeed yields a tautology.
Checking whether the Skolem functions depend only on the allowed variables is
performed just by traversing the AIGs and computing the structural support,
since, by construction, the AIGs of the Skolem functions do not structurally
depend on more than the allowed variables.5 Logic optimizations done by ABC
could increase the structural support in principle, but since logic optimization does
not change the represented Boolean functions semantically, additional variables in
the structural support which are introduced by ABC can be removed by replacing
them by arbitrary constants.6 The second and more important part of the check
is done by replacing the existential variables by their Skolem functions and by
calling a SAT-solver to verify that the resulting formula is a tautology. As a
SAT-solver, we have used Minisat 2.2 [13]. We have applied this proof checker to
all computed Skolem functions and confirmed their correctness.

All experiments were run on one Intel Xeon E5-2650v2 CPU core at 2.60 GHz
clock frequency and 64 GB of main memory under Linux (kernel version 3.13)
as operating system, running in 64 bit mode. We aborted all experiments which
either took more than 3600 s CPU time or more than 8 GB ( = 230 bytes) of main
memory. As benchmarks we used 4811 DQBF instances from different sources:
DQBFs resulting from equivalence checking of incomplete circuits [18,15,17],
controller synthesis problems [7], and instances obtained from converting SAT
instances into DQBFs that depend only on a logarithmic number of variables [4].

4 A recent binary of HQS, all DQBF benchmarks we used as well as our proof checker
are available at https://projects.informatik.uni-freiburg.de/projects/dqbf.

5 Of course, the semantical support could also be checked by a series of SAT calls.
6 However, this case never occurred in our experiments.

https://projects.informatik.uni-freiburg.de/projects/dqbf
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Fig. 1. Influence of data collection on the computation time (left) and memory con-
sumption with and without computation of Skolem functions (right)

Table 1. Solved instances
Variant solved unsat sat Skolem

w/o Skolem functions 4008 3286 722 n/a
w/o optimizations 4010 3289 721 721
+ interpolation 4010 3289 721 721
+ ABC 4009 3287 722 722
+ interpolation + ABC 4008 3287 721 721

First we compare the number of in-
stances which could be solved and
for which Skolem functions could be
computed in different solver config-
urations. Table 1 shows the results.
Out of the 4811 instances, on aver-
age 4010 could be solved; of those
instances, 3288 were UNSAT, 722 SAT. Skolem functions were obtained for all of
the solved SAT instances, i. e., we could not only decide realizability, but even
determine implementations of controllers or the unknown circuit parts. These
numbers are independent of whether interpolation and/or ABC were used to
optimize the size of the Skolem functions. The small deviations seem to be due to
random effects from scheduling and influences from other processes. The numbers
change by one or two when we re-run the solver in the same configuration.

This is consistent with Fig. 1, which shows the influence of data collection
on the computation time (left) until the truth value of the formula has been
determined and on the peak memory consumption (right) until the computation
of Skolem functions has been finished. The memory consumption of ABC is not
taken into account, because it runs when HQS has terminated and needed less
memory than HQS in all cases. A mark below the diagonal means that the variant
on the vertical axis performs better for that instance than the variant on the
horizontal axis. The figures show that the solution time only changes by a small
amount due to data collection. The memory consumption increases only slightly
in most cases. In a few exceptions, the memory consumption even decreases. The
reason is that the Skolem functions share AIG nodes with the formula in the
solver core. This changes the way how the AIG manager can optimize the AIG
representation, which can actually lead to lower memory consumption.

The final extraction phase takes a few seconds at most, even if the optimiza-
tions are enabled. Since the internal data structures of the solver have already
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Fig. 2. The sizes (number of AND nodes) in the Skolem functions’ AIG representations
with different optimizations enabled. Note that the axes are logarithmically scaled.

been freed at that point, the peak memory consumption does not occur during
Skolem function computation, but during the solution process.

In Fig. 2, we compare the effectiveness of optimizing the Skolem functions by
don’t-care minimization and rewriting. We ran HQS on the satisfiable instances
with five different configurations: (1) without any optimization of the Skolem
functions (besides taking the smaller one of φk−1[1/y∗] and ¬φk−1[0/y∗] for
eliminated existential variables, cf. Remark 2); (2) applying ABC to the obtained
Skolem functions; (3) using interpolation according to Lemma 2; and (4) using
both interpolation and ABC. The diagrams show the values for all (roughly)
722 instances for which we were able to compute Skolem functions.
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Fig. 3. Comparing DepQBF and HQS regarding
the size of the computed Skolem functions

We can observe that both inter-
polation (first row, left) and ABC
(first row, mid) in isolation have,
on average, a positive effect on the
sizes of the Skolem functions. Nev-
ertheless, since we perform don’t-
care optimization using interpola-
tion for each eliminated existen-
tial variable individually, it may
in a few cases increase the joint
size of all Skolem functions, which
share some of the AIG nodes. In
contrast, ABC never increases the
size, because it performs optimiza-
tion globally for the shared AIGs.
The left diagram in the second row compares the effectiveness of ABC and
interpolation. While they are similarly effective in many cases, there are instances



for which ABC is superior to interpolation and vice versa. Therefore, adding
both optimizations often leads to a further decrease in size (second row, mid and
right).

Because QBFs are a special case of DQBFs, we can use HQS to compute
Skolem functions for satisfied QBFs. In Fig. 3, we compare the sizes of the Skolem
functions generated by HQS with those generated by the state-of-the-art QBF
solver DepQBF 5.0 [29,28] for a set of satisfiable QBF instances from the QBF
Gallery 20137 and from partial equivalence checking [37] (with a single black
box). Since HQS (and in particular its preprocessor) is not optimized for solving
QBF instances, we abstain from a detailed comparison of the running times of
HQS and DepQBF. DepQBF is often (but not always) faster than HQS. In a
few cases, the generation of Skolem functions with DepQBF failed because the
necessary resolution proof became too large (we aborted DepQBF when the size
of the dumped resolution proof exceeded 20 GB).

Fig. 3 shows the sizes of the Skolem functions computed by DepQBF and
by HQS (with interpolation and ABC). To enable a fair comparison, we also
applied ABC with the same commands to the Skolem functions generated using
DepQBF. We can observe that HQS’ Skolem functions are in most cases smaller
(often significantly) than those obtained from DepQBF.

In summary, we can conclude that the proposed method allows the computa-
tion of Skolem function for satisfied DQBFs with very little overhead regarding
computation time and memory consumption. Applying interpolation and ABC
to decrease the size of the Skolem functions has in general a positive effect. Re-
garding the sizes of the computed Skolem functions, HQS is at least comparable
to the QBF solver DepQBF on small to medium size QBF instances.

6 Conclusion

We have shown how Skolem functions can be computed for satisfiable DQBFs.
They play a crucial role in many applications from implementations of missing
circuit parts or controllers to winning strategies in games. We have shown how
don’t-care minimization can help reduce the size of the Skolem functions. In a
series of experiments we demonstrated that the computation of Skolem functions
is not only possible in theory but also feasible in practice: both the overhead
during the solution process and the time for extracting the functions from the
collected data are small.

An open problem is the certification of unsatisfiability. For QBFs this can
be done by negating the formula and then computing Skolem functions (which
are here called Herbrand functions). This is not possible for DQBFs [2] because
DQBFs are not closed under negation.8 Finding ways to certify the unsatisfiability
of a DQBF is an important task for future work.

7 see http://www.kr.tuwien.ac.at/events/qbfgallery2013/
8 The DQBF-variant we consider is called S-form DQBF in [2]. Its negation yields a

so-called H-form DQBF, which does not support the computation of Skolem functions.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/
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