
2QBF: Challenges and Solutions

Valeriy Balabanov1(B), Jie-Hong Roland Jiang2, Christoph Scholl3,
Alan Mishchenko4, and Robert K. Brayton4

1 Calypto Systems Division, Mentor Graphics, Fremont, USA
balabasik@gmail.com

2 National Taiwan University, Taipei, Taiwan
jhjiang@ntu.edu.tw

3 University of Freiburg, Freiburg, Germany
scholl@informatik.uni-freiburg.de

4 UC Berkeley, Berkeley, USA
{alanmi,brayton}@berkeley.edu

Abstract. 2QBF is a special form ∀x∃y.φ of the quantified Boolean
formula (QBF) restricted to only two quantification layers, where φ
is a quantifier-free formula. Despite its restricted form, it provides a
framework for a wide range of applications, such as artificial intelligence,
graph theory, synthesis, etc. In this work, we overview two main 2QBF
challenges in terms of solving and certification. We contribute several
improvements to existing solving approaches and study how the corre-
sponding approaches affect certification. We further conduct an extensive
experimental comparison on both competition and application bench-
marks to demonstrate strengths of the proposed methodology.

1 Introduction

Satisfiability (SAT) solving recently attracted much attention due to its numer-
ous applications in computer science [14]. Some problems (e.g., in the domains
of artificial intelligence and games), however, are beyond the reach of SAT solv-
ing alone but are naturally expressible in terms of quantified Boolean formulas
(QBFs) [18]. 2QBF is a restriction of general QBF problems to just two quan-
tification levels, i.e., to the form ∀x∃y.φ or ∃y∀x.φ, where φ is a quantifier-free
propositional formula. Despite this restriction many applications can be natu-
rally expressed in 2QBF language [15,16,18]. The main goal of this study is to
evaluate and improve scalability of the existing 2QBF methodology to enable
QBF as a competitive framework for both existing and new applications.

Recent QBF evaluation showed that there are two main robust algorithms
for 2QBF solving: search-based (i.e., QDPLL [13]) and expansion-based (i.e.,
CEGAR [11,12]). Both have their own strengths and weaknesses, depending on
the problem domain, and both can be generally used with either CNF and/or
circuit problem representation. Conjunctive normal form (CNF) is a commonly
accepted format for propositional satisfiability problems. It is as well extended
to QCNF and used to represent QBF problems [3]. It is not an uncommon case,

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 453–469, 2016.
DOI: 10.1007/978-3-319-40970-2 28

scholl
Textfeld
Preprint from Proceedings of Fourth International Symposium on Automated Technology for Verification and Analysis, October 2006, Beijing, China

scholl
Schreibmaschinentext
Preprint from 9th International Conference on Theory and Applications of Satisfiability Testing (SAT), July 2016, Bordeaux, France

454 V. Balabanov et al.

however, that originally QBF is specified on a circuit, rather on a CNF. E.g.,
in [15] FPGA synthesis benchmarks are formulated on And-Inverter Graphs
(AIGs), which is an efficient way to represent general Boolean networks. It is
known that any Boolean circuit can be transformed into an equisatisfiable CNF
formula, by the various CNFization procedures, e.g., by Tseitin transform [20].
The same procedure extends to the QBF context. In this work we shall provide a
detailed comparison of different solving techniques over different representations,
introduce several algorithmic and implementational improvements, and outline
the important observations that must be taken in account by 2QBF users and
developers (Sects. 4 and 5).

It is often not enough to only determine the answer to the QBF problem,
but also to provide a certificate, that either could be used to prove the validity
of the answer, or to be used for other application-specific purposes. The problem
of finding certificates with QDPLL solvers was addressed in [4]. In the later
sections we are going to show that certificates for 2QBFs have a very restricted
form compared to general QBFs, and will show how they could be found using
both QDPLL or CEGAR (Sect. 6).

In Sect. 7 we will evaluate all the proposed techniques on the existing compe-
tition benchmarks as well as on the application benchmarks, and show that we
contribute a significant improvement over the existing 2QBF solvers. Conclusions
will be drawn in Sect. 8.

2 Preliminaries

In this work we shall use commonly accepted notations from Boolean algebra
and logic. A Boolean variable is interpreted over the binary domain {0, 1}. A
literal is either a variable or its negation. A clause (resp. cube) is a disjunc-
tion (resp. conjunction) of literals (sometimes we might use set operations on
clause/cube literals as well for convenience). A Boolean formula in conjunctive
normal form (CNF) is a conjunction of clauses. A Boolean formula in disjunctive
normal form (DNF) is a disjunction of cubes. Both CNF and DNF might be a
subject to set operations for convenience. As a notational convention, we may
also sometimes (where the context allows) omit the conjunction symbol (∧) and
represent negation (¬) by an overline.

For a Boolean formula φ(x1, . . . , xi, . . . , xn), we say its positive (resp. nega-
tive) cofactor with respect to variable xi, denoted φ|xi

(resp. φ|xi), is the formula
φ(x1, . . . , xi−1, 1, xi+1, . . . , xn) (resp. φ(x1, . . . , xi−1, 0, xi+1, . . . , xn)). The cofac-
tor definition also extends to a cube of literals α = l1∧· · ·∧lm, with the following
recursive definition φ|α = (φ|α\lm)|lm , where φ|lm is a positive (resp. negative)
cofactor with respect to variable var(lm) if lm is a positive (resp. negative) lit-
eral. If the context allows we may as well drop the vertical line and simply write
φα. We say that formula φ is satisfiable if there is an assignment to its variables
that evaluates φ to true. We say φ is unsatisfiable otherwise. We denote ON(φ)
the onset of φ, i.e., the set of assignments under which φ evaluates to true. We
define an unsatisfiable core of an unsatisfiable CNF formula φ as an arbitrary
unsatisfiable subset of clauses of φ.

2QBF: Challenges and Solutions 455

A quantified Boolean formula (QBF) Φ over universal variables
x = {x11, . . . , xkik} and existential variables y = {y11, . . . , ykjk} in prenex form
is of the form Φ = ∀x11 . . . x1i1∃y11 . . . y1j1 . . . ∀xk1 . . . xkik∃yk1 . . . ykjk .φ where
the quantification part is called the prefix, denoted Φpfx, and φ, a quantifier-free
formula in terms of variables x and y, is called the matrix, denoted Φmtx. Further
Φ is said to be a k-QBF, or a QBF with k quantification levels. 2QBF (resp.
3QBF) is a special case of QBF with k = 2 (resp. k = 3).

We say that 2QBF Φ = ∀x∃y.φ is false if there is an assignment αx to
x variables (also referred to as the winning strategy for the universal player
or a constant Herbrand-functions countermodel) such that Φmtx |αx

(which is
a function of y variables) is unsatisfiable. We say Φ is true otherwise (i.e., a
winning strategy for the universal player does not exist). Alternatively, 2QBF
Φ = ∀x∃y.φ is true if and only if there exists a set of the so-called Skolem
functions Sy(x) that renders φ to a tautology (i.e., φ(x, Sy(x)) ≡ 1). For more
general 3QBF Φ = ∃w∀x∃y.φ(w,x,y), it is true if and only if there exists a set
of constant functions Sw, and a set of functions Sy(x) (i.e., depending on x),
such that φ(Sw,x, Sy) is a tautology. Here Sw and Sy form the Skolem-functions
model, certifying the validity of Φ. There are other forms of certificates (e.g., Q-
resolution). For more details on general QBF solving and certification please
refer to [4,5,8,13].

3 Overview of Prior Work

Among other possibilities, there are two main approaches to QBF solving: search
based and expansion based. The former is referred to the QDPLL style search
algorithm, and the latter to the counterexample guided abstraction refinement
(CEGAR). Recent 2QBF evaluation showed that CEGAR solvers are generally
more robust than QDPLL solvers. In this work, we focus on the CEGAR-based
approach, and will provide an intuition later how it is more beneficial than
QDPLL.

Figure 1 outlines the generic CEGAR-based algorithm Cegar2QBF for solving
an arbitrary 2QBF formula in the prenex form, introduced in [11]. In Line 1,
two SAT solving managers, i.e., synthesis manager synMan (to guess a candidate
winning move of the universal player) and verification manager verMan (to verify
if the guessed move of the universal player is indeed winning), are initialized.
Initially synMan contains variables x and verMan contains variables x and y. In
Line 3, we search for a candidate winning move αx. If all candidates have been
blocked, the 2QBF is determined to be true in Line 4. In Line 5, a counterexample
to the candidate winning move is searched, which renders φ true (i.e., it disproves
the candidate winning move αx). Note that if CNF is used as an underlying
data structure for verMan, then αx can be easily passed to the SAT solver via
its assumptions interface (which is commonly available in modern SAT solvers,
e.g., in Minisat [7]). If no counterexample can be found, the QBF is determined
to be false in Line 6. Otherwise, cofactor φ|αy

is performed in Line 7, and block
all the known wrong candidates x′, such that φ|αy

(x′) = 1, in Line 8.

456 V. Balabanov et al.

Algorithm Cegar2QBF
input: a QBF Φ = ∀x∃y.φ
output: True or False
begin
01 synMan[x] := 1; verMan[x,y] := φ;
02 while True
03 αx := SatSolve(synMan);
04 if αx = ∅ then return True;
05 αy := SatSolve(verMan, αx);
06 if αy = ∅ then return False;
07 negCof := ¬φ|αy ;
08 synMan := synMan ∧ negCof;
end

Fig. 1. CEGAR algorithm for generic 2QBF solving.

The above CEGAR algorithm differs from QDPLL-based algorithms [9,13]
in that in QDPLL negCof is simply substituted with ¬α′

x, where α′
x is obtained

from αx by a single minimal hitting set generalization, to block the failed candi-
date within synMan. The strength of Cegar2QBF is in that besides α′

x it poten-
tially blocks several other hitting set assignments.

Algorithm Cegar2QBF may be applied to an arbitrary 2QBF in prenex form
regardless of the representation of its matrix. Some QBF solvers use And-Inverter
graphs (AIGs) as an underlying matrix structure [15,17]. On the other hand, as
CNF has been proven to be an efficient data structure for SAT solving (e.g.,
due to an efficient representation of learnt information in the form of learnt
clauses [7]), CNF is also the most commonly accepted QBF matrix representation
format [3]. We therefore distinguish between CNF and circuit 2QBF solvers,
depending on the matrix input format that they accept. Both CNF and circuit
representations have their advantages and disadvantages, which will be discussed
in later sections.

Below we mention the idea of Qesto [12] for efficient implementation of
CEGAR-based 2QBF solving on CNF matrix. Note that verMan is initialized to
φ in Line 1 of Fig. 1 and is never changed, while synMan is constantly changed
by conjunction with negCof in Line 8. If the matrix is already represented in
CNF, then the main complication of the algorithm is the CNFization of negCof
prior to conjunction with synMan. The approach of [11] suggested to use Tseitin
transform [20] to perform a syntactic negation, at the cost of introducing fresh
variables. This approach, however, suffers from variable blow up within synMan
after a large number of iterations. In Qesto, the variable blow-up problem
is overcome by efficient representation of a larger number of cofactors within
synMan as follows. Consider a matrix φ = C1∧C2∧· · ·∧Cn, where each Ci is split
into existential literals Cei and universal literals Cui. Notice that regardless of the

2QBF: Challenges and Solutions 457

specifics of the assignment αy, negCof always takes the form ¬Cuj1 ∨ ¬Cuj2 ∨
· · · ∨ ¬Cujk . By defining di ≡ ¬Cui for each i ∈ [1..n], one can conveniently
represent negCof as a clause (dj1 ∨dj2 ∨· · ·∨djk). Consequently, at most n fresh
variables need to be introduced, independent of the number of iterations of the
while-loop in Fig. 1. Under this scenario, the algorithm in Fig. 1 can be modified
to initialize the synthesis manager by

synMan[x,d] :=
∧

i∈[1..n]
(di ≡ ¬Cui).

Qesto was experimentally shown to be superior to others [12]. In the next
section we will examine the advantages and disadvantages of CNF CEGAR-
based 2QBF solving, and introduce a heuristics, inspired by Qesto, to improve
existing circuit CEGAR-based 2QBF algorithms.

4 Heuristics for CNF and Circuit 2QBF Solving

In this section we introduce several implementation improvements to the Qesto
algorithm and also show how the Qesto CNF ideas can be lifted to the circuit
2QBF solving.

4.1 Improvements for CNF-based 2QBF Solving

The following three observations could be used to enhance the performance of
the Qesto implementation of the Cegar2QBF algorithm:

1. In case Cuj1 = xi (i.e., Cj1 is a universally unit clause), there is no need to
introduce a fresh variable for this clause, but rather just using xi itself in
computing negCof. Note that this condition may occur quite often if CNF
was obtained through the Tseitin transform. For example AND-gate c = a∧b,
where c is existential and both a and b are universal, will be transformed into
clauses (c∨a)(c∨b)(c∨a∨b), therefore producing two universally unit clauses.

2. In case Cuj1 = Cuj2 , there is no need to introduce two definition variables
d1 and d2, but just one. Similar to the previous case, this may happen after
Tseitin transform, e.g., if the universally quantified primary input had several
fanouts in the circuit.

3. In case Cuj1 ⊆ Cuj2 and negCof = duj1 ∨ duj2 ∨ · · · , we can simply drop Cuj1

from negCof because of the logical implication duj1 → duj2 . This often may be
seen after existential variable elimination, which is a common preprocessing
technique in both QBF and SAT solving. For example given QBF

∀ab∃cde . (c ∨ a)1(c ∨ a)2(d ∨ b ∨ c)3(d ∨ b)4(d ∨ c)5(a ∨ e)6(b ∨ e)7,

after elimination of variable c we get QBF

∀ab∃de . (d ∨ b ∨ a)3(d ∨ b)4(d ∨ a)5(a ∨ e)6(b ∨ e)7,

where clause Cu3 = (b ∨ a) now subsumes both Cu6 = a and Cu7 = b (note
that Cu3 does not trigger any of the first two heuristics).

458 V. Balabanov et al.

The first two enhancements are simpler, and intend to decrease the number of
definitions added to the synMan at the initialization step. As a consequence,
underlying SAT solver has to deal with less variables, and hopefully find the
solution faster. On the other hand the third enhancement does not change the
number of definitions, but rather simplifies the blocking constraint negCof by
observing that some literals could be effectively dropped from the underlying
blocking clause. As learned clause size is an important criteria in SAT solving,
we speculate that this could also potentially speed up the solving process. All
the three refinements are to be evaluated in Sect. 7.

4.2 Improvements for AIG-based 2QBF Solving

The main idea behind Qesto could be formulated in a different manner: the
cofactors computed in Line 7 of algorithm Cegar2QBF on Fig. 1 have a lot in
common. If certain universal subclause Cui is present in several cofactors then the
Tseitin definition for this clause could be reused multiple times when performing
the CNFization of the complemented cofactors. This idea could be efficiently
lifted to the circuit solvers. Following the notion of structural hashing of nodes
in And-Inverter graphs (AIGs), we propose algorithm AigShare2Qbf as sketched
in Fig. 2 for circuit-based 2QBF solving.

The core CEGAR procedure of algorithm AigShare2Qbf is the same as that
of Cegar2QBF. Furthermore Cegar2QBF may use AIGs as the underlying data
structure of its verification manager and the negated cofactors as well. The
only difference is the cofactor hashing heuristics in lines 8 and 9 of Fig. 2.

Algorithm AigShare2Qbf
input: a QBF Φ = ∀X∃Y.φ
output: True or False
begin
01 synMan[X] := 1; verMan[X, Y] := φ; aigMan := ∅;
02 while True
03 αX := SatSolve(synMan);
04 if αX = ∅ then return True;
05 αY := SatSolve(verMan, αX);
06 if αY = ∅ then return False;
07 negCof := AIG(¬φ|αY

);
08 newAnd := NotHashed(negCof,aigMan);
09 Hash(aigMan, newAnd);
10 synMan := synMan ∧ CNF(newAnd);
end

Fig. 2. CEGAR algorithm for AIG-based 2QBF solving with cofactor sharing
heuristics.

2QBF: Challenges and Solutions 459

More specifically, in Line 8 we extract a subset newAnd of AND gates from
negCof that have not been hashed previously. Then in Line 9 we hash them
and add them to the AIG manager aigMan. In Line 10 we add CNFized newAnd
gates to synMan. For the AND gates in Line 8 which have been hashed previously,
synMan already contains clauses for the corresponding definitions. As to be seen
from experiments, cofactor sharing heuristic gives a significant improvement on
the benchmarks where a large number of iterations are needed for algorithm
Cegar2QBF to converge.

5 CNF Versus Circuit Solvers

In this section we compare the CNF and circuit 2QBF solvers. We outline the
strengths of one over the other, and address the question in which applications
which one should be used.

Given a non-CNF formula φ (e.g., represented as an AIG) one could CNFize
it (i.e., transform it to an equisatisfiable CNF formula, for example by using
the Tseitin transform [20]) to get φCNF , and then run the Qesto algorithm
introduced in Sect. 3. However, this approach could be inefficient as the following
example suggests.

Example 1. Consider the following simple true 2QBF formula Φ = ∀abc ∃d . φ,
where φ is given as a nested XOR tree circuit φ = a⊕ b⊕ c⊕d. Assume that the
synthesis manager in algorithm Cegar2QBF of Fig. 1 comes up with a candidate
αx = abc (i.e., assigns a = b = c = 0), and the verification manager returns a
counterexample αy = d (i.e., assigns d = 1). Note that in this case negCof1 =
a ⊕ b ⊕ c. After the second iteration with, e.g., αx = abc and αy = d, we have
negCof2 = ¬(a ⊕ b ⊕ c), thus blocking all the universal candidate assignments,
and conclude that Φ is true. The same number of iterations would be required
for an arbitrary large nested XOR tree.

In contrast, consider the same 2QBF, but CNFized by Tseitin transform
prior to solving, introducing definitions x = a ⊕ b and y = x ⊕ c, and resulting
into QBF

ΦCNF =∀abc ∃d ∃xy . φCNF , where

φCNF =(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)
∧(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)

∧(y ∨ d)(y ∨ d).

Suppose that the synthesis manager in algorithm Cegar2QBF guesses the same
candidate αx = abc, and the verification manager replies with a counterexample
αy = dxy. In this case we compute negCof1 = (a ⊕ b) ∨ c. After the second
iteration with αx = abc and αy = dxy, we have negCof2 = (a ⊕ b) ∨ ¬c, thus
resulting in formula a ⊕ b in the synthesis manager. Without any conclusion, we
have to proceed with further iterations. In fact, for a general nested XOR tree
the computation may require an exponential number of iterations to terminate.

460 V. Balabanov et al.

The rationale behind Example 1 is as follows. Whenever the counterexample
(Line 5 in Fig. 1) is computed under the CNF representation, it fixes a value
assignment to the auxiliary variables (i.e., the intermediate variables introduced
during CNFization). The negated cofactor (Line 7 in Fig. 1) in this case will
only block X assignments that respect the auxiliary variable assignment. This
phenomenon is summarized in Proposition 1.

Proposition 1. Given a 2QBF Φ = ∀x∃y.φ, with φ represented as a circuit,
let αy be an assignment to variables y and αx1 and αx2 be two assignments to
variables x and let g = G(x,y) be such an intermediate gate in the circuit of φ,
such that

φ|αyαx1
∧ φ|αyαx2

∧ G|αyαx1
⊕ G|αyαx2

.

(That is, the output of φ evaluates to the same value under the two input assign-
ments, but there is an internal gate disagreement for the two assignments.) Then
αx1 and αx2 will be blocked within the same iteration computing counterexample
αy in Line 5 of Fig. 1, if algorithm Cegar2QBF is applied to Φ. On the other
hand, αx1 and αx2 will not be blocked within the same iteration, if Cegar2QBF
is applied to a CNFized version (by Tseitin transform) of Φ.

Example 1 and Proposition 1 show that flattening the circuit structure into
CNF affects the 2QBF solving process more than it does for propositional SAT.
In theory one could avoid cofactoring on Tseitin variables, and modify the algo-
rithm Cegar2QBF accordingly to eliminate the problem described in Proposi-
tion 1. In practice, however, CNF based QBF solvers can not easily distinguish
auxiliary variables from the original primary inputs quantified in the same quan-
tification layer. It is therefore advised to use CNF for underlying SAT queries
(e.g., for efficient clause learning), while cofactoring on circuit level instead of
CNF. As will be confirmed experimentally later, the gained reduction in num-
ber of iterations needed for completion of algorithm Cegar2QBF even overcomes
the benefits of efficient cofactor representation in Qesto algorithm applied after
circuit CNFization.

Please note that in circuit 2QBF solvers the SAT queries in Line 3 of algo-
rithm Cegar2QBF (Fig. 1) are made to a CNF-based SAT solver as well. This
choice is caused by a specific “incremental” nature of the underlying SAT calls:
Please recall that synthesis manager synMan is updated by iterative conjunction
with negCof in Line 8 of Fig. 1, i.e., in each iteration clauses from the CNFized
negCof are added to manager synMan. Therefore it will be highly benefitial to
use the learned information from the previous solving iterations in the later ones.

Despite the ineffectiveness of CNF 2QBF solvers compare to their cir-
cuit counterparts, we speculate that there is a better encoding of a circuit
2QBF problem into QCNF, as is described below. Given circuit 2QBF for-
mula Φ = ∀x∃y.φ(x,y), instead of computing its CNFized version ΦCNF =
∀x ∃y ∃t . φCNF (x,y, t) we obtain it’s negation as Φ′ = ¬Φ = ∃x∀y.φ′(x,y),
with φ′ = ¬φ. Now the translation to an equisatisfiable CNF can be done as fol-
lowing: Φ′

CNF = ∃x ∀y ∃t . φ′
CNF (x,y, t). By construction, the truth of Φ could

be determined as an inverse of Φ′
CNF . Further any model (resp. countermodel)

for Φ′
CNF could be mapped to corresponding model (resp. countermodel) for Φ.

2QBF: Challenges and Solutions 461

Note that Φ′
CNF above is a 3QBF formula, rather than 2QBF. Despite the

increase in the number of quantifier alternations (which in general correlates with
the formula complexity), Φ′

CNF may be much easier to solve compare to ΦCNF .
The intuition here is that innermost quantification level in Φ′

CNF contains only
Tseitin variables. Values for these variables shall be uniquely determined upon
the assignments to variables x and y.

Generally CEGAR based algorithm for 3QBF is slightly more complex than
for 2QBF, but let us briefly outline how the above procedure applies to the earlier
Example 1. First compute Φ′

CNF in the same way as it was done for ΦCNF :

Φ′
CNF =∃abc ∀d ∃xy . φ′

CNF , where

φ′
CNF =(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)

∧(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)

∧(y ∨ d)(y ∨ d).

It is worthy to mention that the negation on circuit level is a very cheap
operation, and as one can see Φ′

CNF differs from ΦCNF only by the last two
clauses. Let us now examine candidate solution αx = abc, and the (potential)
counterexample to this solution αy = d. First observe that values of x and
y are uniquely determined to be x = y = 0. Second, under the completed
assignment φ′ evaluates to false. So at this point no further computations are
required to conclude that αy = d is a counterexample to candidate αx = abc.
To block this candidate we basically add formula negCof1 = ¬φ′

CNF |d to the
outermost existential solver, and rename variables x, y to x1, y1. After the sec-
ond iteration with αx = abc and αy = d we shall again conclude invalidity
of αx and block it by formula negCof2 = ¬φ′

CNF |d, where variables x, y are
renamed to x2, y2. Intuitively negCof1(a, b, x1, y1) and negCof2(a, b, x2, y2) are
the CNFized versions of circuit cofactors φ|d and φ|d. One could verify that
negCof1(a, b, x1, y1) ∧ negCof2(a, b, x2, y2) is unsatisfiable. Generally speaking,
solving 3QBF Φ′

CNF should not take more CEGAR iterations than circuit 2QBF
Φ. On the other hand each iteration could be more inefficient due to the naive
cofactoring and variable renaming. In circuit solving this can be done more effi-
ciently using e.g., cofactor sharing heuristics introduced in the previous section.
This phenomenon is to be examined in the experimental section.

6 Certificate Generation for 2QBF

As mentioned previously, recent evaluation on QBF solvers suggested the supe-
riority of CEGAR-based QBF solvers. In contrast to search-based approaches
(e.g., DepQBF [13]), however, there exists no methodology to certify their
answer with semantic winning strategies in a closed form (e.g., Skolem-functions
for true QBFs, which are essential for many QBF applications). CEGAR-based
QBF solver RAReQS [10], can produce partial winning moves for both existen-
tial and universal players at each turn of an abstraction-refinement game [10].
One straightforward use of this ability is that RAReQS returns the winning

462 V. Balabanov et al.

MUX
1 0

MUX
1 0

Φ(x, 1

Φ(x, 2)
1

2 3

Sy

SMUX
Φ(x, 1)

Φ(x, 3)
Φ(x, 2)

2 31

Sy

)

Fig. 3. Multiplexer construction [on the left], SMUX cell [on the right].

assignment to the outermost existential (resp. universal) variables for true (resp.
false) QBFs upon completion. In this section we describe how to construct
Skolem/Herbrand functions for 2QBFs, based on the partial winning-move infor-
mation deduced from CEGAR-based QBF solvers. We present several heuristics
to enhance the construction procedure as well as the produced certificate quality.

6.1 Construction Procedure

Consider a true 2QBF formula Φ. Assume that the CEGAR 2QBF solver needs
three, say, refinement iterations to prove its validity. It means that three candi-
date solutions for the universal player were found, leading to existential coun-
terexamples ε1, ε2, and ε3. Let Φcof be the formula refined by the three corre-
sponding cofactors as shown below.

Φ = ∀x∃y.φ(x,y) Φcof = ∀x.{φ(x, ε1) ∨ φ(x, ε2) ∨ φ(x, ε3)}

Now the search for a candidate solution fails, i.e., the universal player does not
find a candidate solution which falsifies all cofactors generated so far. Conse-
quently Φcof is true, which is determined by an unsatisfiable SAT call ¬Φcof

(which is propositional as it has only existentially quantified variables x).
Effectively, validity of Φcof says that an arbitrary assignment to x is included

in ON(φ(x, ε1)), ON(φ(x, ε2)), or ON(φ(x, ε3)). This information in fact is
sufficient to get Skolem functions Sy(x) for any assignment α to x, by the
following steps:

1. For all α ∈ ON(φ(x, ε1)), define Sy(α) = ε1.
2. For all α ∈ ON(φ(x, ε2)) \ ON(φ(x, ε1)), define Sy(α) = ε2.
3. For all α ∈ ON(φ(x, ε3))\(ON(φ(x, ε1))∪ON(φ(x, ε2))), define Sy(α) = ε3.

The above computation of the Skolem functions is visualized by a multi-
plexer construction as shown on the left of Fig. 1. We abbreviate the multiplexer

2QBF: Challenges and Solutions 463

construction by a cell “SMUX” which means that we have a series of multiplex-
ers defining a prioritization in case that the sets ON(Φ(x, εi)) overlap. SMUX
cell is shown on the right of Fig. 1. By the following proposition we ensure the
soundness of returned Skolem functions Figs. 3 and 5 .

Proposition 2. The functions Sy(x) constructed by the above procedure form
a valid model for Φ.

Proof. Since Φcof is true, for every assignment α to x, some φ(α, εi)), i ∈ [1..3],
must be true. Our construction ensures that Sy(α) = εi, i.e., that φ(α, Sy(α))
evaluates to true. By definition, the functions Sy form a valid set of Skolem
functions. �

The proposed procedure can be easily extended to true 2QBFs with an arbi-
trary number of refinement steps, just by replacing three cofactors from the
above example with the cofactors returned by the solver. Further, the method
can be extended for true 3QBFs as follows. Suppose we are given a true 3QBF
Φ = ∃w∀x∃y.φ(w,x,y), and a winning move (assignment) β for w variables
(which is returned upon completion of RAReQS as a by-product of solving
process). Because the 2QBF Φ = ∀x∃y.φ(β,x,y) must be true, Skolem func-
tions Sy can be extracted using the previous method for 2QBFs. The complete
Skolem model now consists of {Sw = β, Sy}. Although to achieve efficient imple-
mentation of this extension is slightly more sophisticated than the 2QBF case,
the essential idea is as described above.

6.2 Certificate Optimization

Below we propose three optimization techniques in order to minimize the cer-
tificates returned by the proposed Skolem-function construction procedure.

1. Observe that any reordering of the multiplexers in a SMUX cell still maintains
a valid set of Skolem functions. In our implementation, we allow an option
to use cofactors either in a forward or backward order with respect to the
derivation sequence of the corresponding winning moves. The backward order
turns out to be empirically superior.

2. It was observed that cofactors often share identical clauses. Therefore we
implement a hashing procedure that detects and substitutes repeating clauses.

3. Although each next counterexample returned by CEGAR QBF solving app-
roach covers at least one new (so-far unblocked) universal winning move can-
didate, in practice it happens that older cofactors are fully covered by newer
ones. The problem of identifying redundant cofactors can be done using the
so-called group minimal unsatisfiability subset extraction (group MUS, or
GMUS). The GMUS framework partitions the clauses of a CNF formula
into groups (cofactors in our case), and returns the minimal subset of them,
which is still unsatisfiable (which is clearly a requirement for our extracted
Skolem functions to be sound). More information on GMUS extraction can be
found at [19].

464 V. Balabanov et al.

7 Experimental Results

We performed experimental evaluation of various 2QBF solving and certifica-
tion techniques both on the competition as well as application benchmarks. The
experiments are divided into the solver performance testing and the certificate
quality testing. To test solvers’ performance, we used two sets of benchmarks:
2QBF track of QBFEVAL’10 [2] QBF competition formulas and FPGA tech-
nolgy mapping benchmarks from [15]. For certificate generation, due to the few
number of true 2QBFs in QBFEVAL’10, we used the application track bench-
marks of QBF Gallery 2014 [1].1

7.1 2QBF Solving

2QBF Track of QBFEVAL’10 [2] . We used CEGAR-based QBF solvers
RAReQs [11] and Qesto [12] for comparison. In this section we refer to Qesto
as to the tool from [12], rather than to the algorithm itself. Please note that
according to [12], tool Qesto dominates other 2QBF solvers, including both
QDPLL-based and circuit-based solvers. Since the source code for Qesto is not
publicly available, we have reimplemented its simplified 2QBF version (further
referred to as Mini2qbf) on top of the Minisat SAT solver [7]) to test the
enhancements proposed in Sect. 4.

The benchmark suit contains 200 QBFs in prenex CNF from the 2QBF
track of QBFEVAL’10. Preprocessor Bloqqer [6] was used to preprocess the
formulas, and 135 formulas solved directly by Bloqqer were excluded from
further experiments. All CNF-based solvers, namely RAReQS, Qesto, and
Mini2qbf, ran on the preprocessed benchmarks. To compare against the cir-
cuit 2QBF solvers, we implemented a tool minicnf2blif to extract circuits
from unpreprocessed CNF formulas, and then ran the existing circuit 2QBF
solver (command “&qbf”) embedded into the synthesis tool ABC [15] under
two settings: without cofactor sharing (referred to as ABC-) and with cofactor
sharing (referred to as ABC+). A third version, called PreABC+ is similar to
ABC+, with the only difference that the QBF preprocessor Bloqqer is used
for preprocessing the QBFs where minicnf2blif did not find any circuit struc-
ture (after preprocessing the resulting CNF formulas are then just translated
to product-of-sums circuits and then solved by ABC+). All the solvers were
limited by the 4GB memory and 1200 second time limit.

Table 1 summarizes the results. A cactus plot of time performance is shown in
Fig. 4. The extraction time of minicnf2blif was negligible compared to solving,
and we omitted reporting it. From Table 1 and Fig. 4, we see that the circuit-
based 2QBF solver PreABC+ outperforms existing CNF based solvers. On the
17 benchmarks where no circuit structure was found, PreABC+ was on average
3 times slower compared to Qesto. The remaining 48 benchmarks were found
highly structural. On these ABC+ was on an average of 28 times faster than

1 All the tools, benchmarks, and experimental results can be found at
https://www.dropbox.com/s/xyfb2i9xl1pvrv3/sat16 tools 2qbf.zip?dl=0.

https://www.dropbox.com/s/xyfb2i9xl1pvrv3/sat16_tools_2qbf.zip?dl=0

2QBF: Challenges and Solutions 465

Fig. 4. Cactus plot of solvers performance on QBFEVAL’10 2QBF benchmark set.

Table 1. Statistics for 2QBF track from QBFEVAL’10.

RAReQS Qesto Mini2qbf ABC- ABC+ PreABC+

Solved 50 55 57 48 61 62

Time, s 20658 17842 12725 20677 7748 4124

Iterations NA 7.26M NA 46.0K 368K 153K

Qesto. ABC+ in comparison to ABC- was on average 30 % faster; however
if we only consider problems solved within more than 100 iterations (or alter-
natively solved in about more than 1 second) cofactor sharing gives about an
order of magnitude speed up. This phenomenon is well explained by the fact that
within first few iterations cofactor sharing occurs rarely, while on the larger scale
AIG nodes from the new cofactors are found to be previously hashed practically
all the time. On the other hand we can also see that our reimplementation of
Qesto algorithm performs quite well too. If we switch off the last heuristic from
Sect. 4, Mini2qbf solves 2 instances less and is of similar performance to Qesto
(the first two heuristics from Sect. 4 are hardcoded so we cannot switch them on
or off).

FPGA Mapping Benchmarks From [15] . We picked 100 (50 SAT and 50
UNSAT) 2QBF benchmarks from an FPGA mapping application [15]. For the
comparison with CNF solvers we encoded these benchmarks into both 2QBF
and negated 3QBF forms (introduced in Sect. 4). Original AIG circuits have 50
primary inputs and 250 AIG nodes on average. After CNFization by ABC’s
internal engine resulting QCNFs on average have 93 variables and 240 clauses.

For the circuit solving we used ABC to solve original problems, and
RAReQS and Qesto for the corresponding CNF problems. Further we also
used RAReQS for the negated 3QBF problems. The Bloqqer preprocessor
was found to degrade the performance of CNF QBF solvers significantly on
this benchmark set, therefore we do not include it in this set of experiments.

466 V. Balabanov et al.

Table 2. Statistics for FPGA mapping benchmark set.

RAReQS Qesto Bloqqer+RAReQS+3QBF ABC

Solved 22 44 100 100

Time, s 96.9K 75.0K 63.5 64.3

Iterations NA 6.46M NA 1241

Solving statistics are shown in Table 2. As one can observe from Table 2 CNF
2QBF solvers required several orders of magnitude more iterations, and signifi-
cantly larger solving time.

The cumulated number of iterations shown in Table 2 confirms that in 2QBF
solving CNF representation is good for carrying out SAT queries, but cofactoring
should be done on the circuit and not on the CNF level. On the other hand an
alternative, equally efficient to circuit 2QBF solving, way is to use complemented
3QBF encoding presented in Sect. 4.

7.2 Certificate Derivation

We patched RAReQS solver to emit countermoves associated with the CEGAR
QBF solving process. Proposed in Sect. 6 algorithm was implemented into a
tool CegarSkolem. In order to test the unsat core optimization from Sect. 6
we used Haifa-HLMUC group MUS extractor [19]. Experimental setup con-
sisted of QBFs from “QBFLIB” and “Applications” tracks taken from QBF
Gallery 2014 [1]. We used DepQBF QBF solver [13] and ResQu [4] to com-
pare CegarSkolem against existing Q-resolution based model computation
in search-based QBF-solvers framework. An additional limitation of 1 Gb was
imposed on Q-resolution proofs produced by DepQBF and moves information
emitted by RAReQS.

We selected 29 and 137 true 3QBFs either solved by DepQBF or RAReQS,
for experiments from “QBFLIB” and “Applications” tracks, respectively. The
number of true 2QBF formulas was insufficient so we decided to focus only on
3QBFs instead. Table 3 shows the solving and certification time statistics (right-
most “#cert” and “#mincert” columns stand for CegarSkolem w/o and w/
optimization heuristics, respectively). Note that as certification requires addi-
tional effort, both DepQBF and RareQs were not able to solve some of the
instances that they could solve w/o certification. As we could see in general
RAReQS solved more instances, but DepQBF has much smaller runtime-
per-instance. On contrary, even with optimizations, CegarSkolem constructed
Skolem functions much quicker than ResQu, which is explained by large over-
head in the size of Q-refutations produced by DepQBF, in comparison to (rel-
atively small) number of existential counterexamples emitted by RAReQS.

Figure 2 compares certificates quality in terms of numbers of AIG nodes.
X-axis in figures corresponds to certificates produced by ResQu, and Y-axis
to those by CegarSkolem and CegarSkolemMin. We omit the details of

2QBF: Challenges and Solutions 467

Table 3. Solving and certification statistics.

DepQBF+ResQu RAReQS+CegarSkolem

#solved time, s #cert time, s #solved time, s #cert time, s #mincert time, s

QBFLIB [29] 15 424.1 14 943.2 19 2710.6 19 49.5 19 67.5

Appl [137] 94 457.9 86 5162.8 102 4351.6 97 533.8 97 589.0

the impact of various optimizations in CegarSkolemMin, but as one can see
from Table 3 the computational overhead they introduce is small anyway. The
certificate sizes, on the other hand, are reduced much in some cases. Another
observation to make is that certificates for DepQBF and RAReQS are quite
scattered across the figures. This means that for some benchmarks there exist
simple Skolem-functions found by ResQu but not found by Cegar-Skolem
and vice-versa.

Fig. 5. Comparison of Skolem functions AIG sizes.

8 Conclusions and Future Work

In this work we overviewed different methods of solving and certifying 2QBF
formulas. Based on our experience we introduced several improvements both to
the CNF and circuit based solving techniques. We as well performed an exten-
sive comparison to the state of the art algorithms. Experiments showed that
the proposed solving improvements outperform existing 2QBF solvers, as well
as the introduced approach for semantic certificate generation. In conclusion we
summarize that circuit CEGAR-based 2QBF solvers generally scale better com-
pare to the CNF based solvers. On the other hand, CNF preprocessing may be
one of the levers, infeasible to the circuit solvers, that could lift the off-the-shelf
CNF QBF solvers to a competitive level, given that circuit problem is properly
encoded into CNF (e.g., with the negated 3QBF encoding).

468 V. Balabanov et al.

Acknowledgments. This work was partly supported by NSF/NSA grant “Enhanced
equivalence checking in cryptoanalytic applications” at University of California,
Berkeley.

References

1. QBF Gallery 2014. http://qbf.satisfiability.org/gallery/
2. QBF solver evaluation portal. http://www.qbflib.org/qbfeval/
3. QDIMACS: Standard QBF input format. http://www.qbflib.org/qdimacs
4. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. For-

mal Meth. Syst. Des. 41, 45–65 (2012)
5. Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R.

(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: an efficient QBF solver.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213.
Springer, Heidelberg (2004)

9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. (JAIR) 26,
371–416 (2006)

10. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

11. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer,
Heidelberg (2011)

12. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceed-
ings International Joint Conference on Artificial Intelligence (IJCAI), pp. 325–331
(2015)

13. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver (system descrip-
tion). J. Satisfiability Boolean Model. Comput. 7, 71–76 (2010)

14. Marques-Silva, J.P., Sakallah, K.A.: Boolean satisfiability in electronic design
automation. In: Proceednigs Design Automation Conference (DAC), pp. 675–680
(2000)

15. Mishchenko, A., Brayton, R.K., Feng, W., Greene, J.W.: Technology mapping into
general programmable cells. In: Proceedings International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 70–73 (2015)

16. Mneimneh, M., Sakallah, K.A.: Computing vertex eccentricity in exponentially
large graphs: QBF formulation and solution. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 411–425. Springer, Heidelberg (2004)

17. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Pro-
ceedings Design, Automation and Test in Europe (DATE), pp. 1596–1601 (2009)

18. Remshagen, A., Truemper, K.: An effective algorithm for the futile questioning
problem. J. Autom. Reasoning 34(1), 31–47 (2005)

http://qbf.satisfiability.org/gallery/
http://www.qbflib.org/qbfeval/
http://www.qbflib.org/qdimacs

2QBF: Challenges and Solutions 469

19. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable
cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187.
Springer, Heidelberg (2011)

20. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic (1970)

	2QBF: Challenges and Solutions
	1 Introduction
	2 Preliminaries
	3 Overview of Prior Work
	4 Heuristics for CNF and Circuit 2QBF Solving
	4.1 Improvements for CNF-based 2QBF Solving
	4.2 Improvements for AIG-based 2QBF Solving

	5 CNF Versus Circuit Solvers
	6 Certificate Generation for 2QBF
	6.1 Construction Procedure
	6.2 Certificate Optimization

	7 Experimental Results
	7.1 2QBF Solving
	7.2 Certificate Derivation

	8 Conclusions and Future Work
	References

