
Skolem functions computation for CEGAR based QBF
solvers

Valeriy Balabanov1, Jie-Hong Roland Jiang2, and Christoph Scholl3

1Academia Sinica, 2National Taiwan University, 3University of Freiburg
{balabasik@gmail.com, jhjiang@ntu.edu.tw, scholl@informatik.uni-freiburg.de}

Abstract. In this work we propose an approach to extract Skolem-functions from
CEGAR based QBF solvers (e.g., RareQS [4]) for true QBF formulas containing 2 or
3 quantification levels. We as well propose some optimizations to improve extracted
certificates and perform detailed experimental evaluation.

1 Introduction

Recent QBF solvers evaluation verified the robustness of CEGAR based QBF solvers.
On contrary to search-based approaches (e.g., DepQBF [5]), however, there exists no
methodology to certify their answer with semantic winning strategies in a closed form
(e.g., Skolem-functions for true QBFs, which are essential for many QBF applications).
CEGAR based QBF solver RareQS [4], can produce partial winning moves for
both existential and universal players at each turn of an abstraction-refinement game
[4]. One straightforward use of this ability is that RareQS returns the winning
assignment to outermost existential variables for true QBFs upon completion. In this
work we describe how to construct full Skolem-functions models for QBFs, based on
partial winning moves information emitted by RareQS. Currently our algorithm is
limited to two and three level true QBFs (with an innermost quantification level to
be existential), but preliminary analysis confirms the existence of an extension to
arbitrary QBFs, based on the given approach and interpolation.

2 The main section

Preliminaries. We consider QBFs in PCNF through this work. All Boolean nota-
tions follow standard semantics. Given a 3QBF Φ = ∃~w∀~x∃~y.φ(~w, ~x, ~y), it is true (or
valid) if and only if there exists a set of constant functions S~w, and a set of functions
S~y(~x) (i.e., depending on ~x), such that φ(S~w, ~x, S~y) is a tautology. S~w and S~y form
the so-called Skolem-functions model, certifying the validity of Φ. There are other
forms of certificates (e.g., Q-resolution). For more details on QBF certification please
refer to [2].

Construction procedure. First consider a true 2QBF formula Φ. Assume that
RareQS QBF solver (please refer to Algorithm 2 in [4]) needs three refinement
loops to prove its validity. It means that three candidate solutions for the universal
player were found, leading to existential counterexamples ~ε1, ~ε2 and ~ε3. Let Φcof be
the refined by three corresponding cofactors formula, as shown below.

Φ = ∀~x∃~y.Φ(~x, ~y) Φcof = ∀~x.{Φ(~x,~ε1) ∨ Φ(~x,~ε2) ∨ Φ(~x,~ε3)}

scholl
Textfeld
International Workshop on Quantified Boolean Formulas,
September 2015, Austin, Texas, USA

MUX
1 0

MUX
1 0

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

SMUX
1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

1. For all ~↵i 2 ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏1.

2. For all ~↵i 2 ON(�(~x,~✏2)) \ ON(�(~x,~✏1)) we define S~y(~↵i) = ~✏2.

3. For all ~↵i 2 ON(�(~x,~✏3)) \ (ON(�(~x,~✏1)) [ON(�(~x,~✏2))) we define
S~y(~↵i) = ~✏3.

The above computation of the Skolem function is visualized by a multiplexer
construction as shown on the left of Fig. 3.1.

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

We abbreviate the multiplexer construction by a cell “SMUX” which means
that we have a series of multiplexers defining some prioritization in case that
the sets ON(�(~x,~✏i)) overlap. SMUX cell is shown on the right of Fig. 3.1. By
the following proposition we ensure the correctness of the proposed approach.

Proposition 1. Constructed functions S~y(~↵i) form a valid model for �.

Proof. �cof is true, therefore for every assignment ~↵ to ~x, one of �(~↵,~✏i))
(i 2 [1..3]) must be true. Our construction ensures that S~y(~↵) = ~✏i), proving
that S~y is indeed a valid set of Skolem functions. ut

Clearly, proposed construction procedure can be extended to true 2QBFs
with an arbitrary number of refinement steps. The following procedure ex-
tends approach for true 3QBFs. Suppose we are given a true 3QBF � =
9~w8~x9~y.�(~w, ~x, ~y), and a winning move (assignment) ~� for ~w variables (which
is returned upon completion of RareQS as a byproduct of solving process).
2QBF � = 8~x9~y.�(~�, ~x, ~y) must be true, therefore Skolem function S~y can be
extracted using our 2QBF method. The complete Skolem model now consists
of {S~w = ~�, S~y}.

2

Fig. 1. Multiplexer construction [on the left], SMUX cell [on the right].

Now the search for a candidate solution fails, i.e., the universal player does not find a
candidate solution which falsifies all cofactors generated so far. Consequently Φcof is
true, which is determined by an unsatisfiable SAT call ¬Φcof (which is propositional
as it has only existentially quantified variables ~x).

Effectively, validity of Φcof says that an arbitrary assignment to ~x is included in
ON(Φ(~x,~ε1)), ON(Φ(~x,~ε2)), or ON(Φ(~x,~ε3)). This information in fact is sufficient
to get Skolem functions S~y(~x) for any assignment ~α to ~x, by the following steps:

1. For all ~α ∈ ON(Φ(~x,~ε1)) we define S~y(~α) = ~ε1.

2. For all ~α ∈ ON(Φ(~x,~ε2)) \ON(Φ(~x,~ε1)) we define S~y(~α) = ~ε2.

3. For all ~α ∈ ON(Φ(~x,~ε3)) \ (ON(Φ(~x,~ε1)) ∪ON(Φ(~x,~ε2))) we define S~y(~α) = ~ε3.

The above computation of the Skolem functions is visualized by a multiplexer
construction as shown on the left of Fig. 1. We abbreviate the multiplexer construction
by a cell “SMUX” which means that we have a series of multiplexers defining a
prioritization in case that the sets ON(Φ(~x,~εi)) overlap. SMUX cell is shown on the
right of Fig. 1. By the following proposition we ensure the soundness of returned
Skolem functions.

Proposition 1. Constructed functions S~y(~x) form a valid model for Φ.

Proof. Φcof is true, therefore for every assignment ~α to ~x, some Φ(~α,~εi)) (i ∈ [1..3])
must be true. Our construction ensures that S~y(~α) = ~εi, i.e., that Φ(~α, S~y(~α))
evaluates to true. By definition, constructed S~y form a valid set of Skolem functions.

ut

Clearly, proposed construction procedure can be extended to true 2QBFs with
an arbitrary number of refinement steps. Procedure below further extends approach
for true 3QBFs. Suppose we are given a true 3QBF Φ = ∃~w∀~x∃~y.Φ(~w, ~x, ~y), and a

winning move (assignment) ~β for ~w variables (which is returned upon completion

of RareQS as a byproduct of solving process). 2QBF Φ = ∀~x∃~y.Φ(~β, ~x, ~y) must be
true, therefore Skolem function S~y can be extracted using previous 2QBF method.

The complete Skolem model now consists of {S~w = ~β, S~y}. Efficient implementation
of this extension is slightly more elaborated, but conceptually it is as described above.

2

Optimizations. Below we propose three optimizations in order to minimize certifi-
cates returned by the Skolem functions construction procedure.

1. Please note that any order of switches in a SMUX cell leads to a valid set of
Skolem functions. For the moment we allow an option to use cofactors either in
forward, or backward order. Backward order is used as an empirical optimization.

2. We observed that cofactors often share identical clauses, therefore we implemented
a hashing procedure that detects and substitutes the repeated clauses.

3. Although each next counterexample returned by CEGAR QBF solving approach
covers at least one new (unblocked so far) universal move candidate, in practice
it happens that older cofactors are fully covered by newer ones. The problem of
identifying the redundant cofactors can be done using the so-called group minimal
unsatisfiability subset extraction (group MUS, or GMUS). GMUS framework
allows to partition CNF into groups (cofactors in our case), and return the
minimal subset of them, which is still unsatisfiable (which is clearly a requirement
for our extracted Skolem functions to be sound). More information on GMUS
extraction can be found at [6].

3 Implementation and Experiments

We patched RareQS solver to emit countermoves associated with the CEGAR
QBF solving process. Proposed in Section 2 algorithm was implemented into a tool
CegarSkolem1. In order to test the unsat core optimization from Section 2 we
used Haifa-HLMUC group MUS extractor [6]. Experimental setup consisted of
QBFs from “QBFLIB” and “Applications” tracks taken from QBF Gallery 2014
[1]. We used DepQBF QBF solver [5] and ResQu [2] to compare CegarSkolem
against existing Q-resolution based model computation in search-based QBF-solvers
framework. All the experiments were performed on a Linux machine with Xeon 2.3
GHz CPU and 32Gb of RAM. All the tools were limited to 4Gb memory limit and
900 seconds time limit. An additional limitation of 1 Gb was imposed on Q-resolution
proofs produced by DepQBF and moves information emitted by RareQS.

29 and 137 true 3QBFs either solved by DepQBF or RareQS, were chosen
for experiments from “QBFLIB” and “Applications” tracks, respectively. Table 1
shows the solving and certification time statistics (rightmost “#cert” and “#mincert”
columns stand for CegarSkolem w/o and w/ optimization heuristics, respectively).
Note that as certification requires additional effort, both DepQBF and RareQs were
not able to solve some of the instances that they could solve w/o certification. As
we could see in general RareQS solved more instances, but DepQBF has much
smaller runtime-per-instance. On contrary, even with optimizations, CegarSkolem
constructed Skolem functions much quicker than ResQu, which is explained by
large overhead in the size of Q-refutations produced by DepQBF, in comparison to
(relatively small) number of existential counterexamples emitted by RareQS.

1 CegarSkolem and other tools used in the experiments could be found here:
https://www.dropbox.com/s/qp18ovdzgyo3zuu/cegar_skolem_tools.zip?dl=0

3

Table 1. Solving and certification statistics.

DepQBF+ResQu RareQS+CegarSkolem

#solved time, s #cert time, s #solved time, s #cert time, s #mincert time, s

QBFLIB [29] 15 424.1 14 943.2 19 2710.6 19 49.5 19 67.5

Applications [137] 94 457.9 86 5162.8 102 4351.6 97 533.8 97 589.0

100

1000

10000

100000

1000000

10000000

100 1000 10000 100000 1000000 10000000

R
a

re
Q

S
 +

 C
e

g
a

r
S

ko
le

m
,

A
IG

 n
o

d
e

s

DepQBF + ResQu, AIG nodes

Cegar Skolem

Cegar Skolem Min

QBF gallery 2014, Applications track

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

R
a

re
Q

S
 +

 C
e

g
a

r
S

ko
le

m
,

A
IG

 n
o

d
e

s

DepQBF + ResQu, AIG nodes

Cegar Skolem

Cegar Skolem Min

QBF gallery 2014, QBFLIB track

Fig. 2. Comparison of Skolem functions AIG sizes.

Fig. 2 compares certificates quality in terms of numbers of and-inverter-graphs
(AIG) nodes (after minor AIG synthesis in tool ABC [3]). X-axis in figures corre-
sponds to certificates produced by ResQu, while Y-axis corresponds to those by
CegarSkolem and CegarSkolemMin. We do not provide a detailed statistics on
the impact of various optimizations we have in CegarSkolemMin, but as one can
see from Table 1 the computational overhead they introduce is small anyway. The
certificate sizes, on the other hand, are reduced much in some cases.

Another observation to make is that certificates for DepQBF and RareQS are
quite scattered across the figures. This means that for some benchmarks there exist
simple Skolem-functions found by ResQu but not found by Cegar-Skolem and
vice-versa. This phenomenon shall be investigated in the future work.

4 Conclusions and Future Work

In this work we proposed an algorithm for extraction of Skolem functions from
true QBFs with 2 and 3 quantification levels. Experimental evaluation proves the
robustness of the approach, and shows improvement over search-based certifica-
tion/extraction procedures. Our main future goal is to extend the presented in this
work extraction procedure for arbitrary (true, false, arbitrary number of levels) QBFs.
Preliminary analysis confirms the existence of such an extension, based on the given
approach and interpolation. Certificate minimization is another direction to pursue
in the future.

4

References

1. QBF Gallery 2014. http://qbf.satisfiability.org/gallery/.
2. V. Balabanov and J.-H. R. Jiang. Unified QBF Certification and Its Applications. Formal

Methods in System Design, 41:45–65, 2012.
3. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and

Verification. http://http://www.eecs.berkeley.edu/∼alanmi/abc/.
4. M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke. Solving QBF with Counterexample

Guided Refinement. In International conference on Theory and Applications of Satisfiability
Testing (SAT), volume 7317 of LNCS, pages 114–128. Springer, 2012.

5. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver (System Description).
Journal on Satisfiability, Boolean Modeling and Computation, 7:71–76, 2010.

6. V. Ryvchin and O. Strichman. Faster extraction of high-level minimal unsatisfiable cores. In
Theory and Applications of Satisfiability Testing - SAT 2011 - 14th International Conference,
SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, pages 174–187, 2011.

5

