
Dependency Schemes for DQBF

Ralf Wimmer1,2(B), Christoph Scholl1, Karina Wimmer1, and Bernd Becker1

1 Albert-Ludwigs-Universität Freiburg im Breisgau, Freiburg im Breisgau, Germany
{wimmer,scholl,wimmerka,becker}@informatik.uni-freiburg.de

2 Dependable Systems and Software, Saarland University, Saarbrücken, Germany

Abstract. Dependency schemes allow to identify variable independen-
cies in QBFs or DQBFs. For QBF, several dependency schemes have
been proposed, which differ in the number of independencies they are
able to identify. In this paper, we analyze the spectrum of dependency
schemes that were proposed for QBF. It turns out that only some of
them are sound for DQBF. For the sound ones, we provide a correct-
ness proof, for the others counter examples. Experiments show that a
significant number of dependencies can either be added to or removed
from a formula without changing its truth value, but with significantly
increasing the flexibility for modifying the representation.

1 Introduction

During the last two decades an enormous progress in the solution of quantifier-
free Boolean formulas (SAT) has been observed. Nowadays, SAT solving is suc-
cessfully used in many application areas, e.g., in formal verification of hard- and
software systems [1,5,10], automatic test pattern generation [11,12], or plan-
ning [22]. Motivated by the success of SAT solvers, more general formalisms like
quantified Boolean formulas (QBFs) have been studied. However, for applica-
tions like the verification of partial circuits [17,24], the synthesis of safe con-
trollers [6], and the analysis of games with incomplete information [21], even
QBF is not expressive enough to provide a compact and natural formulation.
The reason is that the dependencies of existential variables on universal ones are
restricted in QBF: Each existential variable implicitly depends on all universal
variables in whose scope it is, i.e., in a model for a QBF in prenex normal form
the value of an existential variable can be chosen depending on the values of the
universal variables to the left. Consequently, the dependency sets of the existen-
tial variables (i.e., the sets of universal variables they may depend on) are linearly
ordered w.r.t. set inclusion in QBF. In so-called dependency quantified Boolean
formulas (DQBFs) this restriction is removed and for each existential variable a
dependency set is explicitly specified. The more general DQBF formulations can
be tremendously more compact than equivalent QBF formulations; on the other
hand the decision problem is NEXPTIME-complete for DQBF [21] instead of

This work was partly supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas”.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 473–489, 2016.
DOI: 10.1007/978-3-319-40970-2 29

scholl
Schreibmaschinentext
Preprint from 9th International Conference on Theory and Applications of Satisfiability Testing (SAT), July 2016, Bordeaux, France

474 R. Wimmer et al.

PSPACE-complete for QBF. Driven by the needs of the applications mentioned
above, research on DQBF solving has started during the last few years, leading
to first solvers like iDQ and HQS [14,15,18,28].

Although the dependency sets of existential variables are fixed by the syn-
tax of DQBFs, it might be the case that those dependency sets can be reduced
or extended without changing the DQBF’s truth value. Manipulating depen-
dency sets can be beneficial in different ways: In search-based DQBF solvers [14]
extending the DPLL algorithm, manipulation of the dependencies may be used
in a similar way as in QBF solvers [20], e.g., for detecting unit literals and con-
flicts earlier (due to possible universal reductions), for enabling decisions earlier,
etc. In DQBF solvers relying on universal expansions like HQS [18], minimizing
the number of dependencies to be considered leads to fewer copies of existen-
tial variables and thus to faster solving times with lower memory consumption.
Manipulating the number of dependencies might lead to similar advantages for
iDQ [15]. iDQ uses instantiation-based solving, i.e., it reduces deciding a DQBF
to deciding a series of SAT problems which correspond to partial universal expan-
sions. HQS [18] processes a DQBF by several methods until the resulting formula
is a QBF, which then can be solved by an arbitrary QBF solver. Therefore also
adding dependencies can be beneficial for HQS in order to make the formula
more QBF-like.

An existential variable y, which contains a universal variable x in its syntactic
dependency set, is called independent of x iff removing x from y’s dependency set
preserves the truth value of the DQBF. Using the same proof idea as described
in [23] for QBF, it can be shown that deciding whether an existential variable is
independent of a universal one has the same complexity as deciding the DQBF
itself. Therefore one resorts to sufficient criteria to show independencies. We
mainly look into generalizations of so-called dependency schemes, which were
devised for QBF [16,23,25,26] and can be computed efficiently. A dependency
scheme ds(ψ) for a DQBF ψ gives pairs of universal variables x and existential
variables y such that ‘y potentially depends on x’. If (x, y) /∈ ds(ψ), then y is
definitely independent of x.

The contributions of this paper are as follows:

– For DQBF, the paper provides generalizations of dependency schemes known
from QBF and provides for the first time a comprehensive characterization
of the dependency schemes which are sound for proving independencies in
DQBFs. For the dependency schemes which are not sound for DQBF coun-
terexamples are given.

– The paper proves for all DQBF dependency schemes that both adding and
removing dependencies has a unique fixed point.

– Dependency schemes and an orthogonal method based on detection of func-
tional definitions are seamlessly integrated in order to profit from each other.

– We present first experimental results showing an enormous amount of flex-
ibility w.r.t. adding and removing dependencies in numerous benchmark
instances.

Dependency Schemes for DQBF 475

Related work. Several dependency schemes have been introduced for QBF. Based
on earlier ideas in [4,9,23] defined the so-called standard dependency scheme and
the more precise triangle dependency scheme for QBF. In [16,25,26] these ideas
have been refined further, leading to the even more precise resolution path depen-
dency scheme. In [19,20] applications of dependency schemes to expansion-based
and search-based QBF solvers have been intensively discussed. The correctness
of using dependency schemes in search-based QBF solvers like DepQBF is stud-
ied in [27], showing that using quadrangle and triangle dependencies in that
context is unsound. Instead (sound) reflexive variants of them are proposed. In
[28] dependency schemes for DQBF has been considered first. [28] contains a
generalization of the simple standard dependency scheme to DQBF, but neither
a comprehensive characterization of the dependency schemes which are sound
for DQBF nor any deeper analysis.

Structure of this paper. In the next section, we introduce the necessary foun-
dations on DQBFs, Sect. 3 contains the main part of the paper on dependency
schemes for DQBF. Section 4 shows first experimental results evaluating the flex-
ibility provided by the different methods. Finally, Sect. 5 concludes the paper
with a summary and directions for future research.

2 Foundations

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and v ∈ V .
We denote by ϕ[κ/v] the Boolean formula which results from ϕ by replacing all
occurrences of v (simultaneously) by κ. For a set V ′ ⊆ V , we denote by A(V ′)
the set of Boolean assignments for V ′, i.e., A(V ′) =

{
ν

∣
∣ ν : V ′ → {0, 1}}

. For
each formula ϕ over V , a variable assignment ν to the variables in V induces a
truth value 0 or 1 of ϕ, which we call ν(ϕ).

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a
set of Boolean variables. A dependency quantified Boolean formula (DQBF)
ψ over V has the form ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ, where
Dyi

⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi, and ϕ is a
quantifier-free Boolean formula over V , called the matrix of ψ.

V ∀
ψ = {x1, . . . , xn} is the set of universal and V ∃

ψ = {y1, . . . , ym} the set of
existential variables of ψ. We often write ψ = Q : ϕ with the quantifier prefix
Q and the matrix ϕ. Q \ {v} denotes the prefix that results from removing
a variable v ∈ V from Q together with its quantifier. If v is existential, then
its dependency set is removed as well; if v is universal, then all occurrences
of v in the dependency sets of existential variables are removed. Similarly we
use Q ∪ {∃y(Dy)

}
to add existential variables to the prefix. In this paper, we

always assume that a DQBF ψ = Q : ϕ as in Definition 1 with ϕ in conjunctive
normal form (CNF) is given. A formula is in CNF if it is a conjunction of (non-
tautological) clauses; a clause is a disjunction of literals, and a literal is either
a variable v or its negation ¬v. As usual, we identify a formula in CNF with its

476 R. Wimmer et al.

set of clauses and a clause with its set of literals. For a formula ϕ (resp. clause
C, literal l), var(ϕ) (resp. var(C), var(l)) means the set of variables occurring in
ϕ (resp. C, l); lit(ϕ) (lit(C)) denotes the set of literals occurring in ϕ (C).

A QBF (in prenex normal form) is a DQBF such that Dy ⊆ Dy′ or Dy′ ⊆ Dy

holds for any two existential variables y, y′ ∈ V ∃
ψ . Then the variables in V can

be ordered resulting in a linear quantifier prefix, such that for each y ∈ V ∃
ψ , Dy

equals the set of universal variables which are to the left of y.
The semantics of a DQBF is typically defined by so-called Skolem functions.

Definition 2 (Semantics of DQBF). Let ψ be a DQBF as above. It is satis-
fiable iff there are functions sy : A(Dy) → {0, 1} for y ∈ V ∃

ψ such that replacing
each y ∈ V ∃

ψ by (a Boolean expression for) sy turns φ into a tautology. The
functions (sy)y∈V ∃

ψ
are called Skolem functions for ψ.

The elimination of universal variables in solvers like HQS [18] is done by
universal expansion [2,7,8,17]:

Definition 3 (Universal expansion). For a DQBF ψ = ∀x1 . . . ∀xn∃y1(Dy1)
. . . ∃ym(Dym

) : ϕ with Zxi
=

{
yj ∈ V ∃

ψ

∣
∣ xi ∈ Dyj

)
}
, the universal expansion

w.r.t. variable xi ∈ V ∀
ψ , is defined by

(
Q\{xi}

)∪{∃y′
j(Dyj

\{xi})
∣
∣ yj ∈ Zxi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈ Zxi
].

ψ and its universal expansion have the same truth value, they are called ‘equi-
satisfiable’. It can be seen from Definition 3 that the universal expansion w.r.t.
a universal variable requires to double all existential variables which depend on
it. This shows that reducing the dependency sets can be beneficial (as long as
an equisatisfiable DQBF results). Increasing dependency sets may be beneficial
as well, if adding dependencies makes the DQBF more QBF-like (see Sect. 3.2).

Manipulating the dependency sets is done using so-called dependency
schemes in QBF. In the following section, we investigate which of the QBF
dependency schemes can be generalized to DQBF and which cannot.

3 Dependency Schemes

Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : ϕ be a DQBF. For x ∈ V ∀

ψ and
y ∈ V ∃

ψ , we denote by ψ 	 (x, y) the formula which results from ψ by removing
the dependency of y on x, i.e., by replacing Dy with Dy \ {x}. Accordingly,
ψ ⊕ (x, y) results from ψ by replacing Dy with Dy ∪ {x}.

Definition 4. An existential variable y ∈ V ∃
ψ is independent of a universal

variable x ∈ V ∀
ψ in ψ, iff ψ ⊕ (x, y) and ψ 	 (x, y) have the same truth value. In

this case, the pair (x, y) is called a pseudo-dependency.

Dependency schemes provide sufficient criteria to show variable independencies.

Dependency Schemes for DQBF 477

Definition 5 (Dependency scheme). A dependency scheme for a DQBF
ψ is a relation ds(ψ) ⊆ V ∀

ψ × V ∃
ψ such that (x, y) /∈ ds(ψ) implies that y is

independent of x in ψ.

Dependency schemes for QBF have been considered in several papers like
[16,19,20,23,25–27]. They encompass the standard, strict standard, (reflexive)
triangle, (reflexive) quadrangle and the resolution path dependency schemes. In
the following, we generalize them to DQBF.

Most dependency schemes are based on ‘connections’ between clauses:

Definition 6 (Connected). Let ψ = Q : ϕ be a DQBF. A Z-path for Z ⊆ V
between two clauses C,C ′ ∈ ϕ is a sequence C1, . . . , Cn of clauses with C = C1,
C ′ = Cn such that var(Ci) ∩ var(Ci+1) ∩ Z �= ∅ for all 1 ≤ i < n. A sequence
v1, . . . , vn−1 of variables with vi ∈ var(Ci) ∩ var(Ci+1) ∩ Z for all 1 ≤ i < n is
called a connecting sequence of the Z-path. Two clauses C,C ′ ∈ ϕ are connected
w.r.t. Z (written C

Z←→ C ′) if there is a Z-path between C and C ′.

Using the notion of connected clauses, Samer et al. defined the standard
(sdep) and triangle (tdep) dependency schemes [23]. Van Gelder [16] general-
ized standard dependencies to strict standard dependencies (ssdep) and triangle
dependencies to quadrangle dependencies (qdep), using connected clauses as
well.

For the definition of stronger dependency schemes (i.e., of dependency
schemes leading to smaller relations ds(ψ), and thus detecting more indepen-
dencies), in [16,25,26] a more restricted notion of connected clauses has been
introduced which leads to so-called resolution path dependencies:

Definition 7 (Resolution path connected). Let ψ = Q : ϕ be a DQBF.
A resolution Z-path for Z ⊆ V between two clauses C,C ′ ∈ ϕ is a sequence
C1, . . . , Cn of clauses with C = C1, C ′ = Cn such that for all 1 ≤ i < n there is
a literal li with var(li) ∈ Z, li ∈ Ci, ¬li ∈ Ci+1, and for all 1 ≤ i < n−1 we have
var(li) �= var(li+1).1 The sequence var(l1), . . . , var(ln−1) is called a connecting
sequence of the resolution Z-path. Two clauses C,C ′ ∈ ϕ are resolution path
connected w.r.t. Z (written C

Z←→
rp

C ′) if there is a resolution Z-path between C

and C ′.

Figure 1 gives an overview of the dependency schemes that have been proposed for
QBF.The figure also shows the relation between the different dependency schemes.
An arrow from a dependency scheme ds1 to a scheme ds2 means that ds1(ψ) ⊆
ds2(ψ) holds for all DQBFs ψ and that there is at least one DQBF for which the
subset relation is strict. ds1 is more precise than ds2 in the sense that every inde-
pendence identified by ds2 is also identified by ds1, but not necessarily vice versa.
Arrows that can be derived by transitivity have been omitted. Because the reso-
lution path dependency scheme [16,25,26] is the quadrangle dependency scheme
1 In [16] there is an additional constraint ‘the resolvent of Ci and Ci+1 w.r.t. li is

non-tautologous’. This constraint has to be removed according to [25,26]. If it is not
removed, resolution path dependencies are not sound.

478 R. Wimmer et al.

QBF

DQBF

sdeprp sdep

ssdep

ssdeprp

rtdeprtdeprp

tdeptdeprp

rqdep rqdeprp

qdep qdeprp

Fig. 1. The different dependency schemes for QBF and DQBF. Only those in the blue
box are sound for DQBF, while all in the green box are sound for QBF. (Color figure
online)

using ‘resolution path connectivity’ (Definition 7) instead of simple connectivity
(Definition 6), we renamed it into quadrangle resolution path dependency scheme
(qdeprp). For each dependency scheme in {tdep, tdeprp, qdep, qdeprp} there is a
so-called ‘reflexive’ counterpart (called rtdep, rtdeprp, rqdep, rqdeprp, resp.) which
is weaker than the original scheme. Reflexivity has been introduced in [27]. Exact
definitions for the different dependency schemes for (D)QBF follow in Definition 8.

After giving the definition, we will have a closer look into the different depen-
dency schemes. The main result of the paper will be the fact that for DQBF only
those dependency schemes in the blue box are sound and the others are not.

Definition 8 (Dependency schemes). Let ψ be a DQBF as in Def. 1. Fur-
thermore, let x∗ ∈ V ∀

ψ and y∗ ∈ V ∃
ψ such that x∗ ∈ Dy∗ . We set Zx∗ := {z ∈

V ∃
ψ |x∗ ∈ Dz}.

For the following dependency schemes, (x∗, y∗) ∈ ds(ψ) holds iff there are
clauses C1, C2, C3, C4 ∈ ϕ with x∗ ∈ C1, ¬x∗ ∈ C2, y∗ ∈ C3, and ¬y∗ ∈ C4 such
that the following requirements hold:

1. standard dependency scheme sdep [23]:

C1
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C3 ∨ C1
Zx∗←−→ C4 ∨ C2

Zx∗←−→ C4

2. strict standard dependency scheme ssdep [16]:

(C1
Zx∗←−→ C3 ∨ C1

Zx∗←−→ C4) ∧ (C2
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C4)

3. reflexive triangle dependency scheme rtdep [27]:

(C1
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C3) ∧ (C1
Zx∗←−→ C4 ∨ C2

Zx∗←−→ C4)

Dependency Schemes for DQBF 479

4. triangle dependency scheme tdep [23]:

(C1
Zx∗ \{y∗}←−−−−−→ C3 ∨ C2

Zx∗ \{y∗}←−−−−−→ C3) ∧ (C1
Zx∗ \{y∗}←−−−−−→ C4 ∨ C2

Zx∗ \{y∗}←−−−−−→ C4)

5. reflexive quadrangle dependency scheme rqdep [27]:

(C1
Zx∗←−→ C3 ∧ C2

Zx∗←−→ C4) ∨ (C1
Zx∗←−→ C4 ∧ C2

Zx∗←−→ C3)

6. quadrangle dependency scheme qdep [16]:

(C1
Zx∗ \{y∗}←−−−−−→ C3 ∧ C2

Zx∗ \{y∗}←−−−−−→ C4) ∨ (C1
Zx∗ \{y∗}←−−−−−→ C4 ∧ C2

Zx∗ \{y∗}←−−−−−→ C3)

The references given for each of these dependency schemes refer to the original
definition for QBF. Only the standard dependency scheme has been considered
for DQBF so far [28]. Its correctness is proven in [29].

For each of these dependency schemes sdep, ssdep, rtdep, tdep, rqdep, qdep, a

stronger variant is obtained by replacing connectedness Ci
Zx∗←−→ Cj (Ci

Zx∗ \{y∗}←−−−−−→
Cj) with resolution path connectedness Ci

Zx∗←−→
rp

Cj (Ci
Zx∗ \{y∗}←−−−−−→

rp
Cj , resp.). This

yields the standard resolution path dependency scheme, the strict standard res-
olution path dependency scheme, etc. [16,25–27]. They are denoted with sdeprp,
ssdeprp, rtdeprp, tdeprp, rqdeprp, and qdeprp, respectively. We use the following
sets of dependency schemes:

Δdqbf = {sdep, sdeprp, ssdep, ssdeprp, rtdep, rtdeprp, rqdep, rqdeprp},

Δqbf = Δdqbf ∪ {tdep, tdeprp, qdep, qdeprp},

The quadrangle resolution path dependency scheme has been introduced as
‘resolution path dependency scheme’ in [16,25,26]. For a clear categorization,
however, we prefer to call it the ‘quadrangle resolution path dependency scheme’
qdeprp.

The relations between the dependency schemes shown in Fig. 1 are the imme-
diate consequences of the different dependency schemes’ definition. As each res-
olution path connection according to Definition 7 is also a simple connection
according to Definition 6, but not vice versa, each variant using resolution paths
is stronger than its counterpart that uses simple paths.

For all of the defined dependency schemes, it is known that the following
result holds for QBF:

Theorem 1 ([16,23,25–27]). Let ψ = Q : ϕ be a QBF. Let x∗ ∈ V ∀
ψ and y∗ ∈

V ∃
ψ such that x∗ ∈ Dy∗ . If, for some dependency scheme ds ∈ Δqbf , (x∗, y∗) /∈

ds(ψ) and ψ 	 (x∗, y∗) is a QBF as well, then y∗ is independent of x∗.

In the following, we will prove (1) that the reflexive resolution path depen-
dency scheme (and all weaker schemes) are sound for DQBF as well, and (2) that
the triangle dependency scheme (and all stronger schemes) are unsound for
DQBF.

We start by showing that the triangle dependency scheme is unsound for
arbitrary DQBFs:

480 R. Wimmer et al.

Theorem 2. There is a DQBF ψ = Q : ϕ with x∗ ∈ V ∀
ψ , y∗ ∈ V ∃

ψ such that
x∗ ∈ Dy∗ , with the following property: y∗ is not independent of x∗, but (x∗, y∗) /∈
tdep(ψ), (x∗, y∗) /∈ tdeprp(ψ), (x∗, y∗) /∈ qdep(ψ), and (x∗, y∗) /∈ qdeprp(ψ).

Proof. Let

D1 = (x1 ∨ x2 ∨ ¬y1), D2 = (x2 ∨ y1 ∨ y2)
D3 = (¬x2 ∨ y1 ∨ ¬y2), D4 = (¬x1 ∨ ¬x2 ∨ ¬y1), and

ϕ = D1 ∧ D2 ∧ D3 ∧ D4.

Consider the DQBF ψ = ∀x1∀x2∃y1(x1, x2)∃y2(x1) : ϕ. First we show for ψ
that y1 is not independent of x1, i.e., we have to prove that ψ is satisfiable, but
ψ′ = ψ 	 (x1, y1) = ∀x1∀x2∃y1(x2)∃y2(x1) : ϕ is unsatisfiable. We prove this by
considering the full universal expansions of ψ and ψ′ w.r.t. variables x1 and x2:

– ψ is equisatisfiable to
[
(¬y00

1) ∧ (y00
1 ∨ y0

2)
] ∧ [

(y01
1 ∨ ¬y0

2)
] ∧ [

(y10
1 ∨ y1

2)
] ∧ [

(y11
1 ∨ ¬y1

2) ∧ (¬y11
1)

]

A satisfying assignment is given by y0
2 = y01

1 = y10
1 = 1, y11

1 = y1
2 = y00

1 = 0.
– ψ′ is equisatisfiable to

[
(¬y0

1) ∧ (y0
1 ∨ y0

2)
] ∧ [

(y1
1 ∨ ¬y0

2)
] ∧ [

(y0
1 ∨ y1

2)
] ∧ [

(y1
1 ∨ ¬y1

2) ∧ (¬y1
1)

]

Due to the unit clause (¬y0
1), y0

1 has to be 0. Therefore y0
2 has to be 1 and

thus y1
1 has to be 1. This contradicts the unit clause (¬y1

1).

On the other hand, it is easy to see that (x1, y1) /∈ tdep(ψ). For (x1, y1) ∈ tdep(ψ)
we would need clauses C1, C2, C3, C4 ∈ ϕ with x1 ∈ var(C1), x1 ∈ var(C2),

y1 ∈ C3, ¬y1 ∈ C4, such that C1
{y2}←−→ C3 and C2

{y2}←−→ C4. The only clauses in
ϕ containing ¬x1 or x1 are D1 and D4. Since ¬y1 is the only existential literal in
D1 and D4, the only {y2}-path starting with D1 (D4) is the sequence D1 (D4)
of length 1. Therefore a suitable clause C3 cannot be found in ϕ.

(x2, y1) /∈ tdep(ψ) implies (x2, y1) /∈ tdeprp(ψ), (x2, y1) /∈ qdep(ψ), and
(x2, y1) /∈ qdeprp(ψ). ��

The next step is to prove that rqdeprp is sound for DQBF.

Theorem 3. Let x∗ ∈ V ∀
ψ and y∗ ∈ V ∃

ψ such that x∗ ∈ Dy∗ . If (x∗, y∗) /∈
rqdeprp(ψ), then y∗ is independent of x∗.

For the proof, we assume that y∗ is not independent of x∗ and show that then
(x∗, y∗) ∈ rqdeprp(ψ). The main idea of the proof consists of using universal expan-
sion on the DQBF until known results for QBFs become applicable. Then these
results imply (x∗, y∗) ∈ rqdeprp(ψ). Before we come to the proof, we have to con-
sider the following technical lemma on DQBFs resulting from universal expansion:

Lemma 1. Let ψ = Q : ϕ be a DQBF and ψ′ = Q′ : ϕ′ a DQBF derived
from ψ by universally expanding some variables in ψ. If there exists a resolution
Z-path from C1 ∈ ϕ′ to C2 ∈ ϕ′, then the connecting sequence y1, . . . , yn (see
Definition 7) does not include a pair (yi, yi+1) where yi and yi+1 are two copies
of the same existential variable in ψ.

Dependency Schemes for DQBF 481

Proof. Assume that the resolution Z-path has a connecting sequence with a pair
(yi, yi+1) where yi and yi+1 are two copies of the same existential variable in ψ.
According to the definition of resolution Z-paths, yi �= yi+1, i.e., yi and yi+1 are
two different copies of the same existential variable in ψ. Then there exists a
clause C ∈ ϕ′ with yi, yi+1 ∈ var(C), yi �= yi+1. This contradicts the definition
of universal expansion (see Definition 3), since clauses in a universal expansion
can contain at most one copy of the same original variable. ��
Now we come to the proof of Theorem 3. After the proof, its construction is
illustrated by Example 1.

Proof. Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : ϕ be a DQBF. W. l. o. g.

assume that x1 ∈ Dy1 and y1 is not independent of x1. We have to prove that
(x1, y1) ∈ rqdeprp(ψ).

Since, in ψ, y1 is not independent of x1, ψ has to be satisfiable and ψ	(x1, y1)
is unsatisfiable. In ψ, we universally expand on the remaining universal variables
x2, . . . , xn. Let yindep be the copies of existential variables yi (i ∈ {2, . . . , m})
with x1 /∈ Dyi

, ydep be the copies of existential variables yi (i ∈ {2, . . . , m})
with x1 ∈ Dyi

, and y1
1 , . . . , y

k
1 the copies of y1 with k = 2|Dy1 |−1. Thus, universal

expansion results in the following QBF ψ′:

ψ′ = ∃yindep∀x1∃y1
1 . . . ∃yk

1∃ydep : ϕ′.

Now we start to move copies yi
1 from the right of x1 to the left of x1. Since

ψ 	 (x1, y1) is unsatisfiable, ψ′ will get unsatisfiable when all y1
1 . . . yk

1 have been
moved to the left of x1. So there exists a maximal subset ymov

1 � {y1
1 , . . . , y

k
1}

(with ystay
1 = {y1

1 , . . . y
k
1} \ ymov

1 containing the remaining variables from
{y1

1 . . . yk
1}) with the property that

ψ′′ = ∃yindep∃ymov
1 ∀x1∃ystay

1 ∃ydep : ϕ′

is satisfied and, in ψ′′, each variable from ystay
1 is not independent of x1. That

means that moving an arbitrary variable from ystay
1 to the left of x1 will turn ψ′′

from satisfiable to unsatisfiable. The set ystay
1 is not empty, since otherwise y1

would be independent of x1 in ψ. Choose an arbitrary existential variable yj
1 in

ystay
1 . Since ψ′′ is a QBF where yj

1 is not independent of x1, we have (x1, y
j
1) ∈

qdeprp(ψ′′) due to Theorem 1, i.e., ∃C1, C2, C3, C4 ∈ ϕ′ with x1 ∈ C1, ¬x1 ∈ C2,

yj
1 ∈ C3, ¬yj

1 ∈ C4, and – w. l. o. g. – C1

Zx1\{yj
1}←−−−−−→

rp
C3 and C2

Zx1\{yj
1}←−−−−−→

rp
C4 with

Zx1 = ystay
1 ∪ ydep.

Now we make use of a simple property of the process of universal expansion in
order to turn the two constructed resolution (Zx1 \ {yj

1})-paths for ψ′′ into suit-
able resolution paths for the original DQBF ψ proving that (x1, y1) ∈ rqdeprp(ψ):
Each clause C in a universal expansion can be mapped back to a clause Corig

of the original formula ‘it results from’ by (1) adding universal literals which
have been removed by the universal expansion, since they are unsatisfied in the
copy of the clause at hand, and by (2) replacing copies of existential literals � by

482 R. Wimmer et al.

the existential literals �orig in the original formula. Now consider one of the con-
structed resolution (Zx1 \ {yj

1})-paths D1, . . . , Dn with D1 = C1 and Dn = C3

(or D1 = C2 and Dn = C4). For all 1 ≤ i < n there is a literal �i with var(�i)
from Zx1 \{yj

1} = ydep∪ (ystay
1 \{yj

1}), �i ∈ Ci, ¬�i ∈ Ci+1. It is easy to see that
Dorig

1 , . . . , Dorig
n is a resolution Z ′

x1
-path for ψ with Z ′

x1
= {y ∈ V ∃

ψ

∣
∣ x1 ∈ Dy}:

For all 1 ≤ i < n there is a literal �origi with var(�origi) ∈ Z ′
x1

, �origi ∈ Ci,
¬�origi ∈ Ci+1. (Note that �origi may also be y1 or ¬y1, since the connecting
sequence of D1, . . . , Dn may contain a copy of y1 which is different from yj

1.) Due
to Lemma 1, var(�i) and var(�i+1) are copies of different existential variables and
thus var(�origi) �= var(�origi+1) for all 1 ≤ i < n. Altogether we have proven that
there are two resolution Z ′

x1
-paths for ψ with Z ′

x1
= {y ∈ V ∃

ψ

∣
∣ x1 ∈ Dy} leading

from Corig
1 ∈ ϕ with x1 ∈ Corig

1 to Corig
3 ∈ ϕ with y1 ∈ Corig

3 and from Corig
2 ∈ ϕ

with ¬x1 ∈ Corig
2 to Corig

4 ∈ ϕ with ¬y1 ∈ Corig
4 . Thus (x1, y1) ∈ rqdeprp(ψ).2 ��

Example 1. We illustrate the construction of the proof for Theorem3 by means
of an example. Here we use the same example as in the proof of Theorem 2, i.e.,

D1 = (x1 ∨ x2 ∨ ¬y1), D2 = (x2 ∨ y1 ∨ y2)
D3 = (¬x2 ∨ y1 ∨ ¬y2), D4 = (¬x1 ∨ ¬x2 ∨ ¬y1),

ϕ = D1 ∧ D2 ∧ D3 ∧ D4,

and the DQBF ψ = ∀x1∀x2∃y1(x1, x2)∃y2(x1) : ϕ. For ψ, y1 is not independent
of x1. In ψ, we universally expand on the universal variables different from x1,
i.e., we expand on x2. This results in the DQBF

ψ′ = ∀x1∃y0
1(x1)∃y1

1(x1)∃y2(x1) :[
(x1 ∨ ¬y0

1) ∧ (y0
1 ∨ y2)

] ∧ [
(y1

1 ∨ ¬y2) ∧ (¬x1 ∨ ¬y1
1)

]
.

Since only one universal variable is left, the DQBF is a QBF and can be
written (in QBF notation) as

ψ′ = ∀x1∃y0
1∃y1

1∃y2 :
[
(x1 ∨ ¬y0

1) ∧ (y0
1 ∨ y2)

] ∧ [
(y1

1 ∨ ¬y2) ∧ (¬x1 ∨ ¬y1
1)

]
.

There are no existential variables which do not have x1 in their dependency set,
i.e., in the notions used in the proof, yindep = ∅, ydep = {y2}, and there are
two copies (y0

1 and y1
1) of y1. Moving y0

1 or y1
1 to the left of ∀x1 turns the QBF

from satisfiable to unsatisfiable, thus, in the notions used in the proof, ymov
1 = ∅

and ystay
1 = {y0

1 , y
1
1}, and each variable from ystay

1 is not independent of x1.
Choose y0

1 ∈ ystay
1 . Due to Theorem 1, (x1, y

0
1) ∈ qdeprp(ψ′). This can be seen

by choosing C1 = C4 = (x1 ∨ ¬y0
1), C2 = (¬x1 ∨ ¬y1

1), and C3 = (y0
1 ∨ y2).

2 The construction does not lead to (Z′
x1 \ {y1})-paths and thus (x1, y1) ∈ qdeprp(ψ)

cannot be proven (which is not surprising due to Theorem 2).

Dependency Schemes for DQBF 483

(1) (x1 ∨ ¬y0
1) is a (trivial) resolution {y1

1 , y2}-path with empty connecting

sequence showing C1
{y1

1 ,y2}←−−−→
rp

C4 and

(2) (¬x1∨¬y1
1), (y

1
1 ∨¬y2), (y0

1 ∨y2) is a resolution {y1
1 , y2}-path with connecting

sequence y1
1 , y2 showing C2

{y1
1 ,y2}←−−−→
rp

C3.

Mapping the clauses of the universal expansion ψ′ back to the corresponding
original clauses from ψ turns (1) the first path into (x1 ∨ x2 ∨ ¬y1) (again with
empty connecting sequence) and (2) the second path into (¬x1 ∨ ¬x2 ∨ ¬y1),
(¬x2 ∨ y1 ∨ ¬y2), (x2 ∨ y1 ∨ y2) with connecting sequence y1, y2.

These two paths are resolution Zx1-paths for ψ with Zx1 = {z ∈ V ∃
ψ |x1 ∈

Dz} = {y1, y2}. They prove (x1, y1) ∈ rqdeprp(ψ).

3.1 Monotonicity of Dependency Schemes

Monotonicity of dependency schemes has been considered before for QBF [23,26].
In general, dependency schemes are not monotone [23,26]. Monotone dependency
schemes have the advantage that removing pseudo-dependencies identified by
that scheme has a unique fixed point, i.e., the order of removal has no influence
on the final result.

Definition 9 (Monotone). Let ds be a dependency scheme. It is called
monotone if for all DQBFs ψ, variables x∗ ∈ V ∀

ψ and y∗ ∈ V ∃
ψ such that

(x∗, y∗) /∈ ds(ψ) the condition ds
(
ψ 	 (x∗, y∗)

) ⊆ ds
(
ψ

)
is satisfied.

That means, a dependency scheme is monotone if removing a pseudo-dependency
from a DQBF never turns a pseudo-dependency into a proper one.

All dependency schemes which are sound for DQBF in the sense that they can
be used to remove pseudo-dependencies have the nice property of monotonicity:

Theorem 4. All dependency schemes in Δdqbf are monotone.

Monotonicity simply follows from the definition of ‘connected’ (Definition 6)
and ‘resolution path connected’ (Definition 7): Removing a pseudo-dependency
(x∗, y∗) means removing x∗ from the dependency set of y∗. Let ds ∈ Δdqbf . For
(x∗∗, y∗∗) ∈ ds

(
ψ 	 (x∗, y∗)

)
, the existence of certain (resolution) Zx∗∗ -paths

from clauses containing x∗∗ or ¬x∗∗ to clauses containing y∗∗ or ¬y∗∗ is needed
with Zx∗∗ =

{
y ∈ V ∃

ψ

∣
∣ x∗∗ ∈ Dy

}
. Since the dependency sets of ψ 	 (x∗, y∗) can

only be smaller than or equal to the dependency sets of ψ, the corresponding
paths are valid for proving (x∗∗, y∗∗) ∈ ds

(
ψ

)
as well.

3.2 Adding Dependencies

For DQBFs, it may not only be beneficial to remove dependencies from the
dependency set of an existential variable, but also to add dependencies in
order to make the formula more QBF-like. Consider, for instance, the formula

484 R. Wimmer et al.

∀x1∀x2∃y1(x1)∃y2(x2) : ϕ with some matrix ϕ. It can either be turned into a
QBF by removing one of the dependencies or by adding one dependency.

Dependency schemes can be used to add pseudo-dependencies. The intuition
is that one may add a dependency (x∗, y∗) according to a dependency scheme
ds if ds allows to remove the dependency afterwards.

Lemma 2. Let ds ∈ Δdqbf be a dependency scheme, ψ a DQBF, and (x∗, y∗) ∈
V ∀

ψ ×V ∃
ψ such that x∗ /∈ Dy∗ . If (x∗, y∗) /∈ ds

(
ψ⊕(x∗, y∗)

)
, then ψ and ψ⊕(x∗, y∗)

are equisatisfiable.

Proof. If (x∗, y∗) /∈ ds
(
ψ ⊕ (x∗, y∗)

)
, then ψ ⊕ (x∗, y∗) and

(
ψ ⊕ (x∗, y∗)

) 	
(x∗, y∗) = ψ are equisatisfiable. ��

We can show that even adding dependencies has a unique fixed point. The
reason for this is not as simple as for removing pseudo-dependencies in Sect. 3.1
and needs a slightly refined analysis. It relies on the following lemma which says
that the order in which dependencies are added does not matter.

Lemma 3. Let ds ∈ Δdqbf be a dependency scheme. Additionally, for i = 1, 2,
let xi ∈ V ∀

ψ , yi ∈ V ∃
ψ such that xi �∈ Dyi

and (xi, yi) /∈ ds
(
ψ ⊕ (xi, yi)

)
. Then

(x2, y2) /∈ ds
(
ψ ⊕ (x1, y1) ⊕ (x2, y2)

)
.

Proof. W. l. o. g. we assume that ds = sdep and define the following abbrevia-
tions:

ψ1 := ψ ⊕ (x1, y1), ψ2 := ψ ⊕ (x2, y2), ψ12 := ψ ⊕ (x1, y1) ⊕ (x2, y2).

Now we distinguish the following two cases:

– Case 1: x1 �= x2.
Assume that (x2, y2) ∈ sdep(ψ12). That means, there are clauses C,C ′ ∈ ϕ

such that x2 ∈ var(C), y2 ∈ var(C ′) and C
Z

x2
ψ12←−−→ C ′ where Zx2

ψ12
= {y ∈

V ∃
ψ |x2 ∈ Dψ12

y }. Since x2 ∈ Dψ12
y iff x2 ∈ Dψ2

y , we have C
Z

x2
ψ2←−→ C ′ with

Zx2
ψ2

= {y ∈ V ∃
ψ |x2 ∈ Dψ2

y }. This in turn means that (x2, y2) ∈ sdep(ψ2),
which contradicts the assumption of the lemma.

– Case 2: x1 = x2.
Let x := x1 = x2. We have (x, yi) �∈ sdep(ψi) for i = 1, 2. Assume that
(x, y2) ∈ sdep(ψ12).
(x, y2) ∈ sdep(ψ12) means there are clauses C,C ′ ∈ ϕ such that x ∈ var(C),

y2 ∈ var(C ′) and C
Zx

ψ12←−−→ C ′, Zx
ψ12

= {y ∈ V ∃
ψ |x ∈ Dψ12

y }. Say the Zx
ψ12

-path

proving C
Zx

ψ12←−−→ C ′ is C = C(1), C(2), . . . , C(n) = C ′ with the connecting
sequence y(1), y(2), . . . , y(n−1) and assume w. l. o. g. that there is no 1 ≤ i < n
with y(i) = y2 (otherwise we simply shorten the path). As (x, y2) �∈ sdep(ψ2),
the connecting sequence has to contain y1, i. e., y(i) = y1 for some 1 ≤ i < n.

That means, C
Zx

ψ1←−→ C(i) with x ∈ var(C) and y1 ∈ var(C(i)), Zx
ψ1

= {y ∈
V ∃

ψ |x ∈ Dψ1
y }. Therefore (x, y1) ∈ sdep(ψ1), which is a contradiction.

Dependency Schemes for DQBF 485

The same argumentation can be applied for all dependency schemes in Δdqbf ,
replacing “connected” by “resolution path connected” where appropriate. ��
Corollary 1. Adding as many dependencies as possible according to ds ∈ Δdqbf

leads to a unique result, irrespective of the order.

3.3 Manipulation of Dependencies Using Functional Definitions

CNFs (especially those derived from circuit representations) may contain so-
called functional definitions. These are clauses which are logically equivalent to
a formula y ≡ f(v1, . . . , vk) with an existential variable y, an arbitrary boolean
function f and (universal or existential) variables vi (1 ≤ i ≤ k). Here y is called
the defined variable, f is the defn of y, and the clauses corresponding to the
relationship y ≡ f(v1, . . . , vk) are also called the defining clauses.

As already mentioned in [28], the detection of functional definitions provides
a method for manipulating dependency sets which is completely orthogonal to
the dependency schemes presented so far: If the CNF contains defining clauses
for y ≡ f(v1, . . . , vk) and

⋃k
i=1 dep(vi) � Dy,3 then Dy can be replaced by

⋃k
i=1 dep(vi), by V ∀

ψ , or by any set in between without changing the truth value
of the DQBF, since any assignment to the universal variables from

⋃k
i=1 dep(vi)

already fixes the only value of y which is able to satisfy the defining clauses.
The manipulation of dependencies using functional definitions can be com-

bined with the manipulation of dependencies using dependency schemes:
If the goal is to remove as many dependencies as possible, then we first

remove dependencies based on functional definitions. Then, the dependency sets
are already reduced when we start computing dependency schemes. Since this
reduces the number of existing (resolution) Z-paths, this leads to smaller depen-
dency schemes and thus to the detection of more pseudo-dependencies.

If the goal is to add as many dependencies as possible, we proceed the other
way round: We make use of dependency schemes first and then add dependen-
cies due to functional definitions. If we started by adding dependencies due to
functional definitions, then the potential to add dependencies due to dependency
schemes would be reduced with the same argumentation as above.

4 Experiments

We have implemented all of the presented dependency schemes that are sound
for DQBF as well as the detection of functional definitions.4 For each dependency
scheme ds, we used an implementation which needs linear run-time in the size
of the graphs representing Z←→ / Z←→

rp
for computing whether (x, y) ∈ ds(ψ) as

in [25]. Our tool supports both adding and removing pseudo-dependencies. We
want to compare the effectiveness of the different dependency schemes.
3 For notational convenience, we use here dep(vi) = Dvi if vi is existential and

dep(vi) = {vi} if vi is universal.
4 Our tool and all benchmarks we used are available at https://projects.informatik.

uni-freiburg.de/projects/dqbf.

https://projects.informatik.uni-freiburg.de/projects/dqbf
https://projects.informatik.uni-freiburg.de/projects/dqbf

486 R. Wimmer et al.

Table 1. Effectiveness of the different dependency schemes (f. d. = extraction of func-
tional definitions)

Benchmark f. d.? Original sdep sdeprp ssdep ssdeprp rtdep rtdeprp rqdep rqdeprp

adding dependencies

pec adder n bit 9 7 no 19751 123628 123628 123628 123628 123628 123628 123628 123628

yes 113805 124038 124038 124038 124038 124038 124038 124038 124038

term1 0.50 1.00 3 1 no 48678 48730 48730 48745 48745 48730 48866 48745 48869

yes 48768 48730 48730 48745 48745 48730 48866 48745 48869

C432 0.20 1.00 5 3 no 32560 32649 32960 32649 32965 32649 32996 32649 33001

yes 32560 32649 32960 32649 32965 32649 32996 32649 33001

removing dependencies

genbuf15f14unrealy no 198412 198412 198412 198412 198412 198412 198412 198412 198412

yes 60873 60873 60873 60873 60873 60873 60873 60873 60873

term1 0.50 1.00 3 1 no 48678 32570 32506 29683 29623 32570 32234 29683 29375

yes 41061 27543 27479 25142 25082 27543 27207 25142 24834

C432 0.20 1.00 5 3 no 32560 28397 22915 28389 22883 28397 21362 28389 21346

yes 32264 28109 22627 28101 22595 28109 21074 28101 21058

All experiments were run on one Intel Xeon E5-2650v2 CPU core at 2.60 GHz
clock frequency and 64 GB of main memory under Ubuntu Linux as operating
system. As benchmarks we used 4811 DQBF instances from different sources.
They encompass the 4381 instances already used in [28]: DQBFs resulting from
equivalence checking of incomplete circuits [13,15,17] and controller synthesis
problems [6]. We have added 34 instances which were obtained from converting
SAT instances into DQBFs that depend only on a logarithmic number of vari-
ables [3]. Additionally we used 396 instances resulting from partial equivalence
checking problems [17,24].

0

20
00

0

40
00

0

60
00

0

80
00

0

10
0 0

00

12
0 0

00
0

20 000

40 000

60 000

80 000

100 000

120 000

Original

rq
de

pr
p

+
fu

nc
ti

on
al

de
fin

it
io

ns remove
add

Fig. 2. Effectiveness of dependency manip-
ulation using rqdeprp and detection of
functional definitions.(Color figure online)

We applied detection of functional
definitions and then the reflexive quad-
rangle resolution path dependency
scheme rqdeprp to remove as many
dependencies as possible. The same
was done for adding dependencies,
using first rqdeprp and then detec-
tion of functional definitions. For all
instances, our tool terminated within
fractions of a second and used less than
50 MB of main memory.

Figure 2 shows the results. We
compare the original formula with
the formula both after the removal
(blue crosses) and the addition (green
stars) of pseudo-dependencies. For a
fixed instance, a mark on the diago-
nal means that the dependency set could not be modified, above that it could
be increased and below that it could be reduced. We can observe that almost all

Dependency Schemes for DQBF 487

10
−2

10
−1 10

0
10
1

10
2

10
310−2

10−1

100

101

102

103

N/A

N/A

Original

M
in

im
al

nu
m

be
r

of
de

pe
nd

en
ci

es

10
−2

10
−1 10

0
10
1

10
2

10
310−2

10−1

100

101

102

103

N/A

N/A

Original

M
ax

im
al

nu
m

be
r

of
de

pe
nd

en
ci

es

Fig. 3. Running times of HQS [18] compared to the original benchmark after removing
(left) and adding (right) dependencies using rqdeprp and detecting functional defini-
tions. “N/A” means that the benchmark could not be solved within 3600 s computation
time and 8 GB of memory.

instances could be modified; in some cases, the size of the maximal dependency
set is ten times the size of the minimal one.

Table 1 shows the numbers of dependencies for some selected instances before
and after modifying the dependency sets using the different dependency schemes.
We can observe that they are not equally powerful and that the detection of func-
tional definitions can amplify the effectiveness of the dependency schemes. Since
the computation times for rqdeprp are in the same range as the computation
times for the other dependency schemes, we propose to use rqdeprp together
with the detection of functional definitions.

Our work demonstrates the potential of adding/removing dependencies and
lays the groundwork for exploiting this flexibility later on. Figure 3 demonstrates
that trivial solutions (just adding or removing dependencies) for exploiting the
flexibility do not help much. It shows the solution times of HQS [18] on all
4811 instances after applying rqdeprp and detection of functional definitions
compared to the original benchmark. The left image is for removing dependen-
cies, the right one for adding dependencies. We can see that manipulating the
dependency sets can have a huge effect on the solution times. They can both
increase and decrease. This is not really surprising, since both adding and remov-
ing dependencies may increase or decrease the ‘distance’ of the DQBF from an
equisatisfiable QBF. Some of the benchmarks even became solvable or unsolv-
able within the resource limits of 3600 s computation time and 8 GB of memory.
These results show that a clever way for exploiting the flexibility is definitely
needed to solve more instances in less time.

5 Conclusion

We have presented a complete characterization of those dependency schemes
which can be generalized from QBF to DQBF and those which cannot. The
generalizations are suitable to remove and add dependencies in DQBFs. Both

488 R. Wimmer et al.

adding and removing dependencies lead to a unique fixed point, irrespective of
the order of adding/removing and can be combined with an orthogonal method
based on functional definitions. First experimental results show that the pre-
sented methods give an enormous amount of flexibility for the manipulation of
dependency sets and each method has its own contributions to the overall flexi-
bility. A central task for future research is to develop appropriate heuristics for
exploiting the flexibility in the dependency sets in order to turn a DQBF into
a QBF at lower costs. The groundwork for such a method has been laid by the
presented paper.

Acknowledgments. We thank the anonymous reviewers for their really helpful
comments.

References

1. Ashar, P., Ganai, M.K., Gupta, A., Ivancic, F., Yang, Z.: Efficient SAT-based
bounded model checking for software verification. In: Margaria, T., Steffen, B.,
Philippou, A., Reitenspieß, M. (eds.) International Symposium on Leveraging
Applications of Formal Methods (ISoLA). Technical Report, vol. TR-2004-6, pp.
157–164, Department of Computer Science, University of Cyprus, Paphos, Cyprus,
October 2004

2. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae:
a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

3. Balabanov, V., Jiang, J.H.R.: Reducing satisfiability and reachability to DQBF,
September 2015. Talk at the International Workshop on Quantified Boolean For-
mulas (QBF)

4. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

6. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

7. Bubeck, U.: Model-based transformations for quantified boolean formulas. Ph.D.
thesis, University of Paderborn (2010)

8. Bubeck, U., Büning, H.K.: Dependency quantified horn formulas: models and com-
plexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211.
Springer, Heidelberg (2006)

9. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007)

10. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Design 19(1), 7–34 (2001)

11. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: Thread-
parallel integrated test pattern generator utilizing satisfiability analysis. Int. J.
Parallel Prog. 38(3–4), 185–202 (2010)

12. Eggersglüß, S., Drechsler, R.: A highly fault-efficient SAT-based ATPG flow. IEEE
Des. Test Comput. 29(4), 63–70 (2012)

Dependency Schemes for DQBF 489

13. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)

14. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
International Workshop on Pragmatics of SAT (POS), Trento, Italy (2012)

15. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF
solving. In: Berre, D.L. (ed.) International Workshop on Pragmatics of SAT
(POS). EPiC Series, vol. 27, pp. 103–116. EasyChair, Vienna, Austria. http://
www.easychair.org/publications/?page=2037484173

16. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer,
Heidelberg (2011)

17. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equiva-
lence checking of partial designs using dependency quantified Boolean formulae.
In: Proceedings of ICCD, pp. 396–403. IEEE CS, Asheville, October 2013

18. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Proceedings of DATE. IEEE, Grenoble,
March 2015

19. Lonsing, F., Biere, A.: Efficiently representing existential dependency sets for
expansion-based QBF solvers. ENTCS 251, 83–95 (2009)

20. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010)

21. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Comput. Math. Appl. 41(7–8), 957–992 (2001)

22. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)

23. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

24. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In:
ACM/IEEE Design Automation Conference (DAC), pp. 238–243. ACM Press, Las
Vegas, June 2001

25. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71.
Springer, Heidelberg (2012)

26. Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reasoning
56(4), 459–477 (2016)

27. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

28. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24318-4 13

29. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
Reports of SFB/TR 14 AVACS 110. http://www.avacs.org

http://www.easychair.org/publications/?page=2037484173
http://www.easychair.org/publications/?page=2037484173
http://dx.doi.org/10.1007/978-3-319-24318-4_13
http://www.avacs.org

	Dependency Schemes for DQBF
	1 Introduction
	2 Foundations
	3 Dependency Schemes
	3.1 Monotonicity of Dependency Schemes
	3.2 Adding Dependencies
	3.3 Manipulation of Dependencies Using Functional Definitions

	4 Experiments
	5 Conclusion
	References

