
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Solving DQBF Through Quantifier Elimination

by

Karina Gitina Ralf Wimmer Sven Reimer
Matthias Sauer Christoph Scholl Bernd Becker

AVACS Technical Report No. 107
February 2015

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle,
Ernst-Rüdiger Olderog, Andreas Podelski

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© February 2015 by the author(s)

Author(s) contact: Karina Gitina (gitina@informatik.uni-freiburg.de).

Solving DQBF Through Quantifier Elimination

Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer,
Christoph Scholl, and Bernd Becker

Institute of Computer Science
Albert-Ludwigs-Universität Freiburg, Germany
{gitina | wimmer | reimer | sauerm | scholl |

becker}@informatik.uni-freiburg.de

Abstract. We show how to solve dependency quantified Boolean for-
mulas (DQBF) using a quantifier elimination strategy which yields an
equivalent QBF that can be decided using any standard QBF solver. The
elimination is accompanied by a number of optimizations which help
reduce memory consumption and computation time.
We apply our solver HQS to problems from the domain of verification
of incomplete combinational circuits and demonstrate the effectiveness
of the proposed algorithm. The results show enormous improvements
both in the number of solved instances and in the computation times
compared to existing work on validating DQBF.

1 Introduction

The last two decades have brought enormous progress in the solution of quantifier-
free Boolean formulas—the famous NP-complete SAT problem. While first solvers
for SAT were developed in the early 1960s, the actual breakthrough began in the
mid-1990s with techniques like conflict-driven clause learning, non-chronological
backtracking, watched-literal schemes and many more [1]. They reduced the
computational effort to decide the satisfiability of a given formula by many
orders of magnitude. Nowadays, formulas with millions of clauses and hundred
thousands of variables can be solved.

These algorithmic advances paved the way to a successful adoption of SAT-
based techniques in a wide range of applications, among others: hard- and software
verification (e. g., bounded model checking [2, 3]), test pattern generation [4, 5],
and planning [6].

At the same time it was realized that other applications are hard to model
using quantifier-free formulas, but are expressible in a more natural and compact
way using quantified Boolean formulas (QBF). Many lessons learned from the
development of efficient SAT-solvers could be transferred to the quantified case.
Together with further improvements specific to QBF, QBF solvers are becoming
a serious possibility to tackle computationally hard problems [7].

The success of SAT- and QBF-based methods encourages us to investigate
even more complex Boolean decision problems. Deciding so-called dependency
quantified Boolean formulas (DQBF), which are a generalization of QBF, is

NEXPTIME-complete [8]. In constrast to QBF, where variable dependencies
always follow a linear order (each existential variable depends on all universal
variables left of its position in the quantifier prefix), the dependencies in DQBF
are explicitly stated by Henkin-quantifiers [9] allowing also non-linear dependen-
cies which are not expressible with QBF. For many relevant problems from this
complexity class there are natural transformations into equivalent DQBF prob-
lems. Examples are realizability of incomplete digital circuits [10], the analysis of
non-cooperative games with incomplete information [8], and certain bit-vector
logics [11, 12]. We expect—as it was the case with SAT and QBF—even more
applications to come with the availability of efficient DQBF solvers.

Currently the lack of efficient DQBF solvers severely limits its applicability
to practical problems. While Balabanov et al. [13] investigate the theory of
DQBF, a first extension of the QDPLL algorithm for deciding QBF to DQBF was
proposed by Fröhlich et al. [14], but without experimental evaluation. Finkbeiner
and Tentrup [15] gave a fast, but incomplete algorithm for the refutation of
DQBF, which is not able to give conclusive answers on satisfied instances. This
can easily be combined with complete DQBF solvers as a preprocessing step.
A basic variable elimination strategy is presented in [10] demonstrating the need
for DQBF formulations experimentally on a series of small incomplete circuits.
The DQBF formulations used in [10] solve the so-called realizability problem for
incomplete digital designs, i. e., they investigate the question whether missing
parts in a design can be implemented in a way such that the complete design
is equivalent to a given specification. For most instances, (approximate) QBF
formulations returned inconclusive answers, and only DQBF was able to prove
unrealizability of the incomplete design. Recently, Fröhlich et al. [16] presented
the DQBF solver iDQ, which applies similar instantiation-based techniques as
used in state-of-the-art decision procedures for effectively propositional logics [17];
it is the first publically available DQBF solver.

In this paper we present an elimination-based strategy for solving DQBF,
accompanied by several optimizations. Our strategy eliminates a minimum set of
variables that cause the non-linear dependencies. Hence, the elimination routine
is guided in order to obtain an easier-to-solve QBF instance. Once there are only
linear dependencies left, we employ a QBF solver for the remaining instance. The
elimination routine for both QBF and DQBF is based on And-Inverter-Graphs
(AIGs) [18, 19]. For this data structure we introduce an efficient algorithm for pure
and unit literal detection, which is employed between the elimination routines.

As reference application we use the analysis of incomplete digital circuits
as in [10, 15, 16]. These circuits contain parts which are not yet implemented:
so-called black boxes. An important question for an incomplete design is its realiz-
ability, which is also known as the partial equivalence checking problem (PEC) [20].
Incomplete designs with black boxes come into play, if already in an early stage
of development, when not all modules are available yet, verification techniques
are to be employed to find errors in the finished parts. Circuits can also be
incomplete because parts have been removed that are notoriously hard to verify
like multipliers or large memories, but that are expected not to influence the

2

property to be checked. Also for diagnostic purposes, the removal of parts of
a circuit can be beneficial. Previous SAT- and QBF-based approaches to the
PEC problem fail to provide accurate answers in case the design contains more
than one black box: Since the quantifiers in QBF are linearly ordered, the exact
dependencies of the black boxes on different subsets of the circuit’s signals cannot
be expressed [10], such that QBF can only serve as an approximate decision
method (like SAT as well).

In our experiments we show that our elimination-based approach improves
existing ones significantly: Our solver HQS (“Henkin Quantified Solver”) is able
to validate 50 % more benchmark instances than iDQ on the given benchmark
set and speeds up the computation time by up to four orders of magnitude.

This technical report is an extended version of [21], containing proofs of the main
theorems and additional experimental results in the appendix.

Organization of the paper In the following section we briefly introduce the
necessary foundations. In Section 3 we present our elimination strategy and
the complete algorithm for validating DQBF. An experimental evaluation and
comparison with iDQ follows in Section 4. The final Section 5 concludes the
paper and gives directions for future research.

2 Foundations

In this section, we briefly review the foundations of DQBF, QBF, and And-
Inverter Graphs (AIGs).

2.1 Dependency quantified Boolean formulas

Definition 1 (DQBF syntax). Let V = {x1, . . . , xn, y1, . . . , ym} be a set of
Boolean variables. A dependency quantified Boolean formula (DQBF) ψ over the
variables V has the following form:

∀x1∀x2 . . . ∀xn∃y1(Dy1)∃y2(Dy2) . . . ∃ym(Dym) : ϕ,

where Dyi ⊆ {x1, . . . , xn} for i = 1, . . . ,m and ϕ is a Boolean formula over V .
The set Dyi is called the dependency set of yi, and ∃yi(Dyi) is also called a
Henkin quantifier [9].

The part ∀x1 . . . ∃ym(Dym) is the quantifier prefix of ψ and ϕ its matrix. Often
it is assumed w. l. o. g. that ϕ is given in conjunctive normal form (CNF). A CNF
is a conjunction of clauses, which are disjunctions of variables or their negations
(literals). We fix the sets V ∃ψ = {y1, . . . , ym} of existential and V ∀ψ = {x1, . . . , xn}
of universal variables of ψ.

For a set V ′ ⊆ V of variables, let A(V ′) =
{
v : V ′ → {0, 1}

}
denote the set

of assignments of the variables in V ′.

3

Definition 2 (DQBF semantics). Let ψ = ∀x1 . . . ∀xn ∃y1(Dy1) . . . ∃ym(Dym) :
ϕ be a DQBF. It is satisfied iff for all i = 1, . . . ,m there are Boolean functions
syi : A(Dyi)→ {0, 1} such that replacing each yi in ϕ by (a Boolean expression
for) syi yields a tautology. The function syi is called a Skolem function for yi.

Currently there are three solving techniques known in the literature for vali-
dating DQBF: 1) search-based [14], 2) elimination-based [10], and 3) instantiation-
based [16]. In this paper, we utilize an elimination-based algorithm using AIGs
(cf. Section 2.3) as in [10].

An well considered special case of a DQBF is a QBF, in which the dependencies
of the existential variables on the universal ones induce a linear ordering. Its
syntax is typically defined as follows:

Definition 3 (QBF syntax). Let V = {x1, . . . , xn, y1, . . . , ym} be a set of
Boolean variables. A quantified Boolean formula (QBF) Ψ over the variables V
has the following form:

Ψ = ∀X1∃Y1∀X2∃Y2 . . . ∀Xk∃Yk : ϕ,

where X1, . . . , Xk is a partition of {x1, . . . , xn} and Y1, . . . , Yk is a partition of
{y1, . . . , ym} with Xi 6= ∅ for i = 2, . . . , k and Yj 6= ∅ for j = 1, . . . , k − 1. The
matrix ϕ is a Boolean formula over V .

Let Ψ be a QBF as in Definition 3. It is equivalent to the DQBF ψ =
∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ, where Dyi =

⋃`
k=1Xk with Y` being the

unique set with yi ∈ Y`.

Example 1. Consider the following DQBF:

ψ = ∀x1∀x2∃y1(x1)∃y2(x2) : ϕ .

The existential variables y1 and y2 depend only on one universal variable. There
is no QBF prefix exactly representing these dependencies.

Deciding whether a DQBF is satisfied is NEXPTIME-complete [8], whereas
deciding a QBF is “only” PSPACE-complete [22].

2.2 Variable elimination for DQBF

Elimination-based methods for propositional formulas are based on the elimination
of certain variables by combining cofactors of the formula in an appropriate way.
The authors in [10] present a DQBF algorithm based on variable elimination of
universal literals.

For a variable v ∈ V and a Boolean expression ψ over V \ {v}, let ϕ[ψ/v]
denote the expression which results from replacing all occurrences of v in ϕ by ψ.

4

Theorem 1 (Elimination of universal variables, [10]). Let Exi =
{
yj ∈

V ∃ψ
∣∣xi ∈ Dyj

}
be the set of existential variables which depend on the universal

variable xi. Then ψ is equivalent to the following DQBF:

ψ′ := ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn
∃y1(Dy1 \ {xi}) . . . ∃ym(Dym \ {xi})∃y′j(Dyj \ {xi})︸ ︷︷ ︸

for all yj ∈ Exi

:

ϕ[0/xi] ∧ ϕ[1/xi][y
′
j/yj ∀yj ∈ Exi].

Proof. To simplify notation, w. l. o. g. assume i = 1, i. e., we eliminate x1. Then
we have:

� ψ

⇔ ∃sy1,D1 , . . . , sym,Dm with � ∀x1 . . . ∀xn : ϕ[syj ,Dj/yj ∀yj ∈ V ∃ψ]

⇔ ∃sy1,D1
, . . . , sym,Dm with

� ∀x2 . . . ∀xn : ϕ[syj ,Dj/yj ∀yj ∈ V ∃ψ][0/x1] ∧ ϕ[syj ,Dj/yj ∀yj ∈ V ∃ψ][1/x1]

⇔ ∃sy1,D1
, . . . , sym,Dm with � ∀x2 . . . ∀xn :

ϕ[0/x1][syk,Dk/yk ∀yk ∈ V ∃ψ \ Ex1
][syj ,Dj |x1=0/yj ∀yj ∈ Ex1

]

∧ ϕ[1/x1][syk,Dk/yk ∀yk ∈ V ∃ψ \ Ex1
][syj ,Dj |x1=1/yj ∀yj ∈ Ex1

]

⇔ ∃sy1,D1
, . . . , sym,Dm with

� ∀x2 . . . ∀xn :
(
ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1]

)
[syk,Dk/yk ∀yk ∈ V ∃ψ \ Ex1

][syj ,Dj |x1=0/yj ∀yj ∈ Ex1
][syj ,Dj |x1=1/y

′
j ∀yj ∈ Ex1

]

⇔ � ∀x2 . . . ∀xn ∃yk(Dk)︸ ︷︷ ︸
for all yk 6∈Ex1

∃yj(Dj \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸
for all yj∈Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1]

⇔ � ∀x2 . . . ∀xn∃y1(D1 \ {x1}) . . . ∃ym(Dm \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸
for all yj ∈ Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1
].

ut

This proof was originally published in [10].

This elimination rule allows us to replace the DQBF at hand by an equivalent
one which contains one universal variable less—until a pure SAT formula is
obtained.

In general, the universal elimination comes at the price of additional existential
variables, which can be eliminated (like in QBF) if they depend on all universal
variables occurring in the formula:

5

Theorem 2 (Elimination of existential variables, [10]). Consider the fol-
lowing DQBF:

ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ

If Dyi = V ∀ψ , i. e., if yi depends on all universal variables, ψ is equivalent to:

∀x1 . . . ∀xn∃y1(Dy1) . . . ∃yi−1(Dyi−1
)

∃yi+1(Dyi+1
) . . . ∃ym(Dym) : ϕ[0/yi] ∨ ϕ[1/yi].

The algorithm in [10] uses the elimination of existential variables whenever
possible. Otherwise, all universal variables are eliminated until a SAT instance
remains, which is validated by a standard SAT-solver.

2.3 And-Inverter Graphs

And-Inverter Graphs (AIGs) [23, 18] are Boolean circuits composed solely of
AND gates with two inputs and inverters. They can be used for representing
arbitrary Boolean formulas. In contrast to BDDs [24], AIGs are not canonical—for
each propositional formula several structurally different AIG representations can
exist—allowing them to be potentially more compact than BDDs.

Example 2. In Fig. 1 a small AIG is shown. The white nodes represent the AND
gates and the small black nodes the inverter gates. The AIG represents the
function:

ϕ =

(((
(y1 ∧ x1) ∧ y1

)
∧ (y1 ∧ x2)

)
∧
(

(x1 ∧ y2) ∧ (x2 ∧ y2)
))

For readability reasons we write χ instead of ¬χ. By simple transformations
one can see that ϕ is equivalent to the CNF (y1 ∨ x1) ∧ (y1 ∨ x2) ∧ (y2 ∨ ¬x1) ∧
(y2 ∨ ¬x2).

A special case of AIGs are so-called Functionally Reduced And-Inverter
Graphs (FRAIGs) [25]. In contrast to AIGs a FRAIG is “pseudo-canonical”,
i. e., there are no two distinct gates in the FRAIG computing the same (or
inverse) function. However, FRAIGs still allow multiple structurally different
representations of the same function. FRAIGs efficiently support conjunction, dis-
junction and composition of Boolean functions as well as existential and universal
quantification of a single Boolean variable. Hence, FRAIGs have successfully
been employed in decision procedures for QBF [19] and DQBF [10]. In our
implementation we usually employ AIGs, which are converted into FRAIGs from
time to time. Since the distinction is not mandatory for our algorithms, we will
always refer in the following to AIGs in the meaning of “AIG or FRAIG”,

6

ϕ

y1 x1 x2 y2

Fig. 1. Example of an AIG for the function ϕ = (y1∨x1)∧(y1∨x2)∧(y2∨¬x1)∧(y2∨¬x2)

3 Improving DQBF solving

In this section we describe our improved method for elimination-based DQBF
solving, based on two cornerstones: 1) a sophisticated heuristics to determine
the next variable to be eliminated based on dependency graphs (cf. Section 3.1),
and 2) pure literal detection on AIGs (cf. Section 3.2). Furthermore, we utilize
techniques known from QBF to improve the scalability. The complete algorithm
is summarized in Section 3.3.

3.1 From DQBF to QBF

For QBFs, which exhibit a linearly ordered quantifier prefix, many efficient
solvers exist, both search-based (e. g., DepQBF [26]) as well as based on variable
elimination (e. g., AIGsolve [19, 27]). In order to benefit from the progress
these solvers made, we strive for turning the DQBF at hand into an equivalent
QBF by eliminating a small (or even minimum) set of universal variables which
are responsible for the DQBF’s non-linear dependencies. To do so, we define a
dependency graph representing the variable dependencies in a DQBF.

Definition 4. Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ be a DQBF. The
dependency graph of ψ is the directed graph Gψ = (V,E) with V = {y1, . . . , ym}
and E =

{
(yi, y`) ∈ V × V

∣∣Dyi 6⊆ Dy`

}
.

The intuition is that there is an edge from the node yi to y` in Gψ iff the
variable yi in ψ depends on some universal variables on which y` does not. This
implies that if there is an equivalent QBF prefix, then yi has to be placed right
of y` with the variables from Dyi \Dy` in between.

Based on dependency graphs and this observation we can detect whether
there is an equivalent QBF prefix for a given DQBF.

Theorem 3. A DQBF ψ has an equivalent QBF prefix iff Gψ is acyclic.

7

y1 y2

Fig. 2. Example of a dependency graph for ∀x1∀x2∃y1(x1)∃y2(x2) : ϕ

Proof. First let Ψ = ∀X1∃Y1∀X2 . . . ∃Yk : ϕ be a QBF that is equivalent to a
DQBF ψ, where X1, . . . , Xk is a partitioning of V ∀ψ and Y1, . . . , Yk a partitioning

of V ∃ψ . We have that (yi, y`) ∈ E iff there are j, j′ ∈ {1, . . . , k} with j > j′ and
yi ∈ Yj and y` ∈ Yj′ , i. e., there is only an edge from yi to yk if yk’s position in
the QBF-prefix is to left of the position of yi. Therefore Gψ is acyclic.

Now let Gψ be acyclic. We inductively construct an equivalent QBF-prefix
for ψ. Set G1 := Gψ. Since G1 is acyclic, there is a set Y1 6= ∅ of nodes (existential
variables) that do not have an out-going edge. All these variables have the same
dependency set. Assume the converse, then there are y, y′ ∈ V , y 6= y′, with
Dy 6= Dy′ . This implies Dy \ Dy′ 6= ∅ or Dy′ \ Dy 6= ∅, i. e., y or y′ has an
out-going edge, which contradicts the definition of Y1. We set X1 := Dy for
arbitrary y ∈ Y1.

Now assume, for some i ≥ 1, we have defined Gj , Xj , and Yj for all 1 ≤
j ≤ i. We remove from Gi all nodes in Yi together with their incident edges to
obtain Gi+1. Since Gi is acyclic, so is Gi+1. If Gi+1 is empty, we set ` := i+ 1
and terminate. Otherwise let Xi+1 6= ∅ be the set of nodes without out-going
edges. With the same argument as before, we can conclude that all nodes in Xi+1

have the same dependency set. We set Xi+1 := Dy \ (X1 ∪ · · · ∪Xi).
By this procedure we have defined the sets X1, . . . , Xk−1 and Y1, . . . , Yk−1. We

set X` := V ∀ψ \
⋃k−1
i=1 Xi. The QBF-prefix ∀X1∃Y1 . . . ∀Xk−1∃Yk−1∀Xk expresses

the same dependencies as the prefix of ψ. ut

Example 3. Consider the DQBF from Example 1: ψ = ∀x1∀x2∃y1(x1)∃y2(x2) : ϕ.
As discussed in the example this DQBF has no equivalent QBF prefix. The
corresponding dependency graph is given in Fig. 2. From Theorem 3 we see that
there is indeed no equivalent QBF prefix due to the cycle.

The following lemma and theorem lead us to a mechanism for obtaining a
QBF, given an arbitrary DQBF.

Lemma 1. Let ψ be a DQBF as before and Gψ = (V,E) its dependency graph.
Let y1 → y2 → · · · → yk → yk+1 = y1 be a cycle in Gψ of length k. Then there
is i ∈ {1, . . . , k} such that yi+1 → yi.

Proof. Let the cycle be given as above. Assume (yi+1, yi) 6∈ E for all 1 ≤ i ≤ k.
That means, Dyi+1

⊆ Dyi . Due to the transitivity of the subset relation we have

Dy1 = Dyk+1
⊆ Dyk ⊆ Dyk−1

⊆ · · · ⊆ Dy1 .

This implies Dy1 = Dy2 = · · · = Dyk .
On the other hand, yi → yi+1 implies Dyi 6⊆ Dyi+1

for all i = 1, . . . , k, i. e.,
Dyi 6= Dyi+1

, which is a contradiction. ut

8

Theorem 4. For a DQBF ψ, its dependency graph Gψ is cyclic iff there are
yi, yk such that Dyi 6⊆ Dyk and Dyk 6⊆ Dyi .

Proof. Lemma 1 implies that if Gψ is cyclic, then there are y, y′ with y → y′ and
y′ → y. The other direction is trivial. ut

To check whether a DQBF is actually expressible as QBF, one only has to
consider the dependencies between pairs of variables. This property can be used
to determine a minimum set of universal variables that have to be eliminated to
obtain an equivalent QBF, which can be solved by an arbitrary QBF solver.

We express the problem to determine such a minimum set as a partial MaxSAT
problem. MaxSAT is an extension to SAT, determining the maximum number of
simultaneously satisfied clauses of a Boolean formula in CNF. Partial MaxSAT
is a variation where clauses can be defined as hard or soft. Hard clauses must
be satisfied, otherwise the MaxSAT instance is unsatisfiable (as in pure SAT),
and soft clauses may be satisfied (as in pure MaxSAT). Many graph theoretic
problems, such as the Max-flow-min-cut problem can be expressed by MaxSAT
or its variations. The interested reader is referred to [1] for more details about
MaxSAT.

Our partial MaxSAT instance to determine the minimum dependency set to
be eliminated is built as follows: For each universal variable x ∈ V ∀ψ we introduce
a variable x̂ of the MaxSAT problem such that for an optimal solution x̂ = 1
means that x belongs to the set of variables to be eliminated.

For each binary loop consisting of existential variables y, y′ ∈ V ∃ψ with de-
pendency sets Dy, Dy′ we have to eliminate universal variables such that Dy

becomes a subset of Dy′ or vice versa. That means we either have to eliminate all
variables in Dy \Dy′ or all in Dy′ \Dy. This can be expressed as partial MaxSAT
as follows:

Let Cψ :=
{
{y, y′} ⊆ V ∃ψ

∣∣Dy 6⊆ Dy′ ∧Dy′ 6⊆ Dy

}
be the set of binary cycles

representing the hard constraint:

ζhardψ :=
∧

{y,y′}∈Cψ

(∧
x∈Dy\Dy′

x̂ ∨
∧

x∈Dy′\Dy

x̂
)
. (1)

The soft constraint for optimization is given by

ζsoftψ :=
∧
x∈V ∀ψ

¬x̂ . (2)

The MaxSAT solver determines an assignment ν of the variables such that ζhardψ

is satisfied and a maximum number of variables x ∈ V ∀ψ is assigned to 0. Hence,

we obtain a minimal set of universal variables {x ∈ V ∀ψ | ν(x̂) = 1} that has to be
eliminated in the DQBF ψ such that ψ can be expressed as QBF.

3.2 Unit and Pure Variables

The detection of unit and pure literals is a fundamental technique for search-based
QBF solvers which work on a formula in CNF.

9

The following definition holds for any propositional formula and defines a
semantic criterion for a unit or pure variable.

Definition 5 (Unit and pure variables). Let ϕ be a propositional formula
over the variable set V . A variable v ∈ V is positive (negative) unit in ψ, if
ϕ[0/v] (ϕ[1/v], resp.) is unsatisfiable.

The variable v ∈ V is positive (negative) pure in ψ, if ϕ[0/v] ∧ ¬ϕ[1/v]
(ϕ[1/v] ∧ ¬ϕ[0/v], resp.) is unsatisfiable.

In case we have detected a unit or pure variable, it can be eliminated as given
in the following theorem (cf. also [16]):

Theorem 5 (Elimination of unit and pure variables). Let ψ = Q : ϕ be a
DQBF over V and v ∈ V . We denote the quantifier prefix which results from Q
by removing all occurrences of v by Q \ {v}.

– If v is existentially quantified and positive (negative) unit, then ψ is equivalent
to Q \ {v} : ϕ|v=1 (=0).

– If v is universally quantified and positive or negative unit, then ψ is unsatisfied.
– If v is existentially quantified and positive (negative) pure, then ψ is equivalent

to Q \ {v} : ϕv=1 (=0).
– If v is universally quantified and positive (negative) pure, then ψ is equivalent

to Q \ {v} : ϕv=0 (=1).

Proof. Let Q : ϕ be the DQBF

ψ = ∀x1∀x2 . . . ∀xn∃y1(Dy1)∃y2(Dy2) . . . ∃ym(Dym) : ϕ.

– First assume, v is existentially quantified and positive unit. W. l. o. g. we assume
v = y1. ψ is satisfied iff there are Skolem functions sy1 , . . . , sym such that

ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym))

is a tautology. We proove the theorem by contradiction and assume that sy1 is
the constant 0 function. Then there exists an assignment ν of the universal
variables such that sy1(ν(Dy1)) = 0 hold. We have:

ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ(ν(x1), . . . , ν(xn), 0, sy2(ν(Dy2)), . . . , sym(ν(Dym)))

≡ ϕ|y1=0(ν(x1), . . . , ν(xn), sy2(ν(Dy2)), . . . , sym(ν(Dym)))

≡ 0 .

The last step holds due to the assumption that v = y1 is positive unit.
By appyling a constant 0 function, ψ is always unsatisfiable, which is a
contradiction to the assumption. Therefore sy1 is the constant 1 function, or
Q \ {v} : ϕ|v=1 is equivalent to ψ respectively. The proof in case that v is
existentially quantified and negative unit can be executed analogously.

10

– Now let v = x1 be universally quantified and positive unit. Q : ϕ is satisfied iff
there are Skolem functions sy1 , . . . , sym such that ϕ(x1, . . . , xn, sy1(Dy1), . . . ,
sym(Dym)) is a tautology. Now choose an arbitrary assignment ν of the universal
variables with ν(x1) = 0. We have

ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ(0, . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ ϕ|x1=0(ν(x2), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(ν(Dym)))

≡ 0 .

Again, the last step holds due to the assumption that v = x1 is positive unit.
Since ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym)) must be 1 for each assignment of
x1, . . . xn, Q : ϕ is not satisfied. The case that v is universally quantified and
negatively unit, is analoguous.

– Let v = x1 be universally quantified and positive pure, i. e., 2 ϕ|x1=0 ∧¬ϕ|x1=1.
This is equivalent to � ϕ|x1=0 ⇒ ϕ|x1=1 and to every satisfying assignment of
ϕ|x1=0 being also a satisfying assignment of ϕ|x1=1.
If Q\{x1} : ϕ|x1=0 is unsatisfied, then also Q : ϕ. So let Q\{x1} : ϕ|x1=0 be sat-
isfied. Then there are Skolem functions sy1 , . . . , sym for the existential variables
y1, . . . , ym such that ϕ|x1=0(x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym)) is a tautology

(with D′yi = Dyi \ {x1}). By assumption, ϕ|x1=1

(
x2, . . . , xn, sy1(D′y1), . . . ,

sym(D′ym)
)

is a tautology, too, and therefore also

(
x1 ∧ ϕ|x1=1(x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym))

)
∨(

¬x1 ∧ ϕ|x1=0(x2, . . . , xn, sy1(D′y1), . . . , sym(D′ym))
)

≡ ϕ(x1, . . . , xn, sy1(D′y1), . . . , sym(D′ym))

holds. Therefore, if Q \ {x1} : ϕ|x1=0 is satisfied, then also Q : ϕ. The proof
for negative pure universal variables can be carried out analogously.

– Finally let v = y1 be existentially quantified and positive pure. That means, as
for universal positive pure variables that every satisfying assignment of ϕ|y1=0

is also a satisfying assignment of ϕ|y1=1.
Assume that Q \ {∃y1} : ϕ|y1=1 is satisfied. So there are Skolem functions
sy2(Dy2), . . . , sym(Dym) such that ϕ|y1=1(x1, . . . , xn, sy2(Dy2), . . . , sym(Dym))
is a tautology. This is equivalent to ϕ(x1, . . . , xn, 1, sy2(Dy2), . . . , sym(Dym))
being a tautology. Therefore sy1(Dy1) = 1 is a Skolem function for y1 in ψ.
Now let ψ := Q : ϕ be satisfied. We have to show that sy1(Dy1) = 1 is
a Skolem function for y1 in ψ. If ψ is satisfied, there are Skolem functions
sy1(Dy1), . . . , sym(Dym) with ϕ(x1, . . . , xn, sy1(Dy1), . . . , sym(Dym)) being a
tautology. Let ν : V ∀ψ → {0, 1} be an arbitrary assignment of the universal
variables. Then we have

� ϕ(ν(x1), . . . , ν(xn), sy1(ν(Dy1)), . . . , sym(µ(Dym)))

11

If sy1(ν(Dy1)) = 0 holds, then ν is a satisfying assignment of ϕ|y1=0

(
x1, . . . , xn,

sy2(Dy2), . . . , sym(Dym)
)

and therefore by assumption also of ϕ|y1=1(x1, . . . , xn,
sy2(Dy2), . . . , sym(Dym)). If sy1(ν(D1)) = 1 holds, then ν is a satisfying assign-
ment of ϕ|y1=1(x1, . . . , xn, sy2(Dy2), . . . , sym(Dym)).
Hence every assignment ν satisfies ϕ|y1=1(x1, . . . , xn, sy2(Dy2), . . . , sym(Dym))
and sy2(Dy2), . . . , sym(Dym) are Skolem functions of Q \ {y1} : ϕ|y1=1.
The proof for existential negative pure variables is similar.

ut

QBF solvers employ a sufficient (but not neccessary) syntactic criterion to
determine unit and pure variables efficiently. A sufficient and necessary check is
usually too expensive, as in general it requires a check for satisfiability for each
variable.

Lemma 2 (Unit and pure variables in CNF). Given a Boolean formula ϕ
over variables V in CNF and v ∈ V , the variable v is positive (negative) unit,
if there exists a clause in ϕ consisting only of v (¬v). The variable v is positive
(negative) pure, if v occurs only positive (negative) in the whole CNF.

In search-based QBF solvers this check is performed dynamically by con-
sidering the CNF resulting from temporarily assigned variables. Furthermore,
detection of syntactic pure variables is a standard technique for SAT- and QBF-
preprocessors. There exists also sementic checks in preprocessors [27] which
require a SAT-check for each variable.

The elimination of unit and pure variables from a formula is particularly
beneficial for DQBF because it does not require the duplication of any variables,
but rather reduces both the number of variables and the size of the AIG.

Therefore we want to detect pure literals whenever possible between two
elimination steps. Unfortunately semantic checks are quite costly for large AIG
structures, and hence we prefer a syntactic check. However, the clause structure
is destroyed when using AIGs for representing the matrix, and thus these rather
cheap syntactic checks using clauses cannot be applied within our framework.
Instead we exploit the following syntactic criterion for AIGs:

Theorem 6 (Unit and pure variables in AIGs). Let ψ be a DQBF over
variables V with matrix ϕ and assume that ϕ is represented by an AIG. Let nv
be the input node corresponding to v ∈ V and nϕ the output node corresponding
to ϕ.

If there is a path from nv to nϕ without negation then v is positive unit. If
there is a path from nv to nϕ such that the only negation on this path appears
between nv and the first AND node, then v is negative unit.

If the number of negations on all paths from nv to nϕ is even, then v is
positive pure. If the number of negations is odd on all paths, v is negative pure.

Proof. First, we consider the case of a syntactically pure variable. We prove the
theorem by induction on the number of AND nodes in the AIG representation
of ϕ. We thereby restrict ourselves to the case of an even number of negations.
The other case of an odd number can be shown analogously.

12

ϕnϕ

nand

ϕ1 ϕ2

v

nv

ϕnϕ

nand

ϕ1 ϕ2

v

nv

Fig. 3. AIG representation of ϕ with non-negated (left) or negated (right) output edge

First we assume that the AIG does not contain any AND nodes, i. e., the root
node nϕ, which represents ϕ, is directly connected with the input node nv. This
edge is either negated or not. Therefore we have ϕ = v or ϕ = ¬v. In the former
case, the number of negations is even on all paths, and according to Theorem 5 we
have ϕ|v=0∧¬ϕ|x=1 = 0∧¬1 = 0 and v is positive pure. Analogously in the latter
case the number of negations is odd on all paths and ϕ|v=1∧¬ϕ|v=0 = 0∧¬1 = 0
hold. Hence, v is negative pure.

Now assume that we have shown the claim for all AIGs with up to n AND
nodes and that the AIG for ϕ consists of n+ 1 AND nodes. Then we have the
situation shown in Fig. 3 (left or right, depending on whether the output edge is
negated or not).

In case the output edge is not negated (Fig. 3 (left)) we have ϕ = ϕ1 ∧ ϕ2

or some expressions ϕ1 and ϕ2, corresponding to the inputs of node nand. As
the edge to the output node nϕ is not negated and all paths to nϕ contain an
even number of negations by assumption, all paths leading to nand also have to
exhibit an even number of negations. As the two sub-AIGs leading to the inputs
of nand contain at most n AND nodes, the induction hypothesis holds for them.
Therefore we have:

ϕ|v=0 ∧ ¬ϕ|v=1 ≡ (ϕ1 ∧ ϕ2)|v=0 ∧ ¬(ϕ1 ∧ ϕ2)|v=1

≡ ϕ1 |v=0 ∧ ϕ2 |v=0 ∧ (¬ϕ1 |v=1 ∨ ¬ϕ2 |v=1)

≡ (ϕ1 |v=0 ∧ ϕ2 |v=0 ∧ ¬ϕ1 |v=1) ∨ (ϕ1 |v=0 ∧ ϕ2 |v=0 ∧ ¬ϕ2 |v=1)

≡ (0 ∧ ϕ2 |v=0) ∨ (0 ∧ ϕ1 |v=0)

≡ 0.

So v is positive pure.
Accordingly, ϕ = ¬(ϕ1 ∧ϕ2) holds in case that the output edge is negated (cf.

Fig. 3 (right)). If all paths from nv to nϕ contain an even number of negations,
then all paths to nand contain an odd number of negations. For the sub-AIGs

13

corresponding to the inputs of nand the induction hypothesis holds and we obtain:

ϕ|v=0 ∧ ¬ϕ|v=1 ≡ ¬(ϕ1 ∧ ϕ2)|v=0 ∧ ¬¬(ϕ1 ∧ ϕ2)|v=1

≡ (¬ϕ1 |v=0 ∨ ¬ϕ2 |v=0) ∧ (ϕ1 |v=1 ∧ ϕ2 |v=1)

≡ (¬ϕ1 |v=0 ∧ ϕ1 |v=1 ∧ ϕ2 |v=1)(¬ϕ2 |v=0 ∧ ϕ1 |v=1 ∧ ϕ2 |v=1)

≡ (0 ∧ ϕ2 |v=1) ∨ (0 ∧ ϕ1 |v=1)

≡ 0 .

This shows that also in this case v is positive pure.
The proof for a syntatic unit variable is done in an analogous manner:
Again, we assume that the AIG does not contain any AND nodes, with root

node nϕ and input node nv, which is either negated or not. Therefore we have
ϕ = v or ϕ = ¬v. In the former case, there exists a path without any negation
and according to Theorem 5 ϕ|v=0 = 0 holds, hence v is positive unit. If we
assume ϕ = ¬v there exists only one negation between nv and the first AND
node. Analogously we have ϕ|v=1 = ¬1 = 0 and therefore a negative unit.

Now assume that we have shown this claim for all AIGs with up to n AND
nodes and that the AIG for ϕ consists of n+ 1 AND nodes as in Fig. 3 (left),
where w. l. o. g. we assume that there is a path without any negation through the
AIG representing ϕ1. Therefore v is positive unit in ϕ1 and hence ϕ1 |v=0 = 0
holds.

Then we obtain that v is positive unit in ϕ:

ϕ|v=0 ≡ (ϕ1 ∧ ϕ2)|v=0

≡ (ϕ1 |v=0 ∧ ϕ2 |v=0)

≡ (0 ∧ ϕ2 |v=0)

≡ 0 .

Analogously, assume a path in ϕ1, where there is exactly one negation between
nv and the first AND node. v is negative unit in ϕ1 and ϕ1 |v=1 = 0 holds.

Finally, according to Theorem 5 we obtain that v is negative unit in ϕ:

ϕ|v=1 ≡ (ϕ1 ∧ ϕ2)|v=1

≡ (ϕ1 |v=1 ∧ ϕ2 |v=1)

≡ (0 ∧ ϕ2 |v=1)

≡ 0 .

ut

By a recursive traversal of the AIG we can determine in O(|ϕ|+ |V |) variables
which are unit or pure according to Theorem 6. Here |ϕ| denotes the number of
AND-nodes in the AIG-representation of ϕ and |V | the number of variables it
depends on. Unit and pure variables are eliminated using Theorem 5.

Example 4. Consider again the AIG in Fig. 1. The syntactic check for purity
identifies variable y2 as positive pure because both paths from y2 to ϕ contain

14

Elimination loop

No

Eliminate
existential

(Theorem 2)

Apply QBF
solver for

(Theorem 3)

Choose next
universal variable

to eliminate
(Theorem 4)

Generate
dependency

graph G
(Definition 4)

Yes

Eliminate
universal

(Theorem 1)

Eliminate
unit/pure

(Theorem 5)

Preprocessing DQBF

G acyclic?

ψ

(Un-)satisfiable ψ

Gate
detection

Transform
into AIG

ϕ

ψ

ψ

Fig. 4. Algorithmic Flow

an even number of inverters (2 inverters each). The syntactic check fails for the
other three variables.

However, as the AIG represents the function (y1 ∨ x1) ∧ (y1 ∨ x2) ∧ (y2 ∨
¬x1)∧ (y2 ∨¬x2), it is easy to see that y1 is positive pure according to Lemma 2,
which is not detected by the syntactic AIG check.

Like on CNFs the syntactic check on AIGs is incomplete, but—as experiments
show—very fast and still detects the majority of all unit and pure variables.

3.3 Elimination-based algorithm

The elimination procedure including all improvements presented in this section
is illustrated in Fig. 4.

First, we utilize some basic preprocessing steps on the CNF, which are
known from QBF preprocessing, but have been adapted to the DQBF setting,
namely universal reduction [28], removal of equivalent variables, and unit literal
propagation.

After propagating all unit literals, we use the generalized universal reduction
rule for clauses [1, Section 23.5]. In QBF, a universal literal u can be deleted
from a clause if no existential literal in the clause depends on u, which can
be naturally extended to DQBF [13, Section 4], [16]. Additionally we detect
equivalent variables by analyzing the binary clauses of the formula and perform
corresponding replacements. We apply these techniques in alternation until the
CNF does not change anymore.

As a last preprocessing step we apply gate detection [19]: Tseitin-encoding [29]
introduces an auxiliary variable for each gate output and adds clauses which
encode the relationship between gate inputs and the gate output. We detect

15

these clauses for AND, OR, and XOR gates (with arbitrarily negated inputs),
remove the clauses for encoding the relationship between gate inputs and output,
and store the relationship directly. The result is a CNF plus a list of gates. After
preprocessing we create an AIG representation from the CNF. In this AIG, we
replace all literals representing a gate output by the function computed by its
gate using the compose operation on AIGs. In particular, there is no need for
explicit elimination of the internal auxiliary variables resulting from the Tsetin
encoding. The interested reader is referred to [19] for further details.

Before the main solving loop starts, we determine a dependency graph Gψ
(Definition 4), as described in Section 3.1. Based on Gψ we use the MaxSAT
formulation of Equations 1 and 2 to compute a minimal set of universal variables
whose elimination leads to a QBF problem. These universal variables are ordered
according to the number of copies of existential variables which would be intro-
duced by an elimination according to Theorem 1. However, we do not perform
these eliminations immediately. Rather, in the main solving loop we first check
for pure and unit literals of the current AIG (cf. Theorems 5 and 6). Additionally
we eliminate all existential variables depending on all universal variables using
Theorem 2.

In case Gψ is still cyclic, we then choose the next universal variable from the
ordered list computed above and eliminate it using Theorem 1.

Finally, when Gψ becomes acyclic, we build a QBF upon the linearized
dependency structure of the DQBF and employ a QBF solver. Here, we utilize
AIGsolve [27], which also uses AIGs, thus we can feed the remaining AIG
directly into this solver instead of transforming the AIG back into CNF.

Note, we also can stop the main loop if at any time an AIG representation of
the constant 0 (or 1) function is obtained (see also [10]). Variables which do not
occur in the support of the matrix can be removed from the quantifier prefix.

4 Experimental evaluation

We created a prototypic implementation in C++ of the previously described
techniques, called HQS. We used the library aigpp [18] for the manipulation of
AIGs and AIGsolve [27] as a QBF solver. antom [30] serves as the solver for
partial MaxSAT. For comparison, we took the only available DQBF solver iDQ
by Fröhlich et al. [16].

For evaluation we used the same 1100 PEC instances as [16].1 These instances
are PEC problems encompassing adders, arbiter implementations lookahead and
bitcell described in [31] as well as the circuit family pec xor from [15].2 The
additional 3 · 240 benchmarks Z4, comp, and C432 consist also of PEC problems
on circuits from the ISCAS 85 circuit library (cf. [32]).

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz, with
64 GB of main memory and Ubuntu Linux 12.04 in 64-bit mode as operating

1 Note that in spite of similar names, they differ from the instances used in [15].
2 In our presentation of the results we omit the 100 pec xor -2 instances as both iDQ

and HQS solved each instance in less than 0.05 seconds.

16

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

SAT UNSAT unknown

Fig. 5. Comparison of iDQ and HQS on all 1820 instances

system. We aborted all experiments whose computation time exceeded two hours
or which required more than 8 GB of memory.

Figure 5 compares the running times of iDQ and HQS on the considered
1820 benchmark instances. Note that the axes are in logarithmic scale. A marker
below the diagonal means that HQS was faster than iDQ, a marker above it
that iDQ was faster. A marker on the vertical (horizontal) lines denoted “TO”
and “MO” indicate that iDQ (HQS) ran out of time (memory, resp.). The
runtimes of HQS are clearly superior for almost all instances, on some instances
by four orders of magnitude. HQS solves all instances solved by iDQ and 520
additional ones. An overview on the results for the different benchmark classes is
given in Table 1. There we give the number of instances in a class and for both
solvers the numbers of solved and unsolved instances, additionally separated into
SAT/UNSAT instances and timout/memout. The columns “total time” give the
accumulated running time (in seconds) of the respective solver on those instances
which were solved by both solvers. It should be noted that HQS evaluates 1413
of 1555 solved instances (≈ 90 %) in less than 1 second (iDQ only 507 of 1035
instances). The time for solving the MaxSAT problem for choosing the variables
to eliminate was below 0.06 seconds for all instances. The time for syntactic
unit/pure checks was less than 4 % of the runtime of each instance.

There are a few instances on which iDQ is faster, in particular among the
z4, comp, and C432 instances. For these instances, iDQ needs only a single SAT
solver call to detect unsatisfiability—and therefore very little time. We could
integrate such a SAT solver call into our preprocessing routine; this would reduce
the running times for some instances without increasing it measurably for other
instances. A more detailed evaluation can be found in Appendix A.

17

Table 1. Experimental results

HQS
Benchmark #inst. solved (SAT/UNSAT) unsolved (TO/MO) total time

adder 300 300 (42/258) 0 (0/0) 9.72
bitcell 300 300 (7/293) 0 (0/0) 11.27
lookahead 300 300 (10/290) 0 (0/0) 23.17
pec xor 200 200 (24/176) 0 (0/0) 33.60
z4 240 240 (72/168) 0 (0/0) 4.86
comp 240 155 (39/116) 85 (9/76) 17.82
C432 240 60 (19/41) 180 (0/180) 1,332.58

total 1,820 1,555 (213/1,342) 265 (9/256) 1,433.02

iDQ
Benchmark #inst. solved (SAT/UNSAT) unsolved (TO/MO) total time

adder 300 216 (3/213) 84 (84/0) 89,827.94
bitcell 300 190 (2/188) 110 (110/0) 78,106.86
lookahead 300 273 (4/269) 27 (27/0) 39,540.15
pec xor 200 200 (24/176) 0 (0/0) 181.58
z4 240 111 (8/103) 129 (129/0) 41,626.30
comp 240 25 (0/25) 215 (180/35) 11.60
C432 240 20 (0/20) 220 (85/135) 0.20

total 1,820 1,035 (41/994) 785 (615/170)249,294.63

5 Conclusion

We presented a quantifier-elimination strategy based on dependency graphs which
can be used to solve DQBF. We developed an efficient detection of unit and pure
variables on AIGs, and state an approach turning the DQBF into a QBF by
eliminating a minimum set of universal variables. Together with optimizations
like simple preprocessing steps, this constitutes a decision procedure which is
clearly superior to the available methods both in computation time and the
number of solved instances.

Future work will concentrate on more sophisticated preprocessing techniques
and improvements on the choice and order of variables to be eliminated in
order to increase the scalability. Currently we are working on the integration
of Finkbeiner and Tentrup’s unsatisfiability filter [15] into the preprocessor of
HQS. First experiments show a significant speed-up on many hard unsatisfiable
instances. It seems desirable to have similar filters also for satisfiable instances.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Vol. 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

18

2. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using
satisfiability solving. Formal Methods in System Design 19(1) (2001) 7–34

3. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. Theoretical Computer Science
404(3) (2008) 256–274

4. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: Thread-
parallel integrated test pattern generator utilizing satisfiability analysis. Int’l
Journal of Parallel Programming 38(3-4) (2010) 185–202

5. Eggersglüß, S., Drechsler, R.: A highly fault-efficient SAT-based ATPG flow. IEEE
Design & Test of Computers 29(4) (2012) 63–70

6. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artificial Intelligence 170(12-13) (2006) 1031–1080

7. Jordan, C., Seidl, M.: QBF gallery (2014)
http://qbf.satisfiability.org/gallery/index.html.

8. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Computers & Mathematics with Applications
41(7–8) (2001) 957–992

9. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods:
Proc. of the 1959 Symp. on Foundations of Mathematics, Pergamon Press (1961)
167–183

10. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified Boolean formulae. In: Proc.
of ICCD, IEEE CS (2013) 396–403

11. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: Proc. of FMCAD, IEEE (2010) 239–246

12. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: Proc. of SMT@IJCAR’12. Vol. 20 of
EPiC Series, EasyChair (2013) 44–56

13. Balabanov, V., Chiang, H.J.K., Jiang, J.H.R.: Henkin quantifiers and Boolean
formulae – a certification perspective of DQBF. Theoretical Computer Science 523
(2014) 86–100.

14. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Proc. of the Int’l Workshop on Pragmatics of SAT (POS). (2012)

15. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Proc. of SAT. Vol. 8561 of
LNCS, Springer (2014) 243–251

16. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Proc. of the Int’l Workshop on Pragmatics of SAT (POS), Vienna,
Austria (2014)

17. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Programming Logics – Essays in Memory of Harald Ganzinger. Vol.
7797 of LNCS, Springer (2013) 239–270

18. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking based
on AIGs, BDD sweeping, and quantifier scheduling. In: Proc. of FMCAD, IEEE
Computer Society Press (2006) 89–96

19. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG-based QBF solver. In: Proc.
of DATE, IEEE (2009) 1596–1601

20. Scholl, C., Becker, B.: Checking equivalence for circuits containing incompletely
specified boxes. In: Proc. of ICCD, IEEE CS (2002) 56–63

21. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF
through quantifier elimination. In: Proceedings of the International Conference on
Design, Automation & Test in Europe (DATE), Grenoble, France, IEEE (2015)

19

22. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science
3(1) (1976) 1–22

23. Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit-based Boolean Reasoning. In:
Proc. of DAC. (2001)

24. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Comp. 35(8) (1986) 677–691

25. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, EECS Dept.,
UC Berkeley (2005)

26. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on
Satisfiability, Boolean Modeling and Computation 7(2-3) (2010) 71–76

27. Pigorsch, F., Scholl, C.: An AIG-based QBF-solver using SAT for preprocessing.
In: Proc. of DAC, ACM Press (2010) 170–175

28. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor
for QBFs based on equivalence reasoning. In: Proc. of SAT. Vol. 6175 of LNCS.
Springer (2010) 85–98

29. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1970) 115–125

30. Schubert, T., Reimer, S.: antom (2014) https://projects.informatik.uni-
freiburg.de/projects/antom.

31. Dally, W.J., Harting, R.C.: Digital Design: A Systems Approach. Cambridge
University Press (2012)

32. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Proc.
of the 38th Design Automation Conference (DAC), ACM Press (2001) 238–243

20

A Detailed experimental results

Figures 6 and 7 give a detailed comparison of the computation times of iDQ and
HQS for each group of instances. We can observe that HQS is in general faster
on all classes of benchmarks and solves more instances.

SAT UNSAT unknown

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 300 adder instances

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 300 lookahead instances

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 300 bitcell instances

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 200 pec xor instances

Fig. 6. Results for adder, lookahead, bitcell, and pec xor

Figure 8 demonstrates the effectiveness of the different optimizations. We
consider three optimizations: (1) preprocessing, (2) eliminating a minimum set
of variables in order to obtain a QBF and order the variables according to the
size of their dependency sets, (3) the detection of unit and pure variables on the
AIG using a syntactic check.

21

SAT UNSAT unknown

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 240 z4 instances

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 240 comp instances

10−2 10−1 100 101 102 103 TO MO
10−2

10−1

100

101

102

103

TO

MO

Running time (s) of iDQ

R
u
n
n
in
g
ti
m
e
(s
)
of

H
Q
S

Results for the 240 C432 instances

Fig. 7. Results for z4, comp, and C432

22

Figure 8(a) compares the running times and the number of solved instances
with and without all optimizations. In the other three Figures 8(b)–(d) we enable
a single optimization and compare it to the unoptimized algorithms. Preprocessing
(Figure 8(b)) obviously has a strong effect on both: the computation times and
the number of solved instances. The other two optimizations (Figure 8(c)-(d))
mainly increase the number of solved instances. By applying our eliminatation
strategy the formula can be converted faster (or at all) into an equivalant QBF,
which is in general solved very efficient by the QBF back-end solver. Finally, every
detected pure variable avoids the expansion of the whole AIG or the duplication
of the variable reducing the overall memory requirements.

SAT UNSAT unknown

10−3 10−2 10−1 100 101 102 103 TO MO
10−3

10−2

10−1

100

101

102

103

TO

MO

without optimization

w
it
h
al
l
op

ti
m
iz
at
io
n
s

10−3 10−2 10−1 100 101 102 103 TO MO
10−3

10−2

10−1

100

101

102

103

TO

MO

without optimization

w
it
h
p
re
p
ro
ce
ss
in
g

(a) with and without optimizations (b) no optimizations vs. only preprocessing

10−3 10−2 10−1 100 101 102 103 TO MO
10−3

10−2

10−1

100

101

102

103

TO

MO

without optimization

w
it
h
Q
B
F
el
im

in
at
io
n

10−3 10−2 10−1 100 101 102 103 TO MO
10−3

10−2

10−1

100

101

102

103

TO

MO

without optimization

w
it
h
u
n
it
/p

u
re

d
et
ec
ti
on

(c) no optimizations vs. only QBF elimination (d) no optimizations vs. only unit/pure detection

Fig. 8. Effectiveness of the optimizations

23

