
Preprocessing for DQBF

Ralf Wimmer(B), Karina Gitina, Jennifer Nist, Christoph Scholl,
and Bernd Becker

Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{wimmer,gitina,nistj,scholl,becker}@informatik.uni-freiburg.de

Abstract. For SAT and QBF formulas many techniques are applied in
order to reduce/modify the number of variables and clauses of the for-
mula, before the formula is passed to the actual solving algorithm. It is
well known that these preprocessing techniques often reduce the compu-
tation time of the solver by orders of magnitude. In this paper we gen-
eralize different preprocessing techniques for SAT and QBF problems to
dependency quantified Boolean formulas (DQBF) and describe how they
need to be adapted to work with a DQBF solver core. We demonstrate
their effectiveness both for CNF- and non-CNF-based DQBF algorithms.

1 Introduction

Many problems, practically relevant and at the same time hard from a com-
plexity theoretic point of view, can be reduced to solving quantifier-free (SAT)
or quantified (QBF) Boolean formulas. Such applications range, among many
others, from verification and test of hard- and software [1,2] to planning [3],
product configuration [4], and cryptanalysis [5]. During the last three decades,
the development of very efficient algorithms to solve such formulas has paved
the way from academic interest to industrial application of solver techniques.
SAT-formulas with hundred thousands of variables and millions of clauses can
be solved nowadays, with QBF about two orders of magnitude behind.

In this paper, we consider the more general, still practically relevant formal-
ism of dependency quantified Boolean formulas (DQBF). “Standard” quantified
Boolean formulas (in prenex normal form) have the restriction that each exis-
tential variable depends on all universal variables in whose scope it is. This
restriction is relaxed for DQBF, which allows arbitrary dependencies at the cost
of a higher complexity for the decision problem – for SAT it is NP-complete [6],
for QBF PSPACE-complete [7], and for DQBF it is NEXPTIME-complete [8].
However, some applications like the verification of incomplete circuits [9] or
the synthesis of safe controllers [10] require the higher expressiveness of DQBF.
Therefore, first solvers for DQBF have been presented recently: iDQ [11] reduces
the solution of a DQBF to the solution of a series of SAT instantiations. HQS [12]
applies quantifier elimination to solve the formula.

This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center AVACS (SFB/TR 14).

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 173–190, 2015.
DOI: 10.1007/978-3-319-24318-4 13

scholl
Schreibmaschinentext
Preprint from 10th International Conference on Theory and Applications of Satisfiability Testing (SAT), September 2015, Austin, USA

174 R. Wimmer et al.

Part of the success of SAT and QBF solving is due to efficient preprocessing
of the formula under consideration. The goal of preprocessing is to simplify the
formula by reducing/modifying the number of variables, clauses and quantifier
alternations, such that it can be solved more efficiently afterwards. However,
there is typically a trade-off between the number of variables and the number
of clauses; e. g., eliminating variables by resolution can increase the number of
clauses significantly, which in turn increases memory consumption and the cost
of subsequent operations on the formula. Removing redundant clauses is also
not always beneficial: search-based SAT and QBF solvers add implied clauses
to the formula to drive the search away from unsatisfiable parts of the search
space [13,14], which often reduces computation times considerably.

For SAT and QBF, efficient and effective preprocessing tools are available
like SatELite [15], Coprocessor [16] for SAT and squeezeBF [17], bloqqer [18]
for QBF. Both available DQBF solvers, however, still lack a preprocessing phase
before the actual solving process. Due to the success of preprocessing in SAT
and QBF, one can expect that preprocessing is beneficial for DQBF, too – even
more because the actual solving process is more costly than for QBF. This raises
the question which techniques can be generalized from SAT and QBF to DQBF.
Which adaptations need to be made to make them correct for the more general
formalism? After suitable adaptations have been found, the correctness proofs
have to be re-done for DQBF carefully because for QBF they often exploit the
fact that dependencies in QBF follow a linear order. But also techniques like
the detection of backbone literals [19,20], which work for DQBF in the same
way as for SAT and QBF, have to be re-thought: in SAT only incomplete, but
cheap syntactic tests for the special case of unit literals are useful – determining
backbone literals completely is as expensive as solving the SAT problem itself.
For DQBF the situation is different as the decision problem is much harder.
Even solving QBF approximations [9,21] of the formula at hand as an incomplete
decision procedure can be beneficial. Additionally the higher flexibility regarding
the dependency sets in DQBF makes some techniques more powerful compared
to QBF and enables new techniques.

Taken together, in this paper for the first time preprocessing techniques are
made available for DQBF solving. We generalize successful preprocessing tech-
niques for QBF to DQBF like blocked clause elimination (BCE) [18,22], equiv-
alence reasoning [17], structure extraction [23], and variable elimination by res-
olution [24]. All correctness proofs are available in an extended version of this
paper [25]. We present experimental results which show the effectiveness of these
techniques for DQBF. We demonstrate that the applied techniques have to be
chosen depending on the solving techniques applied in the solver core. For exam-
ple, BCE prevents an effective undoing of Tseitin transformation [26], which is
used to transform a formula into conjunctive normal form (CNF). Therefore, it
is better to disable BCE if the underlying solver core does not rely on a for-
mula in CNF, and to use BCE if undoing Tseitin transformation is not possible
because the solver core requires a formula in CNF. The experiments show that
preprocessing both reduces the computation times and significantly increases the
number of solved instances of both solvers, iDQ and HQS.

Preprocessing for DQBF 175

Structure of this paper. The next section introduces the necessary foundations
of DQBF. Section 3 reviews incomplete, but cheap decision procedures for DQBF,
Section 4 describes the preprocessing techniques for DQBF that we apply in our
tool to simplify the DQBF at hand. Section 5 gives an experimental evaluation
of the described techniques, and Section 6 concludes the paper.

2 Preliminaries

In this section, we briefly review the necessary foundations regarding dependency
quantified Boolean formulas.

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and
v ∈ V . We denote by ϕ[κ/v] the Boolean formula which results from ϕ by
replacing all occurrences of v (simultaneously) by κ. For a set V ′ ⊆ V we denote
by A(V ′) the set of Boolean assignments for V ′, i. e., A(V ′) =

{
ν

∣
∣ ν : V ′ →

{0, 1}}.

Definition 1 (DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean
variables. A dependency quantified Boolean formula (DQBF) ψ over V has
the form ψ := ∀x1∀x2 . . . ∀xn∃y1(Dψ

y1
)∃y2(Dψ

y2
) . . . ∃ym(Dψ

ym
) : ϕ where Dψ

yi
⊆

{x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi, and ϕ is a Boolean
formula over V , the matrix of ψ.

We often write ψ = Q : ϕ with the quantifier prefix Q and the matrix ϕ. Through-
out the whole paper we assume, unless explicitly stated differently, that a DQBF
ψ = Q : ϕ as in Definition 1 with ϕ in CNF is given. We denote its set of uni-
versal variables by V ψ

∀ = {x1, . . . , xn} and its set of existential variables by
V ψ

∃ = {y1, . . . , ym}. If we do not need to distinguish between existential and
universal variables, we write v ∈ V . Q \ {v} denotes the prefix that results from
removing a variable v ∈ V from Q together with its quantifier. If v is existential,
then its dependency set is removed as well; if v is universal, then all occurrences
of v in the dependency sets of existential variables are removed. Similarly we
use Q ∪ {∃y(Dψ

y)
}

to add existential variables to the prefix. The order in which
the variables appear in the prefix is irrelevant. We introduce the dependency
function depψ : V → 2V by depψ(v) = Dψ

v if v ∈ V ψ
∃ , and depψ(v) = {v} for

v ∈ V ψ
∀ .

Definition 2 (Semantics of DQBF). Let ψ be a DQBF with matrix ϕ as
above. ψ is satisfied (written � ψ) iff there are functions syi

: A(Dψ
yi

) → {0, 1}
for 1 ≤ i ≤ m such that replacing each yi by (a Boolean expression for) syi

turns
ϕ into a tautology. Then syi

is called a Skolem function for yi.

Two DQBFs ψ1 and ψ2 are equivalent iff � ψ1 ⇔ � ψ2 holds.

Definition 3 (QBF). A quantified Boolean formula (QBF)1 is a DQBF ψ

such that Dψ
y ⊆ Dψ

y′ or Dψ
y′ ⊆ Dψ

y holds for any pair y, y′ ∈ V ψ
∃ of existential

variables.
1 We only consider closed QBFs in prenex form here, i. e., QBFs in which all variables

are bound by a quantifer and in which the quantifiers precede the matrix.

176 R. Wimmer et al.

In the following we assume that the matrix ϕ is given in conjunctive normal
form (CNF). A formula is in CNF if it is a conjunction of clauses; a clause is
a disjunction of literals, and a literal is either a variable v or its negation ¬v.
We identify a formula in CNF with its set of clauses and a clause with its set
of literals, e. g., we write

{{x1,¬x2}, {x2,¬x3}
}

for the formula (x1 ∨ ¬x2) ∧
(x2 ∨ ¬x3). A clause C subsumes a clause C ′ iff C ⊆ C ′. For a literal �, var(�)
denotes the corresponding variable, i. e., var(v) = var(¬v) = v and depψ(�) =
depψ

(
var(�)

)
. Moreover, we define the “sign” sgn of a literal as sgn(v) = 1 and

sgn(¬v) = 0.
Each DQBF can be transformed such that the matrix is in CNF. While

transforming the matrix directly into CNF can cause an exponential blow-up in
size, Tseitin transformation [26] can do this with only a linear increase in size
at the cost of additional existential variables. The idea is to introduce auxiliary
existential variables that store the truth value of sub-expressions. Since the values
of these variables are uniquely determined by the sub-expression, they can simply
depend on all universal variables.

We assume that none of the clauses of the CNF ϕ under consideration is
tautological, i. e., there is no variable v such that {v,¬v} ⊆ C for all C ∈ ϕ.
The preprocessing operations we present check the modified or added clauses
whether they are tautologies and, if this is the case, remove or ignore them.

Definition 4 (Resolution). Let ϕ be a formula in CNF, � a literal, and C,C ′ ∈
ϕ clauses such that � ∈ C and ¬� ∈ C ′. The resolvent of C and C ′ w. r. t. to the
pivot literal � is given by C ⊗� C ′ :=

(
C \ {�}) ∪ (

C ′ \ {¬�}).
Resolvents are implied by the formula, i. e., if R is a resolvent of two clauses in
ϕ, then ϕ and ϕ ∪ {R} are equivalent [27].

Currently, three solvers for DQBF have been proposed: An extension of the
DPLL algorithm, typically applied for solving SAT and QBF formulas, has been
described in [28]. However, no implementation thereof is available. The second
solver is iDQ [11], which relies on a formula in CNF and uses instantiation-based
solving, i. e., it reduces deciding a DQBF to deciding a series of SAT problems.
Finally, there is the solver HQS [12], which applies quantifier elimination on
And-Inverter Graphs (AIGs) to solve the formula. An AIG is essentially a circuit
which consists of AND and inverter gates only. Although HQS reads the same
CNF-based input format as iDQ, its back-end can handle Boolean formulas
of arbitrary structure. We use both iDQ and HQS for the evaluation of the
preprocessing techniques presented in the following.

3 Incomplete, but Cheap Decision Procedures

Before we present our preprocessing techniques for DQBF, we review an incom-
plete, but cheap decision procedure (called “filter”) for DQBF. Our approach is
as follows: First we apply preprocessing for DQBF, which is helpful for both the
filter technique and the actual solver core. Then we run the filter technique, and

Preprocessing for DQBF 177

only if it finishes with an inconclusive result, we apply the solver core. Experi-
ments showed that it is beneficial to use a filter before the solving process.

The filter is based on QBF approximations: By using an appropriate quanti-
fier prefix and the same matrix, a DQBF ψ can be over-approximated by a QBF
Ψ↑ such that the unsatisfiability of Ψ↑ implies the unsatisfiability of ψ [9]. This
is the case if DΨ↑

y ⊇ Dψ
y for all y ∈ V ψ

∃ . Similarly one can construct an under-
approximation Ψ↓ such that the satisfiability of Ψ↓ implies the satisfiability of
ψ. As the under-approximation was inconclusive for all instances in our experi-
ments, we focus on over-approximations to show the unsatisfiability of DQBFs.
For the formal definitions of the approximations we refer the reader to [9].

Finkbeiner and Tentrup [21] improve these over-approximations by construct-
ing a series of more and more precise QBF formulas. To make this possible they
modify both the sets of variables and the matrix of the DQBF: The idea is to
use k ≥ 1 copies of the matrix and its variables. It is required that the existential
variables are assigned consistently over all copies and that all copies of the matrix
are satisfied. Consistent means that if the universal variables in the dependency
set of an existential variable are assigned the same values in two copies, then the
existential variables have to carry the same value. Since the sizes of the QBF
instances grow considerably with increasing values of k, in most cases only values
k ≤ 3 are beneficial. For more details we refer the reader to [21].

4 Preprocessing Techniques for DQBF

In this section we describe techniques which can be applied to preprocess a
DQBF. The proofs of the main theorems and lemmas are given in the extended
version [25] of this paper.

4.1 Backbones, Monotonic and Equivalent Variables

Here we describe techniques which reduce both the number of variables in the
formula and the number of clauses.

Unit and pure variables are well-known concepts from SAT and QBF solving.
They can be replaced by constant values without influencing the formula’s truth
value. Typically a variable is defined as unit if the matrix contains a clause
consisting only of this variable. A variable is pure if it occurs in the whole
matrix either only positive or only negative:

Definition 5 (Unit and pure literals). A literal � is a unit literal if {�} ∈ ϕ;
� is a pure literal if ¬� does not appear in any clause of ϕ.

These are syntactic criteria that can be checked efficiently. This is necessary
because in particular the detection of unit literals is one of the main operations
of search-based SAT and QBF solvers as a part of Boolean constraint propagation
(BCP).

For DQBF preprocessing, it is possible to use more expensive checks to deter-
mine variables which may be replaced by constants. Therefore we give a more
general semantic definition:

178 R. Wimmer et al.

Definition 6 (Backbones and monotonic variables). A variable v ∈ V is
a positive (negative) backbone if ϕ[0/v] (ϕ[1/v], resp.) is unsatisfiable. A literal
� is a backbone, if � = v and v a positive backbone, or if � = ¬v and v a negative
backbone. A variable v ∈ V is positive (negative) monotonic if ϕ[0/v] ∧ ¬ϕ[1/v]
(ϕ[1/v] ∧ ¬ϕ[0/v], resp.) is unsatisfiable.

The following theorem states how we can exploit backbones and monotonic
variables to reduce the size of the formula:

Theorem 1. Let ψ = Q : ϕ be a DQBF and v ∈ V a backbone or a monotonic
variable. If v is a positive or negative backbone and universal, ψ is unsatisfiable.
Otherwise ψ is equivalent to ψ′ where

• ψ′ = Q \ {v} : ϕ[1/v] if v is existential and either a positive backbone or
positive monotonic, or v is universal and negative monotonic;

• ψ′ = Q \ {v} : ϕ[0/v] if v is existential and either a negative backbone or
negative monotonic, or v is universal and positive monotonic.

This theorem has been proven formally in [29]. Checks whether a variable is a
backbone or monotonic can be done using a SAT solver. As already mentioned, in
the SAT and QBF context typically efficient (sound but not complete) syntactic
criteria are applied to detect backbones and monotonic variables. It is easy to
show that unit literals are backbones and pure literals are monotonic.

Another cheap criterion to identify backbones uses the binary implication
graph of a formula (which later also used to identify equivalent literals):

Definition 7. Let ϕ2 =
{
C ∈ ϕ

∣
∣ |C| = 2

}
be the set of binary clauses.

The binary implication graph of ψ is the directed graph BIP(ψ) = (L,E)
with the set L = {v,¬v | v ∈ V } of literals as its set of nodes and E ={
(v,¬w), (¬v, w)

∣
∣ {v, w} ∈ ϕ2

}
the set of edges.

Then the following lemma holds:

Lemma 1. A literal � is a backbone if there is a path in BIP(ψ) from ¬� to �.

If there is a path from literal � to literal �′, we can derive the clause {¬�, �′}
by resolution. In case of the lemma, the path from ¬� to � implies that we can
derive the clause {¬¬�, �} = {�}. Since this is a resolvent of clauses in ϕ, it may
be added to ϕ. Then we can apply Definition 5 to obtain the result.

Unit and pure literals, according to Definition 5, and backbones according
to Lemma 1, can be determined efficiently by traversing the matrix or, respec-
tively, the binary implication graph. Since solving a DQBF is much harder than
solving a SAT (or even QBF) problem and the gain by eliminating one variable
is larger, it often pays off to additionally use semantic checks (cf. Definition 6)
for backbones and monotonic variables, which are based on solving a sequence
of SAT problems. For backbones in the QBF context this observation has been
made in [30].

Definition 8 (Equivalent literals). The literals � and μ are equivalent w. r. t.
a propositional formula ϕ iff ϕ is equivalent to ϕ ∧ (� ≡ μ).

Preprocessing for DQBF 179

Theorem 2. Let � and μ be equivalent literals. We assume, w. l. o. g., that
sgn(�) = 1. If var(�), var(μ) ∈ V ψ

∀ , then ψ is unsatisfiable. Otherwise, we assume
w. l. o. g. that var(�) ∈ V ψ

∃ . If var(μ) ∈ V ψ
∀ and var(μ) �∈ Dψ

var(�), then ψ is

unsatisfiable. If var(μ) ∈ V ψ
∀ and var(μ) ∈ Dψ

var(�), then ψ is equivalent to

Q \ {
var(�)

}
: ϕ[μ/�]. If var(�), var(μ) ∈ V ψ

∃ , then ψ is equivalent to

ψ′ :=
(
Q \ {var(μ), var(�)}) ∪ {∃ var(μ)(Dψ

var(μ) ∩ Dψ
var(�))

}
: ϕ[μ/�] .

A proof can be found in the extended version [25] of this paper.
To detect equivalent literals, we exploit the following lemma:

Lemma 2. Two literals �, μ are equivalent if there is a path in BIP(ψ) from �
to μ and vice versa.

We decompose BIP(ψ) into strongly connected components (SCCs) using Tar-
jan’s SCC algorithm [31]. SCCs have the property that there is a path between
each pair of nodes in an SCC. Therefore literals within one SCC are equivalent.
They are replaced by one representative by applying Theorem 2. This procedure
was described e. g., in [16,32–35] for SAT preprocessing. Further equivalent lit-
erals can be found using structure extraction (see Section 4.5). Of course, even
SAT checks based on Definition 8 may be beneficial in the DQBF context.

4.2 Reduction of Dependency Sets

In a DQBF, a universal variable x ∈ V ψ
∀ may be contained in the dependency

set Dψ
y of an existential variable y ∈ V ψ

∃ , but actually, due to the structure of
the matrix, the Skolem function for y does not need to exploit the information
about x’s value to satisfy the formula. If such a situation is detected, x can be
removed from Dψ

y . This potentially reduces the number of copies of variables, if
universal expansion according to Theorem 5 is used for solving a DQBF.

An example for a situation when dependency sets may be reduced is when a
circuit is transformed into CNF by Tseitin transformation. The dependency set
Dψ

y of a Tseitin variable y can be an arbitrary superset of the universal variables
in its cone-of-influence. The variables in Dψ

y that are not in the cone-of-influence
of y can be removed from Dψ

y without affecting the truth value of the formula.

Definition 9. An existential variable y ∈ V ψ
∃ is independent of a universal

variable x ∈ V ψ
∀ if either x �∈ Dψ

y or replacing Dψ
y by Dψ

y \ {x} does not change
the truth value of ψ.

Deciding whether two variables are independent has the same complexity as
deciding the DQBF itself [36]. Therefore one resorts to sufficient criteria to show
independence. The most simple ones are based on the incidence graph of the
matrix:

The variable-clause incidence graph GV,ϕ = (V ∪ ϕ,E) of the formula is an
undirected graph with E =

{{v, C} ∈ V × ϕ
∣
∣ v ∈ C ∨ ¬v ∈ C

}
.

180 R. Wimmer et al.

Theorem 3 (Standard dependency scheme). An existential variable y ∈
V ψ

∃ is independent of a universal variable x ∈ V ψ
∀ if there is no path in GV,ϕ

from x to y, visiting only variables in {z ∈ V ψ
∃ |x ∈ Dψ

z } in between.

For a proof for this theorem, which generalizes a theorem from [36], see [25].
In the QBF context more powerful dependency schemes have been developed

which can possibly identify more variables as independent, see, e. g., [36–40]. A
generalization of these techniques will have an immediate benefit for DQBF solv-
ing by increasing the potential to save variable copies during universal expansion.

4.3 Universal Reduction, Resolution, and Universal Expansion

Universal reduction, resolution, and universal expansion are well-known tech-
niques used during the solution of QBFs. Universal reduction removes a univer-
sal variable from a clause if the clause does not contain any existential variable
which depends upon it. This technique has already been generalized to DQBF
in [11,41].

Lemma 3 (Universal reduction, [11,41]). Let Q : ϕ ∧ C be a DQBF and
� ∈ C a universal literal such that for all k ∈ C with k �= � we have var(�) �∈
depψ(k). Then Q : ϕ ∧ C and Q : ϕ ∧ (

C \ {�}) are equivalent.

For QBF resolution and universal reduction together are able to derive the
empty clause iff the formula is unsatisfiable. This does not hold for DQBF [41].
Resolution in QBF formulas allows to eliminate an existential variable by replac-
ing the clauses containing this variable with their resolvents. While adding resol-
vents is sound for DQBF as well, eliminating existential variables by resolu-
tion [15] only works under certain conditions. Here we give a set of sufficient
conditions which allow variable elimination by resolution for DQBF. In partic-
ular when the formula is created by Tseitin transformation [26], variable elimi-
nation by resolution is applicable to a large subset of the formula’s existential
variables.

Theorem 4 (Variable elimination by resolution). Let y ∈ V ψ
∃ be an exis-

tential variable of ψ. We partition ϕ into the sets ϕy = {C ∈ ϕ | y ∈ C},
ϕ¬y = {C ∈ ϕ | ¬y ∈ C}, and ϕ∅ = ϕ \ (Cy ∪ C¬y).
If one of the following conditions is satisfied:

• for all C ∈ ϕy and all k ∈ C we have depψ(k) ⊆ depψ(y),
• for all C ′ ∈ ϕ¬y and all k ∈ C ′ we have depψ(k) ⊆ depψ(y), or
• y is the defined variable of a functional definition, i. e., there are clauses

encoding the relationship y ≡ f(V ′) for some function f and arguments
V ′ ⊆ V \ {y}, depψ(v) ⊆ depψ(y) for all v ∈ V ′ (cf. Sec. 4.5),

then ψ is equivalent to ψ′ := Q \ {y} : ϕ∅ ∧ ∧

C∈ϕy

∧

C′∈ϕ¬y

C ⊗y C ′.

Proof sketch. Resolvents are implied by the matrix, i. e., adding resolvents to the
matrix yields an equivalent formula. If ψ is satisfied, then removing the clauses
in ϕy and ϕ¬y cannot make the formula unsatisfied, i. e., ψ′ is satisfied.

Preprocessing for DQBF 181

Assume that ψ′ is satisfied by Skolem functions sz for z ∈ V ψ
∃ \{y}. We define

sy := ¬ϕy
[
0/y

][
sz/z for z ∈ V ψ

∃ \ {y}] in the first case, sy := ¬ϕ¬y
[
1/y

][
sz/z

for z ∈ V ψ
∃ \ {y}] in the second case, and sy := f(V ′)

[
sz/z for z ∈ V ψ

∃ \ {y}]
in

the third case. It is not hard to show that sy is an admissible Skolem function
for y and that ϕ[sv/v for v ∈ V ψ

∃] is indeed a tautology. Details can be found in
the extended version [25] of this paper. ��

Theorem 4 does not provide a decision algorithm for arbitrary DQBFs, since
it is possible that the conditions do not hold for any existential variable. More-
over, eliminating all existential variables fulfilling the conditions of Theorem 4 is
in general not feasible because the number of clauses can grow considerably dur-
ing elimination. We first create a list of variables that may be eliminated. For each
such variable y we estimate the cost cy of elimination, i. e., cy := |ϕ∅|+|ϕy|·|ϕ¬y|

|ϕ| .
We eliminate one variable y with minimum cost provided that cy is less than
a user-specified factor ε > 1. After resolving variables we check for subsumed
clauses, i. e., clauses C such that there is a clause C ′ with C ′ ⊆ C. Then C can
be deleted [27].

Universal expansion [9,41–43] is the corresponding method for eliminating
universal variables. It is the main operation which the solver HQS [12] uses to
transform the DQBF at hand into an equivalent QBF. This QBF can be solved
by an arbitrary QBF solver.

Theorem 5 (Universal expansion). Let xi ∈ V ψ
∀ , and Eψ

xi
=

{
yi ∈ V ψ

∃
∣
∣ xi ∈

depψ(yj)
}
. Then ψ is equivalent to

(
Q\{xi}

)∪{∃y′
j(D

ψ
yj

\{xi})
∣
∣ yj ∈ Eψ

xi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈Eψ
xi

] .

A formal proof of this theorem is given, e. g., in [9]. In order to avoid unnecessary
variable copies, we check using the standard dependency scheme (cf. Theorem 3)
which existential variables actually depend on the expanded universal variable.

4.4 Blocked Clause Elimination

The concept of blocked clauses was introduced by Järvisalo et al. for SAT in
[22] and later generalized to QBF by Biere et al. in [18]. Blocked clauses can
be removed from a formula without changing its truth value. Before checking
for blockedness, clauses can be extended by so-called hidden and covered literals
[18,44,45]. This does not change the truth value of the formula, but increases
the chance that a clause is blocked.

In this section, we first generalize the notion of blocked clauses to DQBF
such that blocked clauses satisfy the same properties as in SAT and QBF. Then
we investigate how to generalize hidden and covered literals to DQBF.

For a QBF Q : ϕ ∧ C, a clause C containing an existential literal � ∈ C can
be omitted (resulting in an equivalent formula), if ‘� is blocking for C’, which
means that for all C ′ ∈ ϕ with ¬� ∈ C ′ there is a variable k such that {k,¬k} ⊆
C ⊗� C ′ and k precedes � in the quantifier prefix (which means in DQBF notions:

182 R. Wimmer et al.

depψ(k) ⊆ depψ(�)). In the QBF context the intuitive background of blocked
clause elimination is simple: Consider a solving approach to QBF which always
removes the innermost existential quantifiers (which depend on all universal ones)
by resolution2 and the innermost universal quantifiers (upon which no existential
variable depends) by universal reduction until all quantifiers have been removed
[24]. If � is blocking for C, all resolvents resulting from C contain {k,¬k}, i. e.,
are tautological, and their addition makes no contribution. The condition ‘k
precedes � in the quantifier prefix’ ensures that var(k) has not been removed
before � in the process sketched above, i. e., the reason {k,¬k} for the resolvents
being tautological has not been removed. This implies that we can alternatively
remove C from ϕ ∧ C in the very beginning without changing the result of the
solving process.

Fortunately, we can show that the notion of blocked clauses has a natural
generalization to DQBF. However, the proof idea of blocked clause elimination
sketched above does not work anymore, since in DQBF there is no linear order
for the quantifiers such that ‘removing quantifiers starting with the innermost’
does not have a counterpart in DQBF; the correctness proof has to be re-done for
DQBF carefully taking into account that arbitrary dependencies may be defined
in a DQBF. We first give the generalized definition of blocked clauses:

Definition 10 (Blocked clauses). Let Q : ϕ ∧ C be a DQBF and C a clause
with � ∈ C. Literal � is a blocking literal for C if � is existential and for all
C ′ ∈ ϕ with ¬� ∈ C ′ there is a variable k such that {k,¬k} ⊆ C ⊗� C ′ and
depψ(k) ⊆ depψ(�). A clause is blocked if it contains a blocking literal.

Now we can prove results that are analogous to QBF and SAT.

Theorem 6 (Blocked clause elimination, BCE). Let Q : ϕ∧C be a DQBF
with a blocked clause C. Then Q : ϕ ∧ C and Q : ϕ are equivalent.

Proof sketch. The theorem can be shown by induction on the number |depψ(�)|
of �’s dependencies. The base case depψ(�) = ∅ works analogously to the QBF
case, see [18]. For the induction step, we choose an arbitrary universal variable
x ∈ depψ(�) and eliminate it by universal expansion (see Theorem 5). In the
resulting formula, � and its copy �′ depend on one variable less. One can show
that both copies of C in this formula are either blocked or tautological. Therefore
they can be removed by the induction assumption. Un-doing the expansion step
yields the result. A more detailed proof can be found in [25]. ��

The purpose of the following techniques is to extend clauses by redundant
literals. This increases the chance that the clause is blocked and can be deleted.
If the extended clause is not blocked, the additional literals are removed again.

Definition 11 (Hidden literals). Let Q : ϕ ∧ C be a DQBF. A literal � �∈
C is a hidden literal for C if there is a clause {�1, . . . , �n,¬�} ∈ ϕ such that
{�1, . . . , �n} ⊆ C.
2 Adding all possible resolvents with pivot variable v and then removing all clauses

containing v or ¬v corresponds to existential quantification of v.

Preprocessing for DQBF 183

Theorem 7 (Hidden literal addition, HLA). Let Q : ϕ∧C be a DQBF and
� a hidden literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧ (

C ∪ {�}) are equivalent.

The idea of hidden literal addition is based on self-subsuming resolution [15].
The resolvent (C ∪ {�}) ⊗� {�1, . . . , �n,¬�} is equal to C and subsumes C ∪
{�}. Thus after adding the resolvent C, C ∪ {�} can be removed, leading to an
equivalent formula. Note that the argument for hidden literal addition is based
on a consideration of the matrix only, thus in this case the argumentation is
exactly the same as for SAT and QBF.

This is in contrast to the ‘covered literal addition’ described in the follow-
ing. For covered literals we need a careful generalization of the QBF definition
together with a non-trivial proof of the generalization to DQBF.

Definition 12 (Covered literals). Let ψ = Q : ϕ∧C be a DQBF and let � be
an existential literal with � ∈ C. The set of resolution candidates for C w. r. t.
� is the set Rψ(C, �) =

{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆ C ⊗� C ′ ⇒

depψ(v) �⊆ depψ(�))
}
.

A literal k is a covered literal for C w. r. t. � if depψ(k) ⊆ depψ(�) and
k ∈ ⋂

Rψ(C, �) \ {¬�}.
Theorem 8 (Covered literal addition, CLA). Let Q : ϕ ∧ C be DQBF and
k a covered literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧ (

C ∪ {k}) are equivalent.

Proof sketch. Assume that k is a covered literal for C w. r. t. �. We show the the-
orem by induction on the number |depψ(�)| of dependencies of �. The induction
base where depψ(�) = ∅ is similar to the QBF case (cf. [18]). For the induction
step, we apply universal expansion of an arbitrary variable in depψ(�) (see Theo-
rem 5) to obtain a formula in which � and its copy �′ both depend on one variable
less. It is rather technical to show that adding k (k′) to the copies of C in this
formula leads to an equivalent formula, since these copies are either tautological
or k (k′) is a covered literal. By undoing the expansion step we obtain the desired
result. For a detailed proof we refer to [25]. ��

A rough basic intuition for covered literal addition is as follows: “If a literal
k is already contained in all non-tautological resolvents of a clause C with pivot
literal �, then k may be added to C resulting in an equivalent formula.” In
addition to this basic idea we need the condition depψ(k) ⊆ depψ(�) and a bigger
set of resolution candidates Rψ(C, �) =

{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆

C ⊗� C ′ ⇒ depψ(v) �⊆ depψ(�))
}

instead of Rψ(C, �) =
{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′∧

�v ∈ V : {v,¬v} ⊆ C ⊗� C ′} in order to be able to lead the (rather involved)
proof of Theorem 8, see [25].

In order to reduce the size of the formula, we determine for each clause C the
set H of hidden and the set K of covered literals. Then we check if C ∪ H ∪ K
is blocked or tautological. If this is the case, C is removed; otherwise C remains
unchanged. This is iterated until we reach a fixed point.

Note that if a hidden or covered literal is universal, its addition can be helpful
not only because it can make a clause blocked. If a CNF-based solver core uses

184 R. Wimmer et al.

elimination of universal variables to decide the formula, all clauses which contain
an existential variable that depends on the eliminated universal variable have
to be doubled [9]. If the clause contains the universal variable to be eliminated,
one of these copies is satisfied and can therefore be omitted (cf. [46]).

4.5 Structure Extraction

The DQBF’s matrix in CNF is often created from a circuit or a Boolean expres-
sion by Tseitin transformation [26], where a new existential variable ve is created
for each sub-expression e (or gate output). Clauses encoding the relationship
ve ≡ e are added and the sub-expression e is replaced by the variable ve. If a
solver (like HQS) does not rely on a matrix in CNF, this transformation step can
be undone. This removes all artificially introduced variables. Structure extrac-
tion is used in the QBF solver AIGsolve [23].

For example, a k-input AND gate y ≡ AND(�1, . . . , �k) has a Tseitin encod-
ing consisting of (k + 1) clauses {¬y, �1}, . . . , {¬y, �k}, {y,¬�1, . . . ,¬�k}. In a
functional definition y ≡ f(�1, . . . , �k), y is called the defined variable, f is the
definition of y, and the clauses corresponding to the relationship y ≡ f(�1, . . . , �k)
are the defining clauses.

Theorem 9. Let ψ = Q : ϕ be a DQBF and ϕf ⊆ ϕ the defining clauses
for the relationship y ≡ f(�1, . . . , �k). Then ψ is equivalent to Q \ {y} : (ϕ \
ϕf)[f(�1, . . . , �k)/y] if y ∈ V ψ

∃ and for i = 1, . . . , k we have depψ(�i) ⊆ depψ(y).

Our implementation checks for defining clauses for (multi-input) (N)AND
gates and 2-input XOR gates, both with arbitrarily negated inputs. We do not
extract definitions that lead to cyclic dependencies.

Gate detection can be used as the last step of the preprocessing routine. If
a relationship y ≡ f(�1, . . . , �k) is detected which does not lead to cyclic depen-
dencies, we remove y from the prefix and the defining clauses from the matrix.
We additionally use a data structure which assigns to each defined variable its
definition. To create an AIG representation that can be passed to a non-CNF-
based solver core like HQS, we convert the remaining clause into an AIG and
then substitute the defined variables by their definitions.

The same structure extraction procedure can also be used to identify equiv-
alent variables and unnecessary variable dependencies. For both purposes, the
relationships are only detected, but neither are the defining clauses removed nor
is the data structure that stores the relationships updated. Therefore this can
also be used if the solver back-end requires a matrix in CNF: If there is the rela-
tionship y ≡ f(�1, . . . , �k) and

⋃k
i=1 depψ(�i) � Dψ

y , then Dψ
y can be replaced by

⋃k
i=1 depψ(�i). If two defined variables y, y′ with the same definition are detected,

i. e., y ≡ f(�1, . . . , �k) and y′ ≡ f(�1, . . . , �k), then y and y′ are equivalent and
Theorem 2 can be applied to remove one of them.

Preprocessing for DQBF 185

5 Experimental Results

We have implemented the described techniques in C++ as a preprocessor for our
DQBF solver HQS. To support other back-end solvers, too, it is able to write
the resulting formula into a file in DQDIMACS format, which can be read by
the currently only competing solver iDQ [11].

As benchmark instances we use 4381 formulas, resulting from the verifica-
tion of incomplete circuits [9,11,21] and controller synthesis [10]. The synthesis
benchmarks are those shipped with the tool Demiurge 1.1.0 [10]. We used the
encoding described in [10] to create a DQBF formulation.

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz
with 64 GB of main memory, running Ubuntu Linux 12.04 in 64-bit mode as
operating system. We aborted all experiments whose computation time exceeded
900 seconds or which required more than 8 GB of memory. For solving QBFs,
we use DepQBF 4.0 [47,48] with the QBF preprocessor bloqqer [18] (version 35)
if the matrix is in CNF, and AIGsolve [23] if the matrix is given as an AIG.

We used two parameter settings for preprocessing, in the following called V1

and V2. Both use the detection of backbones (by syntactic and semantic checks),
monotonic variables (by syntactic checks), and equivalent variables (both using
the binary implication graph and structure extraction). We reduce the depen-
dency sets of the existential variables using the standard dependency scheme
and structure extraction. For these operations, the functional definitions are
only detected, but neither are the defined variables replaced by their definition
nor are the defining clauses removed.

• V1 additionally enables structure extraction, which replaces the defined
variables by their definitions. V1 does not yield a CNF representation, but rather
an And-Inverter Graph (AIG) [49] for the formula. Since iDQ requires a CNF
representation of the matrix, V1 can only be combined with HQS.

Table 1. Effect of preprocessing

Solver Filter Preproc. Solved

none k = 1 none 935
none k = 1 V1 2459
none k = 2 V1 2733
none k = 1 V2 2240

HQS none none 1537
HQS none V1 3629
HQS k = 1 V1 3752
HQS k = 1 V1 + BCE 2174
HQS k = 2 V1 3737
HQS k = 1 V2 3542

iDQ none none 1073
iDQ none V2 1378
iDQ k = 1 none 1359
iDQ k = 1 V2 2714

• V2 applies BCE after adding hidden and
covered literals and variable elimination by
resolution (ε = 1.1), but disables structure
extraction. V2 yields a matrix in CNF; there-
fore it can be combined with both iDQ and
HQS.

Table 1 shows the number of solved instances
(out of 4381) for different combinations of pre-
processing, filtering (see Section 3), and the
HQS or iDQ solver cores. Preprocessing alone
can only solve a small fraction of all instances
(80 for V1 and 57 for V2). The filter solves
already 935 instances for k = 1 (slightly more
with higher values of k). The combination
of preprocessing V1 with the filter allows to
decide 2459 instances (2240 with V2). In spite
of using bloqqer as preprocessor for simplifying the QBF over-approximations

186 R. Wimmer et al.

for filtering, doing DQBF preprocessing before reduces the solving times for the
QBFs. Without DQBF preprocessing, solving the QBF approximation runs into
a timeout frequently.

For HQS as solver back-end, the trend is similar: without preprocessing and
filtering, HQS is able to solve 1537 instances, with V1 preprocessing this number
increases to 3629 instances, and if filtering is used thereafter, 3752 instances can
be solved. We can also see that BCE largely prevents structure extraction: if all
described techniques are enabled, only 2174 instances can be solved successfully.
Increasing the value of k to 2 does not seem beneficial at least if a time limit of
15 min is used. For larger time limit, k = 2 can slightly increase the number of
solved instances. Finally, if we combine V2 with filtering (k = 1) and HQS, we can
also observe a positive effect on the number of solved instances (3542); however,
it is not as strong as with V1, which includes structure extraction instead of
BCE.

iDQ without filtering and preprocessing solves 1073 instances. This number
is increased to 1378 by preprocessing (V2) and to 1359 instances by filtering
(k = 1). The combination with filtering and preprocessing yields 2714 solved
instances.

In summary, the combination of filtering and preprocessing significantly
increases the number of solved instances by a factor of up to 2.44 (for HQS) and
2.52 (for iDQ). The best results are obtained if the preprocessing techniques are
chosen according to the solver core.

Now we focus on the size of the instances before and after preprocessing.
Preprocessing variant V2 reduces the number of clauses by 64 % on average, the
number of existential variables by 76 % on average, but leaving the number of
universal variables essentially unchanged. As preprocessing variant V1 does not
yield a CNF representation, we cannot compare the number of clauses. Instead
we compare the size of the AIG representation of the matrix before and after
preprocessing. V1 reduces the number of existential variables by 97 % on average
(including all Tseitin variables), the number of AIG nodes by 84 %, leaving the
number of universal variables almost unchanged, too.

If the CNF structure of the matrix needs to be preserved (as in V2) not all
Tseitin variables can be removed by identifying functional definitions and by
elimination by resolution, since this leads to a significant increase in size of the
CNF. This effect is lessened by BCE, in particular if HLA and CLA are enabled.

Finally, we take a closer look at the solving times of the instances. For the
instances which were solved with or without preprocessing and filtering, Fig. 1
compares the computation times when using only the solver core and when using
the solver core after preprocessing and filtering. The times include everything
from reading the input files to termination. The upper two pictures show HQS
with V1 (Fig. 1(a)) and V2 (Fig. 1(b)) and filtering using k = 1, compared to HQS
without preprocessing and filtering. Fig. 1(c) shows iDQ with V2, compared to
iDQ without preprocessing. In Fig. 1(d) we present the accumulated running
times over all instances (unsolved instances contributing the time limit of 900
seconds) and the average running time of the solved instances.

Preprocessing for DQBF 187

(a) HQS with filtering and V1 (b) HQS with filtering and V2

0.01 0.1 1 10 100 TO MO
0.01

0.1

1

10

100

TO

MO

without preprocessing

w
it
h
pr
ep
ro
ce
ss
in
g

SAT
UNSAT

0.01 0.1 1 10 100 TO MO
0.01

0.1

1

10

100

TO

MO

without preprocessing

w
it
h
pr
ep
ro
ce
ss
in
g

SAT
UNSAT

(c) iDQ with filtering and V2 (d) Solution times (in seconds)

0.01 0.1 1 10 100 TO MO
0.01

0.1

1

10

100

TO

MO

without preprocessing

w
it
h
pr
ep
ro
ce
ss
in
g

SAT
UNSAT Solver Filter Preproc. Suma Avg.b

HQS none none 2 668 335 70.75
HQS yes V1 583 097 4.53
HQS yes V2 797 037 11.84
iDQ none none 3 006 803 35.65
iDQ yes V2 2 028 601 6.02

a over all instances
b over the solved instances

Fig. 1. Running times (in seconds) for HQS and iDQ with and without preprocessing.

In all three cases, preprocessing and filtering reduce the computation times for
the vast majority of instances significantly, often by orders of magnitude. The
very few exceptions in case of iDQ are instances that are very easy to solve
such that the overhead for preprocessing exceeds the solving time. We can also
observe that many instances, for which the solver core alone ran into a time out
or memory out, can be solved successfully after preprocessing and filtering.

6 Conclusion

We have shown how preprocessing techniques for SAT and QBF can be general-
ized to DQBF. Experiments have demonstrated that they can reduce the running
time of the actual solving process by orders of magnitude, both for CNF-based
and non-CNF-based solver cores.

188 R. Wimmer et al.

In future we want to investigate more powerful dependency schemes and how
the flexibility in the dependency sets can be exploited when choosing sets of
universal variables to eliminate in order to obtain a QBF.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

2. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.:
TIGUAN: thread-parallel integrated test pattern generator utilizing satisfiability
analysis. In: International Conference on VLSI Design, pp. 227–232. IEEE Com-
puter Society, New Delhi, India (2009)

3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Arti-
ficial Intelligence Research 10, 323–352 (1999)

4. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. AI EDAM 17(1), 75–97 (2003)

5. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Annual ACM Sym-
posium on Theory of Computing (STOC), ACM Press, pp. 151–158 (1971)

7. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time: Pre-
liminary report. In: Annual ACM Symposium on Theory of Computing (STOC),
pp. 1–9. ACM Press (1973)

8. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Computers and Mathematics with Applications
41(7–8), 957–992 (2001)

9. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified Boolean formulae. In: IEEE
Int’l Conf. on Computer Design (ICCD), Asheville, NC, USA, IEEE Computer
Society, pp. 396–403 (2013)

10. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

11. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Berre, D.L. (ed.) Int’l Workshop on Pragmatics of SAT (POS). EPiC
Series, vol. 27, pp. 103–116. Vienna, Austria, EasyChair (2014)

12. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Int’l Conf. on Design, Automation and
Test in Europe (DATE), Grenoble, France, IEEE (2015)

13. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve real-world SAT
instances. In: Kuipers, B., Webber, B.L. (eds.): National Conference on Artifi-
cial Intelligence / Innovative Applications of Artificial Intelligence Conference
(AAAI/IAAI), Providence, Rhode Island, USA, AAAI Press / The MIT Press,
pp. 203–208 (1997)

14. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

Preprocessing for DQBF 189

16. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

17. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: an effective preprocessor for
QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

18. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

19. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in
satisfiability. In: Veloso, M.M., Kambhampati, S. (eds.): National Conference on
Artificial Intelligence / Int’l Conf. on Innovative Applications of Artificial Intel-
ligence (IAAI), Pittsburgh, Pennsylvania, USA, AAAI Press / The MIT Press,
pp. 1368–1373 (2005)

20. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Communications 28(2), 161–177 (2015)

21. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)

22. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

23. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Conf,
I. (ed.) on Design, Automation and Test in Europe (DATE), pp. 1596–1601. IEEE,
Nice, France (2009)

24. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

25. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF
(extended version). Reports of SFB/TR 14 AVACS number 110 (2015). http://
www.avacs.org

26. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2, 115–125 (1970)

27. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
vol. 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2008)

28. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Int’l Workshop on Pragmatics of SAT (POS), Trento, Italy (2012)

29. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. Reports of SFB/TR 14 AVACS 107 (2015).
http://www.avacs.org

30. Pigorsch, F., Scholl, C.: An AIG-based QBF-solver using SAT for preprocess-
ing. In: Sapatnekar, S.S. (ed.) ACM/IEEE Design Automation Conference (DAC),
pp. 170–175. ACM Press, Anaheim, CA, USA (2010)

31. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–160 (1972)

32. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)

33. Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Ann.
Math. Artif. Intell. 43(1), 239–253 (2005)

34. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing
CNF formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 423–429. Springer, Heidelberg (2005)

http://www.avacs.org
http://www.avacs.org
http://www.avacs.org

190 R. Wimmer et al.

35. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on
binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

36. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning 42(1), 77–97 (2009)

37. Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H.,
Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer,
Heidelberg (2008)

38. Lonsing, F., Biere, A.: Efficiently representing existential dependency sets for
expansion-based QBF solvers. Electronic Notes in Theoretical Computer Science
251, 83–95 (2009)

39. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer,
Heidelberg (2011)

40. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71.
Springer, Heidelberg (2012)

41. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formulae:
A certification perspective of DQBF. Theoretical Computer Science 523, 86–100
(2014)

42. Bubeck, U., Kleine Büning, H.: Dependency quantified horn formulas: models
and complexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 198–211. Springer, Heidelberg (2006)

43. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D.
thesis, University of Paderborn (2010)

44. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397,
pp. 357–371. Springer, Heidelberg (2010)

45. Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: Voronkov, A.,
Sutcliffe, G., Baaz, M., Fermüller, C.G. (eds.): Int’l Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR) (Short papers). vol. 13 of EPiC
Series, Yogyakarta, Indonesia, EasyChair, pp. 41–46 (2010)

46. Heule, M.J.H., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 436–442. Springer,
Heidelberg (2015)

47. Lonsing, F., Egly, U.: Incremental QBF solving by DepQBF. In: Hong, H., Yap, C.
(eds.) ICMS 2014. LNCS, vol. 8592, pp. 307–314. Springer, Heidelberg (2014)

48. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on
Satisfiability, Boolean Modelling and Computation 7(2–3), 71–76 (2010)

49. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on CAD of Integrated Circuits and Systems 21(12), 1377–1394 (2002)

	Preprocessing for DQBF
	1 Introduction
	2 Preliminaries
	3 Incomplete, but Cheap Decision Procedures
	4 Preprocessing Techniques for DQBF
	4.1 Backbones, Monotonic and Equivalent Variables
	4.2 Reduction of Dependency Sets
	4.3 Universal Reduction, Resolution, and Universal Expansion
	4.4 Blocked Clause Elimination
	4.5 Structure Extraction

	5 Experimental Results
	6 Conclusion
	References

