
JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.1 (1-29)

Science of Computer Programming ••• (••••) •••–•••
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Fully symbolic TCTL model checking for complete and

incomplete real-time systems ✩,✩✩

Georges Morbé ∗, Christoph Scholl ∗

Department of Computer Science, Georges–Köhler–Allee 51, 79110 Freiburg i. Br., Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2014
Received in revised form 30 July 2015
Accepted 3 August 2015
Available online xxxx

Keywords:
Timed automata
Incomplete real-time systems
Full TCTL model checking

In this paper we present a fully symbolic TCTL model checking algorithm for real-time
systems represented in a formal model called finite state machine with time (FSMT),
which works on fully symbolic state sets containing both the clock values and the state
variables. Our algorithm is able to verify TCTL properties on complete and incomplete
FSMTs containing unknown components. For that purpose over-approximations of state sets
fulfilling a TCTL property φ for at least one implementation of the unknown components
and under-approximations of state sets fulfilling φ for all possible implementations of the
unknown components are computed. We present two different methods to convert timed
automata to FSMTs. In addition to FSMTs simulating pure interleaving behaviour of timed
automata we can produce FSMTs with a parallelized interleaving behaviour which allows
parallelism of conflict-free transitions. This can dramatically reduce the number of steps
during verification. Our prototype implementation outperforms the state-of-the-art model
checkers UPPAAL and RED on complete systems, and on incomplete systems our tool is
able to prove interesting properties when parts of the system are unknown.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Both the application areas and the complexity of real-time systems have grown with an enormous speed during the last
decades. Moreover, in many applications the correct operation of real-time systems is safety-critical, which makes verifica-
tion crucial. Timed automata [3,4] have become a standard for modelling real-time systems. They extend finite automata
to the real-time domain by adding real-valued clock variables used to represent time. Verifying safety properties of timed
automata can be reduced to the computation of all states from which unsafe states can be reached and checking whether
some initial states are included in this set of states (backward model checking) or to the computation of all states which
can be reached from the initial states and checking whether some unsafe states are included in this set of states (forward
model checking).

Model checking approaches for timed automata can be classified into semi-symbolic and fully symbolic approaches. Semi-
symbolic approaches represent discrete locations explicitly whereas sets of clock valuations are represented symbolically
e.g. by unions of clock zones. Clock zones are convex regions that result from an intersection of clock constraints of the form

✩ This work was partly supported by the German Research Council (Deutsche Forschungsgemeinschaft – DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, http :/ /www.avacs .org/).
✩✩ Parts of the article have been presented at CAV 2011 [1] and AVOCS 2013 [2].

* Corresponding authors.
E-mail addresses: morbe@informatik.uni-freiburg.de (G. Morbé), scholl@informatik.uni-freiburg.de (C. Scholl).
http://dx.doi.org/10.1016/j.scico.2015.08.002
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://www.avacs.org/
mailto:morbe@informatik.uni-freiburg.de
mailto:scholl@informatik.uni-freiburg.de
http://dx.doi.org/10.1016/j.scico.2015.08.002

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.2 (1-29)

2 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
xi ∼ d and xi − x j ∼ d where d ∈ Q, ∼ ∈ {<, ≤, =, ≥, >} and xi , x j are clock variables. Fully symbolic approaches represent
the complete state set (including valuations of both clocks and discrete variables) by a single data structure. In Section 3 we
provide a more detailed review of data structures for semi-symbolic and symbolic representation of timed systems.

In this work, we present a fully symbolic model checking algorithm for a formal model for real-time systems, called finite
state machines with time (FSMT), which represents real-time systems by symbolic transition functions and reset conditions.
FSMTs have an elegant definition of parallel composition (where communication is performed by reading each other’s state
variables, reading shared input variables and shared clocks). In contrast to timed automata where parallel composition may
lead to a blowup in the number of locations, the parallel composition of FSMTs just needs linear space due to the symbolic
representation.

In order to verify timed automata (with additional integer variables in the state space) we present a method to convert a
timed automaton into an FSMT. In addition to normal interleaving semantics (i.e. asynchronous semantics) for discrete steps
of timed automata we give a symbolic representation of an FSMT simulating a ‘parallelized interleaving’ behaviour, which
allows parallelism of transitions causing no conflicts. This parallelized interleaving behaviour can dramatically reduce the
number of steps during verification.

In contrast to [1], we do not consider invariants in timed automata or FSMTs. Invariants are a well-known means to
enforce progress in timed automata. However, when considering parallel composition of several timed automata, invariants
are a hidden way of communication between several components. By using invariants it is possible that a component A
enforces that a synchronising transition in component B is taken without any time delay. By differentiating between urgent
and non-urgent synchronisation actions we make this hidden communication mechanism explicit in the interface of the
components.

The first part of the paper is dedicated to complete systems with possible non-determinism, but without any interaction
with an environment, i.e. closed systems. We present a fully symbolic model checking algorithm for complete FSMTs able to
verify complex TCTL properties. Our algorithm uses LinAIGs (‘And-Inverter-Graphs with linear constraints’) [5–7] to describe
the state space. LinAIGs provide a fully symbolic representation both for the continuous part (i.e. the clock values) and the
discrete part (i.e. the state variables). For state space compaction LinAIGs profit to a large extent from the enormous progress
made in the area of SAT and SMT (SAT modulo theories) solving [8,9]. For the quantification of real-valued variables, LinAIGs
make use of the Weispfenning–Loos test point method [10] which is especially suitable for LinAIG representations.

In the second part we extend our consideration to the verification of incomplete timed systems, i.e., timed systems that
contain unknown components. Unknown components are called ‘Black Boxes’, whereas all known components are combined
into the so-called ‘White Box’. As for complete systems, there is no environment influencing the behaviour of an incomplete
system. However, the white box interacts with the black box which plays a role similar to an environment of open systems.
In contrast to an abstract ‘environment’ which enables or disables transitions synchronising with the environment, black
boxes represent unknown component timed automata.

Our verification algorithm deals with different communication methods between the white box and the black box,
namely shared integer variables and urgent and non-urgent synchronisation. Here we address two interesting questions:
The question whether there exists a replacement of the black box such that a given property is satisfied (‘realisability’) and
the question whether the property is satisfied for all possible replacements (‘validity’).

The verification of incomplete timed systems can provide three major benefits: (1) Certain verification steps can be
performed at early stages of the design of a timed system, when parts of the overall system may not yet be finished, so that
errors can be detected as early as possible. (2) Complex parts of a complete timed system can be abstracted away and just
the relevant components for verifying a certain property are considered. (3) Finally, the location of design errors in timed
systems not satisfying some property can be narrowed down by iteratively masking potentially erroneous components.

Our approach is not restricted to the verification of safety properties, but provides fully symbolic methods to do full
TCTL model checking both for complete and incomplete timed systems. For incomplete systems we use over-approximations
of state sets satisfying a TCTL property φ for at least one black box implementation and under-approximations of state
sets satisfying φ for all possible black box implementations. Using these sets, we provide sound proofs of validity and
non-realisability.

The paper is organised as follows. In Section 2 we give a brief review of timed automata, of TCTL, and LinAIGs. Here
we also give more details on using urgent and non-urgent communication instead of invariants. In Section 3 we compare
our approach to related work. Then we give a review of finite state machines with time (FSMT) in Section 4. In Section 5
we prepare the translation of timed automata into FSMTs by proposing two options for handling discrete steps: the opti-
mised parallelized interleaving semantics for accelerating state space traversal and the pure interleaving semantics which
corresponds to the standard asynchronous interleaving of several components. Then we present details on the translation
of timed automata into FSMTs in Section 6. Our model checking algorithm for complete systems is given in Section 7. After
introducing incomplete real-time systems in Section 8, we present a model checking approach for incomplete systems in
Section 9, including a conversion of incomplete timed systems into incomplete FSMTs. We conclude the paper in Section 11
after presenting experimental results in Section 10.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.3 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 3
2. Preliminaries

2.1. Timed automata

Real-time systems are often represented as timed automata [3,4] which use clock variables X := {x1, . . . , xn} to represent
time. Within the locations of a timed automaton time is allowed to pass and the values of all the clock variables raise with
the same grade. The set of clock constraints C(X) contains atomic constraints of the form (xi ∼ d) and

(
xi − x j ∼ d

)
with

d ∈ Q and ∼ ∈ {<,≤,=,≥,>}. Let Cc(X) be the set of conjunctions over clock constraints. c ∈ Cc(X) describes a subset
of Rn , namely the set of all valuations of variables in X which evaluate c to true.

We consider timed automata extended with bounded integer variables Int := {int1, . . . , intm}. Let Assign(Int) be the set
of assignments to integer variables. The right-hand side of an assignment to an integer variable inti may be an integer
arithmetic expression over integer variables and integer constants. Let C(Int) be a set of constraints of the form (inti ∼ d)

and
(
inti − int j ∼ d

)
with d ∈ Z, ∼ ∈ {<,≤,=,≥,>} and inti, int j ∈ Int. Let Cc(X, Int) be the set of conjunctions over clock

constraints and constraints from C(Int).
In general, transitions in timed automata are labelled with guards, synchronisation actions, assignments to integers and

resets of clocks. Guards are restricted to conjunctions of clock constraints and constraints on integers. Actions from Act :=
{a1, . . . ,ak} are used for synchronisation between different timed automata.1

In a network of timed automata, transitions in different components labelled with the same action are taken simultane-
ously. If a transition in a timed automaton is not labelled by any action, it can only be taken, if all other timed automata
stay in their current location. Resets are assignments to clock variables of the form xi := 0.

A transition in a timed automaton may be declared as urgent. Whenever an urgent transition in the system is enabled,
the current location must be left without any delay. Just like transitions, actions may be declared as urgent. Let au be
an urgent action. If several timed automata are composed in parallel and in all components containing au -transitions a
transition labelled with au is enabled, then there must not be any time delay before taking a transition. Timed automata
are formally defined as follows:

Definition 1 (Timed automaton). A timed automaton TA is a tuple 〈L, l0, X, Act, Int, lb, ub, E , AP, lab〉, where L is a finite set of
locations, l0 ∈ L is an initial location, X := {x1, . . . , xn} is a finite set of real-valued clock variables, Act = Actnu ∪ Actu , with
Actnu ∩ Actu = ∅. Actnu is a finite set of non-urgent synchronisation actions and Actu is a finite set of urgent synchronisation
actions. Int = {int1, . . . , intm} is a finite set of bounded integer variables, lb : Int → Z assigns a lower bound to each inti ∈
Int, for 1 ≤ i ≤ m and ub : Int → Z assigns an upper bound to each inti ∈ Int, with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ m. E ⊆
L × Cc(X, Int) × (Act ∪ {εu, εnu}) × 2X × Ass × L is a set of transitions, with E = Enu ∪ Eu . Enu = {(l, ge,act, re,assigne, l′

) ∈
E | act ∈ Actnu ∪ {εnu}} is the set of non-urgent transitions from source location l to destination location l′ labelled with
guard ge , action act, resets re and assignments to integers assigne , and Eu = {(l, ge,act, re,assigne, l′

) ∈ E | act ∈ Actu ∪ {εu}}
is the set of urgent transitions from source location l to destination location l′ labelled with guard ge , action act, resets
re and assignments to integers assigne . Ass is a subset of 2Assign(Int) where each set contains at most one assignment to an
integer variable from Int. If for e = (

l, ge,act, re,assigne, l′
) ∈ E it holds that act ∈ Act, then we call e a transition with a

(non-urgent or urgent) synchronisation action, if act ∈ {εnu, εu} then we call e a (non-urgent or urgent) transition without
synchronisation action. AP is a set of atomic propositions and lab : L → 2AP assigns a subset of atomic propositions to each
location.

A state s = 〈l, η, μ〉 in a timed automaton consists of a location l, a clock valuation η which assigns a non-negative
real value to each clock variable x ∈ X , and an integer valuation μ which assigns an integer value to each integer variable
int ∈ Int with lb(int) ≤ μ(int) ≤ ub(int). For a clock valuation η and λ ∈ R≥0, η + λ means the clock valuation η′ with
η′(x) = η(x) + λ for each x ∈ X .

Definition 2 (Semantics of a timed automaton). Let TA = 〈L, l0, X, Act, Int, lb, ub, E, AP, lab〉 be a timed automaton.

• There is a continuous transition s λ−→c s′ of length λ from source state s = 〈l, η, μ〉 to successor state s′ = 〈l, η′, μ〉 iff
lb(inti) ≤ μ(inti) ≤ ub(inti) ∀1 ≤ i ≤ m, λ ∈ R≥0 with η′ = η + λ, and ∀0 ≤ λ′ < λ �e = (l, ge, act, re, assigne, l′) ∈ Eu

with (η + λ′, μ) satisfies guard ge .

• There is a discrete transition s act−−→d s′ over action act from source state s = 〈l, η, μ〉 to successor state s′ = 〈l′, η′, μ′〉
iff lb(inti) ≤ μ(inti), μ′(inti) ≤ ub(inti) ∀1 ≤ i ≤ m, ∃e = (

l, ge,act, re,assigne, l′
) ∈ E with act ∈ Act ∪ {εu, εnu} and (η, μ)

satisfies the guard ge , η′(xi) = 0 for xi ∈ re and η′(xi) = η(xi) for xi /∈ re , and μ′ results from μ by applying the
assignments in assigne .

1 Note that we consider closed systems without any interaction with an environment, and thus, actions do not have a special meaning when considering
one timed automaton in isolation.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.4 (1-29)

4 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Fig. 1. Urgency caused by invariants.

• →= λ−→c ∪ act−−→d , with λ ∈R≥0 and act ∈ Act ∪{εu, εnu} is the transition relation of a timed automaton. A path of a timed
automaton is a finite or infinite sequence of states (s j) j≥0, with s j−1 → s j for each j > 0. A path is called a trajectory,
if it starts in a state s0 = 〈l0, η0, μ0〉, with η0 being a clock valuation assigning 0 to each clock variable and μ0 being
an integer valuation assigning lb(inti) to each inti ∈ Int. A state is reachable, if there is a trajectory ending in that state.

Definition 3. A path of a timed automaton is called time-divergent, if the sum of the lengths of continuous transitions on
the path is ∞. A timed automaton contains a timelock iff there is a reachable ‘timelock’ state s which is not the origin of
any time-divergent path. If a timed automaton does not contain a timelock state, then it is called timelock-free.

A timed system is a system of p timed automata {TA1, . . . , TAp}. It has an interleaving semantics, i.e., transitions in
different timed automata may not be taken simultaneously unless they synchronise over non-urgent or urgent actions. As
usual, the composition of p timed automata is again a timed automaton.

Definition 4 (Timed system). Let {TA1, . . . , TAp} be a timed system with TAi = 〈L(i), l(i)
0 , X (i), Act, Int, lb, ub, E(i), AP(i), lab(i)〉. For

each act ∈ Act, let A(act) be the set of components synchronising via act, i.e. A(act) = {TAi | ∃e = (l, ge, act, re, assigne, l′) ∈
E(i)}. The composition of TA1, . . . , TAp is TA = 〈

(L(1) × . . . × L(p)), (l(1)
0 , . . . , l(p)

0), X (1) ∪ . . . ∪ X (p), Act, Int, lb, ub, E, AP(1) ∪ . . . ∪
AP(p), lab

〉
where lab assigns a subset of propositions with lab(l(1)

k1
, . . . , l(p)

kp
) = lab(1)(l(1)

k1
) ∪ . . . ∪ lab(p)(l(p)

kp
) for all l(i)

ki
∈ L(i)

(1 ≤ i ≤ p), and E is the smallest set with the following property:

• If for 1 ≤ i ≤ p ∃e = (li, ge, act, re, assigne, l′i) ∈ E(i) , act ∈ {εu, εnu} or |A(act)| = 1, then ((l1, . . . , li, . . . , lp), ge, act, re,

assigne, (l1, . . . , l′i, . . . , lp)) ∈ E .
• W.l.o.g let A(act) = {TA1, . . . , TAk} with 2 ≤ k ≤ p. If ∀1 ≤ j ≤ k: ∃e j = (l j, ge j , act, re j , assigne j

, l′j) ∈ E(j) , act ∈ Act, then
((l1, . . . , lk, lk+1, . . . , lp), ge1 ∧ . . . ∧ gek , act, re1 ∪ . . . ∪ rek , assigne1

∪ . . . ∪ assignek
, (l′1, . . . , l′k, lk+1, . . . , lp)) ∈ E .

Remark 1. A timed system {TA1, . . . , TAp} is called well-formed, if for each integer variable int and each synchronising action
act there is a unique timed automaton TAi that is allowed to have transitions which are labelled by act and perform
assignments to int. In well-formed systems write-conflicts on integer variables cannot occur. We only consider well-formed
timed systems.

In the literature (e.g. [11]) locations are connected with so-called invariants as an alternative to urgent transitions and
urgent actions. Invariants in timed automata are conjunctions of clock constraints of the form xi ∼ d with ∼∈ {<, ≤},
d ∈Q≥0. A timed automaton is only allowed to stay in a location as long as the location invariant is not violated. Invariants,
just as urgency, are used to enforce discrete (synchronising or non-synchronising) transitions (i.e. they limit the duration of
stay in a location). Especially for synchronisations between different components we prefer urgency instead of invariants to
enforce a certain discrete behaviour in the system. We do not allow invariants in this paper, because they are a hidden way
of communication between several components. Let us consider just two components A and B . Usually, a synchronisation
between A and B via a synchronisation action act may or may not be performed immediately after it has been enabled.
However, by making use of invariants it is possible that component A enforces that the synchronising transition in B is taken
without any time delay. We propose to make this hidden communication mechanism explicit: We differentiate between
urgent synchronisation actions by which the time evolution can be stopped and an immediate reaction can be enforced and
“normal” (non-urgent) synchronisation actions. Thus we declare urgency or non-urgency as a property of the interface of
the components.

In the following we show that disallowing invariants is not a real restriction however, because it is easy to see that
for each timed automaton with closed location invariants there is a semantically equivalent timed automaton (i.e., a timed
automaton allowing the same trajectories) with urgency and without invariants.

Lemma 1. For each timed automaton without urgency and with closed location invariants there exists a semantically equivalent timed
automaton with urgency and without invariants.

We give a brief sketch of the needed transformation and illustrate it in Figs. 1(a) and 1(b). Consider a location l in
timed automaton TA with an invariant of the form x ≤ n with n ∈ Q and x is a clock variable. When transforming TA into a

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.5 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 5
semantically equivalent timed automaton TA′ , l is copied into an equivalent location l′ without invariant. For each incoming
transition of l′ without reset on x an additional guard of the form x ≤ n is added to guarantee that l′ cannot be entered
with a clock value x > n.

For each outgoing non-synchronising (and non-urgent) transition e of l with a guard g with g ∧ (x = n) �= false, there are
two edges in the copy: One non-urgent transition with all original labels and one urgent transition with the additional guard
x = n corresponding to the boundary of the invariant (see Fig. 1(a)). For a transition leaving l labelled with a synchronising
(and non-urgent) action a, there are two transitions in TA′ as well: The original transition and an additional transition with
identical labels, apart from the additional guard (x = n) and a new urgent action au replacing the original action a (see
Fig. 1(b)). In other components from A(a) composed in parallel, transitions which were originally labelled by a are also
duplicated into two edges, one with the non-urgent action a and one with the new urgent action au . This transformation
is done successively for all components from A(a). Removing invariants from the next component in A(a) may introduce
again transitions with new urgent actions a′u into all components in A(a) and so on. In the worst case the components can
increase by a factor maxa∈Act |A(a)|.2

This has the effect that whenever in l′ the value of x is n a discrete transition must be taken to leave the location. If the
timed automaton is not timelock-free, then we finally add an urgent self loop to l which is labelled by the guard x = n in
order to preserve possible time-locks due to the invariant x ≤ n.

If we consider incomplete timed systems which contain (apart from components defining the white box) a black box and
an interface between the white box and the black box including a non-urgent action a, then the transformation sketched
above applied to the white box components may introduce new urgent actions au as described above into the interface.

A similar technique is used in the context of timed games where “forced transitions” labelled with upper limits of
invariants are added in order to prevent one player from forcing the system into a timelock [12]. Bornot et al. in [13]
introduce timed automata with deadlines which provide a general model for enforcing time progress conditions in locations.
Transitions are additionally labelled with a deadline. Once the deadline of a transition is violated this transition becomes
urgent and time progression is stopped. Urgency does only stop time and does not grant a higher priority to the transition
with a violated deadline.

2.2. Timed computation tree logic

Timed CTL [14–16] is an extension of the temporal logic CTL [17] used to express properties for real-time systems.

Definition 5 (Syntax of TCTL). The syntax of TCTL is composed of state formulas and path formulas. TCTL state formulas over
a set AP of atomic propositions, a set X of clock variables and a set Int of integer variables of a timed automaton TA are
defined according to the following grammar:

� ::= true | ap | cc | ic | ¬� | � ∧ � | E ϕ | A ϕ

with ap ∈ AP being an atomic proposition in TA, cc ∈ C(X) an atomic clock constraint and ic ∈ C(Int) an atomic integer
constraint. ϕ is a path formula defined by: ϕ ::= � U J � with J ⊆R≥0 being an interval whose bounds are either rational
numbers or infinite.

The basic state formulas are defined as usual. For a state s = 〈l, η, μ〉, an atomic proposition ap holds if ap ∈ lab(l). The
clock constraint cc holds if η satisfies cc and the integer constraint ic holds if μ satisfies ic. As usual, E ϕ holds in a state s
when there exists a time-divergent path which starts in s, and satisfies the path formula ϕ . A ϕ holds in a state s when ϕ
is satisfied on all time-divergent paths starting in s.

Intuitively, a path satisfies � U J� whenever at some point in J , a state satisfying � is reached and at all previous time
instants � ∨ � holds. Let π be a time-divergent path. Let λi be the time delay of transition si −→ si+1 on π , with λi = 0
when si −→ si+1 is a discrete transition and λi ∈ R≥0 otherwise. Then, π satisfies � U J� iff

∃i ≥ 0,∃λ ∈ [0, λi] with
i−1∑
k=0

λk + λ ∈ J such that 〈li, ηi + λ,μi〉 satisfies � and

∀ j ≤ i,∀λ′ ∈ [0, λ j] with
j−1∑
k=0

λk + λ′ ≤
i−1∑
k=0

λk + λ : 〈l j, η j + λ′,μ j〉 satisfies � ∨ �.

Timed variants of the modal operators F J (eventually) and G J (always) can be derived as follows: F J� = true U J�,
AG J� = ¬EF J¬�, and EG J� = ¬AF J¬�. A TCTL formula holds for a timed system iff it holds for all its initial states. For
more details on TCTL and its semantics see [16], e.g.

2 Note that only urgent transitions are added to a component and that only non-urgent transitions are doubled.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.6 (1-29)

6 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Fig. 2. LinAIG.

2.3. The LinAIG data structure

We have implemented a prototype of a TCTL model checking algorithm for complete and incomplete systems using
LinAIGs [5–7] for representing sets of states. LinAIGs are able to provide a compact representation for arbitrary boolean
combinations of linear constraints and boolean variables. LinAIGs (see Fig. 2) consist of both a boolean and a continuous part.
The boolean part of LinAIGs is represented by functionally reduced And-Inverter-Graphs (FRAIGs) [18,19], which basically
are boolean circuits consisting only of and gates and inverters. In order to represent the continuous part, LinAIGs use a set
of boolean constraint variables Q where each linear constraint is encoded by some ql ∈ Q .

Apart from boolean operations and substitutions, LinAIGs support quantification of boolean and real variables and thus
fit exactly the technical needs of our implementation of a fully symbolic TCTL model checker. For the quantification of
real-valued variables, LinAIGs make use of the Weispfenning–Loos test point method [10]. (This method can even be used
for linear constraints instead of more restricted clock constraints.) If there are k clock constraints with variable xi , then
the existential quantification ∃xi� for LinAIG � can basically be reduced to O (k) substitutions of test points into � with
an overall worst-case increase of the representation by a factor of O (k). Furthermore in LinAIGs, the negation, which is
essential for TCTL model checking, is a very cheap operation since it consists only in inserting an inverter into the FRAIG
part of the LinAIG.

For keeping the overall representation as compact as possible, LinAIGs make heavy use of SAT modulo theories (SMT)
solvers [8,9]. SMT solvers are used to prove that nodes represent equivalent predicates and thus can be merged. Moreover,
they are used to detect and remove ‘redundant linear constraints’, i.e., constraints which are present in the current LinAIG,
but not really needed for describing the represented predicate. This operation [6] fights the increase in the number of linear
constraints / boolean constraint variables potentially introduced by the Weispfenning–Loos test point method. Since in our
application the linear constraints are restricted to clock constraints, we do not need SMT solvers for full linear arithmetic,
but only for difference logic which can be solved much more efficiently.

3. Related work

Our approach is based on finite state machines with time (FSMTs) [1] as a formal model for real-time systems and on
LinAIGs (‘And-Inverter-Graphs with linear constraints’) [5–7] as a fully symbolic representation of FSMTs. Related approaches
model real-time systems by timed automata [3,4] and use either semi-symbolic or fully symbolic state set representations.

Semi-symbolic approaches like UPPAAL [11,20] represent discrete locations of timed automata explicitly whereas sets of
clock valuations are represented symbolically e.g. by unions of clock zones. In UPPAAL, clock zones in turn are represented by
so-called difference bound matrices (DBMs) which are manipulated by efficient methods. These techniques are well-suited
when the sizes of the discrete state space and the numbers of different clock regions per location remain moderate. Clock
Difference Diagrams (CDDs) [21] make the attempt to represent unions of clock zones more compactly. CDDs are BDD-
like data structures where nodes are labelled by clock differences xi − x j and the outgoing edges of nodes are labelled by
(disjoint) intervals of rational numbers. Clock Restriction Diagram (CRDs) [22] are a variant of CDDs where outgoing edges
of nodes are labelled by upper bounds for clock differences instead of disjoint intervals. CRDs were combined with BDDs
(leading to CRD+BDDs) to provide a fully symbolic representation of the state space in the tool RED [22]. Another fully
symbolic representation has been given by difference decision diagrams (DDDs) [23] which are basically BDD representa-
tions where the decision variables are boolean abstractions of clock constraints xi − x j ∼ d. Computing all states reachable
by evolution of time amounts to the existential quantification of a real-valued variable. Both for CRD+BDDs and DDDs this
quantification is performed based on the classical Fourier–Motzkin technique which requires enumerating all paths in the
diagram. Restricted to a path representing a conjunction of clock constraints, the Fourier–Motzkin technique is strongly re-
lated to quantifier elimination in DBMs by the shortest-path closure [24]. As in DDDs, Seshia and Bryant [25] consider BDD
representations using boolean abstractions of clock constraints, however they reduce real-valued quantifier elimination to

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.7 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 7
adding so-called transitivity constraints followed by a series of quantifications for boolean variables. As another data struc-
ture Clock Matrix Diagrams (CMDs) have been introduced [26]. CMDs basically correspond to CRD+BDDs where sequences of
edges representing convex constraints are collapsed into single edges labelled by DBMs and boolean variables are restricted
to the lowest levels in the variable orders.

The LinAIG data structure used in this paper provides compact state set representations by making profit from the enor-
mous progress made in the area of SAT and SMT (SAT modulo theories) solving [8,9]. For the quantification of real-valued
variables, LinAIGs make use of the Weispfenning–Loos test point method [10] which is especially suitable for LinAIG repre-
sentations.

Our translation of timed automata into FSMTs uses ‘parallelized interleaving’ as an alternative to ‘normal interleaving’.
Normal interleaving directly corresponds to the asynchronous semantics of timed automata whereas parallelized interleav-
ing allows parallelism of transitions causing no conflicts and thus can dramatically reduce the number of steps during
verification. Parallelized interleaving is related to partial-order reduction (e.g. [27,28]) and path reduction [29]:

In contrast to partial-order reduction (e.g. [27,28]) which reduces the number of states to be considered during model
checking, parallelized interleaving does not avoid certain computation paths or states, but combines their traversal into
one symbolic step and thus accelerates state space traversal. Consider a timed system TS composed from n components
TA1, . . . , TAn and suppose – for simplicity – that the local discrete transitions of the components are independent, i.e.,
they are neither related through read or write conflicts nor they synchronise over actions. According to the semantics of
the concurrent asynchronous system TS, a discrete step of TS consists in a discrete step of some component TAi . For the
concurrent execution of one discrete step per component, there are n! different sequences and 2n different states (one state
for each subset of executed components). If the specification does not distinguish between these sequences, partial-order
reduction can reduce n! sequences to one representative sequence consisting of n transitions. Symbolic model checkers
without partial-order reduction already compute a symbolic representation of all 2n states visited on n! sequences by n
symbolic steps. Symbolic model checking with parallelized interleaving assumes that each component TAi may or may not
take a transition, considers all possible combinations in parallel, and computes a symbolic representation for all these
2n states by one single step. Of course, for the general case of components with dependencies we have to analyse which
components may run in parallel without changing the semantics.

Path reduction [29] provides an alternative possibility for mitigating negative effects of pure interleaving. Path reduc-
tion analyzes components and replaces certain computation paths by single transitions. In that way, computation paths of
components are compressed, leading to a reduced number of possible interleavings of different components. Path reduction
is orthogonal to our technique, since it preprocesses components, whereas parallelized interleaving improves the parallel
execution of several components by combining computation paths resulting from different interleavings into one symbolic
step.

Our approach for verification of incomplete timed systems shares ideas with Modal Transition Systems (MTSs) [30,31]
(and their successors like Partial Kripke Structures (PKSs) [32] and Kripke Modal Transition Systems (KMTSs) [33]) which
exhibit must- and may-transitions between states. In our context must-transitions are transitions between states that exist
for all possible black box implementations. May-transitions are transitions that may exist for at least one possible black box
implementation. In that sense our method is strongly related to 3-valued model checking [33] and its extensions using
symbolic representations [34–36]. The approaches mentioned above were given for discrete systems, whereas we extend
and adapt these ideas to timed systems and properties in TCTL (Timed Computation Tree Logic) [14–16].

The module checking problem [37] may be seen as a validity problem (‘is a given property satisfied for all possible
replacements of the black box’) confined to a single black box (which models the environment behaviour). Kupferman,
Vardi and Wolper use tree automata techniques to solve the module checking problem for discrete systems specified by
branching time properties (CTL, CTL*) [37].

The realisability problem (‘does a replacement of the black box exist, so that a given property is satisfied?’) is strongly
connected to the controller synthesis problem [38,39], where a system interacts with an unknown controller. In the real-time
domain the controller synthesis problem is modelled as a timed two-player game [40–42], where the controller (black box)
tries to satisfy a safety property and plays against the white box (who tries to violate it).

These approaches with their ‘classical notion’ of controller synthesis give the controller more power than the system, in
the sense that each transition belonging to the controller (1) is urgent and (2) has a higher priority than other transitions. In
our model we consider the black box and the white box as part of the system with equal rights such that there is (1) urgent
and non-urgent communication between the white box and the black box and (2) transitions synchronising with the black
box have the same priority as other transitions. Thus, the black box is a regular component of the system.

By Fig. 3 we illustrate that controller synthesis approaches are not able to decide the realisability question for safety
properties as defined in our context. The figure shows a small white box with an initial location l0, two additional locations
and two transitions, one labelled with a non-urgent synchronisation action a. We consider a property � = l2 ∨(l0 ∧(x = 1)) as
unsafe and the task is to implement the black box in such a way that no unsafe state can be reached. The interface between
the white box and the black box is given by the non-urgent synchronisation action a. Since (1) the synchronisation action
a is non-urgent and (2) the transition synchronising with the black box does not have a higher priority, it is not possible
to define such an implementation for the black box. Even if the black box is always in a location with an enabled outgoing
transition labelled by a, the white box can chose to take the discrete transition leading to l2 (which is an unsafe state) as
both transitions in the system have the same priority. Additionally, if the white box does not take any discrete transition

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.8 (1-29)

8 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Fig. 3. Black box example.

in the system and stays in l0 the black box cannot stop time evolution and the unsafe state (l0 ∧ (x = 1)) will be reached,
since the synchronisation action a is non-urgent and thus time is allowed to pass even if the transition synchronising over
a is enabled.

However, the mentioned controller synthesis approaches (where transitions belonging to the controller are urgent and
have a higher priority than other transitions) lead to the result that the controller can impede the system to reach an unsafe
state, i.e., it is possible to replace the black box by a controller such that the system is forced to take the discrete transition
leading to l1 before x = 1. This shows that our approach may prove unrealisability in cases when controller synthesis
classifies the problem as realisable. Another example for such a case is given by the benchmark ‘arbiter error’ considered in
Section 10, where – in contrast to our TCTL model checking algorithm – ‘classical’ controller synthesis cannot identify the
error (by proving unrealisability).

Additionally, whereas existing controller synthesis tools like Uppaal-Tiga [40] consider only reachability of safety proper-
ties, our algorithm goes beyond and is able to handle full TCTL properties.

4. Finite state machine with time

Finite state machines with time (FSMT) [1] are a formal model to represent real-time systems, and are especially suited
for being represented symbolically. An FSMT is an extension of finite state machines by real-valued clock variables. FSMTs
have an elegant definition of parallel composition (where communication is performed by reading each other’s state vari-
ables, shared input variables and shared clocks). In contrast to timed automata where parallel composition may lead to a
blowup in the number of locations, the parallel composition of FSMTs just needs linear space due to the symbolic repre-
sentation. Later on, we will present a fully symbolic model checking algorithm for complete and incomplete FSMTs and a
translation from timed automata into FSMTs. Since systems of FSMTs have a synchronous semantics, it is possible to trans-
late timed automata using a ‘parallelized interleaving’ semantics which accelerates the standard asynchronous execution of
timed automata by allowing parallelism of transitions causing no conflicts.

Let X := {x1, . . . , xn} be the set of real-valued clock variables, Y := {y1, . . . , yl} a set of (boolean) state variables, I :=
{i1, . . . , ih} a set of (boolean) input variables. Let Cb(X) be the set of arbitrary boolean combinations of clock constraints
and Cb(X, Y) be the set of arbitrary boolean combinations of clock constraints and state variables (similarly for Cb(X, Y , I)).
As usual, c ∈ Cb(X, Y) describes a subset of Rn × {0, 1}l , namely the set of all valuations of variables in X and Y which
evaluate c to true. An FSMT is defined as follows:

Definition 6 (FSMT). A Finite State Machine with Time (FSMT) is a tuple 〈X, Y , I, init, (δ1, . . . , δl), (resetx1 , . . . , resetxn), urgent〉
where X := {x1, . . . , xn} is a set of clock variables, Y := {y1, . . . , yl} is a set of boolean state variables, I := {i1, . . . , ih}
is a set of boolean input variables, init : {0, 1}l × (R≥0)

n → {0, 1} is a predicate describing the set of initial states, δi :
{0, 1}l × (R≥0)

n × {0, 1}h → {0, 1} (1 ≤ i ≤ l) are transition functions, resetx j : {0, 1}l × (R≥0)
n × {0, 1}h → {0, 1} (1 ≤ j ≤ n)

are reset functions, and urgent : {0, 1}l × (R≥0)
n × {0, 1}h → {0, 1} is a predicate indicating when an urgent transition is

enabled. The functions δi , the conditions resetx j , and the predicate urgent can be represented by boolean combinations from
Cb(X, Y , I), init can be represented by a boolean combination from Cb(X, Y).

Example 1 (FSMT). Fig. 4 shows two FSMTs F1 and F2. F1 on the lefthand side (normal lines) consists of one state
variable Y (1) = {y(1)

1 } with a corresponding transition function δ
(1)
1 (updating the state variables), two clock variables

X (1) = {x(1)
1 , x(1)

2 } with the corresponding reset conditions reset(1)

x(1)
1

and reset(1)

x(1)
2

(resetting the clock variables to 0) and two

input variables I(1) = {i(1)
1 , i(1)

2 }. F2 on the righthand side (fat lines) consists of two state variables Y (2) = {y(2)
1 , y(2)

2 } with
the corresponding transition functions δ(2)

1 and δ(2)
2 , one clock variable X (2) = {x(2)

1 } with the corresponding reset condition
reset(2)

x(2)
1

and two input variables I(2) = {i(2)
1 , i(2)

2 }.

The parallel composition of the two FSMTs (dashed lines in Fig. 4) will be shown in Example 2.

A state s = (γ , η) ∈ {0, 1}l × (R≥0)
n of an FSMT includes a valuation γ of the state variables, which is also called

location, and a valuation η of the clock variables. Trajectories of an FSMT always start in states satisfying init. An FSMT may
perform discrete steps which are defined by transition functions δi based on the valuations of clocks, state variables, and

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.9 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 9
Fig. 4. System of FSMTs.

inputs. When performing a discrete step, a clock xi is reset to 0 iff resetxi evaluates to 1. Moreover, an FSMT may perform
continuous steps (or time steps) where it stays in the same location and lets time pass. This means that all clocks may be
increased by the same constant as long as urgent evaluates to false. More formally, the semantics of FMSTs is defined as
follows:

Definition 7 (Semantics of an FSMT). Let F = 〈X, Y , I, init, (δ1, . . . , δl), (resetx1 , . . . , resetxn), urgent〉 be an FSMT.

• There is a continuous transition from state s = (γ , η) to state s′ = (γ , η′) (s −→c s′) iff there is λ ∈ R≥0 with η′ = η+λ,
and ∀ 0 ≤ λ′ < λ it holds that for all valuations ι of the input variables, in each state s′′ = (γ , η + λ′), the predicate
urgent evaluates to false.

• There is a discrete transition from state s = (γ , η) to state s′ = (γ ′, η′) (s −→d s′) iff there is a valuation ι of the input
variables with

∀1 ≤ i ≤ l : γ ′(yi) = δi(γ ,η, ι)

∀1 ≤ j ≤ n : η′(x j) =
{

η(x j), if resetx j (γ ,η, ι) = 0
0, if resetx j (γ ,η, ι) = 1.

• →=−→d ∪ −→c is the transition relation of F . A trajectory of F is a finite or infinite sequence of states (s j) j≥0 with
init(s0) = 1 and s j−1 → s j for each j > 0. A state is reachable, if there is a trajectory ending in that state.

We consider systems of FSMTs {F1, . . . , F p}, where the components are running in parallel. Communication in such a
system is realised just as for communicating FSMs. FSMTs communicate by reading each other’s state variables, shared
clocks, and shared input variables. Thus, composition of FSMTs is done just by replacing input variables of the components
by state variables of other components or by inputs of the overall system. The boolean state variables of the components
Fi need to be disjoint, because the parallel composition is synchronous and thus non-disjoint state variables would lead to
write conflicts on state variables. The composition of p FSMTs F1, . . . , F p is again an FSMT:

Definition 8 (System of FSMTs). Let F1, . . . , F p be FSMTs with Fi = 〈X (i), Y (i), I(i), init(i), δ(i), (reset(i)

x(i)
1

, . . . , reset(i)

x(i)
ni

), urgent(i)〉,

X (i) = {x(i)
1 , . . . , x(i)

ni
}, Y (i) = {y(i)

1 , . . . , y(i)
li

}, I(i) = {i(i)
1 , . . . , i(i)

hi
}. Let all sets Y (1), . . . , Y (p) be pairwise disjoint and disjoint

from I(1), . . . , I(p) , let map : ⋃p
i=1 I(i) → (I ∪ ⋃p

i=1 Y (i)) be a mapping for the inputs of components F1, . . . , F p , and let
I = {i1, . . . , ih} be the set of (global) inputs. Then the composition of F1, . . . , F p wrt. map is an FSMT F with X = ⋃p

i=1 X (i) =
{x1, . . . , xn}, Y = ⋃p

i=1 Y (i) , F = 〈X, Y , I,
∧p

i=1 init(i), (δ̃(1), . . . , ̃δ(p)), (
∨

x1∈X(i) reset(i)
x1 , . . . ,

∨
xn∈X(i) reset(i)

xn),
∨p

i=1 ũrgent
(i)〉,

δ̃(i)(x1, . . . , xn, y(i)
1 , . . . , y(i)

li
, i1, . . . , ih) = δ(i)(x(i)

1 , . . . , x(i)
ni

, y(i)
1 , . . . , y(i)

li
, map(i(i)

1), . . . , map(i(i)
hi

)), ũrgent
(i)

(x1, . . . , xn, y(i)
1 , . . . ,

y(i)
li

, i1, . . . , ih) = urgent(i)(x(i)
1 , . . . , x(i)

ni
, y(i)

1 , . . . , y(i)
li

, map(i(i)
1), . . . , map(i(i)

hi
)).

Example 2 (System of FSMTs). In Example 1 we have seen the two FSMTs F1 and F2 from Fig. 4. In this example we will
see the parallel composition of these two FSMTs, illustrated by dashed lines in Fig. 4. The system of the two FSMTs has one
global input variable i1. i(1) in F1 and i(2) in F2 are mapped to i1. The local input variable i(1) of F1 is mapped to state
2 1 1

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.10 (1-29)

10 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Fig. 5. Conflicts caused by parallel behaviour.

variable y(2)
2 of F2, the local input variable i(2)

2 of F2 is mapped to state variable y(1)
1 of F1, i.e., the two FSMTs read a shared

input variable and communicate by reading each others state variables. In the example the two sets of clock variables X (1)

and X (2) are disjoint.

5. Pure interleaving vs. parallelized interleaving

In this section we prepare the translation of timed automata into FSMTs by proposing two options for handling discrete
steps of several components. In contrast to normal interleaving semantics (i.e. asynchronous semantics) of timed automata,
FSMTs have a synchronous semantics, such that in each discrete step each component takes a transition. This allows us to
give a symbolic representation of an FSMT simulating a ‘parallelized interleaving’ behaviour [1], which allows parallelism of
conflict-free discrete transitions. In parallelized interleaving, a single discrete step may have the same effect as a series of
discrete steps according to the standard interleaving semantics. In fact, we add “shortcuts” of successive discrete steps to
the set of behaviours, however the original discrete steps are still existing non-deterministic alternatives in the parallelized
interleaving model. Since the TCTL syntax (Section 2.2) does not include any operator reasoning about the number of
discrete steps, combining several discrete steps into one does not change the truth of any TCTL formula. In combination
with a symbolic computation where several alternatives are followed in a single step, parallelized interleaving behaviour
can dramatically reduce the number of computation steps during verification compared to ‘pure interleaving’ behaviour.

Discrete transitions are independent (conflict-free) if the execution of one transition does not influence the execution of
the others. In the following, we describe potential conflicts which affect the independence of transitions in timed systems:

1. Using parallelized interleaving semantics, read/write-conflicts on clock variables can occur, when a clock is reset on one
transition and read by an other transition. Consider the timed system shown in Fig. 5(a), which consists of the timed
automata TA1 and TA2. Allowing parallel execution of transitions, the state 〈l1, l3, η(x1) = 0, η(x2) = 0〉3 is reached
from state 〈l0, l2, η(x1) = 6, η(x2) = 6〉 by taking the transitions from l0 to l1 and from l2 to l3. However, according to
interleaving semantics, this state is unreachable. Taking the transition from l0 to l1 in TA1, the clock variable x2 is reset
and will never take a value greater than 1. Thus, TA2 will never be able to take the transition from l2 to l3 and stays in
its initial location forever. Taking the transition from l2 to l3 in TA2 leads to an analogues behaviour. Thus, for transitions
with read/write-conflicts on clocks, parallelized interleaving behaviour is not allowed.

2. A similar read/write-conflict may occur for integer variables. Fig. 5(b) shows an example for this kind of conflict. In TA3,
the integer variable i is read and the integer variable j is updated when taking the discrete transition. The same holds
for TA4 with i and j switched. State s = 〈l1, l3〉 is not reachable when using interleaving semantics, however, by taking
both transitions in parallel state s can be reached.

3. It is clear that transitions causing a write/write-conflict on integers must not be taken in parallel.

Write/write-conflicts on clock variables do not exist as clock variables can only be reset to 0, and thus, no concurrent
writing of different values to the same clock variable is possible. Transitions without any conflicts described above are
independent and parallelized interleaving behaviour is allowed.

6. From complete timed automata into complete FSMTs

In order to be able to verify systems of timed automata using our framework, we show how to convert a timed sys-
tem into a system of FSMTs simulating either pure interleaving semantics or parallelized interleaving semantics. The main
advantage of converting timed automata into FSMTs is using the parallel composition of FSMTs which (due to symbolic
representations) does not lead to a potential blow-up, in contrast to the direct composition of timed automata. Our exper-
imental results in Section 10 show that we definitively profit from the translation of moderate-sized timed automata into
FSMTs which are then composed using FSMT composition.

3 On small example, in order to enhance readability, we use the notion 〈li, ηi(xl) = 0, ηi(xk) = 1〉 instead of 〈li , ηi〉 with ηi(xl) = 0 and ηi(xk) = 1.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.11 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 11
Fig. 6. Example timed system.

We show the translation using the timed system presented in Fig. 6, consisting of two automata communicating via
a shared integer variable int and an urgent synchronisation action au . Transitions i are labelled by the guards gi . More
detailed information about the translation can be found in Appendix A. The first steps (Section 6.1) are the same for both
methods of translation. In Section 6.2, we show how to compute an FSMT simulating the pure interleaving behaviour of
timed systems. FSMTs simulating parallelized interleaving behaviour are computed in Section 6.3. The motivation for the
parallelized interleaving variant consists in an accelerated state space traversal.

6.1. First steps of translation

In a first step, we use boolean state variables (the location bits) to logarithmically encode the locations of the timed
automata. The sets of location bits of two different timed automata are disjoint and for an automaton TAq with l different
locations, we need lq = �log(l)� different location bits. To encode the locations of the timed automata shown in Fig. 6, we
need two different location bits y0 and y1, one location bit per component. Location l0 is encoded with y0, l1 with y0, and
the locations s0 and s1 are encoded with y1 and y1, respectively.

The integer variables of the timed system are replaced by a binary encoding using boolean state variables (the integer
bits). As the bounds of the integer variables are known, the number of integer bits required to represent the integers is
known as well.4 In our example from Fig. 6, assume that int ∈ {0, 1}, then we need only one integer bit y2 to encode int
and the assignments int := 0 and int := 1 can be replaced by y2 := 0 and y2 := 1, respectively.

In order to make things easier in the following sections, each guard is extended by the state variable encoding of the
source of its respective transition. The resulting new guards in our example will be g1

1 = g1 ∧ y0, g1
2 = g2 ∧ y0, g1

3 = g3 ∧ y1

and g1
4 = g4 ∧ y1.5

6.2. Modifications for pure interleaving behaviour

In order to produce FSMTs simulating pure interleaving behaviour, it has to be assured that at any time only one timed
automaton may take a non-synchronising transition while the others remain in their current location. Non-synchronising
transitions of different timed automata must not be enabled at the same time. For this, we assign a unique encoding of
new input variables to each component and add this assignment to the guards of the non-synchronising transitions of the
respective component. Since our example includes only two components, we need one new input variable i0 and extend
the guards g1

2 and g1
3 of the non-synchronising transitions to g2

2 = g1
2 ∧ i0 and g2

3 = g1
3 ∧ i0, respectively. In that way non-

synchronising transitions from different automata are never enabled at the same time. All other guards (of synchronising
transitions) remain the unchanged, g2

1 = g1
1 and g2

4 = g1
4.

FSMTs consist of deterministic transition functions, and thus, we have to exclude non-deterministic behaviour (as allowed
for timed automata). When more than one transition is enabled in a timed automaton at the same time it is chosen
non-deterministically which one is taken. To establish determinism for FSMTs we add different assignments of new input
variables to the non-disjoint guards of transitions with the same source. These input variables must not be shared among
different automata. The question how many additional input variables are needed in order to make guards disjoint is re-
duced to a colouring problem.6 In the example assume that there is a non-determinism in location s0, i.e. g2

3 ∧ g2
4 �= false.

This non-determinism is solved by using a new input variable i1 to extend the non-disjoint guards to g3
3 = g2

3 ∧ i1 and
g3

4 = g2
4 ∧ i1, such that the two transitions with source state s0 are never enabled at the same time, i.e. g3

3 ∧ g3
4 = false. All

other guards remain the unchanged, g3
1 = g2

1 and g3
2 = g2

2.
In order to allow synchronisation without actions in the FSMT, we have to guarantee that transitions, labelled with

the same synchronisation action, are enabled at the same time while all other transitions are disabled. To ensure that
synchronising transitions are enabled at the same time, their guards have to be equal. For this, their guards are replaced by
a conjunction of the respective guards. In our example we replace both the guards g3

1 and g3
4 of the synchronising transitions

by the same new guard gsync = g3
1 ∧ g3

4, whereas the guards of non-synchronising transitions do not change. To ensure that
during the synchronisation only the synchronising components are allowed to take a transition, we add a disjunction of the
unique encoding of input variables, previously assigned to the components in order to establish interleaving behaviour, to

4 For simplicity we omit technical details due to unused codes in the integer representation.
5 We use the notion gk

i for the k-th modification of the guard of transition i.
6 For more details, see Section A.2.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.12 (1-29)

12 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
the guards of the synchronising transitions. As our example consists of only two components and we used the encodings
i0 and i0, the resulting disjunction is i0 ∨ i0 = true. Adding true to a guard will not change it, of course. In the following
g3

1 and g3
4 will be replaced by g4

1 = gsync and by g4
4 = gsync respectively. The guards of non-synchronising transitions do not

change, e.g. g4
2 = g3

2 and g4
3 = g3

3.
Since for an FSMT we have to define transition functions, we have to avoid the case that there is a state where no

transition into a successor state is enabled. For this reason we introduce a self loop to every location in the system. This
self loop gets as guard the conjunction of the negated guards of all outgoing transitions, thus the self loop of a location is
enabled whenever no other outgoing transition is enabled. Additionally we add the encoding of the source location of the
self loop to its guard. In the example we add a self loop guarded by g5

5 = y0 ∧ g4
1 to location l0 and another one with guard

g5
6 = y0 ∧ g3

2 to l1. The self loop of s0 gets as guard g5
6 = y1 ∧ g3

3 ∧ g4
4 and to location s1 (without any outgoing transitions)

we add a self loop with guard g5
8 = y1 ∧ true. This step modifies only the guards of the newly introduced self loops, all

other remain unchanged, such that, e.g., g5
i = g4

i for all i ∈ {1, 2, 3, 4}.
After these transformations we can build the transition functions, reset conditions and urgency predicate to get an FSMT

representation of the timed system with pure interleaving behaviour. This is shown in Section 6.4.

6.3. Modifications for parallelized interleaving behaviour

In the previous section we have seen which modifications have to be done to convert a timed system into an FSMT
simulating pure interleaving behaviour. In this section, we will show the modifications to get an FSMT with parallelized
interleaving behaviour. We will demonstrate the translation using the example from Fig. 6 and assume that the first steps
(Section 6.1) have already been computed resulting in the guards g̃1

i (containing the encoding of the source state)7 for all
i ∈ {1, 2, 3, 4}. Detailed information can be found in Section A.3.

In a parallelized interleaving run there may be conflicts caused by assignments on integer variables (see Section 5). To
avoid such a problem we add different assignments of new input variables to the guards of transitions causing conflicts
and thus, force the timed system to simulate an interleaving behaviour for such transitions. The system from Fig. 6 includes
two transitions which assign (different) values to integer variable int, which must not be taken in parallel. Therefore we
introduce a new input variable i0 and extend the guards of these transitions to new guards g̃2

2 = g̃1
2 ∧ i0 and g̃2

3 = g̃1
3 ∧ i0.

The guards of the conflict-free transitions are not modified (g̃2
1 = g̃1

1 and g̃2
4 = g̃1

4).
Similar conflicts can also occur due to a simultaneous reading and writing of integer variables or due to resets of clock

variables (see Section 5). These conflicts are solved similarly by forcing the system to an interleaving behaviour for these
transitions (see Section A.3).

Parallelized interleaving is introduced to accelerate model checking runs by reaching certain states faster. But of course,
we should not lose intermediate states of interleaved executions. For that reason we give each component the non-
deterministic choice to stay in its current location during a discrete step. For this we introduce a self loop with guard
true to every location in the automata. As in Section 6.1 we add the source location encoding to the guard of these new
self loops. By taking this transition the automaton does not leave the current location and does not do any assignments to
clocks or integer variables. Then, to introduce determinism we do the same modifications using input variables as we have
done for pure interleaving behaviour in Section 6.2. In the example, apart from the already existing non-determinism in s0,
we have introduced a non-determinism in the locations l0 and l1 as well due to the new self loops. Since the sets of input
variables used to ensure determinism in different components have to be disjoint, we need three new input variables i1
(used in TA0) and i2, i3 (used in TA1). To remove the non-determinism in l0 the previously introduced self loop will get a
new guard g̃3

5 = y0 ∧ i1 and the guard g̃2
1 will be replaced by g̃3

1 = g̃2
1 ∧ i1. In l1 we add the guard g̃3

6 = y0 ∧ i1 to the self
loop and replace g̃2

2 (of the transition from l0 to l1) by g̃3
2 = g̃2

2 ∧ i1. In the second component TA1 in location s0 there is
a non-determinism between three transitions and thus, we need two input variables i2, i3. The guard g̃3

7 = y1 ∧ i3 ∧ i2 is
added to the new self loop and the guards g̃2

3 and g̃2
4 (of the two transitions from s0 to s1) are replaced by g̃3

3 = g̃2
3 ∧ i3 ∧ i2

and g̃3
4 = g̃2

4 ∧ i3 ∧ i2, respectively. In that way, in each component there are no transitions any more which are enabled,
simultaneously. The guard y1 ∧ true of the self loop in s1 has not to be changed and will be denoted by g̃3

8 .
The synchronisation is handled in a similar way as we have seen in Section 6.2 for pure interleaving behaviour. The

components in the system synchronise by reading each others state bits and inputs. In the example we compute the new
guard g̃sync = g̃3

1 ∧ g̃3
4 and replace the guards g̃3

1 and g̃3
4 of the two synchronising transitions by g̃4

1 = g̃sync and g̃4
4 = g̃sync ,

respectively. All other guards remain unchanged, such that g̃4
i = g̃3

i for all i ∈ {2, 3, 5, 6, 7, 8}.
Note that, we do not have to add any constraint to guarantee that all non-synchronising automata remain in their current

location (as done in Section 6.2) since here we allow parallelism. The guards of all non-synchronising transitions remain
unchanged.

The modifications to ensure completeness of the transition functions of resulting FSMTs are equivalent to Section 6.2.
Thus, a new self loop guarded by the conjunction of the negated guards of all outgoing transitions combined with the

7 We use the notion of g̃i to make a difference between the guards computed in Section 6.3 and those computed in Section 6.2.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.13 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 13
encoding of the source is introduced in each state. In the example we add a self loop with guard g̃5
9 = y0 ∧ g̃4

1 ∧ g̃4
5 to l0

and a self loop with guard g̃5
10 = y0 ∧ g̃4

2 ∧ g̃4
6 to l1. In component TA1 we add the guard g̃5

11 = y1 ∧ g̃4
3 ∧ g4

4 ∧ g̃4
7 to a new

self loop in location s0. Location s1 has only one outgoing transition which is enabled all the time and thus, we do not need
any new self loop.

The resulting system is deterministic and has a parallelized interleaving behaviour. In the following section we show
how to compute the FSMT including transition functions and reset conditions.

6.4. Computation of a symbolic representation

The set of clock variables X of the FSMT is identical to the set of clock variables in the underlying timed system.
The set of state variables Y includes the variables used for location encoding and for integer encoding, in our example,
assume that we only have one clock x, X = {x} and Y = {y0, y1, y2}. In the pure interleaving case, the input variables I
contain the variables used to ensure interleaving behaviour and the variables resolving non-determinism, e.g. I = {i0, i1}
(see Section 6.2). In the parallelized interleaving case, the input variables consist of the variables solving conflicts on integer
and clock variables and the variables guaranteeing determinism, e.g. I = {i0, i1, i2, i3} (see Section 6.3).

Based on the guards computed in Section 6.2 (for the pure interleaving case) or in Section 6.3 (for the parallelized
interleaving case) it is easy to compute the transition functions for the location bits. We show how to compute the transition
functions and reset conditions for the pure interleaving case, the parallelized interleaving case is computed analogously.

After the modifications of Section 6.2 we have eight different guards, four of them {g5
1, . . . , g5

4} emerge from modifi-
cations done on the guards of transitions from the underlying timed system and the remaining four {g5

5, . . . , g5
8} are the

guards on the newly introduced self loops. The guard g5
5 is from the self loop in l0, g5

6 guards the self loop in l1 and g5
6

and g5
7 are guards from the self loops in s0 and s1, respectively. Note that all the guards contain the location encoding of

the source location of their respective transition. The guards g5
1 and g5

4 of the synchronising transitions are identical such
that they can only be enabled at the same time. The modifications (in the pure interleaving case) have been done in order
to guarantee interleaving behaviour of different components, to ensure determinism of the transition functions, to allow
synchronisation without actions and to guarantee completeness of the transition functions.

The transition function δ j determines when the location bit y j in the modified automaton is set to true. It is computed
by a disjunction over the modified guards of all transitions leading to a state in which location bit y j is set to 1 in the
encoding. In our example, location bit y0 is set to true in l1, thus we have to consider all transitions leading to l1 (including
the self loops introduced during translation). These are the transition leading from l0 to l1 guarded by g5

1 and the newly
introduced self loop in l1 guarded by g5

6, such that δ0 = g5
1 ∨ g5

6. State variable y1 is set to true in location s1 which has
three incoming transitions, one self loop guarded by g5

8 and two transitions leading from s0 to s1 guarded by g5
3 and g5

4 .
The transition function for y1 is defined as δ1 = g5

8 ∨ g5
3 ∨ g5

4 .
Some state variables have been used to encode integer variables in the timed system (e.g. int has been encoded with y2)

and we need a transition function δ j which defines the value an integer bit y j is updated to. When taking a transition,
an integer is assigned to an arbitrary arithmetic expression over integer variables and integer constants, or it remains
unchanged. Thus, we have to consider all transitions with assignments to the integer bit y j and we have to compute the
conjunction of their guards with the arithmetic expression computing integer bit y j . Note that on each transition without
assignment to y j , the valuation of y j has to remain unchanged, i.e., for transitions without assignment to y j we compute
the conjunction of their guards with y j . Then we compute a disjunction over all those conjunctions. In our example the
integer bit y2 is updated to 0 on the transition from l1 to l0 guarded by g5

2 and to 1 on the non-synchronising transition
from s0 to s1 guarded by g5

3, such that δ2 = (g5
2 ∧ 0) ∨ (g5

3 ∧ 1) ∨ (g5
2 ∧ g5

3 ∧ y2).
Besides the transition functions we need reset conditions which indicate when the clock variables are reset. The reset

condition resetx of a clock x is computed by a disjunction over all modified guards of all transitions performing a reset on x.
E.g., the only clock variable x is reset once on the synchronising transition from l0 to l1 labelled with the guard g5

1 such
that resetx = g5

1.
The predicate init describing the initial states is a conjunction of the encodings of the initial states in the system,

constraints setting the clock valuation to 0, and the encoding of the integer valuations setting all integers to their lower
bounds, e.g., init = y0 ∧ y1 ∧ y2 ∧ (x = 0). Finally, we compute the urgent-predicate which is a conjunction of the extended
guards of urgent transitions. In our case we only have one urgent synchronisation such that urgent = g5

1. Note that g5
1 =

g5
4 = gsync is only enabled while synchronising.

All components together provide a fully symbolic representation of the corresponding FSMT. Our model checking algo-
rithm uses this representation to perform fully symbolic model checking.

6.5. Transformation of TCTL formulas

Note that the syntax of TCTL formulas for FSMTs with a set X of clock variables and Y of boolean state variables is
defined according to the following grammar:

� ::= true | yi | cc | ¬� | � ∧ � | E ϕ | A ϕ

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.14 (1-29)

14 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Algorithm 1 Computation χSat(φ) for Complete FSMTs.
1: for i ≤ | φ | do
2: for ψ ∈ Sub(φ) with | ψ | = i do
3: switch (ψ)
4: true : Sat(ψ) := true
5: y j : Sat(ψ) := y j

6: cc : Sat(ψ) := cc
7: ¬ ψ ′ : Sat(ψ) := ¬Sat(ψ ′)
8: ψ1 ∧ ψ2 : Sat(ψ) := Sat(ψ1) ∧ Sat(ψ2)

9: E(ψ1 U Jψ2) : Sat(ψ) := EU
(
Sat(ψ1 ∨ ψ2), Sat((xnew ∈ J) ∧ ψ2)

) |xnew=0

10: end switch
11: return χSat(ψ)

with yi ∈ Y , cc ∈ C(X) being an atomic clock constraint, and ϕ ::= � U J �.
TCTL formulas for TAs according to Section 2.2 have to be translated in a straightforward manner: An atomic proposition

ap in a TCTL formula is replaced by a disjunction of all encodings of locations which are labelled by ap.8 In the same way,
integer constraints ic are replaced by formulas over integer bits.

7. TCTL model checking for complete real-time systems

TCTL model checking for complete timed systems is based on the computation of a set Sat(�)9 of all states satisfying a
TCTL formula �, followed by checking whether all initial states are included in this set.

7.1. Eliminating the timing parameter in TCTL formulas

A TCTL path formula with J = [0, ∞) may be considered as a CTL formula and can be verified using normal CTL model
checking algorithms. Any other intervals J �= [0, ∞) in a TCTL formula can be transformed into an interval J = [0, ∞). For
J �= [0, ∞) a new clock variable xnew is introduced which is neither used in the timed automaton nor in the formula �.
The variable xnew is used to measure the elapsed time until a certain property holds. In [16] it is shown that the TCTL path
formula E(� U J �) holds in a state s iff E((� ∨ �) U ((xnew ∈ J) ∧ �)), with U being a normal CTL operator, holds in a
state (s, xnew = 0) in a timed automaton extended by the new clock variable xnew .

7.2. Model checking algorithm

Now, that the timing parameter can be eliminated in TCTL formulas, we can define a model checking algorithm for a
given FSMT and a given TCTL formula. Algorithm 1 uses a recursive method to compute for all subformulas � the sets of
states Sat(�) for which � is satisfied (similar to CTL model checking). The computation of Sat(�) for � being true, a state
variable yi or a clock constraint cc is clear. The computation of the negation and conjunction is straight forward. As seen
before (Section 7.1) the computation of the TCTL formula EU J can be reduced to a computation of a CTL formula EU by in-
troducing a new clock xnew . The computation of E(�1U J�2) is a fixed point iteration which starts from Sat((xnew ∈ J) ∧ �2)

and iteratively adds all predecessor states which are in Sat(�1 ∨ �2). The predecessor computation is done by a special
operator Pre which computes for a state set S the set of all states s′ with s′ → s, s ∈ S . After a fixed point has been reached
Sat(E(�1U J�2)) simply results from fixing the new clock variable xnew to 0 in the resulting fixed point.

All computed state sets are represented by LinAIGs (see Section 2.3) in our implementation, i.e., by a single symbolic
data structure representing both discrete and continuous parts of the state space. Note that especially for the computation
of negation and intersection (Lines 7 and 8 of Algorithm 1) we profit from the fact that negation and intersection can be
computed efficiently using LinAIGs. In contrast, negation and intersection are rather expensive for semi-symbolic represen-
tations where the continuous part is represented by unions of convex clock zones as in [11,20]. This is the reason why
model checkers based on unions of convex clock zones usually do not support full TCTL.

The computation of the predecessor state set Pre(�) consists of a continuous step (Prec(�)) and a discrete step (Pred(�))
and will be described in Sections 7.3 and 7.4. For the computation of Pre we use efficient implementations of substitution
and existential quantification of boolean as well as real-valued variables in the LinAIG data structure.

Remark 2. According to the semantics of TCTL (see Section 2.2) E ϕ holds in a state s iff there exists a time-divergent
path which starts in s, and satisfies the path formula ϕ . The presented algorithm for TCTL model checking is therefore
only correct for so-called timelock-free FSMTs. For FSMTs with timelocks, it may be the case that the computation of
E(ψ1 Uψ2) is based on a timelock state in Sat(ψ2) which is not the origin of any time-divergent path. In the following
we assume timelock-free FSMTs. For proving timelock freedom there are two options: (1) One possibility for (small) timed

8 Remember that encodings of locations are conjunctions of location bits or their negations.
9 If clear from the context, we do not always differentiate between sets like Sat(�) and predicates describing these sets.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.15 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 15
automata is proving sufficient conditions by analyzing cycles in the TA. Then timelock freedom is preserved by parallel
composition, see [16], e.g. (2) Fortunately, our model checking algorithm is able to prove timelock freedom by checking the
formula �TL = AG(EF{=1}true). Note that according to the TCTL semantics AG(EF{=1}true) is a tautology, but our algorithm
returns true if and only if the system is timelock-free.

7.3. Prec(�) – continuous step for Pre(�)

Let � be a state set of our model checking algorithm. Then the state set reachable by a (backward) continuous step
(letting time pass) can be described by

Prec(�)(�x, �y) =
n∧

j=1

(x j ≥ 0) ∧ ∃λ
[
(λ > 0) ∧ �(�x + �λ, �y)

∧ ∀λ′ ((0 ≤ λ′ < λ) =⇒ ∀�i ¬urgent(�x + �λ′, �y,�i)
)]

(1)

To enhance the readability of the formulas, we abbreviate x1, . . . , xn by �x, y1, . . . , yl by �y and i1, . . . , ih by �i. Let �x + �λ be
the abbreviation for (x1 + λ, . . . , xn + λ) for a scalar λ.

Lemma 2 (State set Prec(�)). Prec(�)(�x, �y) contains exactly those states from which �(�x, �y) is reachable by a continuous transition
in the FSMT.

Proof. (Sketch) Lemma 2 follows directly from the semantics of the continuous step of FSMTs (Definition 7). The first line
of Equation (1) describes the basic time step of length λ > 0 from a state (�x, �y) into a state (�x + �λ, �y). The intersection
with

∧n
j=1(x j ≥ 0) guarantees that all clock variables have positive values. The second line of Equation (1) asserts that time

evolution from state (�x, �y) to state (�x + �λ, �y) is not interrupted by any urgent discrete transition, which is enabled for some
state (�x + �λ′, �y) with (0 ≤ λ′ < λ). The predicate urgent determines when an urgent transition is enabled. �
7.4. Pred(�) – discrete step for Pre(�)

State set Pred(�) contains all predecessors of � from which � can be reached by a discrete transition in the FSMT.
The first part of the discrete step is a substitution of the state variables and the clock constraints in the current state set
representation �. (Note that as an invariant of our model checking algorithm all computed state set representations are in
Cb(X, Y), i.e., they are boolean combinations of boolean variables and clock constraints.) Each state variable yi is substituted
with its transition function δi :

yi ← δi

(
�x, �y,�i

)
(2)

Consider a clock constraint of the form
(
xi − x j ∼ d

)
with xi, x j ∈ X , ∼ ∈ {<,≤,=,≥,>} and d ∈ Q. There are only

four possible cases how a clock constraint can be changed due to resets executed during a transition: (1) xi and x j are
reset, (2) only xi is reset, (3) only x j is reset or (4) none of the clock variables in the constraint is reset. We use the reset
conditions resetxi to determine when a clock variable xi is reset. The substitution for each clock constraint of the form (
xi − x j ∼ d

)
in the state set is then

(
xi − x j ∼ d

) ← ((resetxi (�x, �y,�i) ∧ resetx j (�x, �y,�i) ∧ (0 ∼ d))

∨ (resetxi (�x, �y,�i) ∧ resetx j (�x, �y,�i) ∧ (xi ∼ d))

∨ (resetxi (�x, �y,�i) ∧ resetx j (�x, �y,�i) ∧ (−x j ∼ d
)

)

∨ (resetxi (�x, �y,�i) ∧ resetx j (�x, �y,�i) ∧ (
xi − x j ∼ d

)
)) (3)

(Of course, (0 ∼ d) reduces to constant 0 or 1.)
�′(�x, �y, �i) is obtained from �(�x, �y, �i) by substituting all state variables as shown in Eqn. (2) and all clock constraints as

shown in Eqn. (3) simultaneously.

The second part of the discrete step is a quantification of the boolean input variables �i in �′ .

Pred(�)(�x, �y) = ∃�i �′(�x, �y,�i) (4)

Lemma 3 (State set Pred(�)). Pred(�)(�x, �y) includes contains exactly those states from which �(�x, �y) is reachable by a discrete
transition in the FSMT.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.16 (1-29)

16 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Fig. 7. Incomplete timed system.

Proof. (Sketch) Lemma 3 follows directly from the semantics of the discrete step of FSMTs (Definition 7). The substitution of
the state variables with the corresponding transition functions (Equation (2)), and the quantification of the input variables
(Equation (4)) represents the changing of the locations through discrete transitions. The resets on discrete transitions are
represented by the substitution of the clock constraints according to Equation (3). �
8. Incomplete real-time systems

When the overall design is not finished yet, or a system is too large for being verified in its entirety, we consider in-
complete real-time systems which contain unknown components, called black box. The system includes several components
which are known in detail (white box) and an interface to the black boxes. In this scenario the black box has a similar role
than the environment when considering open systems. However, in contrast to an abstract ‘environment’ which enables or
disables transitions synchronising with the environment, black boxes represent unknown component timed automata and we
look into the questions of realisability and validity.

Remark 3. Note that we do not allow communication via shared clock variables in the following, i.e., we assume local clock
variables of the white box and the black box components. In particular, clock variables which are reset in the black box, are
not allowed to be read in the guards of the white box components. This is justified by the realistic assumption that only
discrete information may be transferred from one component to another. In the following we begin with the definition of
incomplete timed systems and then define incomplete FSMTs.

Remark 4. Furthermore, we restrict our consideration to timelock-free black boxes that can not enable infinitely many non-synchro-
nising urgent transitions during a finite amount of time. We call those black boxes ‘timelock-free non-Zeno black boxes’. Other
black boxes are not interesting for us, because they can stop time evolution without any interaction with the white box
components and thus do not model a realistic system behaviour.

8.1. Incomplete timed system

An incomplete timed system [2] which contains several unknown components uses different types of communication
channels between the black box and the white box:

• Let IntBB be a set of shared bounded integer variables which can be read and updated by the complete system, including
black box and white box. Integers from IntBB are used to pass numerical values, within the integer bounds, from one
component to another. When updated by the black box the value of these integers is unknown.

• Non-urgent actions from ActBB
nu synchronise the black box with the white box. Since the details of the black box im-

plementation are unknown, the particular time of synchronisation is unclear. This gives the black box the power of
enabling and disabling synchronising transitions in the white box.

• Urgent actions from ActBB
u synchronise the black box with the white box via urgent transitions. By synchronising over

an urgent action the black box stops time evolution, and thus, the black box can influence both, the discrete and the
timing behaviour of the system.

Remember that parallel composition of different components is done according to Definition 4.

Example 3. Fig. 7 shows an incomplete timed system with a black box which communicates with the white box via the
shared integer i and the non-urgent and urgent synchronisation actions a and au . By sending or not sending the action a
the black box can enable or disable the transition from l2 to l0. When the white box is located in location l1, the black box
can enable the transition from l1 to l2 by sending the urgent action au , however, by doing so, time evolution is blocked and
the transition has to be taken without any delay.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.17 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 17
8.2. Incomplete FSMT

An incomplete FSMT [2] is a fully symbolic representation of incomplete real-time systems. Just as incomplete timed
systems, an incomplete FSMT consists of several known components (white box), several unknown components (black box),
and an interface of the black box with the white box.

FSMTs do not contain any integers or synchronisation actions and communicate by reading each others state variables,
and thus, the interface of the black box with the white box consists of state bits which can be written by the black box.
In Section 9.1 we will see how to translate an incomplete timed system into an incomplete FSMT, which can be verified by
our model checking algorithms.

9. TCTL model checking for incomplete real-time systems

TCTL model checking for complete timed system consists in the computation of Sat(�) and a check whether all initial
states are included in this set. The situation becomes more complex, if we consider incomplete timed systems, since for each
implementation of the black box we may have different state sets satisfying �.

For that reason we do not compute the set Sat(�), but two sets Sat∃(�) and Sat∀(�): Sat∃(�) contains all states, for
which there is at least one black box implementation such that � is satisfied. In a similar manner, Sat∀(�) contains all
states, for which � is satisfied for all possible black box implementations. It is easy to see that the following holds:

• A property � is valid for an incomplete timed system (i.e. for all black box implementations the property is satisfied),
if all initial states are included in Sat∀(�).

• A property � is not realisable for an incomplete timed system (i.e. there is no black box implementation which satis-
fies �), if there is an initial state which does not belong to Sat∃(�).

In order to obtain sound results for validity resp. non-realisability, it is enough to compute approximations for Sat∃(�)

and Sat∀(�). If we replace Sat∀(�) by an under-approximation Satappr
∀ (�) ⊆ Sat∀(�) and Sat∃(�) by an over-approximation

Satappr
∃ (�) ⊇ Sat∃(�), then the statements made above certainly remain correct. (An initial state which is in Satappr

∀ (�) is
certainly in Sat∀(�) as well; an initial state which is not in Satappr

∃ (�) is not in Sat∃(�) either.)
In the following we show how to compute such sets. In order to simplify notations we write Sat∃(�) and Sat∀(�), even if

the computed sets are approximations. In the next section we start with transformations needed to compute fully symbolic
representations of sets Sat∃(�) and Sat∀(�).

9.1. Modelling incomplete systems

More precisely, we begin with a sketch of how to extend the translation of timed automata into FSMTs (see Section 6)
for incomplete systems. For our model checking algorithm the communication between the black box and the white box is
of particular importance. We distinguish between four different types of transitions in the white box:

(1) any transitions without synchronisation with the black box, called no-sync-transitions in the following
(2) urgent transitions without synchronisation with the black box, called u-transitions
(3) transitions with a non-urgent synchronisation with the black box, called nu-sync-transitions
(4) transitions with an urgent synchronisation with the black box, called u-sync-transitions

In our algorithm we do not work with one transition (reset) function for the incomplete system at hand, but with
different transition (reset) functions for different types of transitions.

First, we consider only the transitions in timed automata that do not synchronise with the black box at all (i.e. only
no-sync-transitions) and use our converter from Section 6, resulting in transition functions δno-sync

i (�x, �y, �iWB). Let �iWB be the
input variables of the white box generated by the converter. δno-sync

i are used in the computation of Sat∀(�).
Secondly, we have to consider only u-sync-transitions. For computing Sat∀(�) and Sat∃(�), we need a modified version

of the u-sync-transitions where certain integer values may be replaced by arbitrary values. In the following we give a
brief sketch of how this replacement works: Remember that we consider well-formed timed automata (see Remark 1), i.e.,
for each integer inti and each synchronising action act either the white box or the black box is allowed to have u-sync-
transitions which are labelled by act and contain assignments to inti . If only the black box is allowed to write to inti on
u-sync-transitions labelled by act, then we have to account for the fact that the black box may write an arbitrary value
to inti when taking such a u-sync-transition. This is realised by introducing a set of additional inputs (iint

1 , . . . , iint
fi

) for inti

(f i is the number of bits in the encoding of inti) and by adding ‘inti := (iint
1 , . . . , iint

fi
)’ to u-sync-transitions labelled by act.

Moreover, we use additional input variables �iBB to encode the urgent synchronisation actions, i.e., we extend the guards of
u-sync-transitions with different encodings of these variables (�iBB) for different urgent actions communicating with the black
box to be able to differentiate between these urgent actions. We use our converter from Section 6 to compute transition

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.18 (1-29)

18 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
functions δu-sync
r (�x, �y, �iWB, �iBB, �iint) for each bit of the integer encoding for inti . Again, �iWB are the input variables generated

by the converter.
To compute Sat∃(�), a third transition function is needed. Here, actions used for communication with the black box on

nu-sync-transitions and u-sync-transitions can be omitted, because there can always be a black box implementation sending
the requested action, such that synchronising transitions are always enabled. Nevertheless, before removing actions, the
u-sync-transitions are modified as described above using new inputs �iint . The functions δall

i (�x, �y, �iWB, �iint)10 for the state bits
yi are then computed by the converter considering all transitions in the white box.

Besides the transition functions, the converter provides three different reset conditions for each clock variable xi ∈ X .
Two reset conditions are used for the computation of Sat∀(�), one describing the resets on the no-sync-transitions

(resetno-sync
xi

(�x, �y, �iWB)) and a second describing the resets on u-sync-transitions (resetu-sync
xi

(�x, �y, �iWB, �iBB, �iint)). In order to
compute Sat∃(�), a third reset condition (resetall

xi
(�x, �y, �iWB, �iint)), for all transitions in the white box (with omitted synchro-

nisation actions with the black box), is needed.
Finally, our model checking algorithm (Section 9.2) requires two additional urgency predicates provided by the converter:

urgentno-sync(�x, �y, �iWB) is a predicate evaluating to 1, if for input �iWB the transition from state (�x, �y) is a u-transition and
urgentu-sync(�x, �y, �iWB, �iBB, �iint) is a predicate evaluating to 1, if for the inputs �iWB, �iBB and �iint the transition from state (�x, �y)

is a u-sync-transition. Additionally, for technical reasons, the computation of Sat∀(�) needs a predicate nte(�x, �y, �iWB, �iBB)

evaluating to true whenever no transition is enabled. This predicate can be extracted from the guards of the self-loops
introduced by the converter.

9.2. Model checking algorithm

Now we show how to do fully symbolic TCTL model checking for incomplete real-time systems modelled as incomplete
FSMTs by computing fully symbolic representations of the sets Sat∃(�) and Sat∀(�) as defined above. The most important
ingredient of TCTL model checking is the predecessor operation Pre, and thus, the essential contribution is how to define
two variants of Pre for computing Sat∃ and Sat∀ .

Definition 9 (Pre∃(S), Pre∀(S)). If for at least one black box implementation there is a transition s′ → s with s ∈ S , then s′
is included into Pre∃(S). (This transition can be regarded as a may transition following the notion from [30]). If a state s′ is
included in Pre∀(S), then for all black box implementations there is a transition s′ → s with s ∈ S . (The transition is a must
transition.)

For formulas like � = EF� whose evaluation needs a fixed point iteration we make use of Pre∃ to compute Sat∃(�)

(instead of Pre which is used for complete systems). In the special case � = EF� we start with the set Sat∃(�) (which
at least includes the set of states which may satisfy � depending on the concrete black box implementation) and we use
Pre∃ to compute the set of states which can reach Sat∃(�) via one ‘may transition’. By iteratively applying Pre∃ we obtain
Sat∃(EF�) which includes all states from which there is a computation path to a state from Sat∃(�) for at least one black
box implementation.

Likewise for Sat∀(�) we replace Pre by Pre∀ . In the special case � = EF� we start with the set Sat∀(�) (which at
most includes the set of states which definitely satisfy � independently from the black box implementation) and we use
Pre∀ to compute the set of states which can reach Sat∀(�) via one ‘must transition’, i.e. independently from the black box
implementation. Again, we obtain Sat∀(EF�) by iteratively applying Pre∀ .

The remaining operations are more or less straightforward. It is easy to see that Sat∀(¬�) = ¬Sat∃(�), Sat∃(¬�) =
¬Sat∀(�), i.e., negation plays a special role here, since it turns ‘existential quantification of black boxes into universal
quantification’ and over-approximation into under-approximation (and vice-versa). Moreover, it holds Sat∀(�1 ∧ �2) =
Sat∀(�1) ∧ Sat∀(�2) and Sat∃(�1 ∧ �2) ⊆ Sat∃(�1) ∧ Sat∃(�2). In the second case we only have ‘⊆’ instead of ‘=’, since
a certain state may fulfill �1 ∧ ¬�2 for certain black box implementations and ¬�1 ∧ �2 for all others, thus it belongs to
Sat∃(�1) ∧ Sat∃(�2), but not to Sat∃(�1 ∧ �2). We overapproximate by identifying Sat∃(�1 ∧ �2) with Sat∃(�1) ∧ Sat∃(�2).
A second source of approximation stems from the fact that we assume that the black box can make different decisions
based on the current state of the white box, i.e., the black box ‘can read the state bits of the white box’. (Note that the same
assumption is implicitly made in classical controller synthesis approaches for safety properties as well [40–42].)

The evaluation of general TCTL formulas needs both Pre∀ and Pre∃ . In the following we describe the computation of
Pre∀(�) and Pre∃(�) separately for discrete steps and time steps.

9.3. Pred∀(�) – discrete step for Pre∀(�)

Starting with a state set �(�x, �y) the discrete (backward) step needed for Pre∀(�) computes only predecessors from which
� can be reached over a discrete transition in the white box, independently from the implementation of the black box.

10 Note that the δall
i do not depend on �iBB-variables, since all actions (including urgent actions) have been removed before applying the converter.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.19 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 19
Fig. 8. Time step example.

Since it is possible that the black box does not synchronise with the white box at all, we consider only no-sync-transitions
which are described by the functions δno-sync

i . The discrete step can then be computed just as Pred(�) (Section 7.4). Each
state variable y j in � is substituted with its corresponding transition function δno-sync

j , and each clock constraint is sub-

stituted by a predicate, formed with the corresponding reset conditions resetno-sync
x j

. These substitutions are followed by an
existential quantification of the input variables �iWB .

Lemma 4. The resulting state set Pred∀(�)(�x, �y) contains only states from which �(�x, �y) is reachable by a discrete transition in the
white box independently from any black box behaviour.

The proof of the lemma is straightforward, since due to the interleaving semantics of timed automata, the no-sync-
transitions can always be taken independently from the implementation of the black box. On the other hand, discrete steps
that reach � independently from the black box use only no-sync-transitions. This is easy to see by considering a special black
box implementation BBno-sync which never synchronises with the white box, and thus, disables all nu-sync-transitions and
u-sync-transitions.

9.4. Prec∀(�) – continuous step for Pre∀(�)

Starting with a state set �(�x, �y) the time step for Pre∀(�) computes only predecessors from which �(�x, �y) can be
reached through time passing, independently from the black box implementation. Because of urgent synchronisation, the
black box can affect the timing behaviour in the white box by enabling a u-sync-transition, and thus, stopping time evolution.
Additionally, the black box can take internal urgent transitions which do not synchronise with the white box and update
the shared integer variables to unknown values. To illustrate the peculiarities of the continuous predecessor computation
with intervention of a black box, consider the following example:

Example 4. Fig. 8 shows a small extract of an incomplete timed system where the white box consists of three u-sync-
transitions (dashed arrows), which are labelled with clock constraints and integer constraints as guards, and one no-sync-
transition, which is labelled with a clock constraint as guard. The white box communicates with the black box via an urgent
synchronisation action au , and a shared integer variable i, with i ∈ {0, 1}. We assume that, using our model checking algo-
rithm, a state set �, containing the states 〈l0, η(x) = 7, μ(i) = 0〉 and 〈l0, η(x) = 7, μ(i) = 1〉 has already been computed.
We ask whether s = 〈l0, η(x) = 0, μ(i) = 0〉 can be included in Prec∀(�), that is, a state in � is reachable from s, regardless
of the black box behaviour.

If the black box would never synchronise over au , then no u-sync-transition would be enabled, and thus, time is allowed
to pass starting in s. However, time evolution could be interrupted by internal urgent non-synchronising transitions of the
black box, which possibly update integer i, such that, after the continuous evolution the value of i is unknown to the white
box. Hence, after 7 time units, state 〈l0, η(x) = 7, μ(i) = 0〉 ∈ � or 〈l0, η(x) = 7, μ(i) = 1〉 ∈ � would be reached.

(Note that the black box can interrupt the time evolution only for a finite number of times during 7 time units, since
we restrict our consideration to timelock-free non-Zeno black boxes, see Remark 4. Thus, the black box can not prevent
reaching the clock value of 7 by infinitely many interrupts.)

However, all possible black box implementations have to be considered, including a black box replacement, which syn-
chronises via au , and thus, blocks time evolution. Considering well-formed timed systems (Remark 1), there exist two
different cases:

Case 1: The black box is not allowed to update integer i on transitions which synchronise via au , because i is updated on
such transitions in the white box.

Then, the black box cannot change i when taking the u-sync-transitions in Fig. 8. (Of course, the black box
still may switch the valuation of i between μ(i) = 0 and μ(i) = 1 on internal urgent non-synchronising transitions
which interrupt the time evolution.) Then, we can only guarantee that there is no black box implementation which

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.20 (1-29)

20 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
prevents � from being reached starting from s, if � additionally includes the state 〈l1, η(x) = 5, μ(i) = 0〉 and one
of the following states, 〈l2, η(x) = 6, μ(i) = 1〉 or 〈l3, η(x) = 6, μ(i) = 1〉. This can be seen as follows:

Starting in s = 〈l0, η(x) = 0, μ(i) = 0〉, the clock value η(x) = 5 is definitely reached by time evolution (since the
clock x is local to the white box, see Remark 3). Depending on the behaviour of the black box, the u-sync-transition
from l0 to l1 may be enabled, such that the black box can enforce the run to arrive at 〈l1, η(x) = 5, μ(i) = 0〉. Thus,
〈l1, η(x) = 5, μ(i) = 0〉 has to be in � in order to be sure that � is reached independently from the black box
behaviour.

If the black box does not enable the u-sync-transition at that moment, time evolution continues until η(x) = 6.
Presumed that the black box has previously set the value of i to 1, it has the possibility to synchronise over au .
In state 〈l0, η(x) = 6, μ(i) = 1〉, when the black box tries to synchronise over au , there are two u-sync-transitions
enabled (l0 to l2 and l0 to l3), among which the white box can choose, which one to take. When the white
box chooses to take the u-sync-transition from l0 to l2, the state 〈l2, η(x) = 6, μ(i) = 1〉 is reached. On the other
hand, if the white box chooses to take the u-sync-transition from l0 to l3, the state 〈l3, η(x) = 6, μ(i) = 1〉 will be
reached. So, if either 〈l2, η(x) = 6, μ(i) = 1〉 or 〈l3, η(x) = 6, μ(i) = 1〉 is in �, the black box cannot empede the
white box, which can choose freely which transition to take, from reaching �.

If the black box does not enforce (by synchronising via au) any of the transitions discussed above, time evo-
lution continues to 〈l0, η(x) = 7, μ(i) = 0〉 ∈ � or 〈l0, η(x) = 7, μ(i) = 1〉 ∈ �. Altogether, � is reached from s,
independently from the behaviour of the black box.

Case 2: The black box is allowed to update integer i on transitions which synchronise with the white box via au .
Thus, while synchronising with the white box, the black box may change the valuation of i. Compared to

Case 1, � has to additionally include 〈l1, η(x) = 5, μ(i) = 1〉 and, if � includes 〈l2, η(x) = 6, μ(i) = 1〉 it has
to additionally include 〈l2, η(x) = 6, μ(i) = 0〉, or otherwise if � includes 〈l3, η(x) = 6, μ(i) = 1〉 it has to ad-
ditionally include 〈l3, η(x) = 6, μ(i) = 0〉. With these states additionally included in �, it is guaranteed that
the black box is not able to prevent a path from s into �. When η(x) = 5 and the black box enforces tak-
ing the u-sync-transition from l0 to l1, it can update integer i to 1, and thus, the run is forced into state
〈l1, η(x) = 5, μ(i) = 1〉. If 〈l1, η(x) = 5,μ(i) = 1〉 /∈ �, the black box could prevent � from being reached. With
an analogous argumentation, � is not reached from s for a certain black box implementation when neither
{〈l2, η(x) = 6, μ(i) = 0〉, 〈l2, η(x) = 6, μ(i) = 1〉} ⊂ � nor {〈l3, η(x) = 6, μ(i) = 0〉, 〈l3, η(x) = 6, μ(i) = 1〉} ⊂ �.

Eqn. (5) defines the computation of Prec∀(�) for a state set �(�x, �y). Again, we use the vector representation for sets of
variables. Let �yBB ⊆ �y be the shared state variables which can be updated by the white box and the black box, corresponding
to (a subset of) the integer variables. Let �iint be the set of new input variables (see Section 9.1) which indicate the (arbitrary)
values which may be assigned by the black box to integer bits on urgent transitions synchronising with the white box (see
also Case 2 of Example 4). Let �iBB be the input variables introduced to differentiate between the urgent actions and �iWB

be the input variables of the white box. Pred
u-sync(�)(�x, �y, �iWB, �iBB, �iint) is obtained from �(�x, �y) by substituting the state

variables and clock constraints by transition functions δu-sync
i (�x, �y, �iWB, �iBB, �iint) and predicates formed using reset conditions

resetu-sync
x j

(�x, �y, �iWB, �iBB, �iint), reasoning only over u-transitions.11

Prec∀(�)(�x, �y) = [n∧
j=1

(
x j ≥ 0

)] ∧
(
(¬∃�iWB urgentno-sync(�x, �y,�iWB))

∧ [
(∃�iWB∃�iBB∃�iinturgentu-sync(�x, �y,�iWB,�iBB,�iint)) =⇒ ∀�iBB{(∀�iWBnte(�x, �y,�iWB,�iBB))

∨ ∃�iWB∀�iintPred
u-sync(�)(�x, �y,�iWB,�iBB,�iint)}])

∧ ∃λ
[
(λ > 0) ∧ ∀�yBB

〈
�(�x + �λ, �y) ∧

{
∀λ′(0 < λ′ < λ)

=⇒
(
(¬∃�iWBurgentno-sync(�x + �λ′, �y,�iWB))

∧ [
(∃�iWB∃�iBB∃�iinturgentu-sync(�x + �λ′, �y,�iWB,�iBB,�iint))

=⇒ ∀�iBB{(∀�iWBnte(�x + �λ′, �y,�iWB,�iBB)) ∨ ∃�iWB∀�iintPred
u-sync(�)(�x + �λ′, �y,�iWB,�iBB,�iint)}])}〉]

(5)

Lemma 5 (State set Prec∀(�)). The resulting state set Prec∀(�)(�x, �y) contains only states from which states from � can be reached (via
time evolution and/or via u-sync-transitions), independently from the black box behaviour.

11 Similar to Section 7.4, but with the difference that the inputs are not yet quantified after substitutions of state variables and clock constraints.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.21 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 21
Proof. (Sketch) The basic idea of Eqn. (5) consists in performing a time step of length λ > 0 from a state (�x, �y) into a state
(�x + �λ, �y) satisfying �. However, this time evolution may be interrupted by u-sync-transitions or u-transitions, which are
enabled for some state (�x + �λ′, �y) (0 ≤ λ′ < λ) between (�x, �y) and (�x + �λ, �y).

The condition ¬∃�iWB urgentno-sync(�x, �y, �iWB) (Line 1) guarantees that in the starting point (�x, �y) no u-transition is enabled,
which would stop time evolution immediately. Additionally, time evolution may be blocked by a u-sync-transition which is
enabled in state (�x, �y). However, if for each urgent synchronisation action au (encoded with �iBB- variables), which can be
used by the black box to block time evolution, the white box can choose (by setting its �iWB-variables) a u-sync-transition,
which is synchronising via au and is leading to states in � (Lines 2 and 3), then the black box may stop time evolution, but
cannot hinder the white box from reaching �.

The usage of ∀�iWBnte(�x, �y, �iWB, �iBB, �iint) (Line 2) checks whether for a given synchronisation action (∀�iBB) there is no
enabled transition labelled with this action. In that case, the black box is not able to stop time evolution by this urgent
synchronisation action, otherwise the white box has to synchronise by choosing a u-sync-transition.

In Lines 4 to 6 of Eqn. (5), this consideration is transferred to all states (�x + �λ′, �y) (0 < λ′ < λ) between (�x, �y) and
(�x + �λ, �y). This is the actual time evolution, starting in state (�x, �y). During this time evolution, the black box may change
the valuation of its state variables through internal urgent non-synchronising transitions, which have to be taken, and
thus, the valuation of the state variables �yBB is unknown. To account for this, the �yBB-variables are universally quantified
(Line 4). �
9.5. Pred∃(�) – discrete step for Pre∃(�)

Pred∃(�)(�x, �y, �iWB, �iint) includes all states from which a state in � is reachable via a discrete transition for at least one
black box implementation. Consider a certain black box implementation which always synchronises with the white box
when possible, and thus, does not disable any discrete transition. To express the interaction with such a black box, we
use the transition functions δall(�x, �y, �iWB, �iint) and reset conditions resetall(�x, �y, �iWB, �iint) to compute Pred∃(�). Pred∃(�) is
computed as in Section 7.4 by a substitution of the state variables and clock constraints in �, followed by an existential
quantification of the input variables �iint and �iWB .

Lemma 6. The resulting state set Pred∃(�)(�x, �y) contains all states for which there exists a black box implementation, such that, �(�x, �y)

is reachable by a discrete transition in the white box.

The proof follows from the following argument: The result corresponds to a backwards evaluation of discrete white
box transitions of any kind (no-sync-transitions, u-sync-transitions, nu-sync-transitions). By existentially quantifying �iint , we
account for all possible integer assignments by the black box in case of u-sync-transitions. Of course, more transitions can
never be enabled in the white box, not even by a black box implementation which always provides all synchronisation
actions needed to enable synchronising transitions in the white box.

9.6. Prec∃(�) – continuous step for Pre∃(�)

Prec∃(�) includes all states from which a state in � is reachable through time evolution for at least one black box
implementation. This can be a black box implementation which never synchronises via an urgent action during the time
step, and thus, no u-sync-transition has to be considered. Furthermore, the black box can update shared integer variables
on internal urgent non-synchronising transitions. Eqn. (6) defines the computation of Prec∃(�).

Prec∃(�)(�x, �y) = [n∧
j=1

(
x j ≥ 0

)]

∧ (¬∃�iWBurgentno-sync(�x, �y,�iWB)) ∧ ∃λ
[
(λ > 0) ∧

(
(∃�yBB �(�x + �λ, �y))

∧
{
∀λ′(0 < λ′ < λ) =⇒

(
∃�yBB (¬∃�iWBurgentno-sync(�x + �λ′, �y,�iWB))

)})]
(6)

Lemma 7. The resulting state set Prec∃(�)(�x, �y) contains all states for which there exists a black box implementation„ such that, �(�x, �y)

is reachable through time elapsing.

Proof. (Sketch) The correctness of Lemma 7 follows from the following facts: There may be a time evolution of length λ > 0
from a state (�x, �y) to a state (�x + �λ, �y′) ∈ �, if

• �y′ results from �y by changing the state variables �yBB . During time evolution, the black box has the ability to change
the valuation of the shared state variables �yBB on finitely many internal urgent non-synchronising transitions, changing
�y to �y′ . For every value for the state variables �yBB there is a black box implementation which assigns this value to �yBB .
This explains the existential quantification of �yBB in Line 2 of Eqn. (6).

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.22 (1-29)

22 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
• time evolution is not stopped by any u-transition. In the starting state (�x, �y), this is ensured by condition
¬∃�iWBurgentno-sync(�x, �y, �iWB) (Line 2 of Eqn. (6)). Furthermore, during the time evolution, there must not be any u-
transition enabled in any state (�x + �λ′, �y), for each λ′ between 0 and λ. Since during time evolution, the black box can
arbitrarily update the shared state variables on internal urgent non-synchronising transitions, it is sufficient that for at
least one valuation of the shared state variables �yBB each u-transition is disabled. This situation is taken into account
by the condition ∃�yBB(¬∃�iWB urgentno-sync(�x + �λ′, �y, �iWB)) (Line 3 in Eqn. (6)). �

In a timed system without shared integers, which are accessible to the white box and the black box, Eqn. (6) can be
simplified by just omitting the existential quantification of the �yBB-variables (Line 3).

9.7. Discrete and time steps together

In our implementation we apply alternating discrete steps and time steps for the operations Pre∃ and Pre∀ . For Pre∃
we additionally apply an existential quantification of the shared integer variables �yBB after each application of Pred∃ and
Prec∃ . This existential quantification corresponds to an interleaving with a potential discrete backwards step of the black box.
Since we have to consider all possible black box implementations for Pre∃ , we have to assume that the shared integers
can be set to arbitrary values in this step. Since, for Pre∀ , we only have to consider effects shared by all possible black box
implementations and there are certainly black box implementations which do not write shared integers at all, we completely
omit potential discrete black box backward steps (and thus the existential quantification of �yBB) for Pre∀ .

10. Experimental results

10.1. Experimental setup

We implemented the full TCTL model checking algorithms for complete and incomplete timed systems in the prototype
model checker FSMTMC [1,2] and analysed our approach on several parameterized benchmarks with parameter n indicating
the number of components in the benchmark and ranging within 3 and 50 (Column ‘nbr.’).12 Parameterized benchmarks
made it easy for us to generate sets of increasingly complex benchmarks for comparison. Actually we do not consider
parameterized benchmarks as the main field of application for our algorithm and thus we did not make use of symme-
try reduction, neither within our tool nor within any competitor. We compare the results to the state-of-the-art model
checkers Uppaal v.4 (UPP.), RED 8 and Kronos 2.5 (KRO.). All tools were run with default configurations, Uppaal performs a
semi-symbolic forward analysis with breadth first search and RED does a fully symbolic backward traversal. Both can only
be used for checking safety properties whereas Kronos can also be used for full TCTL model checking, but cannot handle
benchmarks containing integer variables (like ‘arbiter’ and ‘leader’). Table 1 shows the results of our tool checking safety
properties by backward reachability analysis for benchmarks modelled as complete FSMTs (comp.) and as incomplete FSMTs
(inc.) with pure interleaving (FSMTMC-INTER) or with parallelized interleaving (FSMTMC-PARA) and compares them to Up-
paal v.4 (UPP.) and RED 8. In the same way, Table 2 gives the runtimes of our approach verifying properties which require
full TCTL model checking and compares them to Kronos 2.5 (KRO.). All benchmarks were originally modelled as timed au-
tomata and for our tool they were automatically translated into FSMTs. In columns CONV. of Tables 1 and 2 we give the CPU
times (in seconds) of the (un-optimized) translator. Of course, the translation differs for complete and incomplete FSMTs
(for incomplete systems of FSMTs even several types of transition functions and reset conditions have to be computed ac-
cording to Section 9.1). Here we report the maximum of the translation times for complete and incomplete FSMTs in the
pure interleaving case. The times for the parallelized interleaving case are of similar magnitude, and in all cases when the
model checker did not timeout, the sum of translation times and model checking times did not exceed the time out either.
In the tables we give for each tool the last result (last nbr) before running into a time out and the first result after running
into a time out. Additionally we add a line in the table for each tenth result if there is no time out (entry in the table)
occurring in the last ten measurements.13 The experiments have been conducted on an Intel Xeon with 3.3 Ghz with a time
limit of 8000 CPU seconds and a memory limit of 2 GB.14

10.2. Verification of complete and incomplete real-time systems

The toy example [1] (‘toy’ in Table 1) models n timed automata which communicate via a shared integer variable. When
performing a reachability analysis on this benchmark we can observe an enormous performance gain for parallelized in-
terleaving due to a reduction of the number of steps in state space traversal. Our algorithm with parallelized interleaving
behaviour can finish state space traversal just after one step and solves the complete benchmark set up to nbr = 50, whereas

12 A brief description of the benchmarks is given in Appendix B, more detailed information can be found at http :/ /abs .informatik.uni-freiburg .de /morbe /
scp /scp .html.
13 Tables with the complete results can be found at http :/ /abs .informatik.uni-freiburg .de /morbe /scp /scp .html.
14 An empty entry (denoted by −) in the tables mean that the tool ran either into a time out or a memory out.

http://abs.informatik.uni-freiburg.de/morbe/scp/scp.html
http://abs.informatik.uni-freiburg.de/morbe/scp/scp.html
http://abs.informatik.uni-freiburg.de/morbe/scp/scp.html

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.23 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 23
Table 1
Complete and incomplete reachability analysis, runtimes in CPU seconds.

nbr. upp. red fsmtmc-inter fsmtmc-para conv.

comp. inc. comp. inc.

to
y

8 0.1 10.2 5.8 NA 1.5 NA 1.1
9 0.1 – 9.9 NA 1.7 NA 1.3

14 140.4 – 232.2 NA 2.4 NA 2.6
15 – – 445.8 NA 2.6 NA 2.9
16 – – 1295.0 NA 2.9 NA 3.3
17 – – – NA 3.2 NA 3.8
30 – – – NA 7.4 NA 10.9
40 – – – NA 13.0 NA 18.9
50 – – – NA 20.1 NA 28.4

G
PS

10 0.1 0.6 5.5 NA 5.9 NA 8.3
18 167.4 4.1 24.0 NA 21.6 NA 25.4
19 – 5.0 26.3 NA 25.1 NA 28.0
30 – 32.2 101.4 NA 77.3 NA 68.5
39 – 3186.6 254.0 NA 165.3 NA 114.8
40 – – 251.4 NA 192.3 NA 122.0
50 – – 510.9 NA 458.1 NA 190.6

ar
bi

te
r

3 0.1 0.4 6.5 3.8 3.5 2.1 5.2
6 3529.8 39.6 60.6 7.9 35.2 4.3 12.6
7 – – 91.8 10.2 36.1 5.2 17.7

15 – – 1971.6 57.6 2812.3 24.5 66.9
16 – – 2583.9 70.0 – 30.0 74.3
19 – – 6858.2 100.9 – 40.0 104.8
20 – – – 114.9 – 44.2 113.3
30 – – – 315.3 – 134.2 250.9
40 – – – 766.4 – 286.3 445.8
50 – – – 1296.3 – 598.8 712.9

ar
bi

te
r

er
ro

r

3 0.1 0.6 0.7 0.9 0.8 0.9 5.2
5 39.2 24.8 2.0 1.2 1.7 1.6 10.0
6 5228.8 – 2.9 1.5 2.2 1.5 12.6
7 – – 2.7 1.6 2.8 1.7 17.7

20 – – 20.4 4.8 23.2 5.9 113.3
30 – – 59.5 8.3 92.2 10.0 255.5
40 – – 195.2 12.9 227.2 16.0 445.8
50 – – 547.3 17.5 636.0 22.7 712.9

le
ad

er

3 0.1 0.5 557.3 21.9 120.2 30.5 9.8
4 0.1 1.7 – 27.1 – 21.5 12.9
5 0.4 18.3 – 38.8 – 29.4 22.8
6 2.3 – – 33.0 – 37.2 30.8

10 2960.7 – – 91.7 – 56.8 89.2
11 – – – 60.1 – 90.2 107.2
20 – – – 103.1 – 99.1 372.7
30 – – – 132.5 – 176.9 851.5
40 – – – 245.7 – 301.5 1744.4
50 – – – 383.6 – 593.3 3169.7

CP
P

re
ac

h

3 0.0 17.4 2.1 1.3 1.6 0.9 5.6
4 0.0 – 3.2 0.8 2.4 0.8 7.1

20 42.2 – 372.8 2.6 197.6 2.6 118.3
31 703.2 – 3733.2 4.2 1767.0 4.2 284.9
32 – – 3063.4 4.4 2344.3 4.3 300.9
37 – – 7482.0 5.2 5528.7 5.1 407.9
38 – – – 5.5 5627.0 5.3 426.6
39 – – – 5.5 – 5.5 445.5
50 – – – 7.7 – 7.6 742.2

a pure interleaving computation needs n steps to reach the property and can solve benchmarks up to nbr = 16. Uppaal per-
forms much worse on this example (time out at nbr = 15), since it works on an explicit representation of locations and it
computes all possible permutations of enabled transitions step by step. Our approach clearly outperforms RED (time out at
nbr = 9) as well which is based on a different fully symbolic representation and performs only pure interleaving.

The case study gear production stack (‘GPS’ in Table 1) [43] models an industrial workflow, and demonstrates the strength
of symbolic methods, such that RED (nbr = 39) achieves better results than the semi-symbolic model checker Uppaal (nbr =
18). However, our new symbolic approach can solve the complete benchmark set with up to nbr = 50 in both configurations
(parallelized interleaving and pure interleaving) in reasonable amount of time.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.24 (1-29)

24 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Table 2
Complete and incomplete TCTL model checking, runtimes in CPU seconds.

nbr. kro. fsmtmc-inter fsmtmc-para conv.

comp. inc. comp. inc.

CP
P

ti
m

el
oc

k 3 0.5 31.7 2.7 67.4 2.1 5.6
4 – 258.1 3.4 273.2 2.8 7.1
5 – – 2.6 – 2.1 9.7
20 – – 4.4 – 4.2 120.2
40 – – 7.8 – 7.3 474.7
50 – – 9.8 – 9.4 742.2

CS
M

A
ti

m
el

oc
k 3 0.1 – 11.4 – 16.7 4.0

7 0.4 – 3.5 – 37.3 9.4
8 – – 5.2 – 10.0 11.5
20 – – 13.9 – 21.2 52.2
40 – – 10.3 – 24.9 185.8
50 – – 7.8 – 12.5 285.6

In the two benchmarks GPS and toy no useful result is obtained from the model checker when some components are
put into the black box. The entries (NA) in columns ‘inc.’ mean that the benchmarks are not applicable for black box model
checking. For all following benchmarks we considered both complete and incomplete versions.

The arbiter example [1,2] models a system of nbr processes controlled by a distributed arbiter which asserts that a
critical resource can only be used by one component at a time. We have two versions of this benchmark, one correct
(‘arbiter’ in Table 1), where a safety property can be proven, and one erroneous version (‘arbiter error’ in Table 1), where
several processes can access the critical resource at the same time, and thus, the safety property is falsified. Both versions
can be modelled as incomplete systems where nbr − 2 processes are put into a black box. The complexity of the incomplete
distributed arbiter, however, increases with increasing nbr. It can be seen that our model checker (FSMTMC-PARA nbr = 15
and FSMTMC-INTER nbr = 19) outperforms the reference tools Uppaal (nbr = 6) and RED (nbr = 6) on complete systems.
Considering incomplete systems, our tool FSMTMC is able to prove validity of the property for the correct version and
non-realisability for the erroneous version for the complete benchmark set (up to nbr = 50) within moderate CPU times.

On the leader election benchmark [26] (‘leader’ in Table 1), which models a timed leader election in a ring protocol, we
check whether a leader is found within a given time limit. This is not the case, such that the property is falsified. Uppaal
(up to nbr = 10) and RED (up to nbr = 5) are able to solve larger systems than FSMTMC which can only solve systems with
nbr = 3 processes. By putting nbr − 3 processes into a black box, we abstracted the complete system into an incomplete
one, however, we are able to prove non-realisability of the safety property. (Nevertheless, the complexity of the white box
increases with nbr.) Now FSMTMC is able to finish the verification runs for all instances of the benchmark set.

The communicating parallel processes [2] includes nbr processes which synchronise via actions. On this system we per-
form a backward reachability analysis verifying a safety property (‘CPP reach’ in Table 1) and full TCTL model checking (‘CPP
timelock’ in Table 2). For the reachability analysis on the complete systems, parallelized interleaving semantics enhances the
performance of our tool which can solve more benchmarks (up to nbr = 38 for parallelized interleaving and up to nbr = 37
for pure interleaving) than the competitors (Uppaal up to nbr = 31 and RED up to nbr = 3). The incomplete CPP benchmarks
can all (up to nbr = 50) be solved by our model checker. Additionally to checking a safety property, we check for time di-
vergence (absence of time locks) with the property �TL = AG(EF{=1}true) which requires full TCTL and thus, can be verified
neither with Uppaal nor with RED. Compared to the tool Kronos, which explicitly computes the product automaton, we can
solve more instances of the complete system (nbr = 4 instead of nbr = 3) and for the incomplete systems our tool has no
difficulties in proving non-realisability of �TL for the complete benchmark set.

The CSMA benchmark [44] (‘CSMA timelock’ in Table 2) is a system with several senders trying to access a single
multi-access bus and is tested for time divergence with the property �TL . Here, on the complete system our tool cannot
solve any instance whereas Kronos can solve the system with up to nbr = 7 components. However on the incomplete system,
where nbr−2 senders are put into a black box (the complexity of the bus increases with nbr), we can prove non-realisability
of the property on all benchmarks.

Altogether the experimental evaluation shows that semi-symbolic model checkers like Uppaal are really fast on examples
with a smaller number of components. However, when the number of components gets larger leading to a large number
of locations in the parallel composition of the components, our methods benefit from the symbolic representation which
are able to represent both the discrete and the continuous part of the state space using a single data structure (LinAIGs).
Moreover, we profit from a clever formulation of the continuous and discrete predecessor steps with a minimized number
of quantifications of real variables (using suitable substitution operations). Whenever the model under consideration allows
parallelism of conflict-free non-synchronising transitions, model checking may be considerably accelerated using FSMTs
simulating parallelized interleaving behaviour. In addition, the experiments for incomplete timed systems show that in
many cases we were able to prove non-realisability or validity of interesting TCTL properties. Abstraction of components
into Black Boxes may accelerate model checking dramatically, since abstracted state bits and clocks do not contribute to the
state space representations.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.25 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 25
11. Conclusions

We introduced a new formal model to represent real-time systems, the finite state machine with time, which is well-
suited for fully symbolic verification algorithms. We presented a backward model checking algorithm to verify complete
FSMTs and incomplete FSMTs where some part of the system is unknown and communicates with the known system over
shared integers and urgent and non-urgent synchronisation. For a given TCTL property and an incomplete FSMT our model
checking algorithm can prove non-realisability (there is no black box implementation such that the property is satisfied)
and validity (the property is satisfied for all possible black box implementations). In order to verify timed automata with
our algorithm we presented two different methods to convert timed automata into FSMTs. The resulting FSMT has either
a pure interleaving behaviour or a parallelized interleaving behaviour. The experimental results on complete systems show
that our approach outperforms other state-of-the-art model checkers due to its fully symbolic data structure and the usage
of parallelized interleaving. On incomplete systems we are able to prove interesting properties early when parts of the over-
all system may not yet be finished. Additionally, the results demonstrate that fading out complete components of a timed
system dramatically reduces the complexity of the system, and thus, the verification effort.

Appendix A. Conversion of complete timed automata into systems of FSMTs

In Section 6 we showed how to translate a timed system into a system of FSMTs, based on an example. In this section we
give the formal details of the translation resulting in a system of FSMTs simulating pure interleaving behaviour (Section A.2)
or producing a system of FSMTs simulating parallelized interleaving behaviour (Section A.3).

A.1. First steps of translation

We consider a system of p timed automata
{

TA1, . . . ,TAp
}

. The locations of timed automaton TAq = 〈L(q), l(q)
0 , X (q), Act,

Int, lb, ub, E(q)〉(1 ≤ q ≤ p) are encoded with boolean state variables y(q)
1 , . . . , y(q)

lq
(the location bits) for which we use a

logarithmic encoding with lq = ⌈
log(|L(q)|)⌉. The sets of location bits of two different timed automata are disjoint. The inte-

ger variable inti with (1 ≤ i ≤ r) occurring in the timed system is replaced by a binary encoding of boolean state variables
b(i)

1 , . . . , b(i)
f i

(the integer bits). The location bits and the integer bits together form the set of state variables {y1, . . . , yl}.

A timed automaton TAq has a total of mq := |E(q)| transitions. Assume that transition i in TAq is a transition with
the discrete location (ε

(i,s)
1 , . . . , ε(i,s)

lq
) as source and the discrete location (ε

(i,d)
1 , . . . , ε(i,d)

lq
) as destination. Let the tran-

sition i be labelled with a guard g(q)

i and a reset set r(q)

i ∈ 2{x1,...,xn} . The guard g(q)

i is extended by the constraint
that the source of its corresponding edge is location (ε

(i,s)
1 , . . . , ε(i,s)

lq
), i.e., it is changed to the new guard g′(q)

i :=
g(q)

i ∧
(

(y(q)
1)ε

(i,s)
1 ∧ . . . ∧ (y(q)

lq
)
ε

(i,s)
lq

)
.15

A.2. Modifications for pure interleaving behaviour

In order to ensure pure interleaving behaviour we add different encodings of new input variables to the guards of
non-synchronising transitions in different components such that they are never enabled at the same time. For this we use
new input variables {el−1, . . . , e0}, l = �log(p)� in a system of p timed automata and we add different assignments for these
new input variables to the guards of such transitions: For each non-synchronising transition i in a timed automaton TAq

we add these input variables to the guard g′(q)

i and obtain a new guard g′′(q)

i = g′(q)

i ∧ (e
ql−1
l−1 ∧ . . . ∧ eq0

0) with bin(q) =
(ql−1, . . . , q0). (bin(q) is the binary representation of q.)

Determinism for FSMTs is guaranteed by different assignments of new input variables added to the non-disjoint guards
of transitions with the same source. We use a colouring algorithm to determine the number of needed input variables. For a
set of t transitions with the same source we build a graph with one node for each transition and we add an edge between
two transitions e1 and e2 iff e1 and e2 are non-disjoint. On the resulting graph we apply a colouring algorithm [45]. If
col is the number of colours needed for colouring, then we need �log(col)� input variables to make the guards disjoint.
These input variables can be shared within a timed automaton but must not be shared among different timed automata.
A timed automaton TAq requires t(q) = �log(col(q)

max)� input variables to guarantee determinism, where col(q)
max is the maximum

number of colours occurring for transitions with the same source. Adding assignments to new input variables as sketched
above leads to new guards g′′′(q)

i for transitions i in timed automaton TAq .
In order to allow synchronisation without actions in the FSMT, (1) we have to guarantee that transitions, labelled with

the same synchronisation action, are enabled at the same time while (2) all other transitions are disabled. Let A(act) be
the set of timed automata synchronising over action act and let �q(act) be the set of transitions in TAq ∈ A(act) which

15 Us usual, for a boolean variable y, y1 = y and y0 = ¬y.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.26 (1-29)

26 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
synchronise over act. First, to guarantee that in each synchronising timed automaton TAq ∈ A(act), a transition j labelled
with act is enabled, a synchronisation condition sync(act) = ∧

q
TAq∈ A(act)

∨
j

j∈ �q(act)
g′′′(q)

j has to be computed. The predi-

cate sync(act) evaluates to true when in each timed automaton from A(act) one synchronising transition is enabled. When
added to a guard of a transition synchronising over act, sync(act) ensures that this transition can only be taken when
in each other component, synchronising over act, a transition which synchronises via act is taken simultaneously. Sec-
ond, using the input variables {el−1, . . . , e0}, with l = �log(p)� in a system of p timed automata, previously introduced to
enforce interleaving behaviour, a condition inter(act) = ∨

q
TAq∈ A(act)

(e
ql−1
l−1 ∧ . . . ∧ eq0

0) (bin(q) = (ql−1, . . . , q0) is the binary

representation of q) is computed which ensures that no non-synchronising timed automaton is able to take a transition
while others synchronise. The guard g′′′(q)

i of each transitions i ∈ �q(act) for all q, with TAq ∈ A(act) has to be replaced
by g′′′′(q)

i = sync(act) ∧ inter(act) Using the extended guards, synchronising transitions are enabled at the same time, and
due to previous modification steps, for interleaving behaviour and for determinism, no other transition is enabled while
synchronisation takes place.

In order to define transition functions for FSMTs which define a successor state for each state, we introduce a self loop
to each location with the conjunction of the negated guards of all outgoing transitions of this location, thus the self loop of
a location is enabled whenever no other outgoing transition is enabled.

After these transformations we can build the transition functions, reset conditions and urgency predicate to get an FSMT
representation of the timed system with pure interleaving behaviour. This is shown in Section 6.4.

A.3. Modifications for parallelized interleaving behaviour

To avoid the problem of reaching more states than allowed by the semantics of interleaving caused by resets of clock
variables (see Section 5), we force the timed system to simulate a pure interleaving behaviour in such cases by adding
read/write-enable numbers for clock variables. Assume q timed automata TAi1 , . . . , TAiq having transitions which both read
and reset a clock variable xi at the same time. Then we need �log(q + 2)� additional input variables to encode read/write-
enable numbers rwxi . With the following approach these read/write-enable numbers inhibit that transitions reading xi and
transitions resetting xi are enabled at the same time: Each guard of a transition in TAik (1 ≤ k ≤ q) with transitions reading
and resetting xi is extended by ‘rwxi = bin(k + 1)’. The guard of each transition in some timed automaton from TA1, . . . , TAp
that only reads xi (only resets xi) is extended by ‘rwxi = bin(0)’ (‘rwxi = bin(1)’). Note that enabling parallel transitions only
reading xi or enabling parallel transitions only writing xi does not cause a problem. (All writes set the clock value to the
same value 0.)

Another conflict of the same type may occur with integers (see Section 5). For each integer inti we introduce a
read/write-enable number rwinti . The guard of each transition reading and not writing the value of integer inti is extended
by ‘rwinti = bin(0)’. Assume q timed automata TAi1 , . . . , TAiq updating inti . Each guard of a transition in TAik (1 ≤ k ≤ q)
which updates inti is extended by ‘rwinti = bin(k)’. This makes it impossible that two timed automata write inti at the same
time, since the corresponding guards cannot be enabled at the same time. Equally it is impossible that in the same step one
timed automaton reads an integer and another one writes on it.

In order to give each component the non-deterministic choice to stay in its current location during a discrete step, we
introduce a self loop with guard ‘true’ to every location in the automaton. By taking this transition the automaton does not
leave the current location and does no assignments to clocks or integer variables. Then, to introduce determinism we do
the same modifications using input variables as we have done for pure interleaving behaviour in Section A.2.

Synchronisation is realised as for pure interleaving behaviour (Section A.2), except that here, synchronisation may take
place parallel to other discrete transitions. To ensure that transitions which synchronise via a synchronisation action act are
taken in parallel, the guards of all these transitions are replaced by the synchronisation condition sync(act). The condition
includes guards which are already extended by the encoding of the source location, the input variables used to solve
conflicts on integers and clocks, and the input variables dedicated to solve non-determinism. The condition inter(act) is not
needed here, since other discrete transitions can taken at the same time.

The modifications to ensure completeness of the transition functions of resulting FSMTs are equivalent to Section A.2.
The resulting system is deterministic and has a parallelized interleaving behaviour. In the following section we show

how to compute transition functions, reset conditions and a global invariant.

A.4. Computation of a symbolic representation

The state variables Y = {y1, . . . , yl} of the FSMT result from the encoding of integers and locations. The set of clock
variables X = {x1, . . . , xn} of the FSMT is identical to the set of clock variables in the underlying timed system. In the pure
interleaving case, the input variables I = {i1, . . . , ih} contain the variables used to ensure interleaving behaviour and the
variables resolving non-determinism. In the parallelized interleaving case, the input variables consist of the variables solving
conflicts on integer and clock variables and the variables guaranteeing determinism.

Let g(q)

i be the new extended guards for transitions i of TAq (from (ε(i,s)
1 , . . . , ε(i,s)

lq
) to (ε(i,d)

1 , . . . , ε(i,d)

lq
)), which contain

the location encoding, the assignments of the inputs used for interleaving behaviour, determinism and synchronisation, in

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.27 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 27
the pure interleaving case as computed in Section A.2, or which contain the location encoding, the assignments of the inputs
used for solving integer conflicts and clock conflicts, determinism and the synchronisation, in the parallelized interleaving

case, as computed in Section A.3. Based on the these guards g(q)

i it is easy to compute the transition functions for state
bits encoding locations of TAq . We have to consider m′

q transitions for TAq (including new self loops added in Section A.2

or A.3). W.l.o.g. let y1, . . . , yk , with k ≤ l, be the state variables used for location encoding (location bits) and in a system
which includes integer variables yk+1, . . . , yl be the state variables used for integer encoding (integer bits). The transition

function δ(q)

j (1 ≤ j ≤ k) computes when the location bit j in the modified automaton TAq is set to true. (Assume that the
set of all input variables we have added according to Section 6.2 or 6.3 is {i1, . . . , ih}.)

δ
(q)

j (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =
∨

1≤i≤m′
q

ε
(i,d)
j =1

g(q)

i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)

Transition function δr (k + 1 ≤ r ≤ l) defines the value an integer bit r (integer bit) is updated to, and is defined for the
complete system, as an integer variable may be updated in each component. When taking a transition, an integer int j is
assigned to an arbitrary arithmetic expression over integer variables and integer constants, or it remains unchanged. W.l.o.g.
let e1, . . . , esq (sq ≤ m′

q) be the transitions in TAq which update integer int j , and esq+1, . . . , em′
q

be the transitions in TAq with
no updates on int j .

W.l.o.g. let yr be the ith encoding variable of integer int j , and icr
t be the predicate, state variable yr is updated to, on

transition et . If int j is updated to an integer constant, icr
t is a boolean value. If an arithmetic expression is assigned to int j ,

icr
t is the ith bit of the right-hand side of the assignment.

δr(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)

=
p∨

q=1

∨
1≤t≤sq

(gq
t (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) ∧ icr

t)

∨
p∨

q=1

∨
1≤t≤sq

(gq
t (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) ∧ yr

Besides the transition functions we need the reset functions for clocks. The following function indicates when the clock
variable xi is reset in TAq:

reset(q)
xi

(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =
∨

1≤i≤m′
q

xi∈r(q)

i

g(q)

i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)

As given by Definition 8, the overall reset function for a clock xi is computed by resetxi = ∨p
q=1reset(q)

xi
.

The init-predicate of an FSMT contains a predicate for the initial location encoding, y
ε init

1
1 ∧ . . .∧ y

ε init
k

k , a predicate initialis-

ing each integer with its lower bound, y
ε lb

k+1
k+1 ∧ . . . ∧ y

ε lb
l

l , and constraints initialising each clock variable with 0, ∧n
i=1(xi = 0).

init(x1, . . . , xn, y1, . . . , yl) = y
εinit

1
1 ∧ . . . ∧ y

εinit
k

k ∧ y
ε lb

k+1
k+1 ∧ . . . ∧ y

ε lb
l

l ∧
n∧

i=1

(xi = 0)

The predicate urgent indicates when an urgent transition in the FSMT is enabled. W.l.o.g let e1, . . . , etq (tq ≤ mq) be the
urgent transitions in TAq .

urgent(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =
p∨

q=1

tq∨
j=1

gq
j (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)

All these components of an FSMT can be extracted from the modified timed automata, resulting in either an FSMT
simulating pure interleaving behaviour or an FSMT simulating parallelized interleaving behaviour.

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.28 (1-29)

28 G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–•••
Appendix B. Brief benchmark description

In this section we give a brief description of the benchmarks. Detailed information can be found at http :/ /abs .informatik.
uni-freiburg .de /morbe /scp /scp .html.

The first benchmark used is the toy example [1] consisting of a network of n identical timed automata. Each component
has three different locations and communication is done over a shared integer variable on which each component writes its
process id.

The gear production stack benchmark (GPS) [43] models a pipeline-like architecture sequentialising a series of stations
(automata), each with an own specialized workpiece production method. A loaded workpiece is passed from one station to
the next one, and has to traverse all stations in order to be finished.

In the arbiter benchmark a set of n similar processes [1,2] is controlled by a distributed arbiter consisting of n + 1
components. Each process synchronises with one component of the arbiter. Using a shared integer variable it is asserted
that only one component can enter a critical region at the same time. For the incomplete version we can put n −2 processes
into a black box.

The Leader Election benchmark [26] models a timed leader election in a ring protocol. Each of the n candidates synchro-
nises with its neighbours and shared integer variables are used to pass data from one candidate to the other. An incomplete
system consists only of three components which however increase in complexity with higher n.

In the communicating parallel processes [2] (CPP) benchmark a ring of several processes (n units) is modelled. Each
component communicates with its neighbours via synchronisation actions. On this benchmark we check two different prop-
erties, one safety property and a property checking for divergence of time.

References

[1] G. Morbé, F. Pigorsch, C. Scholl, Fully symbolic model checking for timed automata, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided Verification,
CAV, in: Lect. Notes Comput. Sci., vol. 6806, Springer, 2011, pp. 616–632.

[2] G. Morbé, C. Scholl, Fully symbolic TCTL model checking for incomplete timed systems, in: H. Treharne, S. Schneider (Eds.), Automated Verification of
Critical Systems 2013, AVoCS, vol. 66, EASST, Guildford, Surrey, United Kingdom, 2013.

[3] R. Alur, Timed automata, in: Proceedings of the 11th International Conference on Computer Aided Verification, CAV’99, 1999, pp. 8–22.
[4] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[5] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, B. Wirtz, Exact state set representations in the verification

of linear hybrid systems with large discrete state space, in: Proc. of ATVA, in: Lect. Notes Comput. Sci., vol. 4762, Springer, Berlin/Heidelberg, 2007,
pp. 425–440.

[6] C. Scholl, S. Disch, F. Pigorsch, S. Kupferschmid, Computing optimized representations for non-convex polyhedra by detection and removal of redundant
linear constraints, in: Tools and Algorithms for the Construction and Analysis of Systems, in: Lect. Notes Comput. Sci., vol. 5505, Springer, 2009,
pp. 383–397.

[7] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl, U. Waldmann, B. Wirtz, Exact and fully symbolic verification of linear hybrid
automata with large discrete state spaces, Sci. Comput. Program. 77 (10–11) (2012) 1122–1150.

[8] M. Bozzano, R. Bruttomesso, A. Cimatti, T.A. Junttila, P. van Rossum, S. Schulz, R. Sebastiani, MathSAT: tight integration of SAT and mathematical
decision procedures, J. Autom. Reason. 35 (1–3) (2005) 265–293.

[9] B. Dutertre, L. de Moura, A fast linear-arithmetic solver for DPLL(T), in: T. Ball, R. Jones (Eds.), CAV, in: Lect. Notes Comput. Sci., vol. 4144, Springer,
Berlin/Heidelberg, 2006, pp. 81–94.

[10] R. Loos, V. Weispfenning, Applying linear quantifier elimination, Comput. J. 36 (5) (1993) 450–462.
[11] K.G. Larsen, P. Pettersson, W. Yi, Uppaal in a nutshell, Int. J. Softw. Tools Technol. Transf. 1 (1–2) (1997) 134–152.
[12] G. Behrmann, A. Cougnard, R. David, E. Fleury, K.G. Larsen, D. Lime, Uppaal-Tiga user-manual.
[13] S. Bornot, J. Sifakis, S. Tripakis, Modeling urgency in timed systems, in: COMPOS, in: Lect. Notes Comput. Sci., vol. 1536, Springer, 1997, pp. 103–129.
[14] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, Inf. Comput. 104 (1993) 2–34.
[15] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Inf. Comput. 111 (1992) 394–406.
[16] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and Mind Series) The MIT Press, 2008.
[17] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Logic of Programs, 1982,

pp. 52–71.
[18] A. Mishchenko, S. Chatterjee, R. Jiang, R.K. Brayton, FRAIGs: a unifying representation for logic synthesis and verification, Tech. rep., EECS Dept., UC

Berkeley, 2005.
[19] F. Pigorsch, C. Scholl, S. Disch, Advanced unbounded model checking based on AIGs, BDD sweeping, and quantifier scheduling, in: FMCAD, IEEE Com-

puter Society, 2006, pp. 89–96.
[20] G. Behrmann, A. David, K.G. Larsen, A tutorial on uppaal, in: M. Bernardo, F. Corradini (Eds.), International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM-RT 2004. Revised Lectures, in: Lect. Notes Comput. Sci., vol. 3185, Springer Verlag, 2004,
pp. 200–237.

[21] K.G. Larsen, J. Pearson, C. Weise, W. Yi, Clock difference diagrams, Nord. J. Comput. 6 (1999) 271–298.
[22] F. Wang, Efficient verification of timed automata with BDD-like data structures, Int. J. Softw. Tools Technol. Transf. 6 (2004) 77–97.
[23] J. Møller, J. Lichtenberg, H.R. Andersen, H. Hulgaard, Difference decision diagrams, in: Computer Science Logic, The IT University of Copenhagen,

Denmark, 1999.
[24] K.G. Larsen, F. Larsson, P. Pettersson, W. Yi, Efficient verification of real-time systems: compact data structure and state-space reduction, in: Proceedings

of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, IEEE Computer Society, Washington, DC, USA, 1997, p. 14.
[25] S.A. Seshia, R.E. Bryant, Unbounded, fully symbolic model checking of timed automata using Boolean methods, in: W.A. Hunt Jr., F. Somenzi (Eds.),

Computer Aided Verification, Proceedings of the 15th International Conference, CAV 2003, Boulder, CO, USA, July 8–12, 2003, in: Lect. Notes Comput.
Sci., vol. 2725, Springer, 2003, pp. 154–166.

[26] R. Ehlers, D. Fass, M. Gerke, H.-J. Peter, Fully symbolic timed model checking using constraint matrix diagrams, in: RTSS, 2010, pp. 360–371.
[27] A.W. Mazurkiewicz, Basic notions of trace theory, in: REX Workshop, in: Lect. Notes Comput. Sci., vol. 354, 1988, pp. 285–363.
[28] D. Peled, All from one, one for all: on model checking using representatives, in: CAV, in: Lect. Notes Comput. Sci., vol. 697, Springer, 1993, pp. 409–423.

http://abs.informatik.uni-freiburg.de/morbe/scp/scp.html
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib66736D745F636176s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib66736D745F636176s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib62625F66736D745F61766F6373s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib62625F66736D745F61766F6373s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74615F616C75725F6361763939s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74615F616C75725F64696C6C5F6A6F75726E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F61747661s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F61747661s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F61747661s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F7461636173s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F7461636173s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F7461636173s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F6A6F75726E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6C696E6169675F6A6F75726E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6D617468736174s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6D617468736174s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib64706C6C5F74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib64706C6C5F74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7175616E745F776569735F6C6F6F73s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7570705F6E75747368656C6Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib757267656E63795F626F726E6F74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7463746C5F616C75725F636F75725F64696C6Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7463746C5F68656E7A5F796F76696E655F736966616B6973s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib626F6F6B5F7072696E6369706C6573s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib63746C5F636C61726B65s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib63746C5F636C61726B65s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib4D434A423035s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib4D434A423035s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib5053443036s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib5053443036s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7570705F747574s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7570705F747574s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7570705F747574s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6364645F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib637264s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6464645F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6464645F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73686F72745F70617468s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73686F72745F70617468s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7365736869615F627279616E74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7365736869615F627279616E74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib7365736869615F627279616E74s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib636D64s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib706172745F6F726465725F7265645F6D617As1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib706172745F6F726465725F7265645F70656C6564s1
http://abs.informatik.uni-freiburg.de/morbe/scp/scp.html

JID:SCICO AID:1926 /FLA [m3G; v1.159; Prn:24/08/2015; 12:13] P.29 (1-29)

G. Morbé, C. Scholl / Science of Computer Programming ••• (••••) •••–••• 29
[29] K. Yorav, O. Grumberg, Static analysis for state-space reductions preserving temporal logics, Form. Methods Syst. Des. 25 (2004) 67–96.
[30] K.G. Larsen, B. Thomsen, A modal process logic, in: LICS, 1988, pp. 203–210.
[31] K.G. Larsen, L. Xinxin, Equation solving using modal transition systems, in: LICS, 1990, pp. 108–117.
[32] G. Bruns, P. Godefroid, Model checking partial state spaces with 3-valued temporal logics, in: CAV, 1999, pp. 274–287.
[33] M. Huth, R. Jagadeesan, D. Schmidt, Modal transition systems: a foundation for three-valued program analysis, in: Europ. Symp. on Programming,

vol. 2028, Springer, 2001, p. 155.
[34] M. Chechik, B. Devereux, S.M. Easterbrook, A. Gurfinkel, Multi-valued symbolic model-checking, ACM Trans. Softw. Eng. Methodol. 12 (4) (2003)

371–408.
[35] T. Nopper, C. Scholl, Approximate symbolic model checking for incomplete designs, in: FMCAD, in: Lect. Notes Comput. Sci., vol. 3312, Springer Verlag,

2004, pp. 290–305.
[36] T. Nopper, C. Scholl, Symbolic model checking for incomplete designs with flexible modeling of unknowns, IEEE Trans. Comput. 62 (6) (2013)

1234–1254.
[37] O. Kupferman, M.Y. Vardi, P. Wolper, Module checking, Inf. Comput. 164 (2) (2001) 322–344.
[38] E. Asarin, O. Maler, A. Pnueli, J. Sifakis, Controller synthesis for timed automata, in: Proceedings of the 5th IFAC Conference on System Structure and

Control, SSC’98, Elsevier Science, 1998, pp. 469–474.
[39] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for timed systems, in: STACS, in: Lect. Notes Comput. Sci., vol. 900, Springer, 1995,

pp. 229–242.
[40] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, D. Lime, UPPAAL-Tiga: time for playing games!, in: Proc. of CAV, CAV’07, Springer-Verlag,

Berlin, Heidelberg, 2007, pp. 121–125.
[41] R. Ehlers, R. Mattmüller, H.-J. Peter, Combining symbolic representations for solving timed games, in: K. Chatterjee, T.A. Henzinger (Eds.), Proc. of

FORMATS, in: Lect. Notes Comput. Sci., vol. 6246, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 107–121.
[42] H.-J. Peter, R. Ehlers, R. Mattmüller, Synthia: verification and synthesis for timed automata, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proc. of CAV, in:

Lect. Notes Comput. Sci., vol. 6806, Springer, 2011, pp. 649–655.
[43] H.-J. Peter, R. Mattmüller, Component-based abstraction refinement for timed controller synthesis, in: T. Baker (Ed.), Proceedings of the 30th IEEE

Real-Time Systems Symposium, RTSS 2009, December 1–December 4, 2009, Washington, D.C., USA, IEEE Computer Society, Los Alamitos, CA, USA,
2009, pp. 364–374.

[44] S. Yovine, Kronos: a verification tool for real-time systems, Int. J. Softw. Tools Technol. Transf. 1 (1997) 123–133.
[45] W. Klotz, Graph coloring algorithms, Tech. rep., TU Clausthal, Institute for Mathematics 2002.

http://refhub.elsevier.com/S0167-6423(15)00145-8/bib706174685F726564s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6D6F64616C5F7472616E735F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6D6F64616C5F7472616E735F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib706172745F6B726970s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6B7269705F6D6F64616Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6B7269705F6D6F64616Cs1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F33s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib73796D5F335F76616C5F33s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6D6F64756C655F636865636B696E67s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib636F6E74725F73796E5F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib636F6E74725F73796E5F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib636F6E74725F73796E5F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib636F6E74725F73796E5F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F32s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F33s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib74675F33s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib677073s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib677073s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib677073s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib6B726F6E6F735F31s1
http://refhub.elsevier.com/S0167-6423(15)00145-8/bib67726170685F636F6Cs1

	Fully symbolic TCTL model checking for complete and incomplete real-time systems
	1 Introduction
	2 Preliminaries
	2.1 Timed automata
	2.2 Timed computation tree logic
	2.3 The LinAIG data structure

	3 Related work
	4 Finite state machine with time
	5 Pure interleaving vs. parallelized interleaving
	6 From complete timed automata into complete FSMTs
	6.1 First steps of translation
	6.2 Modiﬁcations for pure interleaving behaviour
	6.3 Modiﬁcations for parallelized interleaving behaviour
	6.4 Computation of a symbolic representation
	6.5 Transformation of TCTL formulas

	7 TCTL model checking for complete real-time systems
	7.1 Eliminating the timing parameter in TCTL formulas
	7.2 Model checking algorithm
	7.3 Prec(Φ) - continuous step for Pre(Φ)
	7.4 Pred(Φ) - discrete step for Pre(Φ)

	8 Incomplete real-time systems
	8.1 Incomplete timed system
	8.2 Incomplete FSMT

	9 TCTL model checking for incomplete real-time systems
	9.1 Modelling incomplete systems
	9.2 Model checking algorithm
	9.3 Pre∀d(Φ) - discrete step for Pre∀(Φ)
	9.4 Pre∀c(Φ) - continuous step for Pre∀(Φ)
	9.5 Pre∃d(Φ) - discrete step for Pre∃(Φ)
	9.6 Pre∃c(Φ) - continuous step for Pre∃(Φ)
	9.7 Discrete and time steps together

	10 Experimental results
	10.1 Experimental setup
	10.2 Veriﬁcation of complete and incomplete real-time systems

	11 Conclusions
	Appendix A Conversion of complete timed automata into systems of FSMTs
	A.1 First steps of translation
	A.2 Modiﬁcations for pure interleaving behaviour
	A.3 Modiﬁcations for parallelized interleaving behaviour
	A.4 Computation of a symbolic representation

	Appendix B Brief benchmark description
	References

