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Abstract

This paper provides a suite of optimization techniques for the verification of safety properties of linear
hybrid automata with large discrete state spaces, such as naturally arising when incorporating health
state monitoring and degradation levels into the controller design. Such models can – in contrast to
purely functional controller models – not analyzed with hybrid verification engines relying on explicit
representations of modes, but require fully symbolic representations for both the continuous and discrete
part of the state space. The optimization techniques shown yield consistently a speedup of about 20 against
previously published results for a similar benchmark suite, and complement these with new results on
counterexample guided abstraction refinement. In combination with the methods guaranteeing preciseness
of abstractions, this allows to significantly extend the class of models for which safety can be established,
covering in particular models with 23 continuous variables and 271 discrete states, 20 continuous variables
and 2199 discrete states, and 9 continuous variables and 2271 discrete states.
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1 Introduction

This report describes recent advances achieved in what was originally called first-order model checking [1],
lifting symbolic model-checking introduced originally by Clarke et al. in the area of hardware verification to
the application domain of models of controllers of systems.

Controllers are embedded into virtually every system today – in our research we use extensively bench-
marks coming from aerospace, automotive, rail, and water-level control in dams. Their common essence is to
control a plant, i. e., a physical system, based on observing some part of the plant state through sensors, and
to control inputs to the plant by actuators in such a way that overarching safety objectives are guaranteed.
To this purpose, control design typically assumes the existence of a mathematical model of the plant, such
as given by differential systems of equations. In our work, we use versions of Linear Hybrid Automata [2] as
mathematical models of both plants and controllers.

In contrast to most of the research on verifying safety properties of linear hybrid automata, we are inter-
ested in models with non-trivial discrete state spaces, which as discussed below naturally arise in later stages
of system design. These models explicitly include a set of discrete variables, and allow to take mode switches
not only based on observations of the plant, but also based on complex computations in the discrete part, such
as coming from dealing with degraded states, redundancy management, monitoring, state information from
neighboring controllers, etc. It is worth while to point out the fundamental differences between modes and
such discrete variables: modes determine the continuous dynamics of the system, and are – for linear hybrid
automata discussed in this paper – thus characterized by differential inclusions defined by linear expressions
over derivatives of plant variables. Modes represent knowledge of the state of the plant, such as invariants over
plant variables expected to be true in this particular mode. In contrast, discrete variables typically represent
knowledge about the health state of the controller itself, as well as information gained about operating modes
and health states of other controllers with which it cooperates. Both types of representation of knowledge
are fundamental to any realistic system design. We consider thus both modes and discrete variables as first
class citizens in our variant of Linear Hybrid Automata, denoted LHA+D, and allow between mode switches
an unbounded number of discrete computation steps, updating both continuous and discrete variables, with
guards and assignments expressed in linear arithmetic. Examples of such computations are abundant in real
system design. Examples include plausibility checks which rely on internal time-discretized approximations
of future plant states in order to check for the plausibility of current sensor readings, voting algorithms in
redundant systems, resource re-prioritizations due to constraint power budgets, etc.

Overall, the objective of our research is thus to offer a system model which allows succinct representations
of such aspects in control design, which invariably are introduced in the transition from pure specification
models to design models. This is in contrast with most of the literature on verification of linear hybrid
systems, which are not applicable to such models, last not least because they were never designed for coping
with the exponential growth in discrete complexity inherent in design models. Such applications are out of
reach of existing hybrid verification tools such as HyTech [3], CheckMate [4], d/dt [5], PHAVer [6], SpaceEx
[7]: While their strength rests in being able to address complex dynamics, they do not scale in the discrete
dimension, since modes – the only discrete states considered – are represented explicitly when performing
reachability analysis. On the other hand, hardware verification tools such as SMV [8] and VIS [9] scale to
extremely large discrete systems, but clearly fail to be applicable to systems with continuous dynamics. Only
fully symbolic verification methods, i. e., those which offer symbolic representations of both the continuous
and the discrete state space, can thus, if at all, cope with safety verification of design models.

This extension from LHA to LHA+D causes a significant increase in complexity. The computational model
now evolves along two dimensions of time:

• while being in a mode, the system evolves with physical time, represented by positive real numbers,
through flows determined by linear differential inequalities;

• however, between mode switches we can observe arbitrarily complex sequences of discrete computation
steps, only advancing the virtual notion of time associated with executing a single such step.

The challenge, then, addressed by our research, is to design a symbolic representation allowing a fully symbolic
representation of both the discrete and the continuous state space, and cope with the complexity challenge
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both in the continuous and the real dimension. For this, we have proposed LinAIGs [10], i. e., enhanced And-
Inverter-Graphs well-known from hardware verification by allowing leaf nodes to represent linear predicates
over continuous variables, thus allowing to represent arbitrary disjunctions of convex polyhedra.

In this report we provide a comprehensive overview over techniques developed in the context of the
AVACS project to prevent explosion of such symbolic state-space representations when performing backward
reachability analysis of LHA+D systems from a given set of unsafe states using LinAIGs. These can be broadly
classified in methods preserving preciseness of the representation, and abstraction based approaches.

Fully symbolic model-checking can be seen as performing on-the fly abstraction of the analyzed system in
learning, in each iteration step, instances of predicates appearing in the syntactic formulation of the system
and its safety properties. During backward analysis along discrete computation steps, such substitution
instances are canonically defined from the syntactic description of the system. During backward analysis of
flows, we use the Loos–Weispfenning quantifier elimination technique for finding a finite (in fact quadratic) set
of test points allowing to reduce existential quantification to a finite disjunction, with substitution instances
for the different test points. Since all operations to perform the resulting transformations on LinAIGs, as
well as fixed-point detection, can be done using exact arithmetic, such as in exact SMT solvers, this yields a
precise abstraction, if the algorithm terminates.

This approach, unfortunately, suffers from two drawbacks:

1. termination is not guaranteed (in fact, because of undecidability of safety properties of LHA, this is not
a problem of our approach, but inherent to the safety verification of LHA);

2. the number of substitution instances grows in general exponentially with each backward analysis step.

As to termination, we show that our algorithm yields a semi-decision procedure for the special case of LHA+D,
which have the following two characteristics met in any industrial design:

MDT: there is a minimal dwelling time, i. e., a constant delta such that whenever a mode is visited, then the
LHA stays in this mode for at least delta time units

WCET: there is an upper bound ub such that all discrete fixed-point computation stabilize in at most ub
discrete steps.

From an industrial perspective, controllers must satisfy both criteria:

• mode switches are typically implemented as task switches, hence a system without MDT would suffer
from “flattering”, where task switching costs prevent the system to guarantee deadlines of individual
tasks

• if such an upper bound would not exist, then the Worst Case Execution Time WCET of the task
representing such discrete computations would be unbounded, which is clearly not acceptable in real-
time system design.

We develop in Section 3 a range of techniques maintaining preciseness while offering often significant reduc-
tions in the symbolic representation of encountered state spaces, as demonstrated by a suite of benchmarks
from different applications domains mentioned above, and used throughout the paper. We lift the well-known
technique of onioning from HW verification to verification of LHA+D. We use SMT solvers to detect redun-
dant linear constraints, and learn interpolants, which allow a succinct representation of the state space when
eliminating redundant constraints. We optimize quantifier elimination techniques by polarity detection. We
provide two variants of backward reachability analysis of flows, either by factoring for individual modes (tar-
geting single systems, where the number of modes is expected to be small enough), and a technique optimized
for parallel composition of independent subsystems (avoiding the state-explosion coming from building the
cross-product of their modes).

One of the potential causes for non-termination in safe systems is that our algorithm keeps learning new
predicate instances without semantic guidance as to distances to initial states and unsafe states. Such “blind”
state-space exploration may thus refine the degree of observation, however, in areas, which are irrelevant for
detecting violation of safety properties. Section 4 develops our approach of guided abstractions to overapprox-
imate the state-space, addressing both drawbacks, in learning areas where approximations avoid exploration

4



of “irrelevant” parts of the state space, and in constructing representations which try to minimize the number
of linear constraints needed for representing the approximations. We use incremental SMT solving for test-
ing whether counterexamples found using abstractions are spurious, and develop a range of techniques for
learning from spurious counterexamples in subsequent CEGAR loops.

Each of these sections discusses the related state of the art.
These core parts of the paper are complemented by an introductory Section 2 presenting the basic system

model and the core model-checking algorithm for LHA+D, and Section 5 giving the experimental results.
Some introductory parts of the paper have been previously published in [2].

2 System Model, Basic Data Structures and Model Checking
Algorithm

2.1 System Model
In this section we give a brief review of our system model. We consider linear hybrid automata extended
with discrete states (for simplicity referred to as “linear hybrid automata” (LHA+D) in the sequel). A LHA+D
operates on a finite set of continuous and discrete variables and alternates between continuous transitions
(flows) and (series of) discrete transitions (jumps). The set of variables is split into four disjoint subsets C,
D, I andM . Variables in C are called continuous and range over R. They are used for modeling the dynamics
of a plant and represent, e. g., sensor or actuator values or plant states. Variables in D ∪ I ∪M are called
discrete and range (without loss of generality) over B = {0, 1}. They are used to model, e. g., state-machines,
counters, or sanity bits. Variables in I are called input variables. Variables in M are called mode variables,
they are used to encode a set of boolean vectors M ⊆ {0, 1}l that correspond to the discrete states of a
traditional linear hybrid automaton and determine the possible evolutions of the continuous variables.

Trajectories of the automaton alternate between continuous transitions (flows) and (series of) discrete
transitions (jumps). The possible discrete transitions are specified by a finite set DT of guarded assignments
of the form

ξ → x1 := t1, . . . , xn := tn,

where the guard ξ is a boolean expression over the discrete variables and linear constraints over C, the xi
are continuous, discrete, or mode variables, and the ti are linear expressions over C or boolean expressions as
above, respectively. The set DT is split into three disjoint sets DT d, DT d2c, and DT c2d, where DT d contains
the purely discrete transitions, DT d2c the discrete-to-continuous transitions and DT c2d the continuous-to-
discrete transitions.

We assume that input variables occur only in transitions from DT c2d, or in other words, that inputs are
read only when a trajectory switches from a flow to a jump. The guards of the transitions from DT d (DT d2c,
DT c2d) must be mutually exclusive, i. e., for guarded assignments gai, gaj in DT d (or DT d2c or DT c2d) with
i 6= j we have ξi ⇒ ¬ξj . The guards of the transitions from DT d and DT d2c form complete case distinctions,
i. e., the disjunction of all guards of transitions from DT d (DT d2c) is true. Every transition from DT c2d is
labeled as either urgent or non-urgent.

Valuations of the mode variables correspond to discrete states of a traditional linear hybrid automaton:
Each mode, that is, each element of M is associated to a linear inequation systemW~x′ ≤ w that describes the
possible derivatives of the evolution of the continuous variables during a continuous transition. The boundary
condition βi of a mode mi is given by the cofactor of the disjunction of all urgent discrete transition guards
from DT c2d w. r. t. mi, i. e., the partial evaluation of the disjunction w. r. t. mi. We assume that for each
valuation of variables in D, the boundary condition is equivalent to a disjunction of non-strict (≤) linear
inequations.

The formula GC , called global constraint, is a boolean combinations of variables from D ∪M and linear
constraints over C. It is typically used to specify lower and upper bounds for continuous variables in runs to
be considered.

A LHA+D can also be accompanied by an invariant Inv , which is again a boolean combinations of variables
from D∪M and linear constraints over C. Invariants characterize properties of the LHA+D that have already
been proved – for instance by a separate run of the model checker – and can now be used in order to
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accelerate the current run of the model checker. They are thus a tool to modularize larger verification tasks.
We emphasize the difference between invariants and global constraints: A global constraint GC defines that
trajectories violating GC are irrelevant and should be ignored, for instance because they cannot correspond
to actual behavior of the plant, or because some time bound is reached. An invariant Inv postulates that all
trajectories starting from Init have the property Inv – if the invariant is unsound, that is, if there exists a
trajectory violating Inv , the result of the model checker is unspecified.

The following example from [2] illustrates our system model. The model describes a simple flap controller.
A pilot wants to move the flaps of his aircraft either to the flap angles minangle or to maxangle by selecting
one of the flap positions minpos or maxpos. The flap controller reads the pilot’s choice in a regular interval,
and controls the actual flap movement by choosing one of the modes extend , retract , or standstill , in which
the flap is either extended or retracted with a fixed rate flaprate, or is not moved at all. This is modeled by
the LHA+D (C,D ∪ I,M,GC, Init,DT c2d ∪DT d2c) :
• The set C = {clock ,flapangle} contains a clock variable, which controls the activation of the controller,

and the current flap angle.

• The discrete variables and inputs are defined by the set D = {desired_flappos} and the set I =
{pilot_selection}. The input pilot_selection describes the choice of the pilot, which is saved by the
controller to the variable desired_flappos.

• There are three mode variables M = {extend , retract , standstill}, which (using one-hot encoding) span
the three modes M = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The associated linear inequations are given by

W(1,0,0) = (deriv_clock = 1 ∧ deriv_flapangle = flaprate)
W(0,1,0) = (deriv_clock = 1 ∧ deriv_flapangle = −flaprate)
W(0,0,1) = (deriv_clock = 1 ∧ deriv_flapangle = 0)

where the variables deriv_clock and deriv_flapangle represent the time derivatives of the clock variable
clock and the current flap angle flapangle, respectively, and x = c is an abbreviation for x ≤ c ∧ x ≥ c.

• The clock variable is reset if it reaches a value maxclock , and the flap can only move between minangle
and maxangle, so GC = (0 ≤ clock ≤ maxclock ∧minangle ≤ flapangle ≤ maxangle).

• Initially, the clock is 0 and the flap is within its valid range: Init = (clock = 0∧minangle ≤ flapangle ≤
maxangle).

• Finally, the discrete transitions are given by the sets Dc2d and Dd2c. (For this simple model, purely
discrete transitions are not necessary.) We use the convention that trivial assignments of the form x := x
are left out in the assignment part.
The controller is activated if the pilot’s current decision needs to be read, or if the flaps have reached
an extremal position. Thus Dc2d is defined by the urgent transitions

clock ≥ clock_max =⇒ desired_flappos := pilot_selection;
clock := 0;

clock < clock_max ∧ extend ∧ flapangle ≥ maxangle =⇒ ;
clock < clock_max ∧ retract ∧ flapangle ≤ minangle =⇒ ;

The boundary condition of a mode is computed by the cofactor of the disjunction of all urgent discrete
transition guards from DT c2d w. r. t. this mode. Thus, the boundary conditions are (equivalent to)
clock ≥ clock_max∨flapangle ≥ maxangle for mode (1, 0, 0), clock ≥ clock_max∨flapangle ≤ minangle
for mode (0, 1, 0), and clock ≥ clock_max for mode (0, 0, 1).
In the DT d2c transitions the next mode is selected:

desired_flappos = maxpos ∧ flapangle < maxangle =⇒ (extend , retract , standstill) := (1, 0, 0);
desired_flappos = maxpos ∧ flapangle ≥ maxangle =⇒ (extend , retract , standstill) := (0, 0, 1);
desired_flappos = minpos ∧ flapangle > minangle =⇒ (extend , retract , standstill) := (0, 1, 0);
desired_flappos = minpos ∧ flapangle ≤ minangle =⇒ (extend , retract , standstill) := (0, 0, 1);
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The semantics of a LHA+D is defined by specifying its trajectories:

Definition 1 (Semantics of a LHA+D, [2])

• A state of a LHA+D is a valuation s = (d, c,m) of D, C and M .

• There is a continuous transition from a state si = (di, ci,mi) to a state si+1 = (di+1, ci+1,mi+1) if
there exists a λ ∈ R≥0 and a function v from R to Rf such that the following conditions are satisfied:

– W (v(t)) holds for all t with 0 ≤ t ≤ λ, where W is the linear inequation system associated with
mi;

– (di+1, ci+1,mi+1) = (di, ci +
∫ λ
0
v(t) dt,mi);

– For every 0 ≤ λ′ < λ, the state (di, ci +
∫ λ′
0

v(t) dt,mi) satisfies GC and does not satisfy βi (i. e.,
neither we violate the global constraints nor hit an urgent discrete transition guard along the way).

We also say that si+1 is a λ-time successor of si, written as si →λ si+1.

• A trajectory of a LHA+D is a finite sequence of states (si = (di, ci,mi))0≤i≤n or an infinite sequence
of states (si = (di, ci,mi))i≥0 where all states satisfy GC and one of the following conditions holds for
each i ≥ 0 (or 0 ≤ i ≤ n− 1):

1. There is a continuous-to-discrete transition gai ∈ DT c2d from si = (di, ci,mi) to si+1 = (di+1,
ci+1,mi+1), i. e., the guard ξi is true in (di, ci,mi) and there is a valuation i of the input variables
such that the values in (di+1, ci+1,mi+1) result from executing the assignments in gai. If i > 0,
then the previous transition from si−1 to si is a continuous transition.

2. There is a discrete transition gai ∈ DT d from si = (di, ci,mi) to si+1 = (di+1, ci+1,mi+1),
i. e., the guard ξi is true in (di, ci,mi) and the values in (di+1, ci+1,mi+1) result from executing
the assignments in gai. If i > 0, then the previous transition gai−1 from si−1 to si is a discrete
transition in DT d or a continuous-to-discrete transition in DT c2d.

3. There is a discrete-to-continuous transition gai ∈ DT d2c from si = (di, ci,mi) to si+1 = (di+1,
ci+1,mi+1) (defined in the same way as given above). If i > 0, then the previous transition gai−1
is in DT d or in DT c2d.

4. There is a continuous transition from si = (di, ci, mi) to si+1 = (di+1, ci+1,mi+1) (i. e., si →λ

si+1 for some λ ∈ R≥0). If i > 0, then the previous transition gai−1 from si−1 to si is in DT d2c.

• A state s′ = (d′, c′,m′) is reachable from the state s = (d, c,m), if there is a trajectory that starts from
s = (d, c,m) and ends in s′ = (d′, c′,m′). The reachable state set of a LHA+D contains all states that
are reachable from the initial states which satisfy ξinit.

By the definition given above, a trajectory always contains subsequences of a continuous transition,
followed by a continuous-to-discrete transition, followed by a (potentially empty) series of discrete transitions,
followed by a discrete-to-continuous transition and so on. Trajectories may start with an arbitrary type of
transition. Time passes only during continuous flows and continuous flows only change continuous variables
in such a way that the derivative of the evolution satisfies the respective inequation system W . Discrete
transitions happen in zero time, update both discrete and continuous variables, and finally select the next
active mode. Transitions from DT c2d are usually urgent in our applications, that is, they fire once they
become enabled. Non-urgent transitions are also permitted, though.

The LHA+D is safe if there is no trajectory from a given set of initial states (Init) to a given set of unsafe
states (Unsafe) that does not violate the global constraints.
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2.2 Representation of State Sets
Our goal is to check whether all states of a LHA+D reachable from Init are within a given set of (safe)
states Safe. To establish this, a backward fixpoint computation is performed. We start with the set ¬Safe
and repeatedly compute the pre-image until a fixpoint is reached or some initial state is reached during the
backward analysis. In the latter case, a state outside of Safe is reachable.

For this fixpoint computation we need a compact representation of sets of states of LHA+Ds. Sets of
states of LHA+Ds are represented by formulas from P(D,C,M) (which are boolean combinations over D, M
and linear constraints L(C)) and for efficiently implementing such formulas we make use of a specific data
structure called LinAIGs [10, 11]. By using LinAIGs both the discrete part and the continuous part of the
hybrid state space are represented by one symbolic representation.

Using efficient methods for keeping LinAIGs as compact as possible is a key point for our approach. This
goal is achieved by a rather complex interaction of various methods. In this section we give a brief overview
of the basic components of LinAIGs. Later on, we describe optimizations to increase the efficiency of the data
structure.

Boolean Part. The component of LinAIGs representing boolean formulas consists of a variant of AIGs, the
so-called Functionally Reduced AND-Inverter Graphs (FRAIGs) [12, 13]. AIGs enjoy a widespread application
in combinational equivalence checking and Bounded Model Checking (BMC). They are basically boolean cir-
cuits consisting only of AND gates and inverters. In contrast to BDDs, they are not a canonical representation
for boolean functions, but they are “semi-canonical” in the sense that every node in the FRAIG represents a
unique boolean function. To achieve this goal several techniques like structural hashing, simulation1 and SAT
solving are used:

First, local transformation rules are used for node minimization. For instance, we apply structural hashing
for identifying isomorphic AND nodes which have the same pairs of inputs.

Moreover, we maintain the so-called “functional reduction property”: Each node in the FRAIG represents
a unique boolean function. Using a SAT solver we check for equivalent nodes while constructing a FRAIG and
we merge equivalent nodes immediately.2

Of course, checking each possible pair of nodes would be quite inefficient. However, simulation using test
vectors of boolean values restricts the number of candidates for SAT checks to a great extent: If for a given
pair of nodes simulation is already able to prove non-equivalence (i. e., the simulated values are different
for at least one test vector), the more time consuming SAT checks are not needed. The simulation vectors
are initially random, but they are updated using feedback from satisfied SAT instances (i. e., from proofs of
non-equivalence).

For the pure boolean case, enhanced with other techniques such as quantifier scheduling, node selection
heuristics and BDD sweeping, FRAIGs proved to be a promising alternative to BDDs in the context of
symbolic model checking, replacing BDDs as a compact representation of large discrete state spaces [13].
Similar techniques have been successfully applied for satisfiability checking of quantified boolean formulas
(QSAT), too [14, 15].

Continuous part. In LinAIGs, the FRAIG structure is enriched by linear constraints. We use a set of new
(boolean) constraint variables Q as additional inputs to the FRAIG. Every linear constraint `i ∈ L(C) is
connected to the boolean part by some q`i ∈ Q. The constraints are of the form

∑n
i=1 αici + α0 ∼ 0 with

rational constants αj , real variables ci, and ∼ ∈ {=, <,≤}.The structure of LinAIGs is illustrated in Fig. 1.
During our model checking algorithm we avoid introducing linear constraints which are equivalent to

existing constraints. The restriction to linear constraints makes this task simple, since it reduces to the
application of (straightforward) normalization rules.

1In this context, simulation means the evaluation of FRAIG nodes for a set of given inputs; it does not refer to the simulation
of controller models.

2In the same way we prevent the situation that one node in a FRAIG represents the complement of the boolean function
represented by another node in the same FRAIG.
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Figure 1: Structure of LinAIGs

2.3 Model Checking of Linear Hybrid Automata

2.3.1 Step Computation

As already mentioned above, we check safety properties by using a backward fixpoint algorithm which com-
putes the set of states from which states in ¬Safe can be reached (and we check whether one of these states
is contained in Init). For the fixpoint computation we need pre-image computations to evaluate both discrete
and continuous transitions [2].3

Discrete Steps. The step computation is similar for discrete, continuous-to-discrete and discrete-to-con-
tinuous transitions. For that reason we consider here only purely discrete transitions which are given by
guarded assignments gai (i = 1, . . . , v and v ≥ 1) and we just give a brief review of the step computation
[10].

We differentiate between the discrete variables in D ∪M and the constraint variables Q.
In a discrete transition the term gi,j(D, I, C,M) is assigned to the discrete variable dj ∈ D under condition

ξi(D,C,M). This translates to the following (logical) function, assigning a boolean formula over D∪I∪C∪M
to each dj ∈ D:

pre(dj) =

v∧
i=0

(ξi(D,C,M) ⇒ gi,j(D, I, C,M))

Analogously, pre is defined for the variables in M . For the continuous part, q` ∈ Q is updated by

pre(q`) =

v∧
i=0

(
ξi(D,C,M) ⇒ q`[c1,...,cf/ti,1(C),...,ti,f (C)]

)
that is, the constraint variable q` is replaced by a boolean combination of boolean and constraint variables,
where q`[c1,...,cf/ti,1(C),...,ti,f (C)] is a (possibly new) constraint variable representing the linear constraint that
results from ` by replacing every cj by the term ti,j(C).

Finally, the set of states which can be reached by a backward step from a set of states described by φ is
computed by substituting in parallel the pre-images for the respective variables.

Pred(φ) = φ[d/pre(d), d ∈ D ∪M ] [q/pre(q), q ∈ Q]

Note that the correctness of the discrete step computation relies on the fact that the guards in the guarded
assignments form a complete and disjoint case distinction (see Sect. 2.1).

Continuous Steps. In our system model, the time steps only concern the evolutions of continuous variables
and leave the discrete part unchanged. For the symbolic treatment of continuous pre-image computations
we exploit the fact that the number of modes (i. e., of distinct control laws) for a given control applications
is drastically smaller than the number of discrete states and typically well below 100. This allows to factor
our symbolic representation according to modes, and thus to perform a precise analysis of continuous pre-
image computations for each mode individually. For each mode, the continuous unsafe pre-image Prec can

3We have chosen the backward direction, because for discrete transitions the pre-image can be expressed essentially by
a substitution (see Hoare’s program logic [16]). By contrast, forward model checking makes use of the discrete image, and
computing the latter with a LinAIG representation requires quantifier elimination.
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be expressed as a formula with two quantified real variables (time) and one quantified function from R to
Rf denoting the derivative of the continuous evolution at some time. We will show how to eliminate these
quantifiers to arrive at a formula which can again be represented by a LinAIG.

Let φ(D,C,M) be a representation of a state set and let φ(D,Q,M) be its boolean abstraction replacing
linear constraints `i ∈ L(C) by q`i ∈ Q. Each valuation mi of the mode variables in M encodes a concrete
mode with a boundary condition βi and an inequation system Wi(v) ⇔ ∧

j wijv ≤ wij characterizing the
possible derivatives v of the continuous evolution. Let φi be the cofactor of φ w. r. t. mode mi. Thus we have
φ ⇔ ∨k

i=1 φi ∧ (m1, . . . ,ml) = mi, where each φi is a boolean formula over D and Q.4 For each mode mi,
we must now determine the set of all valuations for which there exists some (arbitrarily long) evolution that
has a derivative satisfying the inequation system Wi and leads to a valuation satisfying φi and does not meet
any point that satisfies the boundary condition βi or violates the global constraints GC before.5 We denote
this set by Prec(φi,Wi, βi). Logically, it can be described by the formula

∃λ. λ ≥ 0
∧ ∃v. (∀t.Wi(v(t)))

∧ φi(c +
∫ λ
0
v(t) dt)

∧GC (c +
∫ λ
0
v(t) dt)

∧ ∀λ′. (λ′ < λ ∧ 0 ≤ λ′)→ (¬βi(c +
∫ λ′
0

v(t) dt) ∧GC (c +
∫ λ′
0

v(t) dt))

Under the assumption that the set described by GC is convex, Wi is a conjunction of linear inequations,
and βi is equivalent to a disjunction of linear inequations for any valuation of the variables in D, we may
replace without loss of generality the function v(t) by a constant v; moreover one can replace the universal
quantification over λ′ by two test points, namely 0 and λ− ε, where the formula with ε represents the limit
for ε→ +0. Using the fact that we are only interested in states satisfying GC , the formula can be simplified
(modulo GC ) to

φi(c) ∨ ∃λ. λ > 0 ∧ ∃v.Wi(v) ∧ φi(c + λv) ∧GC (c + λv) ∧ ¬βi(c) ∧ ¬βi(c + (λ− ε)v)

If βi is a disjunction of linear constraints, one can show that ¬βi(c) ∧ ¬βi(c + (λ − ε)v) is equivalent to
¬βi(c) ∧ ¬β′i(c + λv) where β′i is the disjunction of linear constraints one obtains from βi by replacing all
non-strict inequalities (≤) by strict ones (<), or in other words, βi without its boundary. To get rid of the
non-linearity of quantified variables, we use the trick of Alur, Henzinger and Ho [17] and replace the product
λv by a new vector u. We obtain:

φi(c) ∨ ∃λ. λ > 0 ∧ ∃u.W ′i (u, λ) ∧ φi(c + u) ∧GC (c + u) ∧ ¬βi(c) ∧ ¬β′i(c + u)

where the inequation system W ′i (u, λ) is given by
∧
j wiju ≤ wijλ.

It remains to convert this formula over λ, u = (u1, . . . , uf ), C, and D into an equivalent formula over the
original variables in C and D. This amounts to variable elimination for linear real arithmetic (with variables
u1, . . . , uf and λ) and may be performed by the Loos-Weispfenning test point method described in the next
section.

2.3.2 Quantifier Elimination for Linear Real Arithmetic

For the computation of continuous steps based on state set representations given by LinAIGs we need quantifier
elimination for linear real arithmetic. For this we use the Loos-Weispfenning test point method [18, 19], which
replaces existentially quantified formulas by finite disjunctions using sets of symbolic substitutions.

The Loos-Weispfenning method is based on the following observation: Assume that a formula ψ(x, ~y) is
written as a positive Boolean combination of linear constraints x ∼i ti(~y) and 0 ∼′j t′j(~y), where ∼i,∼′j ∈
{=, 6=, <,≤, >,≥}. Let us keep the values of ~y fixed for a moment. If the set of all x such that ψ(x, ~y) holds
is non-empty, then it can be written as a finite union of (possibly unbounded) intervals, whose boundaries

4The variables in D are assumed to remain constant during mode mi, so boolean expressions over D behave like propositional
variables. For simplicity, we will ignore them in the rest of this section.

5Recall that βi is the cofactor of the disjunction of all urgent discrete transition guards w. r. t. mi; non-urgent transitions are
ignored at this point.
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are among the ti(~y). To check whether ∃x. ψ(x, ~y) holds, it is therefore sufficient to test ψ(x, ~y) for either
all upper or all lower boundaries of these intervals. The test values may include +∞, −∞, or a positive
infinitesimal ε, but the usual substitution can easily be extended by these. For instance, if we apply the
substitution [tj(~y) − ε/x], i. e., x is substituted by tj(~y) − ε, then both the linear constraints x ≤ ti(~y) and
x < ti(~y) are turned into tj(~y) ≤ ti(~y), and both x ≥ ti(~y) and x > ti(~y) are turned into tj(~y) > ti(~y).

There are two possible sets of test points of ψ for x, depending on whether we consider upper or lower
boundaries:

TP1(ψ(x, ~y), x) = {+∞} ∪ { ti(~y) | ∼i ∈ {=,≤}} ∪ { ti(~y)− ε | ∼i ∈ {6=, <} }
TP2(ψ(x, ~y), x) = {−∞} ∪ { ti(~y) | ∼i ∈ {=,≥}} ∪ { ti(~y) + ε | ∼i ∈ {6=, >} }.

Let TP(ψ(x, ~y), x) be the smaller one of the two sets. Then the formula ∃x. ψ(x, ~y) can be replaced by an
equivalent finite disjunction

∨
τ∈TP(ψ(x,~y),x) ψ(x, ~y)[τ/x]. The size of TP is in general linear in the size of ψ,

so the size of the resulting formula is quadratic in the size of ψ. This is independent of the Boolean structure
of ψ – conversion to DNF is not required. On the other hand, if ψ is a disjunction

∨
ψi, then the test point

method can also be applied to each of the formulas ψi individually, leading to a smaller number of test
points. Moreover, when the test point method transforms each ψi into a finite disjunction

∨
ψji , then each ψji

contains at most as many linear constraints as the original ψi, and only the length of the outer disjunction
increases.

The Loos-Weispfenning method can easily be generalized to formulas that involve both linear constraints
and Boolean variables. It can therefore work directly on the internal formula representation of LinAIGs – in
contrast to the classic Fourier-Motzkin algorithm, there is no need for a separation of Boolean and numerical
parts or for a costly CNF or DNF conversion before eliminating quantifiers. Moreover, the resulting formulas
preserve most of the Boolean structure of the original ones: the method behaves largely like a generalized
substitution.

2.3.3 Model Checking Algorithm

Using the pre-image computations described above, we can now define the model checking algorithm, see
Alg. 1. Starting from a representation of the unsafe states, the backward reachability analysis alternates
between series of discrete steps and continuous flows, where the latter are surrounded by continuous-to-discrete
(c2d) and discrete-to-continuous (d2c) steps. Since input variables are read during c2d steps, these variables
are existentially quantified in the results of c2d pre-image computations.6 Note that discrete transitions form
a disjoint and complete case distinction as mentioned in Sect. 2.1 (completeness may be achieved by adding
self-loops, if needed). The discrete-to-continuous transitions are disjoint as well, but the case distinction is
not complete. Therefore a conjunction with the predicate d2cTransEnabled is needed for the evaluation
of discrete-to-continuous transitions. d2cTransEnabled is true in every state where a discrete-to-continuous
transition is enabled. The iteration is performed until a global fixpoint is finally reached or until an initial
state is reached.

Model checking and decidability. In Alg. 1 all pre-images computations are performed exactly. Unfor-
tunately, termination of Alg. 1 cannot be guaranteed in general. However, for a large class of industrially
relevant models we can show that the algorithm provides a semi-decision procedure: Whenever a model of
this class is unsafe the algorithm will detected this in finite time.

This class of models contains all modes for which we can ensure that the successive image computation
reaches every instant of time after a finite number of image computations. This properties is satisfied for
models (i) having a fixed minimal dwelling time in each mode and (ii) for which the discrete fix point
iteration is guaranteed to terminate. Minimal dwelling time is most likely a property of robust models.
Moreover, in industrially relevant application we can expect that the worst-case execution time of discrete
tasks is known, which implies termination of the discrete fix point computation if modeled correctly.

In [20] it was shown that the model checking problem for a slightly more restricted class, namely the
reasonable linear hybrid automata, is indeed decidable. A reasonable linear hybrid automaton is (i) input

6For discrete-time LHA+Ds, only discrete steps are performed and the existential quantification over input variables happens
there.
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1 φd2c0 := ¬safe; φ
dfp
0 := 0;

2 i := 0;
3 repeat
4 i := i+ 1;

// Discrete fixed point iteration:
5 j := 0;
6 φd0 := φd2ci−1 ∨ φ

dfp
i−1;

7 repeat
8 j := j + 1;
9 φdj := (Pred(φdj−1 ∧GC)) ∨ φd2ci−1;

10 until GC ∧ φdj ∧ ¬φdj−1 = 0;
11 φ

dfp
i := φdj ;

// Evaluate c2d transitions:

12 φc2di :=
(
∃dn+1, . . . dp(Prec2d(φ

dfp
i ∧GC)) ∧∨kh=1(βh ∧ (−→m = mh))

)
∨ ¬safe;

// Evaluate continuous flow:
13 φflowi :=

∨k
h=1 Pre

c(φc2di |−→m=mh
,Wh, βh) ∧ (−→m = mh);

// Evaluate d2c transitions:
14 φd2ci := (Pred2c(φflowi ∧ d2cTransEnabled ∧GC)) ∨ ¬safe;
15 until GC ∧ φd2ci ∧ ¬φd2ci−1 = 0;
16 if GC ∧ (φ

dfp
i ∨ φc2di ∨ φflowi ∨ φd2ci ) ∧ init 6= 0 then return false;

17 return true;
Algorithm 1: Backward reachability analysis.

deterministic, i. e., all transitions guards originating from one and the same state are mutually exclusive,
and initial states of mode are disjoint, (ii) invariant compatible, i. e., mode invariants are safe and whenever
the invariants become false, then there is at least one transition leaving the mode whose guard is enabled,
(iii) chatter free, i. e., all transitions enter a mode within its inner envelope, and there is a minimal dwelling
time for each mode. In contrast to this result, our algorithm does not guarantee termination on every rea-
sonable hybrid automaton, as the following example, borrowed from [21], shows.

ẋ = 1

ẏ = 1

y ≤ 1

y ≥ 1⇒ y := 0

x = 0

y = 0

Figure 2: A reasonable linear hybrid automaton

The linear hybrid automaton in Fig. 2 satisfies the criteria for being a reasonable linear hybrid automaton.
Since the given automaton consists of exactly one continuous mode we omit the mode variable in the following
discussion. Let unsafe be the state (1.5, 1), i. e., the state for which x = 1.5 and y = 1 holds. The backward
reachable states are given by {(1.5 − (z + n), 1 − z) | z ∈ [0, 1], n ∈ N}. Since the initial state (0, 0) is not
contained in the set of backward reachable states, the automaton is safe. The hybrid automaton consists of a
single c2d-transition and a single continuous flow only. Hence, starting from φd2c0 ≡ ¬safe ≡ {(1.5, 1)} Alg. 1

12



yields the sets

φd2c1 ≡ {(1.5− z, 1− z) | z ∈ [0,∞]} ≡ (y = x− 0.5 ∧ x ≤ 1.5),

φd2c2 ≡ {(1.5− (z + n), 1− z) | z ∈ [0,∞], n ∈ {0, 1}} ≡ (y = x− 0.5 ∧ x ≤ 1.5) ∨ (y = x+ 0.5 ∧ x ≤ 0.5),

...

φd2cn ≡ {(1.5− (z + n), 1− z) | z ∈ [0,∞], n ∈ {0, n− 1}}.

Obviously, in every step there are new sets added to the φd2c-predicate and the algorithm will not terminate.

2.4 Methods for Compact State-Space Representations
Here we give a brief review of methods leading to a more compact representation of the LinAIG data structure.
Most of them go beyond a separate treatment of the boolean part and the continuous part (linear constraints)
[2]. Of course, just keeping the boolean part and the continuous part (linear constraints) of LinAIGs separate
would lead to a loss of information: Since we would forget correlations between linear constraints, we would
give up much of the potential for optimizing the representations. As a simple example consider the two
predicates φ1 = (c1 < 5) and φ2 = (c1 < 10) ∧ (c1 < 5). If c1 < 5 is represented by the boolean constraint
variable q`1 and c < 10 by variable q`2 , then the corresponding boolean formulas q`1 and q`1 ∧ q`2 are
not equivalent, whereas φ1 and φ2 are certainly equivalent. Both as a means for further compaction of our
representations and as a means for detecting fixpoints we need methods for transferring knowledge from the
continuous part to the boolean part. (In the example above this may be the information that q`1 = 1 and
q`2 = 0 can not be true at the same time or that φ1 and φ2 are equivalent when replacing boolean variables
by the corresponding linear constraints.)

The most important methods used in our implementation are:

• Implication-based compaction

• Deciding node equivalences by carefully using decision procedures

• Optimizations using boolean invariants

Implication-based compaction. Dependencies between linear constraints represent information that is
easy to detect a priori. We use simple unconditional implications between linear constraints α1c1 + . . . +
αncn + α0 ≤ 0 and α1c1 + . . .+ αncn + α′0 ≤ 0, where α0 > α′0 as well as implications resulting from global
constraints of the form li ≤ ci ≤ ui for the continuous variables. If we have found a pair of linear constraints
`1 and `2 with `1 ⇒ `2, where `1 and `2 are represented by the constraint variables q`1 and q`2 in the boolean
part, then we know that the combination of values q`1 = 1 and q`2 = 0 is inconsistent w. r. t. the continuous
part, i. e., it will never be applied to inputs q`1 and q`2 of the boolean part. We transfer this knowledge to the
boolean part by a modified behavior of the FRAIG package: First we adjust the simulation test vectors (over
boolean variables and constraint variables q`i), such that they become consistent with the found implications
(potentially leading to the fact that proofs of non-equivalence by simulation will not hold any longer for
certain pairs of nodes). Secondly, we make use of implications `i1 ⇒ `i2 found between linear constraints
during SAT checking: We introduce the implication q`i1 ⇒ q`i2 as an additional binary clause in every SAT
problem checking equivalence of two nodes depending on q`i1 and q`i2 . In that way, non-equivalences of
LinAIG nodes which are only caused by differences w. r. t. inconsistent input value combinations with q`i1 = 1
and q`i2 = 0 will be turned into equivalences, removing redundant nodes in the LinAIG.

Deciding node equivalences by using decision procedures. In addition to the eager check for impli-
cations between linear constraints above, we use an SMT (SAT modulo theories) solver [22, 23] as a decision
procedure for the equivalence of nodes in LinAIGs (representing boolean combinations of linear constraints
and boolean variables). The sub-LinAIGs rooted by two nodes which are to be compared are translated into
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the input format of the SMT solver7 and the solver decides equivalence or non-equivalence. If two nodes are
proven to be equivalent (taking the linear constraints into account), then these nodes can be merged, leading
to a compaction of the representation (or even leading to the detection of a fixpoint in the model checking
computation). Note that it is also possible to merge nodes which are equivalent “modulo invariants” which
have been proved separately (see page 6); details can be found in [2].

It turned out that for our application an eager LinAIG compaction is most efficient: Whenever a new
node is inserted into the LinAIG, an SMT based node merging is performed, just as SAT (together with
simulation) is used in the FRAIG representation of the boolean part. This leads to an LinAIG representation
where different nodes always represent different predicates. In order to increase the efficiency, we use a layered
approach which filters out easy problems, avoiding as many SMT solver calls as possible. The layered approach
proceeds as follows:

1. At first, the FRAIG package uses structural hashing for identifying an existing AND node which has
the same pair of inputs. If such a node already exists, it is not necessary to insert a new (equivalent)
node. Moreover, identification of identical nodes is assisted in the FRAIG package by (restricted) local
transformation and normalization rules.

2. Second, it is checked whether there is already a node in the representation which represents the same
boolean function, when constraint variables q`i are not interpreted by their corresponding linear con-
straints `. When the node which is about to be inserted is compared to an existing node, we have to
solve a boolean problem with pure boolean input variables and constraint variables q`i . This boolean
problem is encoded as an input to a CNF-based (boolean) SAT solver. If the SAT solver proves that
two nodes are equivalent, it is clear that the nodes remain equivalent when constraint variables q`i are
interpreted by their corresponding linear constraints `i. Thus, in case of equivalence the existing node
and the node to be inserted can be merged.8 Note that the translation step into a SAT instance includes
additional clauses for implications between linear constraints as described before.

The set of candidate nodes for SAT checks is determined by simulation: Simulation assigns values to pure
boolean variables and constraint variables q`i . SAT checks for proving equivalence need only be applied
to pairs of nodes which show the same results for all simulation vectors used. (As already mentioned in
this section, we use only simulation vectors which are consistent w. r. t. detected implications between
linear constraints.)

3. Finally, an SMT solver is used for checking whether the node to be inserted represents a predicate which
is already represented in the LinAIG. Similarly to the simulation approach for FRAIGs the number of
potential SMT-based equivalence checks is reduced based on simulation: We use simulation with test
vectors as an incomplete but cheap method to show the non-equivalence of LinAIG nodes. However,
note that for this purpose we can not use the same simulation vectors as we use for the pure FRAIG
part of the LinAIG (assignments of values to pure boolean variables and constraint variables q`i which
are initially random, but are enhanced by counterexamples learnt from SAT applications later on),
since these vectors are not necessarily consistent w. r. t. the interpretation of constraint variables q`i
by their corresponding linear constraints `i. If a proof of non-equivalence for two nodes is based on
non-consistent simulation vectors, it may be incorrect. For this reason we use an appropriate set of
test vectors in terms of real variables such that we can compute consistent boolean valuations of linear
constraints based on the real valued test vectors. These values, combined with assignments to the pure
boolean variables, may be used for proving non-equivalences of LinAIG nodes representing predicates
over boolean variables and linear constraints.

At first, test vectors consist of arbitrary values for real-valued variables ci (taking global constraints
GC and invariants Inv into account, if they exist). Later on, we add test vectors learnt from successful
applications of the SMT solver. If we are able to prove non-equivalence of two LinAIG nodes, the SMT
solver returns an assignment to the boolean variables and the real-valued variables (occurring in linear
constraints) which witnesses a difference between the two corresponding formulas over boolean variables
and linear constraints. Based on the intuition that these assignments represent interesting corner cases

7In our implementation we use Yices [22] for this task.
8Our FRAIG package does not necessarily choose the existing node, but selects the smallest of the two representations.
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for distinguishing between different predicates we learn the corresponding vectors for later applications
of simulation. Our experimental results clearly demonstrate that this is a effective strategy for reducing
the number of SMT checks in the future.

The details given above show that even in the eager variant SMT checks will not be used during node
insertion, if we find an equivalent node based on pure boolean reasoning in steps 1 and 2. Implications
between linear constraints help in finding more equivalences by boolean reasoning. Moreover, if it is proven
by simulation that the new node is different from all existing nodes, then SMT checks can be avoided, too.

Optimization by Boolean Invariants. In our experiments we made the observation that backward
reachability analysis often visits a large number of discrete states (or even modes) which are not reachable from
the initial states. For an extreme case consider a unary encoding of n discrete states: Backward reachability
analysis starting from the unsafe states potentially has to traverse 2n discrete states, since it is not clear in
advance that at most n patterns of state bits can be reached from the initial state.

This is not really surprising and in fact forward and backward reachability analysis have “symmetrical
disadvantages”: A forward traversal usually visits large sets of states which do not have a connection to the
unsafe states and a backward traversal usually visits large sets of states which do not have a connection to
the initial states. (The most extreme case occurs when there is no path from the initial states to the unsafe
states.)

In order to mitigate this problem we follow the idea of supporting backward analysis by information
obtained from an approximate forward analysis. More precisely, we compute an overapproximation of the
states reachable from the initial states based on a boolean abstraction of our system model. Forward reachable
states fwreachba of the boolean abstraction of an automaton overapproximate the forward reachable states
fwreach of the original automaton. In other words, fwreachba is a (purely boolean) invariant of the automaton.
We compute fwreachba by a standard symbolic forward model checker for discrete systems [24]. This invariant
can then be used to optimize state set representations as described above.

3 Optimizations of Exact Model Checking

3.1 Optimizing State Sets by Redundancy Removal

3.1.1 Motivation

In Sect. 2.2 and Sect. 2.4 we already introduced several methods which turn LinAIGs into an efficient data
structure for boolean combinations of boolean variables and linear constraints over real variables. However,
especially in connection with Loos-Weispfenning quantifier elimination used to compute continuous steps,
one observes that the number of “redundant” linear constraints grows rapidly during the fixpoint iteration of
the model checker. For illustration see Fig. 3 and 4, which show a typical example from a model checking run
representing a small state set based on two real variables: Lines in Figs. 3 and 4 represent linear constraints,
and the gray shaded area represents the space defined by some boolean combination of these constraints.
Whereas the representation depicted in Fig. 3 contains 24 linear constraints, a closer analysis shows that an
optimized representation can be found using only 15 linear constraints as depicted in Fig. 4.

Figure 3: Before redundancy removal Figure 4: After redundancy removal

Removing such redundant constraints from our representations is a crucial task for the success of our
methods. The motivation for this lies in the observation that for preimage computations the complexity of
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the result strongly depends on the number of linear constraints on which the original representation depends:
Suppose the original representation depends on n linear constraints. The result of a discrete step may depend
on n × v linear constraints in the worst case, if v is the number of guarded assignments in the discrete
transition relation (see Sect. 2.3.1). Eliminating a single quantifier by the Loos-Weispfenning method used
in continuous step computations may lead to a quadratic increase in the number of linear constraints in the
result.

3.1.2 Redundancy Detection and Removal for Convex Polyhedra

It should be noted that, since we represent arbitrary boolean combinations of linear constraints (and boolean
variables), removing redundant linear constraints is not as straightforward as for other approaches such as
[25, 26], which represent sets of convex polyhedra, i. e., sets of conjunctions `1 ∧ . . .∧ `n of linear constraints.
If one is restricted to convex polyhedra, the question whether a linear constraint `1 is redundant in the
representation reduces to the question whether `2 ∧ . . . ∧ `n represents the same polyhedron as `1 ∧ . . . ∧ `n,
or equivalently, whether ¬`1 ∧ `2 ∧ . . . ∧ `n represents the empty set. This question can simply be answered
by a linear program solver.

3.1.3 Redundancy Detection for LinAIGs

Redundancy of linear constraints is defined as follows [2]:

Definition 2 (Redundancy of linear constraints) Let F be a boolean function, let d1, . . . , dn be boolean
variables and let `1, . . . , `k be linear constraints over real-valued variables C = {c1, . . . , cf}. The linear
constraints `1, . . . , `r (1 ≤ r ≤ k) are called redundant in the representation of F (d1, . . . , dn, `1, . . . , `k) iff
there is a boolean function G with the property that F (d1, . . . , dn, `1, . . . , `k) and G(d1, . . . , dn, `r+1, . . . , `k)
represent the same predicates.

Our check for redundancy is based on the following theorem:

Theorem 1 (Redundancy check) For all 1 ≤ i ≤ k let `i be a linear constraint over real-valued variables
{c1, . . . , cf} and `′i exactly the same linear constraint as `i, but now over a disjoint copy {c′1, . . . , c′f} of the
variables. Let ≡ denote boolean equivalence. The linear constraints `1, . . . , `r (1 ≤ r ≤ k) are redundant in
the representation of F (d1, . . . , dn, `1, . . . , `k) if and only if the predicate

(F (d1, . . . , dn, `1, . . . , `k) ∧ ¬F (d1, . . . , dn, `
′
1, . . . , `

′
k)) ∧∧ki=r+1(`i ≡ `′i) (1)

is not satisfiable by any assignment of boolean values to d1, . . . , dn and real values to the variables c1, . . . , cf
and c′1, . . . , c′f .

Note that the check from Thm. 1 can be performed by a (conventional) SMT solver (e. g. [22, 23]). A proof
for Thm. 1 can be found in [2].

Our overall algorithm for redundancy detection starts by checking redundancy for a single linear constraint
and step by step adds further linear constraints to the redundancy check. in that way a maximal set of linear
constraints which can be removed from the representation at the same time is determined based on iterative
applications of Thm. 1. Since the SMT problems occurring in this series of checks are structurally very similar,
we make use of an incremental SMT solver for the solution, i. e., learned knowledge is transferred from one
SMT solver call to the next (by means of learned conflict clauses).

3.1.4 Removal of Redundant Linear Constraints

Suppose that formula (1) of Thm. 1 is unsatisfiable. Now we are looking for an efficient procedure to compute
a boolean function G such that G(d1, . . . , dn, `r+1, . . . , `k) and F (d1, . . . , dn, `1, . . . , `k) represent the same
predicates. Obviously, the boolean functions F and G do not need to be identical in order to achieve this
objective given above; they are allowed to differ for “inconsistent” arguments which can not be produced by
evaluating the linear constraints with real values. The set of these arguments is described by the following
“don’t care set” dcinc:
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Definition 3 The don’t care set dcinc induced by linear constraints `1, . . . , `k is defined as

dcinc := {(vd1 , . . . , vdn , v`1 , . . . , v`k) | (vd1 , . . . , vdn) ∈ {0, 1}n, (v`1 , . . . , v`k) ∈ {0, 1}k

and ∀vc ∈ Rf ∃1 ≤ i ≤ k with `i(vc) 6= v`i}.
(2)

As we will see in the following, it is possible to compute a function G as needed by making use of the don’t
care set dcinc. However, an efficient realization would certainly need a compact representation of the don’t
care set dcinc. Fortunately, a closer look at the problem reveals the following two interesting observations
which turn our basic idea into a feasible approach:

1. In general, we do not need the complete set dcinc for the computation of the boolean function G.

2. A representation of a sufficient subset dc′inc of dcinc which is needed for removing the redundant con-
straints `1, . . . , `r is already computed by an SMT solver when checking the satisfiability of formula (1)
(if one assumes that the SMT solver uses the option of minimizing conflict clauses, as we will see later
on).

In order to explain how an appropriate subset dc′inc of dcinc is computed by the SMT solver (when checking
the satisfiability of formula (1)) we start with a brief review of the functionality of an SMT solver:9

An SMT solver introduces constraint variables q`i for linear constraints `i (just as in LinAIGs as shown in
Fig. 1). First, the SMT solver looks for satisfying assignments to the boolean variables (including the constraint
variables). Whenever the SMT solver detects a satisfying assignment to the boolean variables, it checks
whether the assignment to the constraint variables is consistent, i. e., whether it can be produced by replacing
real-valued variables by reals in the linear constraints. This task is performed by a linear program solver. If
the assignment is consistent, then the SMT solver has found a satisfying assignment, otherwise it continues
searching for satisfying assignments to the boolean variables. If some assignment ε1, . . . , εm to constraint
variables q`i1 , . . . , q`im was found to be inconsistent, then the boolean “conflict clause” (¬qε1`i1 ∨ . . .∨¬q

εm
`im

) is
added to the set of clauses in the SMT solver to avoid running into the same conflict again.10 The negation
of this conflict clause describes a set of don’t cares due to an inconsistency of linear constraints.

Now consider formula (1), which has to be solved by an SMT solver, and suppose that the solver introduces
boolean constraint variables q`i for linear constraints `i and q`′i for `

′
i (1 ≤ i ≤ k). Whenever there is some

satisfying assignment to boolean variables (including constraint variables) in the SMT solver, it will be
necessarily shown to be inconsistent, since formula (1) is unsatisfiable.

In order to define an appropriate function G we introduce the concept of so-called orbits: For an arbitrary
value (vd1 , . . . , vdn , v`r+1

, . . . , v`k) ∈ {0, 1}n+k−r the corresponding orbit is defined by

orbit(vd1 , . . . , vdn , v`r+1
, . . . , v`n) := {(vd1 , . . . , vdn , v`1 , . . . , v`r , v`r+1

, . . . , v`n) | (v`1 , . . . , v`r ) ∈ {0, 1}r}.

The following essential observation results from the unsatisfiability of formula (1):
If some orbit orbit(vd1 , . . . , vdn , v`r+1 , . . . , v`k) contains two different elements v(1) := (vd1 , . . . , vdn , v`1 , . . . ,

v`r , v`r+1 , . . . , v`k) and v(2) := (vd1 , . . . , vdn , v`′1 , . . . , v`′r , v`r+1 , . . . , v`k) with F (v(1)) 6= F (v(2)), then

(a) v(1) ∈ dcinc or v(2) ∈ dcinc and

(b) the SMT solver detects and records this don’t care when solving formula (1).

In order to show fact (a), we consider the following assignment to boolean variables and boolean abstrac-
tion variables in formula (1): Let d1 := vd1 , . . . , dn := vdn , q`1 := v`1 , . . . , q`r := v`r , q`′1 := v`′1 , . . . , q`′r := v`′r ,

q`r+1 := q`′r+1
:= v`r+1 , . . . , q`k := q`′k := v`k . (Thus v(1) is assigned to the variables d1, . . . , dn, q`1 , . . . , q`k

and v(2) to the variables d1, . . . , dn, q`′1 , . . . , q`′k .) It is easy to see that this assignment satisfies the boolean
abstraction of formula (1). Since formula (1) is unsatisfiable, the assignment has to be inconsistent w. r. t. the
interpretation of constraint variables by linear constraints. So there must be an inconsistency in the truth
assignment to some linear constraints `1, . . . , `k, `′1, . . . , `′k. Since the linear constraints `i and `′i are based

9Here we refer to the lazy approach to SMT solving, see [27], e. g., for an overview.
10By definition q1`ij

:= q`ij
and q0`ij

:= ¬q`ij .
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on disjoint sets of real variables C = {c1, . . . , cf} and C ′ = {c′1, . . . , c′f}, already the partial assignment to
`1, . . . , `k or the partial assignment to `′1, . . . , `′k has to be inconsistent, i. e., v(1) ∈ dcinc or v(2) ∈ dcinc.

Fact (b) follows from the simple observation that the SMT solver has to detect and record the inconsistency
of the assignment mentioned above in order to prove unsatisfiability of formula (1) and with minimization of
conflict clauses it detects only conflicts which are confined either to `1, . . . , `k or to `′1, . . . , `′k.

11

Altogether this means that the elements of some orbit(vd1 , . . . , vdn , v`r+1 , . . . , v`k) which are not in the
subset dc′inc of dcinc computed by the SMT solver are either all mapped by F to 0 or are all mapped by F to
1. Thus, we can define an appropriate function G by don’t care assignment as follows:

1. If orbit(vd1 , . . . , vdn , v`r+1
, . . . , v`k) ⊆ dc′inc, then G(vd1 , . . . , vdn , v`r+1

, . . . , v`k) is chosen arbitrarily.

2. Otherwise G(vd1 , . . . , vdn , v`r+1 , . . . , v`k) = δ with F (orbit(vd1 , . . . , vdn , v`r+1 , . . . , v`k) \ dc′inc) = {δ},
δ ∈ {0, 1}.

It is easy to see that G does not depend on variables q`1 , . . . , q`r and that G is well-defined (this follows from
|F (orbit(vd1 , . . . , vdn , v`r+1

, . . . , v`k) \ dc′inc)| = 1), i. e., G is a possible solution according to Def. 2. (This
consideration also provides a proof for the “if-part” of Thm. 1.)

A predicate DC ′inc which describes the don’t cares in dc′inc may be extracted from the SMT solver as
a disjunction of negated conflict clauses which record inconsistencies between linear constraints. Note that
according to case 1 of the definition of G there may be several possible choices fulfilling the definition of G.
It was shown in [2] that an appropriate representation of such a function G can be computed using Craig
interpolation [28, 29, 30].

3.2 Optimizing State Space Traversal by Onioning
According to Sect. 2.3.3 model checking is performed by a backward reachability analysis for LHA+Ds.
Starting from a representation of the unsafe states, the backward reachability analysis performs an evaluation
of a continuous flow, then an evaluation of a discrete-to-continuous step, a series of discrete steps until a local
fixpoint is reached, a continuous-to-discrete step, then again a continuous flow, and so on. This iteration is
performed until a global fixpoint is finally reached or until an initial state is reached.

In the following we present a further analysis and an improvement of the basic model checking algorithm.
We start with a simplified version of the fixpoint iteration for explaining the basic ideas. In particular, at
first, we assume here a fixpoint iteration just using discrete transitions. The simplified fixpoint iteration is
then given by Alg. 2.

1 φ0 := ¬safe; i := 0;
2 if φ0 ∧ init 6= 0 then return false;
3 ;
4 repeat
5 i := i+ 1; φi := ∃dn+1, . . . dpPred(φi−1) ∨ ¬safe;
6 if φi ∧ init 6= 0 then return false;
7 until φi ∧ ¬φi−1 = 0;
8 return true;

Algorithm 2: Simplified reachability analysis assuming only discrete transitions.

The set φ0 is initialized by the set of unsafe states. In the set φi we collect all states from which we can
reach an unsafe state by a trajectory of length ≤ i and in that way we compute representations of larger and
larger sets. If we use exactly Alg. 2 we observe that we perform “duplicated work” in each step, since we start
the preimage computation in line 5 also from states in φi−1 which we were already included in φi−2 – and
for these states we already performed a preimage computation before.

This observation is not new, it has already been made when symbolic BDD based model checking was
introduced for discrete systems in the late eighties [31, 32]. A first idea for solving this problem is just to

11For our purposes, it does not matter whether the inconsistency is given in terms of linear constraints `1, . . . , `k or `′1, . . . , `
′
k.

We are only interested in assignments of boolean values to linear constraints leading to inconsistencies; of course, the set of all
inconsistencies is the same both for `1, . . . , `k and their copies `′1, . . . , `

′
k.
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compute the preimage only for the “onion ring”, i. e., for those states which were reached in the previous step
and not before. This leads to Alg. 3.

1 φ0 := ¬safe; ψ0 := ¬safe; i := 0;
2 if φ0 ∧ init 6= 0 then return false;
3 ;
4 repeat
5 i := i+ 1; ψi := ∃dn+1, . . . dpPred(ψi−1);
6 ψi := ψi ∧ ¬φi−1 ; // Newly reached states
7 if ψi ∧ init 6= 0 then return false;
8 φi := φi−1 ∨ ψi ; // All reached states
9 until φi ∧ ¬φi−1 = 0;

10 return true;
Algorithm 3: Changed reachability analysis.

However with symbolic representations it is by no means clear that the representation for a smaller set
is indeed more compact and thus needs less resources while computing preimages. Consider the following
example which illustrates this fact:

Example 1 We consider the set of unsafe states represented by the formula

φ0 = (y > 1) ∧ (y < 33) ∧ (x > 4) ∧ (x < 36) ∧ (y − x < 5)

∧ [(y < 17) ∨ (x > 16)] ∧ [(y < 21) ∨ (x > 20)] ∧ [(y < 25) ∨ (x > 24)] ∧ [(y < 29) ∨ (x > 28)]

∧ [(x− y < 11) ∨ (y > 7) ∧ (x < 22) ∨ (y > 11) ∧ (x < 26) ∨ (y > 15) ∧ (x < 30) ∨ (y > 19) ∧ (x < 34)].

φ0 is illustrated in Fig. 5(a). With the assignment x := x+ 1, y := y − 1 the preimage Pred(φ0) results in

φ1 = (y > 2) ∧ (y < 34) ∧ (x > 3) ∧ (x < 35) ∧ (y − x < 7)

∧ [(y < 18) ∨ (x > 15)] ∧ [(y < 22) ∨ (x > 19)] ∧ [(y < 26) ∨ (x > 23)] ∧ [(y < 30) ∨ (x > 27)]

∧ [(x− y < 9) ∨ (y > 8) ∧ (x < 21) ∨ (y > 12) ∧ (x < 25) ∨ (y > 16) ∧ (x < 29) ∨ (y > 20) ∧ (x < 33)].

Both φ0 and φ1 depend on 22 linear constraints. If we compute a formula for the newly reached states by
φ1 ∧ ¬φ0 as in Alg. 3, we first obtain a representation depending on 44 constraints (and note that we obtain
the same number of linear constraints, if we compute φ1∨¬safe as in line 5 of Alg. 2). By removing redundant
linear constraints from this representation of φ1 ∧ ¬φ0 we arrive at a representation depending on 24 linear
constraints.12 φ1 ∧ ¬φ0 is labeled by “onion ring” in Fig. 5(a). Unfortunately, the representation of φ1 ∧ ¬φ0
is not simpler than that of φ1, but more complicated. This shows that computing φ1 ∧ ¬φ0 is not necessarily
superior to just using φ1, if the state sets are represented symbolically.

Again, there is an idea from symbolic BDD based model checking for discrete systems which can help in this
context: For the states in ψi := ψi ∧¬φi−1 computed in line 6 of Alg. 3 we have to compute the preimage in
the next step. The states in φi−1 on the other hand may or may not enter the next preimage computation
(without changing the final set of reached states). That means that ψi can be optimized w. r. t. the “don’t
care set” φi−1. In [31, 32] these don’t cares were used in order to optimize the BDD representation of ψi by
the constrain or restrict operation.

However it remains the question what is an appropriate cost measure for optimizing our state set rep-
resentations which are given by LinAIGs. Here we propose to use the number of linear constraints the rep-
resentation depends on. As already discussed in Sect. 3.1.1, removing redundant constraints is crucial for
the success of our methods and we strongly prefer to compute preimages for state set representations which
are optimized w. r. t. the number of linear constraints. By considering the set of already reached states as a
“don’t care set”, we obtain additional degrees of freedom for keeping the number of linear constraints under
control. Using such an optimization we will arrive at a modified version of Alg. 3 where line 6 is replaced by
ψi := constraint_min(ψi,¬φi−1).

12If φ1 ∧ ¬φ0 is represented by a LinAIG, the redundancy removal operation produces exactly such a representation with 24
linear constraints.
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Figure 5: Motivating example for constraint minimization

3.2.1 Constraint Minimization

Before we look into the question how to use don’t cares in order to minimize the number of linear constraints,
we have a look at Ex. 1 again:

Example 2 Now we interpret φ0 = ¬safe as a don’t care set and try to replace φ1 = Pred(¬safe) by a
simpler representation just by changing φ1 inside the don’t care set. Fig. 5(b) gives a solution (“optimized
shape”) which depends only on 14 linear constraints.

In the remainder of this section we present how to compute such solutions by a suitable algorithm. Our
methods generalize the approach for redundancy elimination from Sect. 3.1.

We start with a method to check whether a fixed set of linear constraints can be removed from a represen-
tation by using don’t care conditions. In the following we assume a predicate F (d1, . . . , dn, `1, . . . , `k) which
is to be optimized, a predicate DC(d1, . . . , dn, `1, . . . , `k) for the don’t care conditions, and a set `1, . . . , `r
(1 ≤ r ≤ k) of linear constraints which we would like to remove from F using don’t care optimization.

Definition 4 (DC-Removability of linear constraints) The linear constraints `1, . . . , `r (1 ≤ r ≤ k) are called
DC-removable from the representation of F (d1, . . . , dn, `1, . . . , `k) using don’t cares from DC(d1, . . . , dn,
`1, . . . , `k) iff there is a boolean function G with the property that ¬DC(d1, . . . , dn, `1, . . . , `k)∧F (d1, . . . , dn, `1,
. . . , `k) and ¬DC(d1, . . . , dn, `1, . . . , `k) ∧G(d1, . . . , dn, `r+1, . . . , `k) represent the same predicates.13

Checking DC-Removability. The check whether a set of linear constraints is DC-removable is based on
the following theorem, which generalizes Thm. 1:

Theorem 2 (DC-Removability Check) For all 1 ≤ i ≤ k let `i be a linear constraint over real-valued
variables {c1, . . . , cf} and `′i exactly the same linear constraint as `i, but now over a disjoint copy {c′1, . . . , c′f}
of the real-valued variables. Let ≡ denote boolean equivalence. The linear constraints `1, . . . , `r (1 ≤ r ≤ k)
are DC-removable from F (d1, . . . , dn, `1, . . . , `k) using don’t cares from DC(d1, . . . , dn, `1, . . . , `k) if and only
if the predicate

F (d1, . . . , dn, `1, . . . , `k) ∧ ¬F (d1, . . . , dn, `
′
1, . . . , `

′
k)

∧ ¬DC(d1, . . . , dn, `1, . . . , `k) ∧ ¬DC(d1, . . . , dn, `
′
1, . . . , `

′
k) ∧∧ki=r+1(`i ≡ `′i)

(3)

is not satisfiable by any assignment of boolean values to d1, . . . , dn and real values to the variables c1, . . . , cf
and c′1, . . . , c′f .

13This means that F and G are the same except for don’t cares.
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The proof of Thm. 2 can be found in [2].
Just as for the detection of a maximal set of redundant linear constraints, we can define an overall

algorithm detecting a maximal set of linear constraints which are DC-removable at the same time. This
algorithm is based on the check from Thm. 2 and makes use of an incremental SMT solver.

Computing an optimized representation. The ideas for a constructive proof for the if-part of Thm. 2
and thus a method to compute an appropriate function G as defined above are similar to the ideas behind the
corresponding construction for the redundancy removal operation which was already described in Sect. 3.1.4.
(However, in contrast to constraint minimization, redundancy removal does not change represented shapes
at all).

We assume that formula (3) from Thm. 2 is unsatisfiable and try to change F (d1, . . . , dn, q`1 , . . . , q`k) in
a way that the result G will be independent from q`1 , . . . , q`r . In addition to the set dcinc of don’t cares due
to inconsistent assignments to constraint variables (Def. 3) (or the subset dc′inc ⊆ dcinc extracted from an
SMT solver checking formula (3)), we can make use of a set dc of don’t cares which results from the boolean
abstraction of the don’t care predicate DC:

dc = {(vd1 , . . . , vdn , v`1 , . . . , v`k) | (vd1 , . . . , vdn) ∈ {0, 1}n and ∃vc ∈ Rf with `1(vc) = v`1 , . . . , `k(vc) = v`k
and DC(vd1 , . . . , vdn , v`1 , . . . , v`k) = 1}.

Now we are looking for a boolean function G(d1, . . . , dn, q`r+1 , . . . , q`k) with

(F ∧ ¬DC ∧ ¬DC ′inc)(d1, . . . , dn, q`1 , . . . , q`k) =⇒ G(d1, . . . , dn, q`r+1 , . . . , q`k) and (4)

G(d1, . . . , dn, q`r+1
, . . . , q`k) =⇒ (F ∨DC ∨DC ′inc)(d1, . . . , dn, q`1 , . . . , q`k). (5)

With an argument which is analogous to Sect. 3.1.4 the computation of an appropriate function G can be
performed by Craig interpolation.

3.2.2 Changes in Model Checking Algorithm

Based on the ideas described above we can define an optimized version of Alg. 1. The algorithm is given
by Alg. 4. Since this algorithm is based on optimized “onion rings”, we will call it onion algorithm in the
following. In contrast, the original algorithm from Alg. 1 is called the non-onion algorithm.

3.2.3 Per Mode Onioning

There is another way of computing optimized onion rings used in flow steps : Instead of optimizing the
complete c2d-onion ring for the previous c2d state set, and then for each mode computing a cofactor of
the c2d-onion ring and using it for mode preimage computation, it is possible to compute cofactors of c2d
preimage and previous c2d state set for each mode, use them to optimize a mode specific onion ring, and
use that for mode preimage computation. This has the advantage that the state sets used for mode preimage
computation are optimized specifically for the modes they are used in, which is paid for with a cofactor
computation and a constraint minimization for each mode.

The resulting model checking algorithm is called per mode onion algorithm, and is given by Alg. 5. It
differs to Alg. 4 only in a few lines : The complete c2d-onion ring constraint minimization in Alg. 4, line 14
is no longer necessary, and the mode specific constraint minimization is added (Alg. 5, line 16).

3.3 Optimized Quantifier Elimination for Linear Real Arithmetic
Quantifier elimination for Linear Real Arithmetic turned out to be the crucial and most expensive step in
our model checking algorithm. For this reason we look into various approaches for optimizing this step.
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1 ψd2c0 := ¬safe; φd2c0 := ¬safe; φc2d0 := 0; φflow0 := 0; φ
dfp
0 := 0;

2 i = 0;
3 repeat
4 i := i+ 1;

// Discrete fixed point iteration:
5 j := 0;
6 ψd0 := ψd2ci−1; φd0 = ψd2ci−1 ∨ φ

dfp
i−1;

7 repeat
8 j := j + 1;
9 ψdj := Pred(ψdj−1 ∧GC);

10 ψdj := constraint_min(ψdj , φ
d
j−1); φdj := φdj−1 ∨ ψdj ;

11 until GC ∧ φdj ∧ ¬φdj−1 = 0;
12 ψ

dfp
i := constraint_min(φdj , φ

dfp
i−1); φ

dfp
i := φdj ;

// Evaluate c2d transitions:
13 ψc2di := ∃dn+1, . . . dp(Prec2d(ψ

dfp
i ∧GC)) ∧∨kh=1(βh ∧ (−→m = mh));

14 ψc2di := constraint_min(ψc2di , φc2di−1);
15 if i = 1 then ψc2di := ψc2di ∨ ¬safe ;
16 φc2di := φc2di−1 ∨ ψc2di ;

// Evaluate continuous flow:
17 ψflowi :=

∨k
h=1 constraint_min(Prec(ψc2di |−→m=mh

,Wh, βh), φflowi−1 |−→m=mh
) ∧ (−→m = mh);

18 ψflowi := constraint_min(ψflowi , φflowi−1 ); φflowi := φflowi−1 ∨ ψflowi ;
// Evaluate d2c transitions:

19 ψd2ci := Pred2c(ψflowi ∧ d2cTransEnabled ∧GC);
20 ψd2ci := constraint_min(ψd2ci , φd2ci−1); φd2ci := φd2ci−1 ∨ ψd2ci ;
21 until GC ∧ φd2ci ∧ ¬φd2ci−1 = 0;
22 if GC ∧ (φ

dfp
i ∨ φc2di ∨ φflowi ∨ φd2ci ) ∧ init 6= 0 then return false;

23 return true;
Algorithm 4: Backward reachability analysis, onion algorithm.
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1 ψd2c0 := ¬safe; φd2c0 := ¬safe; φc2d0 := 0; φflow0 := 0; φ
dfp
0 := 0;

2 i = 0;
3 repeat
4 i := i+ 1;

// Discrete fixed point iteration:
5 j := 0;
6 ψd0 := ψd2ci−1; φd0 = ψd2ci−1 ∨ φ

dfp
i−1;

7 repeat
8 j := j + 1;
9 ψdj := Pred(ψdj−1 ∧GC);

10 ψdj := constraint_min(ψdj , φ
d
j−1); φdj := φdj−1 ∨ ψdj ;

11 until GC ∧ φdj ∧ ¬φdj−1 = 0;
12 ψ

dfp
i := constraint_min(φdj , φ

dfp
i−1); φ

dfp
i := φdj ;

// Evaluate c2d transitions:
13 ψc2di := ∃dn+1, . . . dp(Prec2d(ψ

dfp
i ∧GC)) ∧∨kh=1(βh ∧ (−→m = mh));

14 ψc2di := constraint_min(ψc2di , φc2di−1);
15 if i = 1 then ψc2di := ψc2di ∨ ¬safe ;
16 φc2di := φc2di−1 ∨ ψc2di ;

// Evaluate continuous flow:
17 ψflowi :=∨k

h=1 constraint_min(Prec(constraint_min(ψc2di |−→m=mh
, φc2di−1|−→m=mh

),Wh, βh), φflowi−1 |−→m=mh
) ∧

(−→m = mh);
18 ψflowi := constraint_min(ψflowi , φflowi−1 ); φflowi := φflowi−1 ∨ ψflowi ;

// Evaluate d2c transitions:
19 ψd2ci := Pred2c(ψflowi ∧ d2cTransEnabled ∧GC);
20 ψd2ci := constraint_min(ψd2ci , φd2ci−1); φd2ci := φd2ci−1 ∨ ψd2ci ;
21 until GC ∧ φd2ci ∧ ¬φd2ci−1 = 0;
22 if GC ∧ (φ

dfp
i ∨ φc2di ∨ φflowi ∨ φd2ci ) ∧ init 6= 0 then return false;

23 return true;
Algorithm 5: Backward reachability analysis, per mode onion algorithm.
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3.3.1 Generalizing Redundancy Removal: Minimizing Polarities

As already described in Sect. 2.3.2, eliminating existential (or universal) quantifiers for real variables x can
be reduced to the application of a certain number of testpoints. The Loos-Weispfenning method used for
this assumes that the formula ψ(x, ~y) is written as a positive Boolean combination of linear constraints
x ∼i ti(~y) and 0 ∼′j t′j(~y), where ∼i,∼′j ∈ {=, 6=, <,≤, >,≥}. Then two possible sets of test points of ψ for
x are computed, the test point set of upper boundaries TP1(ψ(x, ~y), x) = {+∞} ∪ { ti(~y) | ∼i ∈ {=,≤}} ∪
{ ti(~y)− ε | ∼i ∈ {6=, <} } and the test point set of lower boundaries TP2(ψ(x, ~y), x) = {−∞}∪ { ti(~y) | ∼i ∈
{=,≥}} ∪ { ti(~y) + ε | ∼i ∈ {6=, >} }. The set of testpoints TP(ψ(x, ~y), x) is chosen to be the smaller one
of the two sets and the existential quantification ∃x. ψ(x, ~y) is reduced to the equivalent finite disjunction∨
τ∈TP(ψ(x,~y),x) ψ(x, ~y)[τ/x]. It is easy to see that the method does not need to be changed, if the formula

contains additional Boolean variables, i. e., if it is a positive Boolean combination of linear constraints and
negated or non-negated Boolean variables.

In our model checker predicates are given as a LinAIGs. If negations in the LinAIG are “pushed towards the
inputs” by simple transformation rules, then we obtain a representation where the internal nodes represent
OR and AND gates and possible negations are restricted to the inputs. Remember that the inputs in turn
represent Boolean variables or linear constraints. Of course, negations of linear constraints are again linear
constraints, such that this representation can be interpreted as a positive Boolean combination of linear
constraints and negated or non-negated Boolean variables. The Loos-Weispfenning method can be applied to
this transformed representation. It is easy to see that we do not really need to compute the corresponding
transformed representation. For the computation of the sets TP1 and TP2 it is only needed to compute in
which polarity the linear constraints would occur in the transformed representation. Thus, it is enough to
traverse the LinAIG and to determine whether a linear constraint ` can be reached only via an even number
of negations, only via an odd number of negations, or both via an even and an odd number of negations. In
the first case, we only need ` for computing TP1 and TP2, in the second case we only need ¬`, and in the
third case we need both ` and ¬`. In the first two cases, only a single test point results from ` (either in TP1

or TP2), in the third case two test points result from `, one in TP1 and one in TP2.
In Sect. 3.1 we have shown that we can change the representation of a predicate F (d1, . . . , dn, `1, . . . , `k) by

removing redundant linear constraints. Removal of redundant linear constraints before quantifier elimination
is highly beneficial, since the redundant linear constraints do not contribute to the sets of test points anymore.
The observation discussed above suggests a refined method: If a linear constraint `i occurs in both polarities
in a predicate F (d1, . . . , dn, `1, . . . , `k) and `i is not redundant in F , then we can ask whether there is an
equivalent representation for F where `i occurs only in one polarity. If this is the case, one test point can be
omitted, either in TP1 or TP2. Note that for the computation of test points it is enough to know that such
an equivalent representation for F exists. It is not needed to compute this equivalent representation before
applying quantifier elimination using the Loos-Weispfenning method, since the correctness of the method
depends on semantical properties of F , not on syntactic ones.

The question whether there is an equivalent representation for F with `i occurring only in one polarity
can be seen by an analysis of certain monotonicity properties of F .

We start by briefly reviewing known results on monotonicity of Boolean functions.

Definition 5 (Monotonic variables) Let F be a boolean function over Boolean variables x1, . . . , xn. The
function F (x1, . . . , xn) is called monotonic in the variables x1, . . . , xr (1 ≤ r ≤ n) iff the following holds:
∀(vx1 , . . . , vxn), (vx′1 , . . . , vx′r , vxr+1 , . . . , vxn) ∈ Bn:
If (vx1 , . . . , vxn) ≤ (vx′1 , . . . , vx′r , vxr+1 , . . . , vxn), then F (vx1 , . . . , vxn) ≤ F (vx′1 , . . . , vx′r , vxr+1

, . . . , vxn).

(The first ≤ in the definition means pointwise ≤.)
It is well known that monotonic functions can be represented by “monotonic Boolean formulas”:

Lemma 1 Let F (x1, . . . , xn) be a Boolean function which is monotonic in the variables x1, . . . , xr. F can be
represented by a positive Boolean combination of x1, . . . , xr, xr+1,¬xr+1, . . . , xn,¬xn.

Proof 1 Consider an arbitrary DNF for F and assume that the DNF contains a term with a negated variable
from ¬x1, . . . ,¬xr. Wlog. consider a term

t = ¬x1xε22 . . . x
εr′
r′ x

εr1
r+1 . . . x

εn′
n′
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(r′ ≤ r, n′ ≤ n).
Here

xεii =

{
¬xi if εi = 0

xi if εi = 1

Then t can be replaced by
t′ = xε22 . . . x

εr′
r′ x

εr1
r+1 . . . x

εn′
n′

without changing the represented function. We have to prove that the replacement does not add further satis-
fying assignments: Consider an arbitrary satisfying assignment ε = (ε1, ε2, . . . , εr′ , εr′+1, . . . , εr, εr+1, . . . , εn)
for t′. If ε1 = 0, then ε is also a satisfying assignment of t and thus of F . If ε1 = 1, then ε is a satisfying
assignment due to monotonicity: ε′ = (0, ε2, . . . , εr′ , εr′+1, . . . , εr, εr+1, . . . , εn) is a satisfying assignment of t
and thus of F . Since ε′ ≤ ε, F (ε′) = 1, and F monotonic in x1, we can conclude F (ε) = 1.

Based on this argument, all occurrences of negated variable from ¬x1, . . . ,¬xr can be removed from the
DNF without changing the represented function.

Now we consider Boolean combinations of Boolean variables and linear constraints:

Definition 6 (Monotonicity of linear constraints) Let F be a Boolean function, let d1, . . . , dn be Bool-
ean variables and let `1, . . . , `k be linear constraints over real-valued variables C = {c1, . . . , cf}. F (d1, . . . , dn,
`1, . . . , `k) is called monotonic in the linear constraints `1, . . . , `r (1 ≤ r ≤ k) iff it holds ∀(vd1 , . . . , vdn) ∈ Bn,
∀vc,v

′
c ∈ Rf : If ∀1 ≤ i ≤ r `i(vc) ≤ `i(v

′
c), ∀r + 1 ≤ j ≤ k `j(vc) = `j(v

′
c), then F (vd1 , . . . , vdn ,

`1(vc), . . . , `r(vc), `r+1(vc), . . . , `k(vc)) ≤ F (vd1 , . . . , vdn , `1(v′c), . . . , `r(v
′
c), `r+1(v′c), . . . , `k(v′c)).

Monotonicity of linear constraints can be easily checked using an SMT solver. For all 1 ≤ i ≤ k let `i
be a linear constraint over real-valued variables {c1, . . . , cf} and `′i exactly the same linear constraint as `i,
but over a disjoint copy {c′1, . . . , c′f} of the variables. According to Def. 6, F is monotonic in `1, . . . , `r, if the
following formula is a tautology:  r∧

i=1

(¬`i ∨ `′i) ∧
k∧

j=r+1

(`j ≡ `′j)

⇒
(
¬F (d1, . . . , dn, `1, . . . , `r, `r+1, . . . , `k) ∨ F (d1, . . . , dn, `

′
1, . . . , `

′
r, `
′
r+1, . . . , `

′
k)
)

This is equivalent to the unsatisfiability of the following formula:

r∧
i=1

(¬`i ∨ `′i) ∧
k∧

j=r+1

(`j ≡ `′j) ∧ F (d1, . . . , dn, `1, . . . , `r, `r+1, . . . , `k) ∧ ¬F (d1, . . . , dn, `
′
1, . . . , `

′
r, `
′
r+1, . . . , `

′
k)

which can be checked using an SMT solver. Thus, we have the following theorem:

Theorem 3 For all 1 ≤ i ≤ k let `i be a linear constraint over real-valued variables {c1, . . . , cf} and `′i
exactly the same linear constraint as `i, but over a disjoint copy {c′1, . . . , c′f} of the variables, d1, . . . , dn are
Boolean variables. F (d1, . . . , dn, `1, . . . , `k) is monotonic in `1, . . . , `r (1 ≤ r ≤ k) iff

r∧
i=1

(¬`i ∨ `′i) ∧
k∧

j=r+1

(`j ≡ `′j) ∧ F (d1, . . . , dn, `1, . . . , `r, `r+1, . . . , `k) ∧ ¬F (d1, . . . , dn, `
′
1, . . . , `

′
r, `
′
r+1, . . . , `

′
k)

is unsatisfiable.

The relation of monotonicity in linear constraints and monotonic Boolean functions is expressed by the
following theorem:

Theorem 4 If F (d1, . . . , dn, `1, . . . , `k) is monotonic in `1, . . . , `r (1 ≤ r ≤ k) then there is a Boolean
function G(d1, . . . , dn, q`1 , . . . , q`k) with the property that
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1. G is monotonic in q`1 , . . . , q`r and

2. F (d1, . . . , dn, `1, . . . , `k) and G(d1, . . . , dn, `1, . . . , `k) represent the same predicates.

Proof 2 Since G(d1, . . . , dn, `r+1, . . . , `k) and F (d1, . . . , dn, `1, . . . , `k) have to represent the same predicates,
the Boolean functions F and G are only allowed to differ on the don’t care set dcinc induced by the linear
constraints `1, . . . , `k. According to Def. 3, dcinc is defined by

dcinc := {(vd1 , . . . , vdn , v`1 , . . . , v`k) | (vd1 , . . . , vdn) ∈ {0, 1}n, (v`1 , . . . , v`k) ∈ {0, 1}k

and ∀vc ∈ Rf ∃1 ≤ i ≤ k with `i(vc) 6= v`i}.

An appropriate function G is computed by making use of the don’t care set dcinc. We abbreviate v :=
(vd1 , . . . , vdn , v`1 , . . . , v`k), v′ := (vd1 , . . . , vdn , v

′
`1
, . . . , v′`r , v`r+1

, . . . , v`k), and v′′ := (vd1 , . . . , vdn , v
′′
`1
, . . . , v′′`r ,

v`r+1 , . . . , v`k). We define G by

G(v) =


F (v) if v /∈ dcinc
0 if v ∈ dcinc and ∃v′ /∈ dcinc with v ≤ v′, F (v′) = 0

1 otherwise

F (d1, . . . , dn, `1, . . . , `k) and G(d1, . . . , dn, `1, . . . , `k) represent the same predicates, since the Boolean func-
tions F and G only differ on elements of dcinc, i. e., on elements representing inconsistent assignments of
values to linear constraints. It remains to be shown that the Boolean function G is monotonic in q`1 , . . . , q`r .
Assume that G is not monotonic in q`1 , . . . , q`r . Then there exist v and v′ such that v ≤ v′, but G(v) > G(v′),
i. e., G(v) = 1, G(v′) = 0. We distinguish between different cases for v and v′:

1. v, v′ /∈ dcinc.
Then G(v) = F (v) and G(v′) = F (v′). Moreover, there exist vc,v

′
c ∈ Rf such that for 1 ≤ i ≤ r

`i(vc) = v`i , `i(v′c) = v′`i , and `i(vc) ≤ `i(v
′
c), for r + 1 ≤ j ≤ k `j(vc) = `j(v

′
c) = v`j , but

F (vd1 , . . . , vdn , `1(vc), . . . , `r(vc), `r+1(vc), . . . , `k(vc)) > F (vd1 , . . . , vdn , `1(v′c), . . . , `r(v
′
c), `r+1(v′c),

. . . , `k(v′c)). This contradicts the monotonicity of F (d1, . . . , dn, `1, . . . , `k) in `1, . . . , `r.

2. v ∈ dcinc, v′ /∈ dcinc.
Then G(v′) = F (v′) = 0. G(v) = 1 contradicts the second case of the definition of G.

3. v, v′ ∈ dcinc
Since G(v′) = 0, according to the definition of G there must be a v′′ /∈ dcinc with v′ ≤ v′′, F (v′′) = 0.
G(v) = 1 contradicts the second case of the definition of G, since v ≤ v′ ≤ v′′ and thus G(v) = 0.

4. v /∈ dcinc, v′ ∈ dcinc.
Since G(v′) = 0, there must be a v′′ /∈ dcinc with v′ ≤ v′′, F (v′′) = 0. Moreover, G(v) = F (v) = 1,
since v /∈ dcinc. Thus, there exist v /∈ dcinc, v′′ /∈ dcinc with v ≤ v′ ≤ v′′, F (v) = 1, F (v′′) = 0. As in
case 1) this contradicts the This contradicts the monotonicity of F (d1, . . . , dn, `1, . . . , `k) in `1, . . . , `r.

From Thm. 4 and Lemma 1 we can conclude that a predicate F (d1, . . . , dn, `1, . . . , `k) which is monotonic
in `1, . . . , `r (1 ≤ r ≤ k) has an equivalent representation as a positive Boolean combination of d1, . . . , dn,
`1, . . . , `r, `r+1,¬`r+1, . . . , `n,¬`n. For this reason, ¬`1, . . . ,¬`r do not need to be considered for the compu-
tation of the test points.

As already mentioned, for minimizing the number of test points we do not need to compute a Boolean
function G according to Thm. 4, but we only need to know whether F (d1, . . . , dn, `1, . . . , `k) is monotonic in
`1, . . . , `r. This can be checked using Thm. 3. For constructing sets of monotonic linear constraints step by
step, we can make use of incremental SMT solvers as for redundancy detection.

3.3.2 Generalizing Constraint Minimization: DC Based Minimization of Polarities

Just as constraint minimization extends redundancy removal using don’t cares, the polarity-based test point
minimization from Sect. 3.3.1 can be extended as well. The check for monotonicity in `1, . . . , `r from Thm. 3
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is generalized by using don’t cares DC(d1, . . . , dn, `1, . . . , `k) in a similar manner to the generalization in
Thm. 2. In contrast to Sect. 3.3.1, the original predicate F (d1, . . . , dn, `1, . . . , `k) is semantically changed
by using don’t care conditions. Therefore not only a minimized set of test points has to be computed, but
also a corresponding predicate which results from F by exploitation of don’t cares. (The Loos-Weispfenning
method applied to the original predicate F with the minimized set of test points is not correct in this case.)
The computation of the new predicate can be reduced to an appropriate existential quantification or to an
application of Craig interpolation according to [30]. Details are omitted here.

3.3.3 Loos–Weispfenning method for several quantifiers of the same type

In Sect. 2.3.2 we have described the Loos-Weispfenning quantifier elimination method for linear real arith-
metic. The method eliminates an existentially quantified formula ∃x. ψ(x, ~y) by a disjunction of instances∨
τ∈TP ψ(τ, ~y), where τ ranges over a finite set TP of test points and the size of TP is proportional to the

number of linear constraints in ψ(x, ~y). When the formula after the existential quantifier is a disjunction, it
is clear that the method profits from moving the existential quantifier inside the disjunction: Performing a
quantifier elimination of (∃x. ψ1(x, ~y))∨ (∃x. ψ2(x, ~y)) results in a significantly smaller formula than perform-
ing a quantifier elimination of ∃x. (ψ1(x, ~y) ∨ ψ2(x, ~y)). Since the result of a quantifier elimination is again a
disjunction, this is even more important when a sequence of several existential quantifiers has to be elimi-
nated, in fact, by moving the outer quantifiers inside whenever the innermost quantifier has been eliminated,
one gets a single exponential complexity of the procedure (w. r. t. the number of quantifiers) compared to
double exponential for a naïve elimination.

Already in early versions of FOMC, we optionally implemented this special handling of quantified dis-
junctive formulas. Alas, the option did not pay off in our experiments. As root cause for this behavior we
identified our redundancy removal methods. It turned out that redundancy removal often destroys the dis-
junctive structure of the resulting formulas. Hence, application of redundancy removal inside the removal of
several quantifiers is one the one hand desirable to shrink the formula sizes, but on the other hand, it often
destroys the disjunctive structure and hence avoids its exploitation. This situation abruptly improved with
the availability of polarity minimization. Since polarity minimization reduces the number of test points to
the number of test point of an equivalent redundancy-free formula without altering the structure of the given
formula, it is often sufficient to perform a final redundancy removal after eliminating the complete sequence
of quantifiers.

However, independently of this observation, we implemented a specialized, recursive Loos-Weispfenning
quantifier elimination method for several quantifiers that internally preserves and exploits the disjunctive
structure of the resulting formulas. Having an enclosed method for elimination of several quantifiers enables
us to choose which quantifier to eliminate first. We implemented a simple heuristic which computes the
number of test points for each quantifier to be eliminated, and always chooses to eliminate the quantifier
with least test points first.

3.3.4 SMT-based Quantifier Elimination

The Loos-Weispfenning test point method uses the equivalence of the existential quantified formula ∃x. ψ(x, ~y)
and the finite disjunction

∨
τ∈TP ψ(τ, ~y) of formulas over all test points τ ∈ TP = TP(ψ, x). It is an important

observation that even for a satisfiable formula ∃x. ψ(x, ~y) many of the sub-formulas ψ(τ, ~y), τ ∈ TP , represent
the empty set. On the other hand, for any satisfiable formula ∃x. ψ(x, ~y), there must be at least one test point
τ ∈ TP such that the corresponding sub-formula ψ(τ, ~y) is not empty. Moreover, ψ(τ, ~y) represents a subset
of ∃x. ψ(x, ~y).

In this section we discuss an SMT-based approach for quantifier elimination. Its main idea is to enumerate
all test points τ which lead to non-empty sub-formulas ψ(τ, ~y). It is based on a method which is very similar
to a recent technique called model based projection [33]. While there are research paper on integrating model
based projection into SMT solvers to solve formulas with alternating quantifiers [34, 35], to the best of our
knowledge, we are the first which consequently use and evaluate this method for complete existential quantifier
elimination on non-convex data structures like LinAIGs.
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Using an SMT solver to find non-empty subsets. Let us assume that we already proved the satisfi-
ability of ∃x. ψ(x, ~y) with an SMT solver. Then we found a satisfying assignment (u,~v) for (x, ~y). We show
how to identify a test point τ that provides us a non-empty sub-formula ψ(τ, ~y) without any additional SMT
solver call.

As a prerequisite we have to recall some properties of test points: For a fixed assignment ~v′ of ~y the
function f~v′ : x 7→ ψ(x,~v′) is piecewise constant. A test point symbolically represent an endpoint of an
interval over which the function is constant. Since each test point τ = τ(~y) is of the form ±∞, t(~y), or
t(~y) ± ε, it evaluates under the assignment ~v to an extended value τ(~v) in R∗, where R∗ is R extended by
±∞ and addition or subtraction of the infinitesimal ε. We expand the usual <-ordering to operate on R∗ by
setting −∞ < a < a+ ε < b− ε < b < +∞ for all a, b ∈ R with a < b.

Now we show how to identify a test point which leads to a satisfiable sub-formula: For simplicity let us
assume that TP contains the lower interval boundaries. Further, let τ∗ = τ∗(~y) be a test point with τ∗(~v) ≤ u
such that there is no other test point τ = τ(~y) with τ∗(~v) < τ(~v) ≤ u. Since f~v is piecewise constant, and
since there is no test point which separates c from τ∗(~v), we have f~v(τ∗(~v)) = f~v(u) = 1. Hence τ∗ is a test
point which leads to the satisfiable sub-formula ψ(τ∗, ~y).

In practice we observe that the SMT solver often returns variable assignments ~v for ~y under which several
test points τ1, τ2, . . . , τk coincide with τ∗, i. e., τ1(~v) = τ2(~v) = · · · = τk(~v) = τ∗(~v). In this case all sub-
formulas φ(τ1, ~y), φ(τ2, ~y), . . .φ(τk, ~y), and φ(τ∗, ~y) are valid subsets of ∃x. φ(x, ~y). Hence, we are free to
choose any non-empty disjunctive combination of these sub-formulas as a valid subset of ∃x. φ(x, ~y). In the
following we discuss to strategies, the frugal strategy which choose only one sub-formula nondeterministically,
and the greedy strategy which takes the disjunction of all these sub-formulas.

The method given above can easily be generalized to formulas also containing Boolean variables. We now
discuss the case where we have several nested quantifiers of the same kind: Let ∃xm, . . . x1. ψ(x1, . . . , xm, ~y) be
a satisfiable formula and (u1, . . . , um, ~v) a satisfying assignment of the variables (x1, . . . , xm, ~v). We proceed
as before: we compute the test points of ψ(x1, . . . , xm, ~y) for x1 and determine a satisfiable sub-formula
ψ(τ∗1 , x2, . . . , xm, ~y). Now ∃xm, . . . x2. ψ(τ∗1 , x2, . . . , xm, ~y) is a formula that does not contain x1, represents
a non-empty subset of f the original formula, and (u2, . . . , um, ~v) is a satisfying assignment. Hence, we may
proceed with partial removal of the next quantifier until no quantifiers are left.

Enumeration of all non-empty test point-generated subsets. So far, we gave a method which allows
to generalize the satisfying assignment u and the model ~v of ∃x. ψ(x, ~y) to a formula describing a subset of
models ψ(τ∗, ~y) of ∃x. ψ(x, ~y) with ψ(τ∗, ~v) = 1. Now we will show how this method can be used to obtain
a complete model enumeration of ∃x. ψ(x, ~y). The idea is quite simple. Initially let φ(~y) = 0 and χ(x, ~y) =
ψ(x, ~y). We use an SMT solver to find a satisfying assignment (u,~v) of χ(x, ~y). We compute the test point set
TP(ψ(x, ~y)) of ψ(x, ~y) for the elimination of x. Then we identify the test points τ∗ leading to a satisfiable
sub-formula as above, i. e., φ(τ∗, ~y) is a satisfiable sub-formula of ∃x. ψ(x, ~y), with φ(τ∗, ~v) = 1, for each such
τ∗. Here we are free to use either the frugal or the greedy strategy. The resulting satisfiable sub-formulas are
disjunctively collected in φ, i. e., we incrementally assign φ(~y)∨ψ(τ∗, ~y) to φ(~y). Moreover, we conjunctively
add the negations of the resulting sub-formulas to χ, i. e., we incrementally assign χ(x, ~y) ∧ ¬ψ(τ∗, ~y) to
χ(x, ~y). Now we proceed with the satisfiability check of χ as before. The process terminates as soon as χ gets
unsatisfiable. Then φ(~y) is a quantifier-free equivalent of ∃x. ψ(x, ~y). Alg. 6 shows the pseudo-code of this
SMT-based method for quantifier elimination using the frugal strategy.

1 φ(~y) := false;
2 χ(x, ~y) := ψ(x, ~y);
3 while satisfiable(χ(x, ~y)) do
4 (u,~v) := findSatisfyingAssignment(χ(x, ~y));
5 TP := computeTestPointSet(ψ(x, ~y), y);
6 τ∗ := findTestPointForSatisfiableSubFml(TP , u);
7 φ(~y) := φ(~y) ∨ ψ(τ∗, ~y) and χ(x, ~y) := χ(x, ~y) ∧ ¬ψ(τ∗, ~y);

8 return φ(~y);
Algorithm 6: Quantifier elimination by SMT-based model enumeration for single existential quantifier,
frugal.
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Let us discuss some properties of the SMT-based quantifier elimination.

• φ(~y) always contain a valid underapproximation of ∃x. ψ(x, ~y) and all missing states can be found in χ
due to the equivalence ∃x. χ(x, ~y) ≡ ∃x. ψ(x, ~y) ∧ ¬φ(~y).

• In each loop, at least one test-point τ∗ is identified and the corresponding sub-formula ψ(τ∗, ~y) is
guaranteed to contain states which have not been explored in φ before.14

• Since this algorithm produce a strictly monotonic growing subset of the formulas which would be
obtained by the classical Loos-Weispfenning algorithm, the termination of this algorithm is guaranteed.

• Polarity minimization is not needed for this algorithm since only test points are used which lead to a
satisfying sub-formula.

Again, this algorithm can easily be extended to work with formulas containing Boolean variables, or
having several nested quantifier of the same kind.

3.4 Acceleration at Once
Per mode acceleration (as described in 2.3.3) computes the mode preimage for each global mode separately,
and combines them to a global preimage.

If the system is composed of multiple parallel components, each with a number of local modes, then this
leads to a large number of mode preimage computations, because each combination of local modes is a valid
global mode – in fact the set of global modes is the cross product of the sets of local modes, so the number
of global modes grows exponentially with the number of parallel components.

This can be counteracted by doing the image computation without mode splitting : Instead of using
a number of (global) mode specific predicates (containing state set cofactors and (global) mode specific
derivative and boundary information) and eliminating we build one shared predicate, in which (local) mode
specific derivative and boundary information is guarded by the corresponding mode encodings, and eliminate
real variables on this single (although bigger) predicate.

3.4.1 Refined System Model

In this section we use a slightly refined system model. It is equivalent to the LHA+D from Sect. 2.1, except that
now we explicitly define the linear inequation system describing the possible continuous variable derivatives
of modes. We use a finite set GE of guarded evolutions gej of the form ξj → Wj , where the guard ξj is a
boolean expression over the mode variables, and Wj is a linear equation system of the form ~x′ ≤ w. The
linear inequation system associated with mode mi ∈M is the conjunction of the Wj of all gej ∈ GE for
which ξj holds in mi.

3.4.2 Parallel Composition

If a system is composed of several parallel subsystems (S = S1|| . . . ||Sk), then the subsystems interact over
inputs only, so the output of one subsystem can be the input of another. If such a mapping is given, then the
overall system model can be derived out of the component system models.

Since in the system model during a jump all enabled discrete-to-continuous and discrete guarded as-
signments are considered, it is necessary to ensure that the guarded assignments of a component are only
enabled if that component is jumping. This can be achieved by extending each component with a specific
jump variable, which is enabled during the jump of that component only.

The extended component Sjumpi is the same as Si, except

• the set of discrete variables is extended with a fresh jump variable :
DSjumpi

= DSi ∪ {jumpi}
14Note that this clearly holds for the frugal strategy. For non-frugal strategies we can only ensure that the disjunction∨
τ∗ ψ(τ

∗, ~y) over all suitable test points contains states which have not been explored in φ so far.
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• each continuous-to-discrete guarded assignment is extended, such that its assignment enables the jump
variable :
DT c2d

Sjumpi

= {(ξ ∧ jumpi → x1 := t1, . . . , xn := tn, jumpi := 1)|(ξ → x1 := t1, . . . , xn := tn) ∈ DT c2dSi
}

• each discrete guarded assignment is extended, such that its guard depends on the enabled jump variable
:
DT d

Sjumpi

= {(ξ ∧ jumpi → x1 := t1, . . . , xn := tn)|(ξ → x1 := t1, . . . , xn := tn) ∈ DT dSi}

• each discrete-to-continuous guarded assignment is extended, such that its guard depends on the enabled
jump variable, and its assignment disables the jump variable :
DT d2c

Sjumpi

= {(ξ ∧ jumpi → x1 := t1, . . . , xn := tn, jumpi := 0)|(ξ → x1 := t1, . . . , xn := tn) ∈ DT d2cSi
}

• each guarded evolution is extended, such that its guards depends on the disabled jump variable :
GESjumpi

= {(ξ ∧ ¬jumpi →W )|(ξ →W ) ∈ GESi}

With the extended component system models and the input mapping IMap, the overall system model
can be computed out of the component system models as follows :

1. The overall system contains all continuous variables of the components :
CS =

⋃
i∈{1...k} CSjumpi

2. The overall system input variables are those component input variables, which are not outputs of
another component :
IS = (

⋃
i∈{1...k} ISjumpi

)/dom(IMap)

3. The other overall system discrete variables are the discrete variables of the components :
DS =

⋃
i∈{1...k}DSjumpi

MS =
⋃
i∈{1...k}MSjumpi

4. The overall system modes are all possible combinations of the component modes :
MS = {m1. . . . .mk|

∧
i∈{1...k}(mi ∈MSjumpi

)}

5. The overall continuous-to-discrete guarded assignments are the continuous-to-discrete guarded assign-
ments of the components, with the component inputs linked to other component variables renamed :
DT c2dS = (

⋃
i∈{1...k}DT

c2d
Sjumpi

[i/IMap(i)]i∈dom(IMap)

6. The other overall system guarded assignments and are those of the component systems :
DT dS =

⋃
i∈{1...k}DT

d
Sjumpi

DT d2cS =
⋃
i∈{1...k}DT

d2c
Sjumpi

7. The overall system guarded evolutions are those of the component systems :
GES =

⋃
i∈{1...k}GESjumpi

8. The overalls system initial states is the combination of initial states of the component systems :
InitS =

∧
i∈{1...k} InitSjumpi

9. The overalls system global constraints are the combination of global constraints of the component
systems :
GCS =

∧
i∈{1...k}GCSjumpi

10. The overalls system invariants are the combination of invariants of the component systems :
InvS =

∧
i∈{1...k} InvSjumpi
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3.4.3 Acceleration at Once

Instead of using the per mode preimage Precmode(φi,Wi, βi) for continuous preimage computation

ψflowi :=

k∨
h=1

constraint_min(Prec(ψc2di |−→m=mh
,Wh, βh), φflowi−1 |−→m=mh

) ∧ (−→m = mh)

with

Prec(φi,Wi, βi) = φi(c) ∨ ∃λ. λ > 0 ∧ ∃u.W ′i (u, λ) ∧ φi(c + u) ∧GC (c + u) ∧ βi(c) ∧ β′i(c + u)

(with W ′i (u, λ) =
∧
j wiju ≤ wijλ) in the model checking algorithm with explicit iteration over all modes,

we use the combined continuous preimage computation

ψflowi := constraint_min(Precaao(ψ
c2d,Waao, βaao), φ

flow
i−1 )

whereby

• Waao is a predicate linking mode variables to the linear derivative inequation systems for the modes.
For this a conjunction based on the guarded evolutions of the component is used:
Waao =

∧
(ξi→Wi)∈GES ξi =⇒ Wi

• βaao is a predicate linking mode variables to the mode boundaries. For this a disjunction based on the
continuous-to-discrete urgent transition guards of the component is used:
βaao =

∧
(ξi→... )∈urgent(DT c2dS ) ξi

whereby urgent(DT c2dS ) is the set of urgent guarded assignments in DT c2dS .

• Precaao is exactly as Prec, just that instead of mode specific W and β the global Waao and βaao are
used :
Precaao(φi,Waao, βaao) = φi(c)∨∃λ. λ > 0∧∃u.W ′aao(u, λ)∧φi(c+u)∧GC (c+u)∧βaao(c)∧β′aao(c+u)
The mode variables in Waao and βaao ensure that boundaries and derivatives are linked to their corre-
sponding modes.

The combined preimage computation puts more workload on the quantifier elimination, since the complete
onion ring is used (compared to a cofactor in per mode acceleration), and since Waao and βaao are bigger,
but the variables are quantified only once per acceleration and not once per mode.

3.5 Related Work Exact Model Checking
On the decidability of safety properties. In the last years, a considerable amount of work has been
dedicated to identifying classes of hybrid automata for which checking safety is decidable. Reachability and
safety in LHA are in general undecidable, while invariant checking and bounded reachability are decidable.
One of the first decidability results for reachability was for initialized rectangular hybrid automata [21], a
restricted class of rectangular hybrid automata (i. e., hybrid automata for which at each control location the
flow is described by differential inclusions of the form ẋ ∈ [a, b]) which require resets for continuous variables
upon mode transitions, unless the newly entered and left mode share the same dynamics. These results have
been extended in [36] which identifies classes of LHA for which reachability is decidable and in [37] which
uses translations of verification problems into satisfiability problems for theories of real numbers (possibly
with exponentiation). Decidability of finite-precision hybrid automata was studied in [38]. In [39, 40, 41],
o-minimal hybrid systems are studied; it is shown that for such hybrid systems reachability can be reduced to
reachability in finite models due to existence of finite bisimulations – this is used to give decidability results.
The restrictions imposed when defining o-minimal hybrid systems – in particular the requirement that only
constant resets are allowed – are quite severe.

In contrast, [20] imposes restrictions on linear hybrid automata (mainly invariant compatibility and chatter
freedom) which are much more likely to be met in application. It improves on previous work by Wang [42] in
that their approach gives an efficient decision procedure, while his back-reachability based symbolic execution
approach is not guaranteed to terminate.
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Model checking with exact image computation. Some classes of hybrid automata, like linear hybrid
automata, allow an exact image computation, i. e., given a symbolic representation φ of a set of states, its
post-images under continuous flows and discrete jumps can be computed exactly. Moreover, if the underlying
theory admits quantifier elimination, then also the pre-image computation can be computed exactly using the
identity Pre(φ) = {~x | ∃~y. φ(~y)∧ ~x = Post(~y)}. Typical algorithms for this class of hybrid automata perform
a reachability analysis starting from the initial states (or unsafe states in case of backward computation) and
successively apply the alternating sequence of continuous and discrete post-image computations (or pre-image
computations, respectively) until either an intersection with the unsafe states (or initial states, respectively)
is detected or a fixpoint is reached. Due to the undecidablity of checking safety of LHA, these algorithms do
not necessarily terminate. But under certain conditions they turn out to be at least semi-decision procedures:
If we can ensure that the successive image computation reaches every instant of time after a finite number of
image computations, then we will eventually detect whether the model is unsafe. For LHAs without purely
discrete steps it suffices to postulate a fixed minimal dwelling time such that it is guaranteed that the state set
exploration advances a fixed amount of time units with each continuous image computation. In [20] it has been
shown that it is decidable for LHA whether a minimal dwelling time exists or not. For LHA+D we additionally
have to stipulate that the discrete fixpoint loop terminates. This is trivially the case for models which do
not have any purely discrete steps15. In industrially relevant application we can expect that the worst-case
execution time of discrete tasks is known, which implies termination of the discrete fixpoint computation
if modeled correctly. In [21] it was shown that – with the help of a preceding model transformation – this
semi-decision procedure can be extended to a decision procedure for certain sub-classes of rectangular hybrid
automata.

The pioneer in this area probably is HyTech [17]. HyTech uses disjunctions of convex polyhedra for
state set representation. While in principle all basic image computations could be done exactly, HyTech
internally uses limited-precision arithmetic. In order to overcome this and some other limitations PHAVer
[43] was developed. PHAVer uses exact arithmetic and the Parma Polyhedral Library for image computation
and other manipulation of convex polytopes. Meanwhile, the reachable set computation of PHAVer has
been integrated into SpaceEx, a tool for reachability analysis mainly relying on numerical integration.
Another exact approach is RED [42]. Internally RED uses a BDD-like representation of state set and Fourier-
Motzkin quantifier elimination for image computations. While FOMC uses and directly operates on a symbolic
representation which allows arbitrary combination of Boolean variables and linear constraints, the tools
mentioned above rely on disjunctions of convex polyhedra and reduce state set manipulation to manipulations
of convex polyhedra. For models with a non-trivial discrete complexity, the prime limitation of this tools is
state-space explosion due to the number of discrete states.

The extent of model checking with exact image computation. Let us shortly discuss the extent of
model checking with exact image computation. So far, we restricted ourselves to linear hybrid automata and
the underlying mathematical theory of linear real arithmetic, where image computations can be reduced to
linear real quantifier elimination. As shown by Tarski, the theory of reals with addition and multiplication
also admits quantifier elimination. Hence, exact model checking is also possible for a larger class of hybrid
automata, like polynomial hybrid automata [44]. To the best of our knowledge, in practice there has only
been little success in extending exact model checking beyond linear hybrid automata. However, in 2005 the
topic was picked up by the biological community. In the second paper [45] of a series of papers under the
title “Algorithmic Algebraic Model Checking” [46, 45, 47, 48] the model-checker Tolque for semi-algebraic
hybrid automata was presented. In their conclusion the authors wrote:

The real limitation of this quantifier-elimination-based model-checking comes from the compu-
tational complexity of Collins’ cylindrical algebraic decomposition (CAD) algorithm, with its
double-exponential dependence on the number of variables []. In our experience, Qepcad failed to
support fully symbolic analysis of the two-cell Delta-Notch system.

Beyond exact image computation. Abandoning exact image computation not only offers the possibility
to use fast but imprecise numerical methods, but also opens the perspective to a rich variety of industrially

15Note that c2d and d2c transitions are not affected by this restriction.
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relevant hybrid automata like hybrid automata with continuous dynamics described by linear ordinary dif-
ferential equations (ODEs) or non-linear ODEs, possibly subject to bounded disturbances.

Flowpipe based approaches. A basic technique to solve the reachability problem for these classes of
hybrid systems is the flowpipe computation. Its basic idea is quite simple and is for forward and backward
computations almost the same, it differs only by the sign of the time parameter and the role of exit and entry
conditions: In the first step an initial geometric or symbolic representation of a set containing all reachable
states within a small time interval of length δ is computed. Proposed representations are convex polytopes,
zonotopes, ellipsoids, support functions, or Taylor models ([49, 50]). The initial set is then incrementally
shifted forward in time (or backward, respectively) by δ time units until it completely leaves the mode
boundaries. Incremental flowpipe computation yields a safe overapproximation of the reachable states and
its precision and efficiency can be adjusted by varying δ. However, the details of the flowpipe computation
are challenging and highly depend on the choice of the state set representation, especially if we respect the
influences of mode invariants and bounded disturbances of the ODE.

As before, a minimal dwelling time ensures time progress such that for any instant of time an overap-
proximation of the reachable states is computed. These algorithms do not provide a semi-decision procedure,
since they could detect non-existent intersections with Unsafe, due to overapproximations.

Tools following the flowpipe approach are, among others, SpaceEx and Flow*. SpaceEx [7] directly
supports high-dimensional linear hybrid systems with continuous dynamics given by linear ODE with bounded
disturbances. It includes the old analysis engine from PHAVer, and offers different support function-based
reachability analysis engines. SpaceEx is very efficient, but due to inherent restrictions of support functions
it suffers from the weak handling of guard intersections and invariants, e. g., the influence of invariants are
only taken into account for the current flow segment, but are not carried over to the next flow segment.
Moreover, due to the usage of floating-point arithmetic it does not formally guarantee soundness. Flow*
[51] is a model checker for hybrid systems whose transition guards and invariants are given by polynomial
inequalities. The continuous dynamic can be defined by non-linear ODEs. Internally, it utilizes Taylor model
integration for flowpipe construction. Given a proper parameter setting, Flow* shows a good scalability on
non-linear case studies. Since the tool focuses on non-linear systems, its weakness are handling convex guards
and invariants [52].

We also experimented with flowpipe computation and prototypically implemented an incremental flow-
pipe computation for linear ODEs using a combination of polytopes and zonotopes [53]. In backward model
checking the pre-images of Unsafe are computed. Our experiences showed that these sets are often large
and far from the origin. Especially for zonotopes, which represent highly symmetric shapes, this led to huge
overapproximation during the computation of the first flowpipe segment. As a possible solution we developed
an alternative representation for convex polyhedral sets, the symbolic orthogonal projections (sops). Many
geometric operations including convex hulls, Minkowski sums, intersections, and affine transformations can be
performed exactly and efficiently on sops. We implemented a self-contained tool for reachability analysis using
symbolical orthogonal projections, called SoapBox [54]. Integration of the sop-based flowpipe computations
is regarded as future work.

Satisfiability based approaches. The bounded reachability problem, i. e., the question whether certain
states can be reached from the initial states, can be formulated as a satisfiability problem. However, for certain
classes of hybrid automata, e. g., reasonable linear hybrid automata, it is possible to reduce the unbounded
reachability problem to satisfiability problems very similar to bounded model checking [20]. Internally, such
tools use combinations of SMT-solvers and ODE-solvers and often utilize fast but incomplete interval con-
straint propagation. Representatives for this kind of model checkers are HSolver, iSAT-ODE, and dReach.
The latter two tools are restricted to bounded model checking only.

In contrast to flowpipe-based approaches, these tools do not ensure an incremental progress in time.
The run-time behavior of these tools is often hard to predict. dReach [55] is a bounded model checker for
hybrid systems with dynamics given by non-linear ODEs. It unrolls the reachability problem for a hybrid
automaton to an SMT formula φ of bounded length, and uses the δ-complete decision procedure of the SMT-
solver dReal to decide whether its numerical δ-perturbation φδ is satisfiable or not. iSAT-ODE [56] performs
bounded model checking of hybrid systems having dynamics described by non-linear ODEs. It combines
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the SMT-solver iSAT with the ODE-solver VNODE-LP. HSolver [57] is an extension of RSolver towards
unbounded model checking of hybrid systems with non-linear ODEs. Internally, it uses interval constraint
propagation based on floating-point arithmetic with sound rounding. Moreover, HSolver is able to compute
abstractions of the input system.

Lack of explicit support of discrete states. Let us note that most mentioned tools have no special
support for large discrete state sets. The popular system model for hybrid automata as given by Henzinger [25]
only uses real variables plus a mode / location variable which can take discrete values in a finite set and encodes
the mode of the associated states. Hence, according to his definition a hybrid automaton mainly consists of
continuous systems which are connected by single discrete transitions. Consequently, tools like HyTech and
PHAVer and also flowpipe computation-based tools like SpaceEx and Flow* use a disjunction of symbolic
states, where each symbolic state represents a set together with a mode information.

On the other hand, satisfiability-based tools use logical state set representations, and, hence, could directly
support Boolean variables. However, while iSAT-ODE and dReach support Boolean variables in their input
language, HSolver lacks support of Boolean variables.

4 Abstractions and Counterexample-Guided Abstraction
Refinement

4.1 Motivation and Overview
In spite of all our optimization techniques presented in Sect. 3, for large real-world examples our state
set representations can become large and complicated, since they have to contain a large number of linear
constraints in order to describe the border of the (backwards) reachable state space precisely. Therefore
we introduce here overapproximations whenever the verification approach suffers from complicated state
set representations. These overapproximations approximate the state set representations using a “smoother
shape” with less linear constraints. If overapproximations lead to spurious counterexamples, the approximation
is refined using the well-known CEGAR paradigm (counterexample-guided abstraction refinement). In that
way the approach automatically adapts to the difficulty of the verification problem. It works with higher
precision in those parts of the state space which need to be inspected more closely for a successful proof, but
uses rough overapproximations in other parts.

4.1.1 A Motivating Example

Here we present a small example which demonstrates problems of our model checking algorithm and shows
how these problems can be resolved using overapproximations and refinements with a CEGAR approach.

Example 3 Here we consider a small toy example with two continuous variables x and y and 4 modes with
two mode variables q1, q0. Each mode is connected to exactly one quadrant in the coordinate system.

• Mode (q1, q0) = (0, 0) defines the dynamics in the first quadrant of the coordinate system with x ≥ 0,
y ≥ 0 by the derivatives ẋ = −1, ẏ = 1.

• Mode (q1, q0) = (0, 1) defines the dynamics in the second quadrant of the coordinate system with x ≤ 0,
y ≥ 0 by the derivatives ẋ = −1, ẏ = −1,

• Mode (q1, q0) = (1, 0) defines the dynamics in the third quadrant of the coordinate system with x ≤ 0,
y ≤ 0 by the derivatives ẋ = 1, ẏ = −1.

• Mode (q1, q0) = (1, 1) defines the dynamics in the forth quadrant of the coordinate system with x ≥ 0,
y ≤ 0 by the derivatives ẋ = 1, ẏ = 1.
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The corresponding specification of the mode dynamics is given by

W(0,0) = (ẋ = −1 ∧ ẏ = 1)
W(0,1) = (ẋ = −1 ∧ ẏ = −1)
W(1,0) = (ẋ = 1 ∧ ẏ = −1)
W(1,1) = (ẋ = 1 ∧ ẏ = 1)

Global constraints GC define the connection between modes and quadrants as mentioned above, i. e., the
predicate GC is given by

((q1, q0) = (0, 0) =⇒ x ≥ 0 ∧ y ≥ 0) ∧
((q1, q0) = (0, 1) =⇒ x ≤ 0 ∧ y ≥ 0) ∧
((q1, q0) = (1, 0) =⇒ x ≤ 0 ∧ y ≤ 0) ∧
((q1, q0) = (1, 1) =⇒ x ≥ 0 ∧ y ≤ 0).

States not satisfying the GC constraint are disregarded when looking for a trace from the initial states to the
unsafe states.

Whenever the x-axis (y-axis) is reached by a continuous flow, a continuous-to-discrete transition is
performed which multiplies the x-value (y-value) by a constant 1.1. The following discrete-to-continuous
transition simply changes the mode variables to the mode corresponding to the neighboring quadrant. The
continuous-to-discrete transitions Dc2d are all urgent and are altogether defined by

(q1, q0) = (0, 0) ∧ x ≤ 0 =⇒ y := 1.1y; x := x;
(q1, q0) = (0, 1) ∧ y ≤ 0 =⇒ x := 1.1x; y := y;
(q1, q0) = (1, 0) ∧ x ≥ 0 =⇒ y := 1.1y; x := x;
(q1, q0) = (1, 1) ∧ y ≥ 0 =⇒ x := 1.1x; y := y;

The discrete-to-continuous transitions Dd2c select the mode of the following flow and are defined by

x > 0 ∧ y ≥ 0 =⇒ (q1, q0) := (0, 0);
x ≤ 0 ∧ y > 0 =⇒ (q1, q0) := (0, 1);
x < 0 ∧ y ≤ 0 =⇒ (q1, q0) := (1, 0);
x ≥ 0 ∧ y < 0 =⇒ (q1, q0) := (1, 1);

In this simple model there are no discrete transitions between the continuous-to-discrete and the discrete-to-
continuous transitions.

The initial states are specified by (4.6 ≤ x ≤ 5.1) ∧ (3.1 ≤ y ≤ 3.6).
The unsafe states are specified by (q1, q0) = (0, 0) ∧ (4.5 ≤ x ≤ 5.5) ∧ 4.5 ≤ y ≤ 5.5.

An exact backward analysis starting from the unsafe states leads to a state space computation sketched
in Figs. 6 and 7. In order to simplify the exhibition we restrict ourselves to the basic variant of the model
checking algorithm here and do not consider the onioning technique from Sect. 3.2. The x-axis and y-axis are
shown in bold face lines, linear constraints limiting the state set reached so far by light gray lines. The unsafe
states are represented by a red rectangle, the initial states by a blue rectangle. The backward reachability
analysis starts with the red rectangle. After the fifth flow, the states marked in yellow in Fig. 6 have been
reached. Fig. 7 shows the corresponding state set after 24 flow steps. It can be seen that the backwards
evolution of the reachable state set comes closer and closer to the point (x, y) = (0, 0) (in form of a spiral)
without ever reaching it. It can also be seen that the backward reachability never ends with a fixed point and
that it never stops by reaching some initial state. Moreover, the state set which has to be represented becomes
more and more complicated, the number of linear constraints which are definitely needed for representing the
limits of the reachable state set increases without any upper bound.

On the other hand we observe that intuitively the later preimage computation steps do not contribute
much novel information. The backward evolution does not really “come closer” to the initial states (represented
by the blue rectangle). Thus, it is intuitively clear by inspecting Figs. 6 and 7 that it does not help to consider
the following (even infinite!) series of preimage computation with maximal precision.

For this reason we decided to consider overapproximations of state sets. Whenever we can show using
overapproximations that it is not possible to reach the initial states starting from the unsafe states, it is clear
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Figure 6: States reached after 5 flow steps. Figure 7: States reached after 24 flow steps.

that the initial states can neither be reached by a precise evolution without overapproximation. If we reach
the initial states by our overapproximating backward reachability analysis, then this can have two reasons:
Either the precise backward analysis can reach the initial states as well or the overapproximation has been
the reason for reaching the initial states. In the later case we will need refinements of the overapproximation
in order to decide the reachability problem. The refinements are performs following the well-known CEGAR
(Counterexample-Guided Abstraction Refinement) paradigm.

In the following we give a brief introduction to our proposed method by means of our running example.
Our overapproximating backward analysis overapproximates state sets heuristically from time to time

triggered by exceeding certain bounds on the total number of linear constraints or certain growth factors w. r. t.
the number of linear constraints. Assume that a overapproximation is triggered after the 5th flow computation,
see Fig. 6. Our overapproximation approach allows approximations in the environment immediately around
the represented state set. The “immediate environment” is computed by the so-called ε-bloating operation,
for details see Sect. 4.2. The limits for the overapproximation operation for the state set in Fig. 6 are given by
the state set shown in Fig. 8. We are not allowed to add states which are “too far away” from the represented
state set or which correspond immediately to initial states (this explains the small yellow rectangle in Fig. 8).

Fig. 9 shows the overapproximated state set. In general, our overapproximations are computed using
methods described in Sect. 4.3. The goal is to minimize the number of linear constraints in the description of
the overapproximated state sets without violating the restrictions for the overapproximation (in our example
illustrated in Fig. 8). In Fig. 9 the white area around the blue initial states exactly corresponds to states
not included into the overapproximation due to the restriction that initial states are not allowed in the
overapproximation.

We replace the exact state set from Fig. 6 by the overapproximated one from Fig. 9 and continue our
backward model checking procedure. It is rather easy to see that the next (backward) flow will remove the
white area around the initial states in Fig. 9, now leading to the result that the overapproximating reachability
analysis detects a path from the initial states to the unsafe states. Such a path is called a counterexample.

In general it is not known whether this counterexample is a real one which would also be present in an
exact model checking procedure or a spurious counterexample which only results from overapproximations.
The next step is to check whether the counterexample is a real one. For this we use a method similar to
Bounded Model Checking (BMC), i. e., we check whether there is a real counterexample with a length given
by the detected path. If our (incremental) BMC procedure fails in its search for a real counterexample, it
returns a state e which is reachable from the initial states, but from which the unsafe states can not be
reached within the given number of steps. Such a state e must have been added by the overapproximation
operation. The state e has to be excluded from the overapproximation in a refinement step. More details on
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Figure 8: States set restricting the overapproximation. Figure 9: Overapproximated state set.

how to obtain such a state e can be found later on in Sect. 4.4.
In our small example we find such a state e as depicted in Fig. 10. From the initial states there is a

flow leading to the state represented by the green circle, but this trace can not be continued to the unsafe
states. Therefore e is excluded from the set of states which are allowed to be added by overapproximation in
Figs. 8 and 9. Thus, we will backtrack to the situation where we overapproximated the state set from Fig. 6.
Now the states restricting the overapproximation are given by Fig. 11 (state e is added). The computed
overapproximation is given by Fig. 12. Restarting the backward model checking procedure with the state set
from Fig. 12 shows that no additional states are visited and a fixed point has been reached – without arriving
at the initial states.

Our small running example reveals several interesting facts:

• Indeed, it was not necessary to look at all details in the exact model checking procedure. Model checking
with overapproximations has been able to provide a safety proof.

• A refinement of overapproximations was needed to complete the proof. The refinement was computed
using the CEGAR paradigm based on a spurious counterexample.

• Our overapproximation procedure has been able to generalize the information learnt from the spurious
counterexample. In particular, the overapproximation procedure did not only exclude the state e from
the approximated state set, but also an environment around e (see the difference between Fig. 9 and
Fig. 12). This is a crucial property of our methods for overapproximations which will be presented in
Sect. 4.3.

We will start by describing model checking with overapproximations in Sect. 4.2. In Sect. 4.3 we will
present different approaches for overapproximations minimizing the number of linear constraints in state set
representations. Finally, in Sect. 4.4 we will have a detailed view into the CEGAR procedure based on these
principles.

4.2 Model Checking with Abstraction
First of all, we present a sketch of our model checking algorithm using abstraction in Alg. 7. Here we confine
ourselves to an extension of the onion algorithm in Alg. 4. Later on, we will use the model checking algorithm
with abstraction in the context of Counterexample-Guided Abstraction Refinement (CEGAR).

The name conventions in Alg. 7 are as follows:

• State sets collecting all states visited so far via a corresponding transition type y are denoted by φyx.
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Figure 10: State e which has to be excluded from over-
approximation.

Figure 11: States set restricting the overapproxima-
tion (including state e).

Figure 12: New overapproximated state set and final
fixed point of the model checking procedure.
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1 begin
2 ψd2c0 := ¬safe; φd2c0 := ¬safe; φdfp0 := 0; φc2d0 := 0; φflow0 := 0;
3 i := 0;
4 while true do
5 i := i+ 1;

// Discrete fixed point iteration:
6 j := 0;
7 ψd0 := ψd2ci−1; φd0 := ψd2ci−1 ∨ φ

dfp
i−1; ω

d
0 := φ

dfp
i−1;

8 repeat
9 j := j + 1;

10 ψd,ovj−1 := overapprox(ψdj−1 ∧ ¬ωdj−1, eps_bloat(ψdj−1 ∧ ¬ωdj−1, ε) ∨ φdj−1);
11 ψdj := Pred(ψd,ovj−1 ∧GC);
12 ωdj := φdj−1 ∨ ψd,ovj−1 ; ψ

d
j := constraint_min(ψdj , ω

d
j ); φdj := φdj−1 ∨ ψd,ovj−1 ∨ ψdj ;

13 if GC ∧ ψdj ∧ init 6= 0 then return false;
14 until GC ∧ ψdj ∧ ¬ωdj = 0;
15 ψ

dfp
i := constraint_min(φdj , φ

dfp
i−1);

16 φ
dfp
i := φdj ;

17 ψ
dfp
i := overapprox(ψ

dfp
i ∧ ¬φ

dfp
i−1, eps_bloat(ψ

dfp
i ∧ ¬φ

dfp
i−1, ε) ∨ φ

dfp
i );

18 φ
dfp
i := φ

dfp
i−1 ∨ ψ

dfp
i ;

// Evaluate c2d transitions:
19 ψc2di := ∃dn+1, . . . dp(Prec2d(ψ

dfp
i ∧GC)) ∧∨kh=1(βh ∧ (−→m = mh));

20 if i = 1 then ψc2di := ψc2di ∨ ¬safe;
21 if GC ∧ ψc2di ∧ init 6= 0 then return false;
22 if GC ∧ ψc2di ∧ ¬φc2di−1 = 0 then return true;
23 ψc2di := constraint_min(ψc2di , φc2di−1);
24 φc2di := φc2di−1 ∨ ψc2di ;
25 ψc2di := overapprox(ψc2di ∧ ¬φc2di−1, eps_bloat(ψc2di ∧ ¬φc2di−1, ε) ∨ φc2di );
26 φc2di := φc2di−1 ∨ ψc2di ;

// Evaluate continuous flow:
27 ψflowi :=

∨k
h=1 constraint_min(Prec(ψc2di |−→m=mh

,Wh, βh), φflowi−1 |−→m=mh
) ∧ (−→m = mh);

28 if GC ∧ ψflowi ∧ init 6= 0 then return false;
29 if GC ∧ ψflowi ∧ ¬φflowi−1 = 0 then return true;
30 ψflowi := constraint_min(ψflowi , φflowi−1 );
31 φflowi := φflowi−1 ∨ ψflowi ;
32 ψflowi := overapprox(ψflowi ∧ ¬φflowi−1 , eps_bloat(ψ

flow
i ∧ ¬φflowi−1 , ε) ∨ φflowi );

33 φflowi := φflowi−1 ∨ ψflowi ;
// Evaluate d2c transitions:

34 ψd2ci := Pred2c(ψflowi ∧ d2cTransEnabled ∧GC);
35 if GC ∧ ψd2ci ∧ init 6= 0 then return false;
36 if GC ∧ ψd2ci ∧ ¬φdfpi = 0 then return true;

// See optimization above,
∨i−1
j=0 ψ

d2c
j ⊆ φdfpi

37 ψd2ci := constraint_min(ψd2ci , φd2ci−1);
38 φd2ci := φd2ci−1 ∨ ψd2ci ;

Algorithm 7: Backward reachability analysis, onion algorithm using abstraction.
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f

f'

Figure 13: ε-bloated state set

• By ψyx we denote the states which can be reached in the current step x via transition type y. The “onion
ring” of newly visited states is given by ψyx ∧ ¬φyx−1. An optimized representation of ψyx using don’t
cares from φyx−1 is computed by constraint_min(ψyx, φ

y
x−1).

• eps_bloat(f, ε) computes a so-called ε-bloating of the predicate f : Given a state set f , we produce a
bloated version f ′ = eps_bloat(f, ε) by pushing all inequations “outwards” by a positive distance. Fig. 13
sketches a 2-dimensional state set f with its bloating f ′. More precisely, we assume that each real variable
ci is connected with a lower bound li and an upper bound ui as part of the global constraints. For the
direction ci, the distance for pushing an inequation outwards is given by ε · (ui− li) with 0 ≤ ε ≤ 1. By
ε-bloating we produce room for simplifying predicates with restricted overapproximation. Increasing ε
leads to more flexibility for improvement, but also to a potentially larger overapproximation.

• The function overapprox(f, g) overapproximates f without computing a representation which is larger
than g, i. e., it computes a representation i with f ≤ i ≤ g (assuming f ≤ g). In our case, the
optimization goal of overapprox(f, g) is to compute an overapproximation for f with a minimized
number of linear constraints. The lower bound f and the upper bound g for the overapproximation
are computed as follows: The “onion ring” of newly visited states given by ψyx ∧ ¬φyx−1 forms the lower
bound f . For the upper bound g, the onion ring ψyx ∧ ¬φyx−1 is enlarged by ε-bloating and the states
already reached before are added, resulting in eps_bloat(ψyx ∧ ¬φyx−1, ε) ∨ φyx.

In fact, not every call of overapprox in the pseudocode of Alg. 7 really results in an overapproxima-
tion of the considered state set. Rather, the places with the overapprox-operations mark the places where
overapproximation is possibly applied, depending on heuristics observing the absolute number of the linear
constraints in the predicates as well as the growth of the number of linear constraints compared to the cor-
responding predicates from the previous iteration. In that way, overapprox is heuristically used to keep the
number of linear constraints in the predicates within a manageable size.

4.3 Abstraction Algorithms for State Set Representations
Here we consider different variants for the realization of the overapproximation overapprox(f, g). As already
mentioned, the goal is to compute a representation for i with the property f ≤ i ≤ g and i has a minimized
number of linear constraints.

4.3.1 Constraint Minimization Using ε-Bloating

A first and simple possibility for providing a realization for overapprox(f, g) is using constraint minimization
as presented in Sect. 3.2.1: We choose overapprox(f, g) = constraint_min(f, g∧¬f), i. e., the states in g∧¬f
may be added to f or not, forming a don’t care set. The operation constraint_min(f, g ∧ ¬f) minimizes
the number of linear constraints in the result by detecting redundant linear constraints “modulo don’t cares”.
This means that the constraints occurring in the result are restricted to the constraints occurring in f or
g. Removing this restriction may lead to representations with less linear constraints. Two new methods for
computing such representations are presented in Sect. 4.3.2 and 4.3.3.
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A : (l1 ∨ l3)

A : (l1 ∨ l4) A : (l2 ∨ l3)

¬η1 : (¬l1 ∨ ¬l2 ∨ ¬l5)

¬η2 : (¬l3 ∨ ¬l4 ∨ ¬l6) B : (l6)

B : (l5)

(¬l2 ∨ l3)

(¬l1 ∨ ¬l2)

(¬l3 ∨ ¬l4)

(¬l2 ∨ ¬l4)(¬l2 ∨ l4) A : (l2 ∨ l4) (l2 ∨ ¬l4)

(¬l2) (l2)

()

Figure 14: A proof
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Figure 15: An interpolant

4.3.2 Proof-based Computation of Simple Interpolants

Here we look into a method which uses don’t cares to minimize the number of linear constraints in a represen-
tation. In contrast to the previous section new linear constraints not occurring in the original representation
will be used. The new representation will be obtained by computing so-called “simple interpolants”. Such
simple interpolants approximate given state set representations by a “smoother shape” with less linear con-
straints. Given f ≤ g, a simple interpolant representing overapprox(f, g) is computed based on a proof of
unsatisfiability for f ∧¬g. Proofs of unsatisfiability are computed by an SMT solver with linear arithmetic as
the theory.

In the following we write φ |=T ψ, if a formula φ logically implies a formula ψ in all models of the theory
T (i. e., in all models which interpret the function symbols and predicate symbols of linear arithmetic by
their usual meaning). Similarly, we call a formula T -satisfiable if it is satisfiable in T .

An SMT solver works as already briefly described in Sect. 3.1.4: It introduces constraint variables q`i for
linear constraints `i and looks for satisfying assignments to the boolean variables (including the constraint
variables). Whenever the SMT solver detects a satisfying assignment to the boolean variables, it checks
whether the assignment to the constraint variables is consistent, i. e., whether it can be produced by replac-
ing real-valued variables by reals in the linear constraints. This task is performed by a linear program solver.
If the assignment is consistent, then the SMT solver has found a satisfying assignment, otherwise it continues
searching for satisfying assignments to the boolean variables. If some assignment εi1 , . . . , εim to constraint
variables q`i1 , . . . , q`im was found to be inconsistent, the linear program solver derives a cause for the infea-
sibility of the assignment, say η = m

εj1
j1
∧ . . . ∧mεjk

jk
, (k ≤ m), where {mεj1

j1
, . . . ,m

εjk
jk
} ⊆ {lεi1i1 , . . . , l

εim
im
}. We

call the cause η a T -conflict. The SMT solver then adds the negation of the cause, ¬η = {¬mεj1
j1
, . . . ,¬mεjk

jk
},

which we call T -lemma, to its set of clauses and starts backtracking. The added T -lemma prevents the DPLL-
procedure from selecting the same invalid assignment again. Usually, the T -conflicts η used in modern SMT
solvers are reduced to minimal size (i. e. η becomes satisfiable, if one of its literals is removed) in order to
prune the search space as much as possible. Such T -conflicts η are often called minimal infeasible subsets.

SMT solvers can be extended in a straightforward way to produce proofs for the unsatisfiability of formulas
[58]:

Definition 7 (T -Proof) Let S = {c1, . . . , cn} be a set of non-tautologic clauses and C a clause. A DAG P
is a resolution proof for the deduction of

∧
ci |=T C, if

(1) each leaf n ∈ P is associated with a clause ncl; ncl is either a clause of S or a T -lemma (ncl = ¬η for
some T -conflict η);
(2) each non-leaf n ∈ P has exactly two parents nL and nR, and is associated with the clause ncl which is
derived from nLcl and n

R
cl by resolution, i. e. the parents’ clauses share a common variable (the pivot) np such

that np ∈ nLcl and ¬np ∈ nRcl, and ncl = nLcl \ {np} ∪ nRcl \ {¬np}; ncl (the resolvent) must not be a tautology;
(3) there is exactly one root node r ∈ P ; r is associated with clause C; rcl = C.

Here we consider the theory of linear arithmetic over reals LA(R), i. e., we consider LA(R)-proofs.
Intuitively, a resolution proof provides a means to derive a clause C from the set of clauses S and some

additional facts of the theory T . If C is the empty clause, P is proving the T -unsatisfiability of S.
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Example 4 Fig. 14 shows a resolution proof for the unsatisfiability of S = (l1 ∨ l3) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) ∧
(l2 ∨ l4)∧ l5 ∧ l6 with l1 = (−x2 ≤ 0), l2 = (x1 ≤ 1), l3 = (−x2 ≤ −5), l4 = (x1 ≤ 6), l5 = (−2x1 +x2 ≤ −6),
l6 = (−x1 + 2x2 ≤ 0). To prove the unsatisfiability, the solver added two T -lemmata ¬η1 = (¬l1 ∨ ¬l2 ∨ ¬l5)
and ¬η2 = (¬l3 ∨ ¬l4 ∨ ¬l6).

Here we use a notion of Craig interpolation [59] which is generalized to SMT formulas.

Definition 8 (Craig Interpolant [59]) Let A and B be two formulas, such that A ∧ B |=T ⊥. A Craig
interpolant I is a formula such that (1) A |=T I, (2) B ∧ I |=T ⊥, (3) the uninterpreted symbols in I occur
both in A and B, the free variables in I occur freely both in A and B.

Given a T -unsatisfiable set of clauses S = {c1, . . . , cn}, a disjoint partition (A,B) of S, and a proof P for
the T -unsatisfiability of S, an interpolant for (A,B) can be constructed by the following procedure [60]:16

1. For every leaf n ∈ P associated with a clause ncl ∈ S, set nI = ncl ↓ B if ncl ∈ A, and set nI = > if
ncl ∈ B.

2. For every leaf n ∈ P associated with a T -lemma ¬η (ncl = ¬η), set nI = T -interpolant(η \B, η ↓ B).

3. For every non-leaf node n ∈ P , set nI = nLI ∨ nRI if np /∈ B, and set nI = nLI ∧ nRI if np ∈ B.

4. Let r ∈ P be the root node of P associated with the empty clause rcl = ∅. rI is an interpolant of A and
B.

The interpolation procedure differs from pure Boolean interpolation [61] only in the handling of T -
lemmata. T -interpolant(·, ·) produces an interpolant for an unsatisfiable pair of conjunctions of T -literals.

In our case conjunctions of m T -literals (i. e., linear inequations) are written as Ax ≤ a with real variables
(x1, . . . , xn)T = x, A ∈ Rm×n, a ∈ Rm.17 Every row vector in the m× n-matrix A describes the coefficients
of the corresponding linear inequation.

There exist several methods to construct an LA(R)-interpolant from conflicts in an LA(R)-proof as
described in [60, 62, 58]. Here we review the approach from [62], since our method is based on this approach.

We assume an LA(R)-conflict η which is produced during the proof of unsatisfiability of two formulas A
and B. From η we may extract a conjunction η \ B of linear inequations only occurring in formula A and
a conjunction η ↓ B of linear inequations occurring in formula B. η \ B and η ↓ B are represented by the
inequation systems Ax ≤ a and Bx ≤ b, respectively (A ∈ RmA×n, a ∈ RmA , B ∈ RmB×n, b ∈ RmB). Since
η is an LA(R)-conflict, the conjunction of Ax ≤ a and Bx ≤ b has no solution. Then, according to Farkas’
lemma, there exists a linear inequation iTx ≤ δ (i ∈ Rn, δ ∈ R) which is an LA(R)-interpolant for Ax ≤ a and
Bx ≤ b. iTx ≤ δ can be computed by linear programming from the following (in)equations with additional
variables λ ∈ RmA , µ ∈ RmB :
(1) λTA+ µTB = 0T , (2) λTa+ µT b ≤ −1, (3) λTA = iT , (4) λTa = δ, (5) λ ≥ 0, µ ≥ 0.

The coefficients λ and µ define a positive linear combination of the inequations in Ax ≤ a and Bx ≤ b
leading to a contradiction 0 ≤ λTa + µT b with λTa + µT b ≤ −1 (see (1) and (2)). The interpolant iTx ≤ δ
just “sums up” the “Ax ≤ a”-part of the linear combination leading to the contradiction (see (3) and (4)),
thus iTx ≤ δ is implied by Ax ≤ a. iTx ≤ δ is clearly inconsistent with Bx ≤ b, since it derives the same
contradiction as before. Altogether iTx ≤ δ is an interpolant of Ax ≤ a and Bx ≤ b.

Example 5 (cont.) Fig. 15 shows a Craig interpolant resulting from the proof in Fig. 14, when partitioning
S into (A,B) with A = (l1 ∨ l3)∧ (l1 ∨ l4)∧ (l2 ∨ l3)∧ (l2 ∨ l4) and B = l5 ∧ l6. The LA(R)-interpolant for the
LA(R)-conflict η1 is a positive linear combination of η1’s A-literals (i. e., l1 and l2), which is conflicting with a
positive linear-combination of the remaining literals (i. e., l5), e. g. 1 ·(−x2 ≤ 0)+2 ·(x1 ≤ 1) ≡ (2x1−x2 ≤ 2)
and 1 · (−2x1 + x2 ≤ −6) lead to the conflict 0 ≤ −4 . Similarly, the interpolant x1 − 2x2 ≤ −4 is derived
from the LA(R)-conflict η2. Propagating constants, the final interpolant of A and B becomes (2x1 − x2 ≤

16Let C be a clause and φ be a formula. With C \ φ, we here denote the clause that is created from C by removing all atoms
occurring in φ; C ↓ φ denotes the clause that is created from C by removing all atoms that are not occurring in φ.

17For simplicity we confine ourselves to non-strict inequations. A generalization to mixed strict and non-strict inequations is
straightforward.
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Figure 16: Two LA(R)-interpolants
l7 and l8 for the interpolation be-
tween A and B.

Figure 17: A single LA(R)-inter-
polant l9 replacing l7 and l8.

Figure 18: Relaxing constraints to
enable l12 as shared interpolant.

2)∨ (x1−2x2 ≤ −4). Fig. 16 gives a geometric illustration of the example. A is depicted in blue, B in orange,
the interpolant is represented by the green or blue areas. η1 says that l1 ∧ l2 (the blue area with vertical lines)
does not intersect with l5 (leading to interpolant l7 = (2x1 − x2 ≤ 2)) and η2 says that l3 ∧ l4 (the blue area
with horizontal lines) does not intersect with l6 (leading to interpolant l8 = (x1 − 2x2 ≤ −4)).

Basic idea for computing simple interpolants. Now we present a method computing simpler inter-
polants than the standard methods mentioned above. The basic idea is as follows: It is based upon the
observation that in previous interpolation schemes the inconsistency proofs and thus the interpolants de-
rived from different T -conflicts are uncorrelated. In most cases different T -conflicts lead to different LA(R)-
interpolants contributing to the final interpolant, thus, complicated proofs with many T -conflicts tend to
lead to complicated Craig interpolants depending on many linear constraints.

Example 6 (cont.) In Ex. 5 we have two different T -conflicts leading to two different interpolants (see green
lines in Fig. 16). However, it is easy to see from Fig. 17 that there is a single inequation l9 = (x1 − x2 ≤ 1)
which can be used as an interpolant for A and B (A implies l9 and l9 does not intersect with B).

Our idea is to share LA(R)-interpolants between different T -conflicts. In order to come up with an
interpolation scheme using as many shared interpolants as possible, we first introduce a check whether a
fixed set of T -conflicts can be proved by a shared proof, leading to a single shared LA(R)-interpolant for
that set of T -conflicts.

We assume a fixed set {η1, . . . , ηr} of T -conflicts. Each T -conflict ηj defines two systems of inequations:
Ajx ≤ aj for the A-part and Bjx ≤ bj for the B-part. Extending [62] we ask whether there is a single
inequation iTx ≤ δ and coefficients λj , µj with
(1j) λTj Aj + µTj Bj = 0T , (2j) λTj aj + µTj bj ≤ −1, (3j) λTj Aj = iT , (4j) λTj aj = δ, (5j) λj ≥ 0, µj ≥ 0

for all j ∈ {1, . . . , r}. Note that the coefficients λj and µj for the different T -conflicts may be different,
but the interpolant iTx ≤ δ is required to be identical for all T -conflicts. Again, the problem formulation
consisting of all constraints (1j)–(5j) can be solved by linear programming in polynomial time.

Unfortunately, first results showed that the potential to find shared interpolant was not as high as expected
using this basic idea. By a further analysis of the problem we observed that more degrees of freedom are
needed to enable a larger number of shared interpolants.

Relaxing constraints. Consider Fig. 18 for motivating our first measure to increase the degrees of freedom
for interpolant generation. Fig. 18 shows a slightly modified example compared to Figs. 16 and 17 with
A = (l10∧ l2)∨ (l3∧ l11) and B = l6. Again we have two T -conflicts: η3 which says that l10∧ l2∧ l6 is infeasible
and η4 which says that l3 ∧ l11 ∧ l6 is infeasible. We can show that the interpolation generation according to
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[62] only computes interpolants which touch the A-part of the T -conflict (as long as the corresponding theory
conflict is minimized, and both A-part and B-part are not empty). Thus the only possible interpolants for η3
and η4 according to (1)–(5) are l12 and l13, respectively. I.e. it is not possible to compute a shared interpolant
for this example according to equations (1j)–(5j). On the other hand it is easy to see that l12 may also be
used as an interpolant for η4, if we do not require interpolants to touch the A-part (which is l3 ∧ l11 in the
example). We achieve that goal simply by relaxing constraint (4j) to (4′j) λjaj ≤ δ and by modifying (2j) to
(2′j) δ + µTj bj ≤ −1 (all other constraints (i′j) remain the same as (ij)).

An inequation iTx ≤ δ computed according to (1′j)–(5′j) is still implied by Ajx ≤ aj (since iTx ≤ λjaj
is implied and λjaj ≤ δ) and it contradicts Bjx ≤ bj , since 0 ≤ λTj aj + µTj bj ≤ δ + µTj bj is conflicting with
δ + µTj bj ≤ −1.

Extending T -conflicts. There is a second restriction to the degrees of freedom for shared interpolants
which follows from the computation of minimized T -conflicts in SMT solvers. (Note that minimized T -
conflicts are used with success in modern SMT solvers in order to prune the search space as much as possible.
Unfortunately, minimization of T -conflicts impedes the search for shared interpolants.) We can prove the
following lemma:

Lemma 2 If a LA(R)-conflict η is minimized, and both η \B and η ↓ B are not empty, then the direction of
vector i of an LA(R)-interpolant iTx ≤ δ for η \ B and η ↓ B is fixed.

Example 7 (cont.) Again consider Fig. 16. Since the LA(R)-conflict η1 = l1 ∧ l2 ∧ l5 is minimized, the
direction vector of the interpolant l7 is fixed. The same holds for LA(R)-conflict η2 = l3 ∧ l4 ∧ l6 and the
direction vector of l8. Thus, there is no shared interpolant for η1 and η2.

Fortunately, T -conflicts which are extended by additional inequations remain T -conflicts. (If the conjunc-
tion of some inequations is infeasible, then any extension of the conjunction is infeasible as well.) Therefore
we may extend η1 to η′1 = l1 ∧ l2 ∧ l5 ∧ l6 and η2 to η′2 = l3 ∧ l4 ∧ l5 ∧ l6. It is easy to see that the linear
inequation l9 = (x1 − x2 ≤ 1) from Fig. 17 is a solution of (1′j)–(5′j) applied to η′1 and η′2 (with coefficients
λ1,1 = λ1,2 = 1, µ1,1 = µ1,2 = 1

3 , λ2,1 = λ2,2 = 1, µ2,1 = µ2,2 = 1
3). This means that we really obtain the

shared interpolant l9 from Fig. 17 by (1′j)–(5′j), if we extend the T -conflicts appropriately.

We learn from Ex. 7 that an appropriate extension of T -conflicts increases the degrees of freedom in the
computation of interpolants, leading to new shared interpolants. Clearly, in the general case an extension
of T -conflicts ηj (and thus of T -lemmata ¬ηj) may destroy proofs of T -unsatisfiability. In the following
we derive conditions when interpolants derived from proofs with extended T -lemmata are still correct. We
consider two approaches: Adding implied literals and lemma localization.

Implied literals.

Definition 9 Let A and B be two formulas, and let l be a literal. l is an implied literal for A ( implied literal
for B), if A |=T l and l does not occur in B (if B |=T l).

Lemma 3 Let P be a proof of T -unsatisfiability of A∧B, let ¬η be a T -lemma in P not containing literal ¬l,
and let l be implied for A (for B). Then Craig interpolation according to [60] applied to P with ¬η replaced
by ¬η ∨ ¬l computes a Craig interpolant for A and B.

The proof can be found in [63].
We can conclude from Lemma 3 that we are free to arbitrarily add negations of implied literals for A or

B to T -lemmata without losing the property that the resulting formula according to [60] is an interpolant of
A and B.

Example 8 (cont.) Again consider Fig. 16. l1 and l4 are clearly implied literals for A, l5 and l6 are implied
literals for B. Therefore we can extend T -conflict η1 to η′′1 = l1∧l2∧l4∧l5∧l6 and η2 to η′′2 = l1∧l3∧l4∧l5∧l6.
(1′j)–(5′j) applied to η′′1 and η′′2 and interpolation according to [60] leads to l9 as an interpolant of A and B
(similarly to Ex. 7, see Fig. 17).
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n : (a ∨ b)
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⇓
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Figure 19: Pushing-up literals

Lemma Localization. A second method for extending T -conflicts is given by so-called Lemma Localization
[64]. The additional T -literals for extending T -conflicts are derived by the pushup operation which detects
redundant T -literals in the proof structure. A T -literal l is called redundant in a proof node, if the clauses
of all successor nodes contain the literal l and the current node does not use it as the pivot variable for the
resolution. Such a redundant T -literal can then be added to the current node without losing correctness of
the proof.

Fig. 19 illustrates the idea: The upper part of Fig. 19 shows a detail of a bigger resolution proof P : the
node n has three children n1, n2, and n3, whose clauses are derived from their parents by resolution. The
clauses of all three children contain the literal c. The clause of n, however, does not contain the literal c.
“Pushing up” c from n1, n2, and n3 to n (i. e. adding c to n’s clause) creates a modified graph P ′ (shown
in the lower part of Fig. 19), in which the resolutions at n’s children n1, n2, and n3 are still valid. If, on
the other hand, one child’s clause did not contain the literal c (e. g. n3’s clause), and we pushed up c to n’s
clause, the resolution at this child would not be valid anymore (the resolvent would then contain c but the
original clauses did not). Furthermore, one must not push a literal into a node’s clause if the literal matches
the node’s pivot, since the resolvent of two clauses can not contain the pivot variable. Therefore, in general,
one can “push up” literals to a node’s clause that are (1) in the intersection of all of its children’s clauses,
and (2) do not match the node’s pivot.

A redundant literal l may eventually be pushed into a leaf of the proof which represents a T -lemma ¬η.
The corresponding T -conflict η is extended by ¬l. In that way the pushup operation is used to increase the
degrees of freedom for computing shared T -interpolants.

Overall algorithm for computing shared interpolants. First of all, as a preprocessing step, we use
the pushup-algorithm in order to replace potentially complex T -interpolants by constants: If (η ∧ ¬l) \ B
is still a T -conflict, then ⊥ is a valid T -interpolant, and if (η ∧ ¬l) ↓ B is still a T -conflict, then > is
a valid T -interpolant. Of course, extending theory conflicts by additional literals increases the chance of
obtaining constant T -interpolants. If we are able to detect constant T -interpolants, then the sizes of overall
Craig-interpolants may decrease significantly due to the propagation of constants.

After detecting constant T -interpolants, we continue by computing shared T -interpolants. We use implied
literals and the pushup operation to increase the degrees of freedom for computing shared T -interpolants.

Our overall algorithm starts with a T -unsatisfiable set of clauses S and a disjoint partition (A,B) of
S, and computes a proof P for the T -unsatisfiability of S. P contains r T -lemmata ¬η1, . . . ,¬ηr. The
system of (in)equations (1′j)–(5′j) from above with j ∈ {j1, . . . , jk} provides us with a check whether
there is a shared interpolant iTx ≤ δ for the subset {ηj1 , . . . , ηjk} of T -conflicts. This check is called
SharedInterpol({ηj1 , . . . , ηjk}). Our goal is to find an interpolant for A and B with a minimal number
of different T -interpolants. At first, we use SharedInterpol to precompute an (undirected) compatibility
graph Gcg = (Vcg, Ecg) with Vcg = {η1, . . . , ηr} and {ηi, ηj} ∈ Ecg iff there is a shared interpolant of ηi and
ηj .

Then we use a simple iterative greedy algorithm based on SharedInterpol for minimizing the number
of different T -interpolants used in the Craig interpolant. For this, we iteratively compute sets SIi of T -
conflicts which have a shared interpolant. We start with SI1 = {ηs} for some T -conflict ηs. To extend a set
SIi we select a new T -conflict ηc /∈ ∪ij=1SIj with {ηc, ηj} ∈ Ecg for all ηj ∈ SIi. Then we check whether
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Figure 20: Sketch of the Iterative Computation

SharedInterpol(SIi ∪ {ηc}) returns true or false. If the result is true, we set SIi := SIi ∪ {ηc}, otherwise
we select a new T -conflict as above. If there is no appropriate new T -conflict, then we start a new set SIi+1.
The algorithm stops when all T -conflicts are inserted into a set SIj . Of course, the quality of the result
depends on the selection of T -conflicts to start new sets SIi and on the decision which candidate T -conflicts
to select if there are several candidates. So the cardinality of sets SIi and their total number (i. e., the
number of computed LA(R)-interpolants) is not necessarily minimal. For improving on the order dependency
of the iterative greedy algorithm, in [63] a method based on linear programming is proposed that computes
maximum subsets of T -conflicts having a shared interpolant.

4.3.3 Iterative Computation of Simple Interpolants

The iterative computation of simple interpolants is based on the following extension of Proposition 3 in [65].

Proposition 1 The set of (linear) constraints L = {L1, . . . , Lh} separates the state sets f and g through
some Boolean formula if and only if for every pair of points pf ∈ f and pg ∈ g with the same assignment of
boolean variables ((pf )B = (pg)B) there exists a j (1 ≤ j ≤ h) such that Lj(p) 6= Lj(q).

Starting with an interpolant i computed by Constraint Minimization (Sect. 3.2.1) we create L, the set of
linear constraints used in this interpolant. Since i is an interpolant, L satisfies Prop. 1.

The algorithm now iteratively improves the set L by replacing two linear constraints by one, while pre-
serving the invariant that L satisfy Prop. 1. The linear constraints in L are called interpolant constraints.
Hence, our algorithm is a local search heuristic.

Notice that when removing two interpolant constraints, there will be pairs pf ∈ f, pg ∈ g of points with
((pf )B = (pg)B) that can not be distinguished by the remaining interpolant constraints L, i. e., l(pf ) = l(pg)
for all l ∈ L. We will test whether all those pairs of points can be distinguished by a single new linear
constraint.

Basically, we iteratively collect such pairs of points and construct a linear constraint l∗ separating all pairs
of points already found, until either all pairs of points can be distinguished with the additional help of l∗ or
no such linear constraint can be found. Fig. 20 gives a sketch of the algorithm.

In order to guarantee termination, one cannot just collect pairs of points, as there can be an infinite
number. Therefore, we construct convex regions Cf and Cg around the points pf and pg described only by
constraints known to the system, i. e., for Cf we only use linear constraints used in the description of f and
additionally all remaining interpolant constraints. The convex sets are contained in the respective sets, i. e.,
Cf ⊆ f and Cg ⊆ g. Since there are only a finite number of linear constraints in the description of the state
sets and interpolant constraints, there are only a finite number of possible convex sets describable by these
constraints. This lead to a termination of this part of the algorithm in a finite number of steps.
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Hence, we need three sub-algorithms: one for finding pairs of points that can not be distinguished, one
for constructing the convex regions around them, and one for constructing a linear constraint separating a
given set of pairs of convex regions.

Finding Pairs of Indistinguishable Points with SMT. Notice that we are in the situation that we
have to test whether our tentative new linear constraints l∗ together with the remaining linear constraints L
of the interpolant satisfies to construct an interpolant between state sets f and g. The linear constraints are
not sufficient if and only if we can find points pf ∈ f, pg ∈ g with ((pf )B = (pg)B) that are not distinguishable,
i. e., for all l ∈ L ∪ {l∗} l(pf ) = l(pg) holds.

To solve this by an SMT solver we use the following formula:

(pf ∈ f) ∧ (pg ∈ g) ∧ ((pf )B = (pg)B) ∧

 ∧
l∈L∪{l∗}

l(pf ) = l(pg)

 (6)

Either we found a valid solution and therefore two points pf , pg that are not separable by any linear constraint
in L ∪ {l∗} or we found that L ∪ {l∗} is a valid set of interpolant constraints. The problem has only minor
changes in every iteration, because we only substitute the old condition l∗(p) = l∗(q) with an updated linear
constraint l∗. This gives us the opportunity to use the advantage of incremental SMT.

Enlarge Pairs of Indistinguishable Points to Convex Regions. If we have found a pair of points
pf , pg as described in the previous section, we want to find a set of points Cf ⊆ f around pf that is preferably
large, such that no point in Cf can be distinguished from pg and vice versa.

We achieve this by computing convex regions around pF , such that all points within Cf are equal with
respect to all linear constraints in L \ {l∗} and all linear constraints used in the description of f .

For computing Cf test for every linear constraint l that is used in the description of f , if a satisfies this
linear constraint, i. e., we compute l(pf ). We therefore collect linear constraints in a set C. We add l to C
when l(pf ) is true, or ¬ l if l(pf ) is false. After evaluating that for every linear constraint in f , we compute the
same for every interpolant constraint. We do not use the current l∗ in the description of the convex region,
since we change this constraint in the next step, where we search for a new candidate. Cf is then computed
as a conjunction of all constraints in C.

Finding a Linear Constraint Separating Pairs of Convex Regions with LP. We try to find a
solution to this problem by constructing a linear program whose solution represents a separating linear
constraint. The LP does not solve the problem in general, as it will fix all convex regions of f on one side and
the convex regions of g on the other side, which is not necessarily required. Furthermore, it assumes that all
inequalities in f and g are non-strict, i. e., convex regions are enlarged by their boundary. Both deficiencies are
handled heuristically later. We use an LP-solver that handles rational arithmetic as errors in the coefficients
prevent the algorithm from termination since we could be forced to separate the same pair of convex region
multiple times.

The construction of the LP is similar to the one that computes the linear constraints in resolution proofs,
hence based on Farkas’ Lemma. We expanded the approach to separate multiple pairs of convex regions.

Therefore, we define the variables d ∈ Qm and d0 ∈ Q that describe the new linear constraint l∗ in the
form dTx ≤ d0. Pairs of convex sets (F j , Gj) for j ∈ {1, . . . , k}, which are present in the k-th iteration of
the LP-problem for finding a new constraint for one test. The constraint dTx ≤ d0 is implied by F j , if there
is a non-negative linear combination of the inequalities of F j leading to dTx ≤ d0. Similarly, the constraint
aTx > b is implied by Gj , if there is a positive ε such that there is a non-positive linear combination of the
inequalities of Gj leading to dTx ≥ d0 + ε. All constraints can easily be formulated as linear constraints.

If the LP is solvable and ε > 0 the computed linear constraint l∗ separates each pair of convex regions.
Additionally the margin can be shifted to one region by adding specific scalar factors to the ε in the constraints.

For more details, we refer to [66].
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4.4 Counterexample-Guided Abstraction Refinement
Abstracting state sets comes with a price – it is possible that model checking reaches an initial state due
to abstraction only. This can happen directly, if a state added by overapproximation is also an initial state,
or indirectly, if the (direct or indirect) preimage of a state added by overapproximation intersects the initial
state set. In any case, model checking would consider the model unsafe, even if the model is safe.

Since the model checking result should not change due to abstraction, these cases need to be identified and
excluded. This is a rather typical situation when using abstractions, and often the problem is covered with
counterexample-guided abstraction refinement (CEGAR): The spurious counterexamples are used to refine the
abstraction, and the whole process is restarted.

In our case we use state set overapproximation as abstraction technique, and we want to avoid adding
states, whose (direct or indirect) preimage closure intersects the init initial state set – or, in other words, we
want to avoid adding states, which are reachable from the initial state set.

So the basic idea is to use reach set approximations for refinement – whenever a state (or state set) is
identified as reachable, it is added to the corresponding reach set approximation. If overapproximation com-
putation is modified, so that the overapproximated state sets do not extend into the reach set approximation,
then spurious counterexamples can be safely excluded.

4.4.1 Overall Refinement Algorithm

For implementing CEGAR using reach set approximations, we need several ingredients: First spurious coun-
terexamples need to be identified and used for refinement of the reach sets, then model checking needs to be
restartable and must use the reach sets, and finally a CEGAR loop must coordinate both.

The overall CEGAR algorithm is distributed into two main subalgorithms: A special counterexample
generation algorithm generates counterexamples, identifies spurious counterexamples, performs reach set ap-
proximation refinement and computes refined state set overapproximations. The model checking algorithm is
modified, so that it uses the reach set approximations, and can be restarted at any depth.

For performing their tasks successfully, information needs to be transferred between the subalgorithms:
For counterexample generation, spurious counterexample identification, and refinement computation, the
counterexample generation algorithm needs the computed state sets (saved in a state set vector ~φ), over-
approximations (saved in a state set vector ~φov), and overapproximation lower bounds (saved in a state set
vector ~φovlb) computed by the model checking algorithm. For convenience, the state set vectors are stored in
the result generated by the model checking algorithm.

In reverse, the model checking algorithm needs the refined reach sets, the refined overapproximations and
the restart depth provided by the counterexample generation algorithm.

Model checking and counterexample generation are controlled by the CEGAR loop in Alg. 8.

1 cegar(init, safe,GC) :
2 begin
3 restartData.restartDepth := 0;
4 repeat
5 mcResult := modelCheck(init, safe,GC, restartData) ;
6 if ¬mcResult.safe then
7 cegResult := generateCounterexample(mcResult.~φ,mcResult. ~φov);
8 if ¬cegResult.ceFound then
9 restartData := cegResult.restartData;

10 until mcResult.safe ∨ cegResult.ceFound;
Algorithm 8: Cegar loop
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4.4.2 Changes in Model Checking Algorithm

Using Reach Set Approximations. We use the reach set approximations reachAc2d, reachAd, reachAd2c,
and reachAflow, each of which contains states which are known to be reachable with transitions of the cor-
responding type. All approximations are initialized with init.

The reach set approximations are used to limit the overapproximations used in the next preimage compu-
tation, i. e. the overapproximation to be used in a flow preimage computation is intersected with ¬reachAflow.

So the line of Alg. 7
29 ψflowi := overapprox(ψflowi ∧ ¬φflowi−1 , eps_bloat(ψ

flow
i ∧ ¬φflowi−1 , ε) ∨ φflowi );

is changed to
29 ψflowi := overapprox(ψflowi ∧ ¬φflowi−1 , (eps_bloat(ψ

flow
i ∧ ¬φflowi−1 , ε) ∧ ¬reachAd2c) ∨ φflowi );

The use of reachAc2d, reachAd and reachAd2c follows the same pattern.

State Set Parameters and Results. The state sets in the state set vectors ~φ, ~φov and ~φovlb are labeled,
so that the names used in the algorithm are preserved.

In the following algorithm descriptions, the state set vectors to return are not explicitly extended. Instead
we just enumerate the variables, which are added to the state sets immediately after they are computed:

During the first initialization, φd2c0 is added to ~φ. During execution of mainloop i with discrete fixpoint
iteration taking j steps, the following state sets are added: φdi,1, . . . φdi,j−1, φ

dfp
i , φc2di , φflowi , φd2ci .

For ~φov, the following state sets are added in mainloop i after they are computed: φd,ovi,0 , . . . , φd,ovi,j−1,
φ
dfp,ov
i , φc2d,ovi , φflowi,ov .
For ~φovlb , the following state sets are added in mainloop i after they are computed: φd,ovlbi,0 , . . . , φd,ovlbi,j−1 ,

φ
dfp,ovlb
i , φc2d,ovlbi , φflowi,ovlb

.

Restarting Model Checking. Model check restart is indicated by a restart depth larger than 0. If the
restart depth is 0, then normal model checking is executed. If model checking is restarted, then the algorithm
is resumed exactly at the position, where overapproximation introduced a state, whose (direct or indirect)
preimage intersects the initial state set, so that the minimum number of necessary preimage computations
are repeated. Instead of the original overapproximation, the refined overapproximated provided by counterex-
ample generation is used as base for preimage computation.

Now we will describe the algorithm in detail. Since the overall algorithm is lengthy, the description is
divided into segments.

Initialization. Initialization is done differently in the context of restarting than during normal model
checking. If restarting, then the needed model checking data is restored. If not restarting, then model checking
data is initialized as in Alg. 7. The variable restarting signals that restarting is going on. Once normal model
checking has been resumed, the variable is reset, and normal model checking continues. The initialization is
described in Alg. 9.

Mainloop. The model checking mainloop as such is separated in four sections: discrete fixpoint iteration,
continuous-to-discrete transition evaluation, flow evaluation, and discrete-to-continuous transition evaluation
(as in Alg. 7). When restarting, some sections may be skipped until the restarting point is reached. The
mainloop is described in Alg. 10.

Discrete Fixed Point Iteration. The discrete fixed point iteration section is skipped, if restarting
and the restarting point is not the discrete section.

If not restarting, then the section is equivalent to the corresponding section in Alg. 7, with the small
additions that during overapproximation the reach set approximation reachAd is used and the lower bound
ψd,ovlbj−1 is explicitly named, since it is needed for refinement.

If restarting, then after restoring the needed environment data, the refined overapproximation data is used
as base for preimage computation. After that, restarting is completed and normal model checking resumes.
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
3 if restartData.restartDepth > 0 then
4 ~ψd2c := restartData. ~ψd2c; ~φd2c := restartData. ~φd2c; ~φdfp := restartData. ~φdfp ;

~φc2d := restartData. ~φc2d; ~φflow := restartData. ~φflow;
5 i := restartData.restartDepth− 1; restarting := true;
6 else
7 ψd2c0 := ¬safe; φd2c0 := ¬safe; φdfp0 := 0; φc2d0 := 0; φflow0 := 0;
8 i := 0; restarting := false;

...
Algorithm 9: Backward onion algorithm using abstraction with restart, initialization.

1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

9 while true do
10 i := i+ 1;

// Discrete fixed point iteration:
...
// Evaluate c2d transitions:
...
// Evaluate continuous flow:
...
// Evaluate d2c transitions:
...
Algorithm 10: Backward onion algorithm using abstraction with restart, mainloop.
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... ...

Figure 21: State set sequence

The discrete fixpoint iteration section is described in Alg. 11.

Continuous-to-discrete Transitions. Again the continuous-to-discrete transition section is skipped,
if restarting and the restarting point is not the continuous-to-discrete section. Again, if not restarting, then
the section is equivalent to the corresponding section in Alg. 7 (except that the overapproximation of the
previous state set has been shifted to this section, so that restarting can be performed). Also in this section
there are some small additions: During overapproximation the reach set approximation reachAc2d is used,
and overapproximation ψ

dfp ,ov
j−1 and lower bound ψ

dfp ,ovlb
j−1 are explicitly named, since they are needed for

refinement. The continuous-to-discrete transition section is described in Alg. 12.

Continuous Flow and Discrete-to-Continuous Transitions. The changes for continuous flow sec-
tion (Alg. 13) and discrete-to-continuous transition section (Alg. 14) match the pattern of those of the
continuous-to-discrete transition section.

4.4.3 Learning from Counterexamples

Counterexample generation is only triggered, if the model checker generated a state set sequence, whose
final state set intersects the set init of initial states. If this happens, counterexample generation has two
main goals: If the state set sequence does yield a path leading from init to unsafe, this path should be
computed and returned. If there is no such path, and the intersection was only detected because state set
overapproximation added one (or several) state(s), whose (direct or indirect) preimage(s) intersect init, then
these state(s) should be identified and added to the corresponding reach set approximation.

Since the hybrid state space is infinite, it is well possible that an infinite number of states are subject of
refinement. Because an infinite number of refinement steps is clearly not acceptable, it is important to learn
as much as possible from spurious counterexamples, and in as few steps as possible.

In this section, we describe a method using incremental SMT for trying to compute a path from init to
unsafe. If such a path exists, it is found and returned. If there is no such path, the approach gives enough
information for successfully triggering refinement.

As a first step, we describe the basic idea using a uniform transition relation, and then extend the approach
to the more complex LHA+D system model.

Computing Counterexamples with Incremental SMT (Uniform Transition Relation). We use a
simple system with hybrid variable set V ar and the uniform transition relation Trans, which is applicable
for every step of the system. We use s1 → s2 as abbreviation for (s1, s2) ∈ Trans. We assume ~φ = φ0, . . . , φn
and ~φov = φov0 , . . . , φ

ov
n−1 are vectors of hybrid state sets computed by a model checker, with φ0 = unsafe

and φn ∧ init 6= ∅. Additionally ∀i∈0...n−1φi ⊂ φovi , so each φovi is either equal to the corresponding φi or an
overapproximation. Furthermore ∀i∈1...nφi = φi−1 ∪ PreTrans(φovi−1), so each φi is the φi−1 extended with
(possible) overapproximation’s preimage PreTrans according to Trans. This situation is depicted in Fig. 21.

Obviously there is a real counterexample, if there is a sequence of states connected by the transition
relation, starting from init and ending in unsafe: ∀i∈n...0 : ∃si ∈ φi : sn ∈ init∧sn → sn−1 → · · · → s1 → s0.
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

9 while true do
10 i := i+ 1;

// Discrete fixed point iteration:
11 if ¬restarting ∨ (restarting ∧ restartData.restartSection = d) then
12 if ¬restarting then
13 j := 0;
14 ψdi,0 := ψd2ci−1; φdi,0 := ψd2ci−1 ∨ φ

dfp
i−1; ω

d
i,0 := φ

dfp
i−1;

15 else
16 j := restartData.j − 1;
17 if restartData.j = 1 then
18 ψdi,0 := restartData.ψd2ci−1;
19 φdi,0 := restartData.ψd2ci−1 ∨ restartData.φ

dfp
i−1;

20 ωdi,0 := restartData.φ
dfp
i−1;

21 else
22 ~ψdi := restartData. ~ψdi ;

~φdi := restartData. ~φdi ;

23 ~ωdi := restartData. ~ωdi ;

24 repeat
25 j := j + 1;
26 if ¬restarting then
27 ψd,ovlbi,j−1 := ψdi,j−1 ∧ ¬ωdi,j−1;
28 ψd,ovi,j−1 := overapprox(ψd,ovlbi,j−1 , (eps_bloat(ψ

d,ovlb
i,j−1 , ε) ∧ ¬reachAd) ∨ φdi,j−1);

29 else
30 ψd,ovi,j−1 := restartData.ψd,ovi,j−1;
31 restarting := false;

32 ψdi,j := Pred(ψd,ovi,j−1 ∧GC);
33 ωdi,j := ωdi,j−1 ∨ ψd,ovi,j−1; ψ

d
i,j := constraint_min(ψdi,j , ω

d
i,j); φdi,j := φdi,j−1 ∨ ψd,ovi,j−1 ∨ ψdj ;

34 if GC ∧ ψdi,j ∧ init 6= 0 then return false;
35 until GC ∧ ψdj ∧ ¬ωdj = 0;

36 φ
dfp
i := φdi,j ;

37 ψ
dfp
i := constraint_min(φ

dfp
i , φ

dfp
i−1);

...
Algorithm 11: Backward onion algorithm using abstraction with restart, discrete fixed point iteration
section.
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

9 while true do
10 i := i+ 1;

// Discrete fixed point iteration:
...
// Evaluate c2d transitions:

38 if ¬restarting ∨ (restarting ∧ restartData.restartSection = c2d) then
39 if ¬restarting then
40 ψ

dfp ,ovlb
i := ψ

dfp
i ∧ ¬φ

dfp
i−1;

41 ψ
dfp ,ov
i := overapprox(ψ

dfp ,ovlb
i , (eps_bloat(ψdfp ,ovlbi , ε) ∧ ¬reachc2d) ∨ φdfpi );

42 else
43 ψ

dfp ,ov
i := restartData.ψ

dfp ,ov
i ;

44 restarting := false;

45 φ
dfp ,ov
i := φ

dfp
i−1 ∨ ψ

dfp ,ov
i ;

46 ψc2di := ∃dn+1, . . . dp(Prec2d(ψ
dfp ,ov
i ∧GC)) ∧∨kh=1(βh ∧ (−→m = mh));

47 if i = 1 then ψc2di := ψc2di ∨ ¬safe;
48 ;
49 if GC ∧ ψc2di ∧ init 6= 0 then return false;
50 ;
51 if GC ∧ ψc2di ∧ ¬φc2di−1 = 0 then return true;
52 ;
53 ψc2di := constraint_min(ψc2di , φc2di−1);
54 φc2di := φc2di−1 ∨ ψc2di ;

...
Algorithm 12: Backward onion algorithm using abstraction with restart, continuous-to-discrete transition
section.
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

3 while true do
4 i := i+ 1;

// Discrete fixed point iteration:
...
// Evaluate c2d transitions:
...
// Evaluate continuous flow:

52 if ¬restarting ∨ (restarting ∧ restartData.restartSection = flow) then
53 if ¬restarting then
54 ψc2d,ovlbi := ψc2di ∧ ¬φc2di−1;
55 ψc2d,ovi := overapprox(ψc2d,ovlbi , (eps_bloat(ψc2d,ovlbi , ε) ∧ ¬reachAflow) ∨ φc2di );
56 else
57 ψc2d,ovi := restartData.ψc2d,ovi ;
58 restarting := false;

59 φc2d,ovi := φc2di−1 ∨ ψc2d,ovi ;
60 ψflowi :=

∨k
h=1 constraint_min(Prec(ψc2d,ovi |−→m=mh

,Wh, βh), φflowi−1 |−→m=mh
) ∧ (−→m = mh);

61 if GC ∧ ψflowi ∧ init 6= 0 then return false;
62 ;
63 if GC ∧ ψflowi ∧ ¬φflowi−1 = 0 then return true;
64 ;
65 ψflowi := constraint_min(ψflowi , φflowi−1 );
66 φflowi := φflowi−1 ∨ ψflowi ;

...
Algorithm 13: Backward onion algorithm using abstraction with restart, continuous flow section.
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

3 while true do
4 i := i+ 1;

// Discrete fixed point iteration:
...
// Evaluate c2d transitions:
...
// Evaluate continuous flow:
...
// Evaluate d2c transitions:

65 if ¬restarting ∨ (restarting ∧ restartData.restartSection = d2c) then
66 if ¬restarting then
67 ψflow,ovlbi := ψflowi ∧ ¬φflowi−1 ;
68 ψflow,ovi := overapprox(ψflow,ovlbi , (eps_bloat(ψflow,ovlbi , ε) ∧ ¬reachAd2c) ∨ φflowi );
69 else
70 ψflow,ovi := restartData.ψflow,ovi ;
71 restarting := false;

72 φflow,ovi := φflowi−1 ∨ ψflow,ovi ;
73 ψd2ci := Pred2c(ψflow,ovi ∧GC);
74 if GC ∧ ψd2ci ∧ init 6= 0 then return false;
75 ;
76 if GC ∧ ψd2ci ∧ ¬φdfpi = 0 then return true;
77 ;

// See optimization above,
∨i−1
j=0 ψ

d2c
j ⊆ φdfpi

78 ψd2ci := constraint_min(ψd2ci , φd2ci−1);
79 φd2ci := φd2ci−1 ∨ ψd2ci ;

Algorithm 14: Backward onion algorithm using abstraction with restart, discrete-to-continuous transition
section.
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... ...

Figure 22: Real counterexample

If there is a gap between two state sets (∃i ∈ n− 1. . .0 : ∀si ∈ φj : ∀j ∈ n . . . i : sj ∈ φj : sn ∈ init∧ sn →
· · · → si+1 =⇒ ¬(si+1 → si)), then overapproximation must be involved, because φi−1 ⊂ φovi−1 and
φi = φi−1 ∪ PreTrans(φovi−1).

This can be coined into an algorithm with the help of incremental SMT: We build and solve a sequence
of SMT problems (similar to bounded model checking (BMC)). Similar to BMC, the system variables exist
in a separate instance for each unroll depth, connected by the transition relation. Using the abbreviations
φ〈n〉 = φ[vn/v]v∈V ar and Trans〈n,m〉 = Trans[vn/v, vn/v

′]v∈V ar, we begin with
init〈n〉 ∧ φn〈n〉
init〈n〉 ∧ φn〈n〉 ∧ Trans〈n, n− 1〉 ∧ φn−1〈n− 1〉
init〈n〉 ∧ φn〈n〉 ∧ Trans〈n, n− 1〉 ∧ φn−1〈n− 1〉 ∧ Trans〈n− 1, n− 2〉 ∧ φn−2〈n− 2〉
...

If the SMT problem for depth i is solvable, then we generate (and solve) the problem for depth i − 1, until
(hopefully)

init〈n〉 ∧ φn〈n〉 ∧ Trans〈n, n− 1〉 ∧ φn−1〈n− 1〉 ∧ . . . ∧ Trans〈1, 0〉 ∧ φ0〈0〉
can be solved and a real counterexample has been found. However if a SMT problem for depth i is not solvable,
then we can switch from problem

init〈n〉 ∧ φn〈n〉 ∧ Trans〈n, n− 1〉 ∧ φn−1〈n− 1〉 ∧ . . . ∧ Trans〈n− 1 + 1, n− i〉 ∧ φn−i〈n− i〉
to the problem

init〈n〉 ∧ φn〈n〉 ∧ Trans〈n, n− 1〉 ∧ φn−1〈n− 1〉 ∧ . . . ∧ Trans〈n− 1 + 1, n− i〉 ∧ φovn−i〈n− i〉
by replacing the last SMT frame denoting φn−i〈n− i〉 by φovn−i〈n− i〉. Each solution of this problem describes
a spurious counterexample and can be used for refinement.

Computing Counterexamples with Incremental SMT (LHA+D). In this paragraph, we try to trans-
fer the idea sketched above for a uniform transition relation to a LHA+D. Instead of a simple system with
variable set V ar and uniform transition relation Trans, we use a LHA+D with V ar = C ∪D ∪M ∪ I and
the transition relations Transc2d, Transd, Transd2c and Transflow, corresponding to the step types of the
LHA+D. We use abbreviations s1

t→ s2 for (s1, s2) ∈ Transt for t ∈ {c2d, d, d2c, flow}.
Again we assume ~φ = φ0, . . . , φn and ~φov = φov0 , . . . , φ

ov
n−1 are vectors of hybrid state sets, now computed

by the model checking algorithm described in 4.4.2. For any φ in ~φ, we write φt if type(φ) = t. For any φov

in ~φov, we write φt,ov if type(φov) = t.
For a real counterexample, again a state sequence leading from init to unsafe needs to be established.

Again we start with a SMT problem describing the states intersecting init, then add transition relations
and target state sets as long as the problem keeps solvable or unsafe is reached, or use a modified problem
involving an overapproximated state set for identification of spurious counterexamples and refinement, if the
SMT problem gets unsolvable. However many details are different to the case of a uniform transition relation.

Initial SMT Problem. The model checking algorithm terminates, as soon as an intersection with init
is detected, thus init ∪ ~φ[n]t 6= ∅ is guaranteed. So the first SMT problem is
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init〈n〉 ∧ ~φ[n]tn〈n〉
where tn ∈ {c2d, d, d2c, flow}.

Extending the SMT Problem. Extension of the incremental SMT problem depends on the type of
the last state set added to the problem. The extension of a SMT problem of depth i
· · · ∧ ~φ[i]ti〈i〉

is simple for ti = flow and ti = d2c: If the problem is solvable, then it is extended with Transti and the
next state set ~φ[i− 1]ti−1 :
· · · ∧ ~φ[i]ti〈i〉 ∧ Transti−1 < i, i− 1 > ∧~φ[i− 1]ti−1〈i− 1〉

If the problem is not solvable, we replace ~φ[i]ti with its overapproximation ~φ[i]ti,ov and start identifying
spurious counterexamples:
· · · ∧ ~φ[i]ti,ov〈i〉

For ti = c2d and ti = d the discrete fixpoint iteration in the model checking algorithm complicates extension.
The iteration computes overapproximations and preimages and disjoins them, until a fixpoint is reached,
whereby the number of needed iterations corresponds to the maximum number of discrete steps the system
may take, although also less steps (including no discrete steps at all) are possible. The fixpoint is then used
as base for c2d-overapproximation.

This poses several problems, which need to be dealt with separately: First each possible number of discrete
steps needs to be considered for finding a real counterexample. Second each possible number of discrete steps
needs to be considered for finding spurious counterexamples, if necessary. Finally the special properties of
the discrete fixpoint needs to be regarded for finding spurious counterexamples.

So for a real counterexample bridging state sets from a discrete fixpoint iteration with j steps, we must
consider the path segments

. . . sc2di
c2d→ sd2ci−1 . . .

. . . sc2di
c2d→ sdi,1

d→ sd2ci−1 . . .
...
. . . sc2di

c2d→ sdi,j−1
d→ . . .

d→ sdi,1
d→ sd2ci−1 . . .

For embedding into an incremental SMT problem, it is much more convenient to have only path segments of
the same length, so we fill up the missing steps with τ -transitions, which do not alter the state.

. . . sc2di
c2d→ sdi,j−1

τ→ . . .
τ→ sdi,1

τ→ sd2ci−1 . . . // sdi,j−1 = . . . = sd2ci−1

. . . sc2di
c2d→ sdi,j−1

d→ sdi,j−2
τ→ . . .

τ→ sdi,1
τ→ sd2ci−1 . . . // sdi,j−2 = . . . = sd2ci−1

...

. . . sc2di
c2d→ sdi,j−1

d→ . . .
d→ sdi,1

d→ sd2ci−1 . . .

The τ -transition is introduced by extending the transition relation Transd to Transdτ by adding identity
pairs for all states in which no guarded assignment in DT d is enabled.

Using this extension, we can deal with SMT problems with a discrete state set ~φ[i]d〈i〉 on-top: If the prob-
lem is solvable, it is extended with Transdτ and the next state set ~φ[i− 1]ti−1 . If the problem is not solvable,
the state set on-top is replaced with ~φ[i]d,ov〈i〉 and the result problem is used for spurious counterexample
detection.

For continuous-to-discrete steps, one final problem needs to be solved: The base of continuous-to-discrete
overapproximation is the discrete fixpoint, which is a disjunction of (possibly overapproximated) discrete
state sets. So during modelchecking continuous-to-discrete preimages are computed for states added during
overapproximation of the fixpoint and during overapproximation of discrete state sets, which need to be
treated separately for spurious counterexample detection. This is done with a little trick: First we check
whether a state in the discrete fixpoint is reachable with a continuous-to-discrete step. If this is not the case,
then the fixpoint overapproximation is the cause of the spurious counterexample. If a state in the discrete
fixpoint is reachable, then we switch to searching a path through the discrete state sets (and treating discrete
state set overapproximations, if necessary). This is achieved with a sequence of incremental SMT problems.
Starting from the SMT problem of depth i
· · · ∧ ~φ[i]c2d〈i〉
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first an extension with Transc2d and ~φ[i− 1]dfix is made. If the resulting SMT problem
· · · ∧ ~φ[i]c2d〈i〉 ∧ Transc2d < i, i− 2 > ∧~φ[i− 1]dfix〈i− 2〉

is not solvable, then the state set on-top is replaced with the corresponding overapproximation ~φ[i−1]dfix,ov,
and spurious counterexample detection and refinement is performed. If the problem is solvable, then the state
set on-top is replaced with the last discrete state set of the fixpoint iteration ~φ[i − 2]d. If now the resulting
SMT problem
· · · ∧ ~φ[i]c2d〈i〉 ∧ Transc2d < i, i− 2 > ∧~φ[i− 2]d〈i− 2〉

is not solvable, then the state set on-top is replaced with the corresponding overapproximation ~φ[i − 2]d,ov,
and spurious counterexample detection and refinement is performed. If the problem is solvable, then SMT
problem extension for discrete steps is started.

End of Counterexample Generation. Counterexample generation ends, if either unsafe is reached,
or if no further step towards unsafe can be made. Unlike in the case of a uniform transition relation above,
unsafe can be reached in any step of the last mainloop.

Counterexample Generation Algorithms. All components are put together in Alg. 15.

Excluding CEX points. Refinement is triggered with a SMT problem, whose solutions describe spurious
counterexamples. The spurious counterexamples are used to fill reach set approximations for the corresponding
step types.

There is one basic problem: The overapproximation, which caused the spurious counterexample, may have
added an infinite number of states. Each solution itself provides only a finite number of reachable points, so
if only these points are excluded, possibly an infinite number of solutions must be created. Luckily the reach
set approximations are used during interpolation to limit overapproximation, and with each additional point
in the reach set approximation each performed interpolation possibly removes an infinite number of reachable
states, thus spurious counterexamples.

Thus we integrate interpolation and reach set approximation tightly: Immediately after adding a coun-
terexample point to the reach set approximation, a new state set overapproximation limited by the extended
reach set approximation and previous overapproximation is computed. If the new reach set approximation
still yields spurious counterexamples, a new counterexample point is computed and added to the reach set
approximation. This process is repeated in a loop, until no further spurious counterexamples can be generated.

Depending on how well the generated counterexample points stake out the reachable state space, more
or less loop iterations are needed. In practice the default counterexample points work reasonably well, how-
ever in rare cases additional measures need to be taken to ensure a good distribution, including shifting
counterexample points as close to the state set as possible, or generating counterexample points only with
a minimum distance to each other. For all models used in the evaluation, this was not necessary, and the
algorithm Alg. 16 was executed without modifications.

Generalization of CEX points using Quantifier Elimination. Generally speaking, a counterexample
is a finite sequence of states (sn, sn−1, . . . , s0), where sn is an initial state, together with a sequence of
transition types (tn, tn−1, . . . , t1), ti ∈ {c2d, d, d2c, flow} for i = n, . . . , 1, such that we obtain the connected
sequence:

sn
tn−→ sn−1

tn−1−→ sn−2
tn−2−→ . . .

t1−→ s0.

All states si, i = n, . . . , 0, of the counterexample are reachable from the initial states.
In this section we discuss the generalization of spurious counterexamples. Let us assume that we detected

a spurious counterexample (sn, . . . , sk) and the corresponding transitions (tn, . . . , tk+1) during our CEGAR
approach, i. e., the overapproximation φovk of φk caused the spuriousness of the counterexample. Note that
the sequences (si) and (ti) can be extracted from Alg. 15. In order to avoid the spurious counterexample, the
causing overapproximation has to be revised – a procedure which we call refinement. The simplest method is
to add sk to the exclude set and to redo the overapproximation. The newly computed overapproximation does
not contain sk and (sn, . . . , sk) is no longer a spurious counterexample. Since this approach does not guarantee
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1 generateCounterexample(init, unsafe,GC, ~φ, ~φovlb , ~φov) :
2 begin
3 SMTproblem.push ((φ[n] ∧ Init ∧GC) < n >);
4 SMTmodel := SMTproblem.solve ();
5 if inF irstMainloop(φ[n]) then
6 SMTproblem.push (unsafe < n >);
7 SMTmodel := SMTproblem.solve ();
8 unsafeReached := SMTmodel.solvable;
9 SMTproblem.pop ();

10 i := n; inext := i− 1;
11 while i > 0 ∧ ¬unsafeReached ∧ SMTmodel.solvable do
12 if type(~φ[i]) = c2d ∧ type(~φ[inext]) = dfix then
13 SMTproblem.push (Transtypei < i, i− 2 >);
14 else if type(~φ[i]) 6= c2d then
15 SMTproblem.push (Transtypei < i, i− 1 >);

16 SMTproblem.push ((~φ[inext] ∧GC) < inext >);
17 SMTmodel := SMTproblem.solve ();
18 if inF irstMainloop(~φ[inext) then
19 SMTproblem.push (unsafe < n >);
20 SMTmodel = SMTproblem.solve ();
21 unsafeReached = SMTmodel.solvable;
22 SMTproblem.pop ();

23 if type(~φ[i]) = c2d ∧ type(~φ[inext]) = dfix then
24 SMTproblem.pop ();
25 inext = inext − 1; ;
26 else
27 i := inext; inext := i− 1;

28 if SMTmodel.solvable then
29 result.ceFound := true;
30 computeTrace(SMTmodel);
31 else
32 SMTproblem.pop ();
33 result.ceFound := false;
34 computeRefinement(SMTproblem, ~φov, ~φovlb , inext, ReachA

type(~φ[i]);

Algorithm 15: Counterexample generation.

1 computeRefinement(SMTproblem, ~φov, ~φovlb , inext, ReachA) :
2 begin
3 repeat
4 SMTproblem.push (( ~φov[inext] ∧GC) < inext >);
5 SMTmodel := SMTproblem.solve ();
6 if SMTmodel.solvable then
7 cexPoint := computeCexPoint(SMTmodel);
8 ReachA := ReachA ∪ {cexPoint} ;
9 ~φov[inext] := interpolate(φovlb [inext] ∧GC ∧ Inv, (¬ ~φov[inext] ∨ReachA) ∧GC ∧ Inv);

10 until ¬SMTmodel.solvable;
Algorithm 16: Refinement.
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the absence of other spurious counterexamples, we have to check again for a spurious counterexample and
exclude it just as before until no further spurious counterexample can be found. While in practice the repeated
search does often terminate due to interpolation, we cannot formally guarantee termination of the refinement.

We would like to have methods which allow to exclude many spurious counterexamples at once and intro-
duce only mild additionally computational costs. Ideally, such a method also guarantees termination of the
refinement. The following two paragraphs describe two possible methods to generalize single counterexample
by usage of quantifier elimination.

Excluding Cones. Let sn
tn−→ sn−1

tn−1−→ sn−2
tn−2−→ . . .

tk+1−→ sk be a spurious counterexample. Thus, sk+1 is
a reachable state and its post-image under Transtk+1 , i. e., the set {~x | Transtk+1(sk+1, ~x)}, is also reachable
and its quantifier free equivalent can be computed using quantifier elimination. Obviously, the post-image is
a generalization of the exclude point sk and can be added to the exclude set. A variant of this method can
be used in the special case where tk+1 = d2c. In this case, the sequence sn

tn−→ sn−1
tn−1−→ sn−2

tn−2−→ . . .
tk+1−→ sk

can be extended by any state x which is reachable from sk by a continuous flow. Hence, instead of adding
sk to the exclude set we may add the continuous post-image of sk to the exclude set. Clearly, the continuous
post-image of sk also contains sk.

Generalization of CEX points using Partial Quantifier Elimination. Let sn
tn−→ sn−1

tn−1−→ sn−2
tn−2−→

. . .
tk+1−→ sk be a spurious counterexample. This sequence is a valid trajectory of the hybrid automaton describ-

ing a possible evolution of the initial state sn along the transitions given by the sequence (tn, . . . , tk+1). On
the other hand, the following formula characterizes all reachable states from some initial state for the same
sequence of transitions:

∃xn, xn−1, . . . xk+1. init(xn) ∧ Transtn(xn, xn−1) ∧ · · · ∧ Transtk+1(xk+1, xk)

An easy transformation of the formula provides a formula which collects all reachable states along the given
sequence of transitions:

∃xn, xn1
, . . . xk. init(xn) ∧ Transtn(xn, xn−1) ∧ · · · ∧ Transtk+1(xk+1, xk)

∧ (x = xn ∨ x = xn−1 ∨ · · · ∨ x = xk).
(7)

In principle, we could use quantifier elimination to eliminate the variables xn, . . . , xk and obtain a quantifier
free formula Reach(x) representing all reachable states along the given sequence of transitions. Adding Reach
to the exclude set would prevent the overapproximation to contain any spurious counterexample for the
given sequence of transitions. Hence, using expensive quantifier elimination would guarantee termination of
the refinement.

Instead of using the expensive but complete quantifier elimination, we propose to use a partial quantifier
elimination, like it is presented in Sect. 3.3.4. The method takes a formula and a satisfying assignment of
the variables to compute an underapproximation of the quantifier-free equivalent. In the case of a spurious
counterexample sn

tn−→ sn−1
tn−1−→ sn−2

tn−2−→ . . .
tk+1−→ sk the ti, i = n, . . . , k + 1, are used to determine the

formula (7) and the si, i = n . . . , k, provide a satisfying assignment for (7). Hence, we can determine those test
points of the Loos-Weispfenning method, which lead to a satisfying sub-formula PartialReach(x) of Reach(x).
Now, we add PartialReach(x) to the exclude set, refine and check for further spurious counterexamples. Let
us discuss the termination of this refinement procedure: First, let us remark that there are only finitely many
different sequences of transitions (tn, . . . , tk+1). Hence, it suffices to show that the proposed method excludes
all spurious counterexamples for a fixed sequence of transition within a finite number of refinement loops.
For a given sequence of transitions, we are done as soon as the exclude set contains all states of Reach(x),
where Reach(x) is exactly the set of all reachable states for the given sequence of transitions. By construction,
the end point of a spurious counterexample sn

tn−→ sn−1
tn−1−→ sn−2

tn−2−→ . . .
tk+1−→ sk cannot be a point of the

exclude set. That is, each newly found spurious counterexample either has a different transition sequence, or
it differs in at least one state sn, . . . , sk from the exclude set. Hence, the corresponding satisfiable sub-formula
PartialReach(x) has at least one point which is not yet contained in the exclude set. On the other hand, the
method in Sect. 3.3.4 only generates finitely many different sub-formulas of Reach(x). Hence, the refinement
procedure is guaranteed to terminate.

60



4.5 Per Mode Overapproximation
If per mode acceleration is used, then it is also possible to perform per mode overapproximation. Unlike in
the approach described in Alg. 13 (which we call overapproximation at once), where we use the complete c2d
onion ring, the complete flow reach set and the complete c2d state set as base for overapproximation, and
then for each mode compute a cofactor of the overapproximation and use it for mode preimage computation,
we can compute cofactors of the c2d onion ring, the flow reach set and c2d state set, and then use these
cofactors as base for computing mode specific c2d onion ring cofactor overapproximations, which again are
used for mode preimage computation, in hope that the gain of the mode specific overapproximation exceeds
the cost of computing the additional cofactors.

Also for per mode overapproximation the integration into the overall cegar algorithm needs to be con-
sidered. Luckily counterexample generation and refinement computation do not need to be changed, as long
as the mode specific overapproximations are combined to an overall c2d overapproximation, which can be
used in the counterexample generation algorithm. For restarting, however, again mode specific cofactors of
the refined c2d overapproximation are computed, and used for mode preimage computation.

The approach is described in Alg. 17, which contains the updated continuous flow section of the onion
algorithm using abstraction with restart.

4.6 Related Work CEGAR
The general undecidability of model checking of hybrid systems and the often observed state set explosion
in typical reach set computations makes the usage of abstraction techniques attractive. Clearly, the choice of
an appropriate abstraction is again a difficult problem. Ideally, an abstraction is fine enough to preserve the
safeness and it is coarse enough to allow efficient computation. An appealing idea is to start with a coarse
abstraction and successively refine the abstraction guided by counterexamples.

Many approaches, like [67, 68, 69], use abstractions which transform the hybrid systems inherently having
an infinite state space into finite state models: The papers [68, 69] use discrete transitions systems as abstrac-
tions. In [68] the validation of counterexamples and the refinements are computed simultaneously along a
concretization of the abstract path of the counterexample. In contrast, [69] extracts conflicting guard-/jump-
sequences from spurious counterexamples. These conflicting sequences are then ruled out in the abstract
model. [67] utilizes a predicate abstraction of the concrete hybrid system and searches the abstract state
space for counterexamples for the abstract safety proof. If no such intersection exists, the concrete model is
safe and we are done. Otherwise, it has to be checked whether the abstract counterexample describes concrete
counterexamples. To this end, the abstract counterexample has to be concretized using the concretization of
the involved abstract states and transitions, and the concrete post-image computation. Either such a con-
cretization is successful and a concrete counterexample has been found, or the concretization fails. In the
later case, the abstraction has to be refined in order to exclude the spurious abstract counterexample from
further search. The concretization of an abstract counterexample is an expensive post-image computation of
bounded length and ideally uses an exact post-image computation to avoid unnecessary refinements. Inter-
estingly, during their refinement procedure they use a subdivision approach to find a separating predicate for
two disjoint sets of polyhedra, a problem which is highly related to our interpolant computation.

[70] uses hyper-rectangles as abstract states. A refinement step corresponds to splitting the boxes and
re-computation of the possible transitions. In order to avoid the possible exponential blowup due to the
splitting, the authors propose to use constraint propagation. The approach is implemented in HSolver and
deals with non-linear hybrid systems.

[71] propose a CEGAR approach for rectangular hybrid systems. They use abstractions which map an
hybrid system to a hybrid system. The strong reset abstraction maps a rectangular hybrid system to an
abstract initialized rectangular hybrid system by altering the assignments of certain transitions into a non-
deterministic choice within an admissible interval. For the later class of hybrid systems it is well-known that
there exists a procedure to decide safety [21]. The corresponding refinement introduces additional transitions
by splitting the interval of non-deterministic choice. This abstraction yields a semi-decision procedure for
rectangular hybrid systems. For the class of initialized rectangular systems the authors propose to use control
abstraction merging locations and transitions, and a flow abstraction based on dropping and scaling of
variables. The authors show that their CEGAR approach using the later two abstractions yields a decision
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1 modelCheck(init, safe,GC, restartData) :
2 begin

// Initialization:
...
// Mainloop:

3 while true do
4 i := i+ 1;

// Discrete fixed point iteration:
...
// Evaluate c2d transitions:
...
// Evaluate continuous flow:

52 if ¬restarting ∨ (restarting ∧ restartData.restartSection = flow) then
53 if ¬restarting then
54 ψc2d,ovlbi := ψc2di ∧ ¬φc2di−1;
55 else
56 ψc2d,ovi := restartData.ψc2d,ovi ;

57 φc2d,ovi := φc2di−1;
58 foreach h ∈ {1 . . . k} do
59 if ¬restarting then
60 φc2di,mh := φc2di |−→m=mh

;
61 ψc2d,ovlbi,mh

:= ψc2d,ovlbi |−→m=mh
;

62 reachAflowmh
:= reachAflow|−→m=mh

;
63 ψc2d,ovi,mh

:= overapprox(ψc2d,ovlbi,mh
, (eps_bloat(ψc2d,ovlbi,mh

, ε) ∧ ¬reachAflowmh
) ∨ φc2di,mh);

64 ψc2d,ovi := ψc2d,ovi ∨ (ψc2d,ovi,mh
∧ (−→m = mh));

65 φc2d,ovi := φc2d,ovi ∨ (ψc2d,ovi,mh
∧ (−→m = mh));

66 else
67 ψc2d,ovi,mh

:= restartData.ψc2d,ovi |−→m=mh

68 ψflowi,mh
:= constraint_min(Prec(ψc2d,ovi,mh

,Wh, βh), φflowi−1 |−→m=mh
);

69 ψflowi := ψflowi ∨ (ψflowi,mh
(−→m = mh);

70 if restarting then
71 restarting := false;

72 if GC ∧ ψflowi ∧ init 6= 0 then return false;
73 if GC ∧ ψflowi ∧ ¬φflowi−1 = 0 then return true;
74 ψflowi := constraint_min(ψflowi , φflowi−1 );
75 φflowi := φflowi−1 ∨ ψflowi ;

...
Algorithm 17: Backward onion algorithm using abstraction with restart, continuous flow section with per
mode overapproximation.
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procedure for initialized hybrid systems.

5 Experimental Evaluation

5.1 Description of Benchmarks
In the following we describe the models used for benchmarking. In general the models describe one or several
controllers on a continuous plant. The models are specified in an HLANG [72] dialect for FOMC, which
provides integer values for user convenience. The integer variable are translated to a boolean representation
internally.

We characterize the complexity of the modeled system in terms of the discrete and continuous state spaces.
The discrete state space is determined by the cross-product of discrete variables ranges. The continuous state
space is characterized by the number of real variables in the model.

In order to examine how the FOMC copes with increasingly more complex behavior, we also consider
scaled up version of the same system. The prefix of a model name refers to the model (family) and is followed
by a reference to the scaled instance. The suffix inv encodes that lemmata are part of the model description,
that are tagged as invariants, whereas the suffix gc encodes that lemmata are part of the model description,
that are tagged as global constraints. In both cases, the FOMC is able to establish the annotated lemmata
on the given model.

Flap/Slat Controller. The Flap/Slat Controller benchmark (flapCtrl,flapSlatCtrl_2of2Lp2F ) is derived
from a case study for Airbus [73]. During take-off (and landing) flaps and slats of the aircraft are extended
to generate more lift at low velocity and have to be retracted in time, as they are not robust enough for high
velocities. A controller corrects the pilot’s commands, if they endanger the flaps or slats. The safety property
to be established for our model is that the velocity of the aircraft never exceeds the allowed velocities for the
current flap/slat positions, respectively.

Discrete variables encode the number of lever positions, stages of the controller state machine. A mode
variable per flap/slat encodes whether the flap/slat is decreasing, increasing or at stand-still. Continuous
variables are the plane velocity and the angles of flaps/slats. To generate increasingly challenging model
instances, we scaled the model in the number of lever positions and in the number of flaps/slats.

Scaling only the number of lever positions (flapCtrl), we considered models with a discrete state space up
to 2048 = 211 states and two continuous variables, flapCtrl_10of10Lp .

The model family flapSlatCtrl_2of2Lp2FXXS has been derived to generate models with increasingly more
parallel components. Therefore we scale up the number XX of slats on an aircraft with already two flaps, while
the lever positions are limited to two at all considered instances. The smallest model flapSlatCtrl_2of2Lp2F0S
has a discrete state space of 211 states and three continuous variables, whereas the most complex instance
considered, flapSlatCtrl_2of2Lp2F20S, has a discrete state space of 271 states and 23 continuous variables.

Approach Velocity Controller. These benchmarks model controllers regulating the speed of a car
via its acceleration. We consider two distinct controller implementations. acc_pi applies a PI control loop
mechanism. Its objective is to make the car drive a given speed. We consider a linearized version of this
model. The resulting model has a discrete state space of 16 states and two continuous variables.

The second controller switches between constant accelerations to implement a strategy for a prioritized
list of objectives. Its top priority is to guarantee collision freedom, its second priority objective is to follow
the preceding car not closer than within a certain distance. Also the controller tries to make the car drive
at a certain goal speed, if this does not endanger its more important objectives. We examine this controller
in two variants for collision freedom. (i) The goal speed is arbitrary but constant (avc_arb), (ii) the goal
speed changes (avc_goal). The continuous evolution of the distance between two cars is overapproximated
via linearization. We implement the linearization via modes, that correspond to velocity ranges and for
which they define appropriate bounded derivatives for the distance evolution. The linearization granularity is
encoded into the model name via the suffix_hX where X is the number of linearization modes. Both, avc_arb
and avc_goal, models have 8 continuous variables and discrete state space ranging from 512 to 211 states,
depending on the considered linearization granularity.

Bouncing Ball. bb_h22 is a simple model of a bouncing ball. A continuous variable x represents the
current height of the ball over the floor, a second continuous variable v represents the current velocity of
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the ball. The dynamics of the ball is given by ẋ = v, v̇ = −1 ± 0.05. The ball bounces as soon as it reaches
the floor. At a bounce the speed of the ball is discretely reduced. It is verified that the ball, being dropped
from an initial height, never exceeds a certain height. This continuous dynamics is overapproximated into
22 modes of bounded derivatives. The model has a discrete state space of 32 states and three continuous
variables.

Intersection Controller. The intersection controller monitors the traffic flow at a two road intersection.
The controller has to guarantee that a car approaching the intersection on a minor road is granted access to
the intersection only if its save passage can be guaranteed without disrupting the traffic flow of the major road.
In order to determine whether a car on a minor road may cross the intersection, the controller conservatively
overapproximates the future traffic evolution. Based on its traffic prediction, the controller computes a waiting
time for the car on the minor road, after which the intersection can be crossed safely.

For these models we examine two kinds of safety properties. The first safety property describes collision
freedom at the intersection and holds on the considered models, whereas the second safety property does not
hold (model names with dist) and therewith illustrate that a car on a minor road actually may enter the
intersection.

We consider several distinct but closely related controllers. The interC_s+g controller orders a car on a
minor road not to reduce its speed, if this enables the car to cross the intersection right away. In contrast,
interC_s controllers only decide on an appropriate waiting time for a gap between two modeled cars.

The model has continuous variables for wait timers, distances and velocities. Discrete variables encode the
state of the controller and encode the protocol for a car on a minor road approaching and crossing the inter-
section. Further we consider overapproximated linearized dynamics for the distance evolution implemented
via modes of bounded derivatives. The continuous evolution of waiting time and velocity is specified via
constant derivatives.

We consider two different encodings of interC_s+g controllers. The first variant has a discrete state space
of 4096 = 212 states and 5 continuous variables, whereas the second variant has 16384 = 214 discrete states
and 5 continuous variables. We also consider two variants of interC_s controller models. The first variant
has a discrete state space of 1024 = 210 states and 5 continuous variables, whereas the second variant has
128 discrete states and 5 continuous variables.

ETCS Train Crossing Controller. We derived a couple of benchmark models (names with etcs) from
the Etcs collision avoidance protocol. The protocol consists of two parts, the speed supervision of the train
and a cooperation protocol between the train and a radio block center that grants movement authorities to
the train. The train has to stop before reaching the end of its current movement authority. The protocol also
maintains some error control and signals a failure to the on-board speed supervision. Details on the reference
model in Matlab/Simulink and the derived models can be found in [74].

In the plain version the model has 16 modes, two continuous variables, the speed and train position. The
discrete variables describe the different phases of the protocol. An input variable models whether the gate is
closed, in which case the train can safely continue. We consider two different encodings, where the discrete
state space has 210 or 214 states, respectively.

We also consider model variants (etcs_error) that capture additionally failures at the train, radio block
center or signaling. The plain etcs_error models have a discrete state space of 224 (including inputs) and
an additional continuous variable with constant derivative to model a time-out. The variant interrupt has a
discrete state space of 225 states and two continuous variables.

Dam. Dam models describe a setting where water impounds and the dam uses it to produce energy with
the help of n turbines. The water level of the reservoir is determined by an inflow of water towards the dam
and an outflow of water through n turbines. A turbine has to undergo maintenance, depending on the number
of switching operations of the turbine. The controller switches the turbines based on the current water level;
its strategy is “disturbed” by races due to turbines which are currently in maintenance mode. The controller
has to guarantee the safety property that the water level always stays within given bounds.

Again we derive from the basic model several variants of different complexity. Whether the turbine has
to undergo maintenance depends on the number of times the turbine has been switched on and off. A
turbine spends a certain time in maintenance. Hence these models have continuous variables to monitor the
time spend at maintenance and additional discrete variables to count their switchings. The model family
dam_3turb_mYY−XX.hlang, is derived by varying the maintenance time and switching thresholds. The most
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Option Redundancy Re-
moval

Onioning Constraint Mini-
mization

Polarity
Minimization

Quantifier Elimi-
nation

1 off off off off naïve
2 on off off off naïve
3 on on off off naïve
4 on on on off naïve
5 on perMode on off naïve
6 on on on on naïve
7 on on on on distributive
8 on on on off SMT-based

Table 1: Settings for exact model checking using acceleration per mode

complex model of these has 4608 discrete states and 4 continuous variables.
We extended this model, so that for each turbine there are two kind of maintenance modes, short and

long. Whether the turbine has to undergo maintenance depends on the number of switchings and on its total
run time. Also dam_random_XXturb_m13t3.hlang uses inputs to implement random selection in a turbine
switching strategy for turbines with a maintenance duration of 13 and a switching threshold of three. The
smallest instance of this family within this benchmark set is dam_random_4turb_m13t3.hlang with a dis-
crete state space of 224 and 5 continuous variables. The biggest instance for which the FOMC terminated
within two hours is dam_random_7turb_m13t3.hlang with a discrete state space of 242 and 8 continuous
variables. The models dam_random_XXturb_m13.9t7.hlang are closely related. They have an extended main-
tenance duration and an increased thresholds for switchings before the turbine has to undergo maintenance.
dam_random_2turb_m13.9t7_.hlang has a discrete state space of 217 states and three continuous variables,
whereas dam_random_4turb_m13.9t7_random.hlang has a discrete state space of 228 and 5 continuous
variables.

5.2 Evaluation

5.2.1 Exact Model Checking

In this section we present experimental results for various optimizations of exact model checking. All evaluated
techniques have been described in Chapter 3. The interface of FOMC provides the possibility to activate
or deactivate these techniques independently, resulting in an enormous number of possible combinations.
However, some combinations are extremely useful while other are not. For instance, enabling onioning without
constraint minimization is usually a bad idea, since it would prevent onioning from using don’t cares. Hence,
we are not comparing all possible combination against each other. Instead, we defined several evaluation flows
and evaluation groups. So the aim of this chapter is twofold: We would like to show the benefits of several
optimizations by experimental results in a meaningful order while, on the other hand, we try to follow the
structure of Chapter 3 as close as possible, and we would like to isolate proper settings for efficient model
checking with FOMC.

Settings for exact acceleration per mode. Table 1 provides a quick overview on the different settings
for our evaluation of exact model checking with mode-wise computation of the continuous flow. The settings
vary from no optimization to onioning and a different choices of quantifier elimination methods.

The benefits of onioning are evaluated in the evaluation flow 1–2–3–4, corresponding to Sect. 3.1 to
Sect. 3.2.2. In the evaluation group 4–5 we compare the global onioning technique with per mode onioning,
see Sect. 3.2.3. The optimizations for quantifier elimination as presented in Sect. 3.3 are compared in the
evaluation group 4–6–7–8.

How to interpret the figures? In each figure we compare two options against each other. Each coordinate
of a red point represents the run time of the respective options. The maximal possible value of each coordinate
is agrees with the timeout-value. The gray diagonal indicates the location of all points for which the run time
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Figure 23: From no optimizations to onioning
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Model Opt 1 Opt 2 Opt 3 Opt 4
acc_pi_h14 t.o. 147.18 140.71 119.51
avc_arb_h5 t.o. t.o. t.o. 1090.21
avc_goal_h11 t.o. t.o. t.o. 977.05
avc_goal_h5 t.o. 3165.03 t.o. 133.68
avc_goal_h7 t.o. 3855.24 t.o. 314.86
avc_goal_h9 t.o. t.o. t.o. 596.10
bb_h22 t.o. 636.52 782.50 1329.60
dam_3turb_m20-20 1671.13 307.63 504.20 45.43
dam_3turb_m20-40 t.o. 3468.90 1868.91 68.46
dam_3turb_m20-60 t.o. t.o. t.o. 706.94
dam_3turb_m40-20 1715.59 662.50 456.43 47.11
dam_3turb_m40-40 t.o. 5395.03 2823.66 72.50
dam_3turb_m40-60 t.o. t.o. t.o. 543.08
dam_3turb_m60-20 1862.96 454.62 332.34 60.48
dam_3turb_m60-40 t.o. t.o. 1623.18 67.61
dam_3turb_m60-60 t.o. t.o. t.o. 807.25
dam_3turb_m80-20 1726.03 399.78 800.33 51.98
dam_3turb_m80-40 t.o. 2746.36 1690.46 104.86
dam_3turb_m80-60 t.o. t.o. t.o. 485.44
dam_random_2turb_m13.9t7 175.21 453.43 942.53 237.98
dam_random_4turb_m13.9t7 t.o. t.o. t.o. 288.21
dam_random_4turb_m13t3 t.o. t.o. t.o. 197.50
dam_random_7turb_m13t3 t.o. t.o. t.o. 6713.08
etcs t.o. 220.73 141.43 56.57
etcs_error-detect t.o. 623.14 517.70 200.52
etcs_error_interrupt t.o. 2702.70 4185.44 301.74
etcs_error_inv t.o. 194.80 170.14 77.51
etcs_inv t.o. 168.11 156.30 41.30
etcs_v2_inv t.o. 2257.34 2231.15 319.02
flapCtrl_10of10Lp t.o. t.o. t.o. 1508.14
flapCtrl_6of10Lp t.o. 379.20 1348.98 475.57
flapCtrl_7of10Lp t.o. 707.07 1300.55 601.95
flapCtrl_8of10Lp t.o. 1169.14 3451.12 513.90
flapCtrl_9of10Lp t.o. t.o. t.o. 1188.40
interC_s_gc t.o. t.o. t.o. 257.40
interC_s_v2 t.o. t.o. t.o. 3476.31
interC_s_v2_dist t.o. t.o. t.o. t.o.
interC_s_v2_gc t.o. t.o. t.o. 97.09
interC_s+g_dist t.o. 464.67 869.77 624.62
interC_s+g_v2_dist t.o. 3242.16 t.o. 539.50

(a) Redundancy removal, onioning, and constraint minimization

Opt 4 Opt 5
119.51 139.92

1090.21 1565.18
977.05 1462.36
133.68 176.95
314.86 380.68
596.10 895.78

1329.60 1765.71
45.43 48.61
68.46 166.84
706.94 509.59
47.11 58.06
72.50 155.50
543.08 519.26
60.48 55.85
67.61 109.80
807.25 765.48
51.98 56.44
104.86 91.62

485.44 565.63
237.98 321.88
288.21 1201.50
197.50 350.52

6713.08 t.o.
56.57 52.37

200.52 248.68
301.74 340.36
77.51 86.30
41.30 45.74

319.02 410.70
1508.14 1279.09
475.57 545.36
601.95 793.59
513.90 2087.34
1188.40 1169.48
257.40 925.20
3476.31 1204.26

t.o. 5359.23
97.09 142.28
624.62 409.18

539.50 955.88

(b) Onioning at once and
per mode onioning

Table 2: The timeout (t.o.) was set to 7200 sec. Best results are shown in bold numbers. Rows containing
timeouts only are not shown.
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Model Opt 4 Opt 6 Opt 7 Opt 8
acc_pi_h14 119.51 121.78 57.32 63.27
avc_arb_h5 1090.21 1247.90 615.62 1139.56
avc_arb_h7 t.o. 1958.46 2644.47 1358.64
avc_arb_h9 t.o. t.o. 3580.82 3048.52
avc_goal_h11 977.05 927.22 767.62 784.66
avc_goal_h21 t.o. 6803.18 6633.37 6485.79
avc_goal_h5 133.68 93.89 153.66 116.67
avc_goal_h7 314.86 261.18 275.77 305.29
avc_goal_h9 596.10 559.50 435.84 459.85
bb_h22 1329.60 968.17 823.36 956.98
dam_3turb_m20-20 45.43 43.90 33.04 32.47
dam_3turb_m20-40 68.46 58.46 42.79 36.88
dam_3turb_m20-60 706.94 545.22 222.77 132.67
dam_3turb_m40-20 47.11 52.43 34.89 36.35
dam_3turb_m40-40 72.50 68.45 46.00 42.99
dam_3turb_m40-60 543.08 572.58 275.95 276.23
dam_3turb_m60-20 60.48 46.70 35.51 38.04
dam_3turb_m60-40 67.61 161.36 49.22 35.36
dam_3turb_m60-60 807.25 610.25 248.96 253.05
dam_3turb_m80-20 51.98 48.32 47.78 37.60
dam_3turb_m80-40 104.86 108.23 63.61 37.47
dam_3turb_m80-60 485.44 542.12 262.73 156.30
dam_random_2turb_m13.9t7 237.98 251.43 309.30 162.31
dam_random_4turb_m13.9t7 288.21 476.69 290.26 319.27
dam_random_4turb_m13t3 197.50 113.16 66.70 101.89
dam_random_7turb_m13t3 6713.08 t.o. t.o. t.o.
etcs 56.57 53.18 38.07 28.78
etcs_error-detect 200.52 178.39 137.57 107.72
etcs_error_interrupt 301.74 279.75 169.66 176.24
etcs_error_inv 77.51 78.62 61.95 41.91
etcs_inv 41.30 39.78 39.71 39.22
etcs_v2_inv 319.02 298.48 320.20 259.89
flapCtrl_10of10Lp 1508.14 1484.68 1241.63 1604.85
flapCtrl_6of10Lp 475.57 475.32 365.16 507.90
flapCtrl_7of10Lp 601.95 443.03 594.38 650.02
flapCtrl_8of10Lp 513.90 430.66 574.92 598.67
flapCtrl_9of10Lp 1188.40 985.82 1327.86 847.84
interC_s_gc 257.40 257.63 438.60 363.52
interC_s_v2 3476.31 2369.68 1784.18 1598.80
interC_s_v2_dist t.o. 4594.53 t.o. 6049.18
interC_s_v2_gc 97.09 87.74 82.45 48.58
interC_s+g_dist 624.62 254.52 316.26 153.76
interC_s+g_gc t.o. t.o. 7008.12 t.o.
interC_s+g_v2_dist 539.50 467.20 411.59 401.52
interC_s+g_v2_gc t.o. t.o. t.o. 6529.16
interC_s+g_v2_inv t.o. t.o. t.o. 3143.96

Table 3: Results for the comparison of different quantifier elimination methods. The timeout (t.o.) was set to
7200 sec. Best results are shown in bold numbers. Rows containing timeouts only are not shown.
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of both runs agrees. For example, in Fig. 23(a) we compare the run times of option 1 (redundancy removal
deactivated) on the x-axis against the run times of option 2 (redundancy removal activated) on the y-axis. In
the upper right corner there is a red dot on the gray diagonal, indicating that there is at least one model in our
benchmark set for which both options led to a timeout. Most of the red points lie below the diagonal, meaning
that the x-value of their coordinates is larger than the y-value. Hence, for corresponding benchmarks their
run time for option 1 (redundancy removal deactivated) is larger than the run time for option 2 (redundancy
removal activated).

Most run times are relatively small, hence, we decided to scale both axes logarithmically for better clarity.
Detailed values of the benchmark results are provided in an additional table. For example, let us look at
Fig. 23(a) again. There is a single red point above the gray diagonal having coordinates of roughly (170, 450).
Indeed, the corresponding table Table 2(b) shows in the row labeled as “dam_random_2turb_m13.9t7” the
values 175.21 and 453.43 for the associated columns to the options 1 and 2, respectively.

Each figure is decorated with the parameter a providing the slope of the regression line through the origin
of the points. It was computed using the method of least squares, i. e., a =

∑k
i=1 xiyi∑k
i=1 x

2
i

where xi and yi are the
coordinates of the point of the ith benchmark. Please note that the value alone has only limited explanatory
power since it is greatly affected by outliers.

Redundancy removal, onioning, and constraint minimization. In order to show the benefits of
the onioning technique as presented in Sect. 3.1 to Sect. 3.2.2 we show experimental results comparing the
following optimization:

• Redundancy removal is a key technology to reduce the size of the state set representation. Moreover, it
builds the basis for more elaborated techniques like constraint minimization and polarity minimization.
Fig. 23(a) compares a non-optimized FOMC against FOMC with enabled redundancy removal. Redun-
dancy removal significantly reduces the number of timeouts and is enabled in all following experiments.

• Onioning allows the partial pre-image computation of newly added states while possibly avoiding the
pre-image computation of states whose pre-images have already been computed.

• Constraint minimization extends redundancy removal by don’t cares. Constraint minimization uses
the same principle of redundancy detection. The main difference to redundancy removal lies in the
generation of the requested redundancy-free formula. The resulting formula has to be equivalent to the
given formula outside of the don’t care set only. Within the don’t cares, constraint minimization is free
to choose any representation. Constraint minimization exploits this additional freedom to compute a
formula with a minimized number of linear constraints. In the context of onioning, we easily obtain don’t
cares, consisting of those states for which the pre-image has already been computed. Fig. 23(b) shows
that onioning without constraint minimization is in general a bad idea. In contrast, Fig. 23(c) shows
that the combination of onioning and constraint minimization is a powerful technique in exact symbolic
model checking. In all following experiments onioning will used in the combination with constraint
minimization only.

Per mode onioning. We compare onioning at once against per mode onioning. Per mode onioning is
described in Sect. 3.2.3. Fig. 23(d) and Table 2(b) show that onioning at once emerges to be the better
choice. Here we have an interesting case where the parameter a is greatly influenced by the outliers. While
the parameter indicates, that per mode onioning would be the better choice in general, the figure and the
table clearly show that onioning at once is the better choice for the majority of our benchmarks in our
repository. For all further experiments we use onioning at once only.

Lesson learned from evaluation of onioning. Experience shows that the onioning technique is the best
choice for the majority of our models and is a good starting point if less is known about the model. However,
later on we will see that for certain model classes and upcoming settings, non-onioning might still be a good
choice. At this point we note that onioning should not be used without constraint minimization and that per
mode onioning usually does not pay off.
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Polarity minimization and quantifier elimination. We compare different techniques for quantifier
elimination as presented in Sect. 3.3.

• Polarity Minimization is a specialized version of redundancy detection. It does not only detect non-
redundant constraints, but also the polarities for which the given constraints are non-redundant. Iden-
tifying non-redundant constraints and their polarity noticeable reduces the number of test points in the
Loos-Weispfenning method and leads to smaller resulting formulas. This effect is confirmed in Fig. 24(a).

• The distributive quantifier elimination is described in Sect. 3.3.3. This method is specialized for elim-
ination of several quantifiers of the same kind and exploits the structure of the intermediate resulting
formulas by distributing the remaining quantifiers over this structure. This method heavily depends
on the redundancy detection of the polarity minimization. In fact, beside of an initial and final redun-
dancy removal, there is no intermediate redundancy removal. The benefits of the distributive quantifier
elimination compared to naïve quantifier elimination are shown in Fig. 24(b). Note that distributive
quantifier elimination has its full strength if there are more than one quantifier to eliminate. For exam-
ple, the model class of Flap/Slat Controllers has only constant derivatives, leading to an elimination of
a single quantifier only.

• The SMT-based quantifier elimination is described in Sect. 3.3.4. In contrast to former methods it
does not profit from polarity minimization since only test point leading to satisfiable sub-formulas
are used. As the distributive quantifier elimination intermediate redundancy removals are avoided.
Redundancy removal is applied to the initial and finally resulting formula only. Fig. 24(c) documents the
superior performance of the SMT-based approach compared to the naïve approach. Finally, Fig. 24(d)
indicates that the SMT-based approach is generally of better performance than the distributive quantifier
elimination.

Lesson learned from evaluation of polarity minimization and quantifier elimination. The bench-
mark results provide clear evidence that the SMT-based quantifier elimination is the best choice for the major-
ity of models. Moreover, with exception of SMT-based quantifier elimination, polarity minimization efficiently
reduces the number of test points and should be activated. Prior experience have shown that the presented
trend also carries over to non-onioning settings. Altogether, our experience and the presented results so far
meet our expectations. However, all results so far were obtained using acceleration per mode. For acceleration
at once we will make different observations which are partly more difficult to explain.

Acceleration at once. So far, all presented results were obtained by per mode acceleration. That is, the
continuous pre-image is computed piecewise over the mode cofactors of the current state set. In this paragraph
we evaluated an alternative technique called acceleration at once, see Sect. 3.4. Acceleration at once computes
the continuous pre-image computation in a single step. On one hand, this leads to a more complex formula
expressing the compound of the mode specific continuous flows, but, on the other hand, has the advantage
that we do not need to compute the Cartesian product of several mode variables as it is the case in models
with several parallel components.

First, we present an evaluation of acceleration at once on the same benchmark set as it was used for
acceleration per mode. Afterwards, we present very promising results on a specialized benchmark set.

Option Acceleration Onioning Quantifier Elimination
Method

(from Table 1) 8 perMode on SMT-based
9 atOnce off naïve
10 atOnce off SMT-based
11 atOnce on naïve
12 atOnce on SMT-based

Table 4: Settings for exact model checking using acceleration at once
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Model Opt 8 Opt 9 Opt 10 Opt 11 Opt 12
acc_pi_h14 63.27 614.72 90.80 300.42 121.67
avc_arb_h5 1139.56 t.o. t.o. t.o. 2527.15
avc_arb_h7 1358.64 t.o. t.o. t.o. t.o.
avc_arb_h9 3048.52 t.o. t.o. t.o. t.o.
avc_goal_h11 784.66 t.o. t.o. t.o. 1169.64
avc_goal_h21 6485.79 t.o. t.o. t.o. t.o.
avc_goal_h5 116.67 4937.50 2014.74 309.59 186.96
avc_goal_h7 305.29 t.o. t.o. 504.73 347.58
avc_goal_h9 459.85 t.o. t.o. 1489.50 750.01
bb_h22 956.98 5687.29 1060.41 1136.69 520.25
dam_3turb_m20-20 32.47 42.58 39.20 29.08 26.56
dam_3turb_m20-40 36.88 42.39 32.07 27.99 22.51
dam_3turb_m20-60 132.67 971.70 404.52 166.44 108.89
dam_3turb_m40-20 36.35 46.54 33.71 29.94 28.81
dam_3turb_m40-40 42.99 41.02 30.33 29.79 25.95
dam_3turb_m40-60 276.23 1029.95 340.46 164.08 100.07
dam_3turb_m60-20 38.04 46.42 36.87 31.56 30.61
dam_3turb_m60-40 35.36 44.56 32.39 29.90 26.88
dam_3turb_m60-60 253.05 1033.48 371.42 175.04 127.60
dam_3turb_m80-20 37.60 49.68 38.02 32.62 30.23
dam_3turb_m80-40 37.47 42.68 32.64 29.33 28.23
dam_3turb_m80-60 156.30 871.33 411.93 178.32 107.62
dam_random_2turb_m13.9t7 162.31 370.38 187.15 218.40 181.59
dam_random_4turb_m13.9t7 319.27 1827.96 3261.76 273.68 230.83
dam_random_4turb_m13t3 101.89 159.53 353.82 37.64 72.54
etcs 28.78 240.90 129.39 42.92 34.22
etcs_error-detect 107.72 4409.09 1006.21 1268.80 304.28
etcs_error_interrupt 176.24 t.o. t.o. 4499.53 1007.86
etcs_error_inv 41.91 248.70 140.78 135.41 59.28
etcs_inv 39.22 235.18 145.24 45.68 30.66
etcs_v2_inv 259.89 t.o. 6545.56 657.19 246.68
flapCtrl_10of10Lp 1604.85 6291.64 t.o. 777.02 818.08
flapCtrl_6of10Lp 507.90 307.84 644.63 233.90 174.49
flapCtrl_7of10Lp 650.02 740.84 1090.03 300.72 358.91
flapCtrl_8of10Lp 598.67 3977.58 2030.74 585.83 410.79
flapCtrl_9of10Lp 847.84 t.o. t.o. 690.97 752.90
interC_s_gc 363.52 t.o. 2691.60 431.07 391.79
interC_s_v2 1598.80 t.o. t.o. t.o. t.o.
interC_s_v2_dist 6049.18 t.o. t.o. t.o. t.o.
interC_s_v2_gc 48.58 635.40 1359.62 87.80 82.20
interC_s+g_dist 153.76 t.o. t.o. 6989.27 5372.76
interC_s+g_gc t.o. t.o. t.o. 5249.61 1957.61
interC_s+g_v2_dist 401.52 t.o. t.o. t.o. t.o.
interC_s+g_v2_gc 6529.16 t.o. t.o. 5068.16 2352.97
interC_s+g_v2_inv 3143.96 t.o. t.o. t.o. t.o.

Table 5: Results for acceleration at once. The timeout (t.o.) was set to 7200 sec. Best results are shown in
bold numbers. Rows containing timeouts only are not shown.

Option AAO Onioning Polarity
Minimization

Quantifier
Elimination Method

1 on off on naïve
2 on on on naïve
3 on off off SMT-based
4 on on off SMT-based
5 off off on naïve
6 off on on naïve

Table 6: Settings for exact model checking using acceleration per mode, extra benchmark set
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Model Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6
flapSlatCtrl_2of2Lp2F0S 3.04 3.24 3.06 2.32 5.95 4.78
flapSlatCtrl_2of2Lp2F1S 2711.59 4161.67 3679.10 2292.60 827.44 1637.03
flapSlatCtrl_2of2Lp2F2S 4471.50 76558.80 11264.62 17797.80 6661.73 8534.59
flapSlatCtrl_2of2Lp2F3S 13034.39 41637.19 13075.40 12689.87 33685.32 28398.80
flapSlatCtrl_2of2Lp2F4S 5538.01 t.o. 20894.88 22533.31 t.o. t.o.
flapSlatCtrl_2of2Lp2F5S 10039.74 68331.08 31822.52 40078.90 t.o. t.o.
flapSlatCtrl_2of2Lp2F6S 10475.10 72094.26 39121.84 31960.95 t.o. t.o.
flapSlatCtrl_2of2Lp2F7S 11788.56 34393.26 24468.82 96978.52 t.o. t.o.
flapSlatCtrl_2of2Lp2F8S 42442.06 t.o. 51147.38 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F9S 13404.15 t.o. 37998.77 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F10S 12613.76 42371.93 39147.02 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F11S 78640.62 t.o. 71780.02 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F12S 92810.50 t.o. 63650.54 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F13S 24042.32 t.o. 39675.72 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F14S 14236.59 t.o. 107183.42 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F15S 115035.47 t.o. 63841.51 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F16S 45215.36 t.o. 66656.62 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F17S 16418.40 t.o. 116709.49 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F18S t.o. t.o. 117839.88 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F19S 36114.34 t.o. 84296.29 t.o. t.o. t.o.
flapSlatCtrl_2of2Lp2F20S t.o. t.o. 98048.64 t.o. t.o. t.o.

Table 7: Results for acceleration at once, extra benchmark set. The timeout (t.o.) was set to 129600 sec. Best
results are shown in bold numbers.

Settings for exact acceleration at once. Table 4 provides a quick overview on the different settings
which we have used to evaluate acceleration at once.

Acceleration at once on standard benchmark set. Fig. 25(b) and Fig. 25(a) show that acceleration
at once without onioning is not competitive with the best setting for acceleration per mode (option 8).
The situation improves substantially as soon as we enable onioning for acceleration at once. Many data
points are evenly scattered in a broad stripe around the diagonal. Especially in combination with the SMT-
based quantifier elimination, acceleration at once seems to be an interesting alternative to acceleration per
mode. Nevertheless, acceleration at once produces more timeouts and a closer look onto Table 5 reveals that
presumably there are certain model classes for which acceleration at once is extremely well-suited, while for
other model classes it seems to be a bad choice. Identifying such model classes is considered as future work.

A benchmark set for acceleration at once. Acceleration at once was designed to cope with models
having many parallel components. Hence, we evaluate acceleration at once on a specialized benchmark set
containing models with many components. Table 6 shows the settings which we used for our second evaluation
of acceleration at once.

The run times for this benchmark set are presented in Table 7. Interestingly, we observe that using SMT-
based quantifier elimination does not always yield the best results. For some unknown reasons, the naïve
implementation of the Loos–Weispfenning quantifier elimination method often leads to better run times. A
deeper analysis of this behavior is planned for the future.

Lessons learned form evaluation of acceleration at once. In contrast to acceleration per mode,
acceleration at once is a novel approach whose run time behavior is not that well understood. The results for
acceleration per mode came along with theoretical insights. For acceleration at once, theory and evaluation
are only loosely coupled, a factor which certainly has to be investigated in more detail. Moreover, we have to
isolate well-suited model classes for deceleration-at-once.

However, already in the current state we partly observe competitive, yet superior run time results for
acceleration at once.

Putting everything together. In order to illustrate our progress in exact model checking, we extended
and re-run the dam case study in [2] with an old FOMC version from August 23rd, 2010 using the onioning
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Figure 26: Comparison for 3 and 4 turbines
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approach against the current FOMC with optimal settings for acceleration per mode and optimal settings for
acceleration at once. Compared to the case study in [2] we increased the number of turbines to 4 and 5. The
timeout was set to 10800 sec.

For acceleration per mode we have chosen the settings of option 8 in Table 1. Based on the results shown
in Table 5 we decided to use acceleration at once in combination with SMT-based quantifier elimination and
onioning.

The run times for the old FOMC version for 3 turbines are roughly half of the run times presented in [2],
which is probably due to the improved hardware. The run times vary from 135.48 sec to 1692.56 sec. The
respective run times for the current FOMC vary from 23.55 sec to 189.38 sec for acceleration per mode and
from 21.30 sec to 158.29 sec for acceleration at once.

For 4 turbines the old FOMC version is only able to finish a few benchmark run within the given timeout.
The current FOMC performs much better: especially for small values of duration, we obtain the model checking
results in 1

20 of the time needed by the old FOMC.
Finally, for 5 turbines we do not obtain any model checking results form the old FOMC.

5.2.2 CEGAR

In this section we present experimental results for various optimizations of CEGAR model checking. All
evaluated techniques have been described in Chapter 4. The interface of FOMC provides many different
options which influence the CEGAR approach leading to vast variety of possible settings. The goal of this
section is to provide and evaluate some promising settings.

Common settings to all experiments. For the exact pre-image computation we used the same settings
as Option 8 in Table 1, i. e., we used continuous pre-image computation per mode, together with onioning
and SMT-based quantifier elimination.

While we implemented the ability to trigger overapproximations of the current state set before any pre-
image computation, our evaluation is restricted to overapproximations before the continuous pre-image com-
putation. This restriction is motivated by our experiences and offers us the possibility to compare two different
overapproximation methods, overapproximation at once and overapproximation per mode. The latter is cur-
rently only supported for the continuous pre-image computation.

Throughout all experiments we disabled the bloating of the initial set. Furthermore, the first overap-
proximation is only triggered if the number of linear constraints is at least 60 (minThresholdLC ), all further
overapproximations are triggered if the number of linear constraints reached at least the 1.5-fold of the number
of linear constraints since the last overapproximation (relThresholdLC ).

Please note that the presented benchmark set does not contain the dam_3turb_m#-# models. Due to
our overapproximation strategy CEGAR was not triggered on this model class.

Option CEGAR Overapproximation Epsilon Interpolation Method
1 on atOnce 0.05 CM
2 on atOnce ∞ CM
3 on atOnce 0.05 FINT
4 on atOnce ∞ FINT
5 on atOnce 0.05 MINT
6 on atOnce ∞ MINT
7 on perMode 0.05 CM
8 on perMode ∞ CM
9 on perMode 0.05 FINT
10 on perMode ∞ FINT
11 on perMode 0.05 MINT
12 on perMode ∞ MINT
13 off n.a. n.a. n.a.

Table 8: Settings for CEGAR model checking
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Overview
Model Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6 Opt 13
acc_pi_h14 57.58 55.49 56.77 55.92 56.99 55.00 59.06
avc_arb_h5 441.28 445.54 443.52 438.52 439.98 437.48 947.84
avc_arb_h7 934.86 934.24 934.69 940.06 939.65 938.85 1222.71
avc_arb_h9 1586.23 1571.15 1625.59 1573.28 1577.24 1576.55 2371.14
avc_goal_h11 659.46 654.37 646.90 647.50 649.47 646.01 650.58
avc_goal_h21 5158.72 5191.65 5165.23 5147.82 5184.33 5202.76 5168.05
avc_goal_h5 122.71 122.24 122.00 124.01 123.77 121.61 120.93
avc_goal_h7 233.08 232.78 235.58 231.72 236.10 234.68 256.12
avc_goal_h9 442.31 440.44 435.87 441.23 436.57 437.36 420.77
bb_h22 760.82 759.95 764.00 758.48 760.19 760.76 854.18
dam_random_2turb_m13.9t7 193.42 189.36 192.94 191.46 193.47 189.66 145.69
dam_random_4turb_m13t3 59.80 60.62 61.41 60.07 60.37 61.31 71.40
dam_random_4turb_m13.9t7 338.68 335.08 343.77 344.46 344.50 341.66 236.41
etcs 28.03 27.28 28.31 27.81 26.96 26.96 29.58
etcs_error-detect 90.39 91.98 93.70 92.17 92.56 93.70 93.49
etcs_error_interrupt 106.29 108.88 105.58 106.46 108.68 106.93 145.90
etcs_error_inv 47.68 48.42 48.12 47.58 48.00 48.73 43.64
etcs_inv 29.32 29.38 29.92 30.48 28.89 30.44 36.10
etcs_v2_inv 251.62 242.24 251.43 256.86 250.60 251.01 212.29
flapCtrl_10of10Lp 601.97 644.74 632.58 700.17 632.53 634.78 997.04
flapCtrl_6of10Lp 117.01 110.40 119.56 115.24 132.29 117.07 353.48
flapCtrl_7of10Lp 264.92 261.68 265.78 255.18 271.70 264.26 468.12
flapCtrl_8of10Lp 358.55 323.63 401.78 409.53 373.54 381.07 574.16
flapCtrl_9of10Lp 438.05 471.29 437.11 450.06 475.84 408.57 735.98
interC_s_dist 2055.94 2205.13 2130.89 2102.05 2110.35 2098.94 6301.36
interC_s_gc 167.54 170.10 165.76 166.32 163.58 168.88 331.16
interC_s_v2 t.o. t.o. t.o. t.o. t.o. t.o. 987.83
interC_s_v2_dist 5374.79 1027.38 4385.74 1022.47 4947.38 1020.01 2346.41
interC_s_v2_gc 53.32 54.01 55.02 54.49 54.50 54.13 46.48
interC_s+g_dist 149.87 149.88 150.04 150.69 152.48 151.56 138.34
interC_s+g_gc 6647.00 6677.58 5742.02 4853.36 6433.74 6886.74 t.o.
interC_s+g_v2_dist 202.90 201.79 202.82 203.04 205.20 203.44 316.63
interC_s+g_v2_gc 1958.71 1824.06 2008.94 1928.63 1942.95 1970.37 5183.29
interC_s+g_v2_inv 4294.36 4147.03 4336.47 4361.76 4437.16 4381.88 2351.19

Table 9: Evaluation of CEGAR with overapproximation at once. The timeout (t.o.) was set to 7200 sec. Best
results are shown in bold numbers. Rows containing timeouts only are not shown.
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Settings for CEGAR. Table 8 provides an overview on the different settings which we have used for our
experiments. Option 13 corresponds to Option 8 from Table 1. We evaluated two different overapproximation
methods, overapproximation at once (atOnce) and per mode overapproximation (perMode). An ε-bloating
factor of 0.05 pushes the linear constraints outwards by 5% of the interval length of the allowed values
of a variable. The factor ∞ allows to use the complete continuous state space for interpolation. For the
interpolation methods we evaluated three different methods: constraint minimization (CM, see Sect. 3.2.1),
FINT (see Sect. 4.3.2), and MINT (see Sect. 4.3.3).

How to interpret the figures? We repeated our evaluation several times. The presented results are
obtained from a total number of 11 runs. The timeout was set to 7200 sec. In order to handle timeouts
correctly, we decided to use the median instead of the arithmetic mean as statistic average of all runs. In each
figure we compare two options against each other. Each coordinate of a red point represents the medians of
the run times. The error lines span from the minimal to the maximal value occurred in our measurement.
Most run times are relatively small, hence, we decided to scale both axes logarithmically for better clarity.
The number indicated by a gives the slope of the regressions line of the median points through the origin. It
was computed using the method of least squares, i. e., a =

∑k
i=1 xiyi∑k
i=1 x

2
i

where xi and yi are the coordinates of
the median point of the ith benchmark.

Overapproximation at once. Let us first discuss the influence of the different methods for ε-bloating.
The figures in Fig. 28 indicate that there is slight advantage of using an ε value of∞ in overapproximation at
once irrespective the choice of interpolation method. However, this result is mainly caused by a single survey
point, namely interC_s_v2_dist (see Table 9) and it is not clear whether this observation can be generalized
or traced back to some unknown model characteristic.

After identifying ε = ∞ as the better choice for overapproximation at once setting, we compare the
different interpolations methods. We observe the following order of interpolation methods: Fint seems to
produce the best results, followed from constraint minimization, and finally Mint. Hence, we finally identified
option 4 as the best choice for overapproximation at once. A comparison of option 1–6 against the run times
of exact model checking (option 13) is shown in Fig. 30. It shows that our assessment of the results was right:
Indeed option 4 turns out to be the best setting. Moreover and possible more important: Regardless which of
the CEGAR option 1-6 we choose, in average we obtain better results than with the non-CEGAR approach.

Per mode overapproximation. In contrast to overapproximation at once, the actual choice of the option,
i. e. the choice of the ε-bloating method or the choice of the interpolation method, has only little impact on the
resulting run times, as Fig. 31 shows. Indeed, the comparison with the run times of the exact model checking
in Fig. 32 shows a very coherent picture. So we cannot identify a clear candidate for optimal settings in the
per mode overapproximation scenario. However, irrespective of the actual choice, all proposed settings turned
out to be faster than the non-CEGAR approach.

Comparing overapproximation at once with per mode overapproximation. While we could iden-
tify a best candidate for overapproximation at once, namely option 4, we were not able to identify such an
candidate for per mode overapproximation. A comparison of Fig. 30 and Fig. 32 indicates that overapproxi-
mation at once is the better choice for our benchmark set.

Lesson learned from evaluation of CEGAR. For the majority of our benchmarks the CEGAR approach
using any setting leads to better run times than the non-CEGAR approach. However, for our benchmark set
we were able to identify option 4 as the best choice, see comparison of option 4 and option 13 in Fig. 30.
The question whether this setting should be used as default setting for CEGAR model checking with FOMC
is considered as future work.
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Figure 31: Different settings for per mode overapproximation
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Figure 32: Per mode overapproximation vs. non-CEGAR
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Overview
Model Opt 7 Opt 8 Opt 9 Opt 10 Opt 11 Opt 12 Opt 13
acc_pi_h14 57.03 57.77 56.28 57.31 55.90 54.96 59.06
avc_arb_h5 443.48 446.80 440.08 447.85 442.98 446.09 947.84
avc_arb_h7 852.77 848.82 848.09 848.96 852.99 851.09 1222.71
avc_arb_h9 1787.98 1810.31 1812.84 1823.64 1811.86 1802.26 2371.14
avc_goal_h11 646.70 662.69 646.15 652.46 652.18 653.57 650.58
avc_goal_h21 5563.81 5684.93 5461.38 5680.90 5612.97 5545.98 5168.05
avc_goal_h5 122.90 121.48 123.46 122.56 121.96 121.40 120.93
avc_goal_h7 239.42 236.23 237.00 239.47 241.62 237.76 256.12
avc_goal_h9 440.62 437.64 444.17 445.04 439.56 441.06 420.77
bb_h22 683.37 686.82 689.04 684.76 686.50 687.29 854.18
dam_random_2turb_m13.9t7 194.47 196.73 190.86 194.48 192.81 191.24 145.69
dam_random_4turb_m13t3 61.04 61.60 61.42 60.15 60.26 62.90 71.40
dam_random_4turb_m13.9t7 342.12 340.80 341.24 346.50 349.05 340.05 236.41
etcs 26.92 26.27 26.62 27.05 27.52 28.11 29.58
etcs_error-detect 97.04 94.61 96.89 96.85 98.85 96.33 93.49
etcs_error_interrupt 112.11 113.63 112.36 113.01 111.81 111.79 145.90
etcs_error_inv 46.25 48.56 47.14 48.93 47.48 46.72 43.64
etcs_inv 30.52 29.41 29.32 30.34 29.78 29.56 36.10
etcs_v2_inv 248.98 248.26 240.70 251.17 258.76 247.46 212.29
flapCtrl_10of10Lp 610.11 683.82 549.54 614.24 654.18 632.97 997.04
flapCtrl_6of10Lp 118.56 118.17 125.62 121.44 113.40 120.68 353.48
flapCtrl_7of10Lp 278.30 267.46 275.40 257.90 270.14 277.84 468.12
flapCtrl_8of10Lp 408.61 371.63 386.80 388.94 380.77 376.94 574.16
flapCtrl_9of10Lp 384.20 458.44 452.87 444.07 413.96 484.47 735.98
interC_s_dist 2544.30 2594.94 2564.53 2537.70 2580.53 2571.24 6301.36
interC_s_gc 199.64 198.05 199.96 198.48 200.22 198.77 331.16
interC_s_v2 1054.03 1053.03 1041.01 1057.91 1054.47 1043.30 987.83
interC_s_v2_dist 1104.30 1127.52 1104.51 1219.36 1124.04 1118.76 2346.41
interC_s_v2_gc 55.00 55.80 54.88 54.72 56.74 55.99 46.48
interC_s+g_dist 176.98 177.18 175.20 176.97 176.74 177.48 138.34
interC_s+g_gc t.o. t.o. t.o. t.o. 7010.97 t.o. t.o.
interC_s+g_v2_dist 183.21 179.04 179.52 181.90 181.52 182.88 316.63
interC_s+g_v2_gc 1914.24 1552.26 2049.88 1547.96 2064.74 1542.68 5183.29
interC_s+g_v2_inv t.o. t.o. t.o. t.o. t.o. t.o. 2351.19

Table 10: Evaluation of CEGAR with per mode overapproximation. The timeout (t.o.) was set to 7200 sec.
Best results are shown in bold numbers. Rows containing timeouts only are not shown.
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5.2.3 Scaling to Extremes

In this report we concentrate on systematically presenting and relating the new developments within FOMC.
Therefore we presented above experiments whose aim was to compare the different FOMC options. At these
experiments the FOMC was limited to run on the benchmark models for certain maximal time period and the
models chosen for benchmark had a complexity that is about manageable within the specified time period.

To give a glimpse into what the most complex models can be checked via FOMC, we chose another
benchmark set and started the FOMC without a run time limit. Furthermore, we only started a small number
of processes on each model with a parameter combination that seemed auspicious based on previous results.
We selected only models that should be proven as safe, i.e., satisfying the target safety property. Hence the
model checking process terminates only after determining the fix point for iterative preimage computation
starting from the state set representing the negated target property.

In order to determine the most complex models, for which the FOMC still can establish satisfaction of the
safety property, we relied on the model families that are scalable in the number of components, that are, the
dam and the flapSlat controller (cf. Sect. 5.1). At the dam, we can scale up the number of turbines and the
controller has to switch on and off the turbines, so that the water level stays within bounds. At the flapSlat
controller models, we can scale up the number of slats at an aircraft with already two flaps. The controller has
to ensure that the angles of flaps and slats match the current plane velocity. In the following we summarize
the best of results, that we observed.

• 23 continuous variables and 271 discrete states: The largest number of continuous variables in a
model for which the FOMC successfully established safety is 23. The flapSlatCtrl_2of2Lp2F20S model
has a continuous variable for the plane velocity and one continuous variable for the angle of each of the
two flaps and 20 slats. It has a discrete state space of 271.

The evolutions of the plane velocity, flaps and slats are specified by constant derivatives. This model
is also extreme in having the largest number of global modes. Each flap/slat has three modes, so for
22 flaps and slats, this amounts to 322 global modes. The model is enriched by invariants, that is with
lemmata annotations, expressing that all flaps and, respectively, all slats are equal. In separate runs it
was proven that the annotated lemmata hold.

The successful run was started as part of benchmarking acceleration at once (cf. p. 73). Here, actually,
a time out was set to 36 hours. For this model only acceleration at once (cf. Sect. 3.4) was able to
successfully establish safety.

• 20 continuous variables and 2199 discrete states: The model having simultaneously a large contin-
uous and discrete state space is dam_6turb_m10_use.hlang. The model specifies a dam with 6 turbines.
Each turbine induces three continuous variables for its run time, minor and major maintenance time.
The model encoding is optimized to have a small number of modes, by specifying the continuous evo-
lution for the water level referring only to the number of currently running turbines.

The FOMC process established safety after more than three days of run time.

• 9 continuous variable and 2271 discrete states The model dam_random_8turb_m13t3.hlang is
the model with the largest discrete state space. It also encodes a dam, in a variant where each turbine
introduces a continuous variable for its maintenance time and the number of modes is optimized to
be small – just like for dam_6turb_m10_use.hlang. Also each turbine comes with a counter for the
number on/off switchings since its last maintenance. In this model variant the threshold for going into
maintenance has been set to 229 + 1. So the resulting model of concurrent turbines has an immense
discrete state space.

The FOMC process established safety after more than six days of run time.

We remain in debt of a more systematic exploration of the limits of manageable model complexity. We will
carefully analyze our first results above. In particular, we plan to do further experiments for different FOMC
options, and reexamine the models for different properties to get an impression of the influence of the target
property and to simultaneously check the sanity of the model.

Nevertheless, these results are impressive and give a bright outlook on the capabilities of the FOMC.
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6 Conclusion

We have systematically explored the design space of optimization methods maintaining preciseness of ab-
stractions, and shown that techniques such as onioning can be successfully lifted from the domain of hardware
verification to the class of controller models with large discrete state spaces, when combined with techniques
such as redundancy removal and constraint minimization. We have identified classes of loosely coupled con-
troller models which can be scaled in the number of controller, for which a particular method for symbolic
flow evaluation coined acceleration at once significantly outperformed the standard mode-wise evaluation of
flows because it avoids the construction of cross products of modes. We have seen, that for certain classes
of applications the complexity of the symbolic representation as LinAIGs can be drastically reduced with
a tailored combination of overapproximation and redundancy removal techniques, and that combining this
with counter-example guided abstraction refinement allowed to significantly extend the class of models, for
which we can establish safety properties. We have provided a comprehensive assessment of the relative merits
of these techniques with a rich set of benchmarks representing typical control applications from automation,
avionics, automotive and rail.

We feel, though, that a still deeper assessment is needed to understand the limits and potentials of our
approach. What characteristics of models would allow scaling both the number of discrete and continuous
variables? For which classes of models can we infer automatically invariants so as to reduce the complexity
of the verification problem? Can we give design guidelines for decomposing large designs into loosely coupled
systems? How can we apply hierarchical reasoning by black-boxing subcomponents and learning invariants
about these sufficient to establish global safety problems? How can we go beyond linear hybrid automata,
by integrating symbolic representation methods used for reachability analysis of linear differential systems
of equations, such as the recently proposed symbolic orthogonal projections [75]? We hope that the level of
precision provided in this paper, the insights gained, and the intuitions passed on, will help to continue this
line of research on first-order model checking inaugurated more than 20 years ago [76].
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