
Simple Interpolants for Linear Arithmetic

Christoph Scholl, Florian Pigorsch, and Stefan Disch
University of Freiburg, Germany

{scholl, pigorsch, disch}@informatik.uni-freiburg.de

Ernst Althaus
University of Mainz, Germany

ernst.althaus@uni-mainz.de

Abstract—Craig interpolation has turned out to be an essential
method for many applications in formal verification. In this
paper we focus on the computation of simple interpolants for
the theory of linear arithmetic with rational coefficients. We
successfully minimize the number of linear constraints in the final
interpolant by several methods including proof transformations,
linear programming, and SMT solving. Experimental results
comparing the approach to standard methods from the literature
prove the effectiveness of the approach and show reductions of
up to 70% in the number of linear constraints.

I. INTRODUCTION

During the last years the computation of Craig interpolants
[1] for SAT and SMT formulas has attracted a lot of interest,
mainly for applications in formal verification. For mutually un-
satisfiable formulas A and B, a Craig Interpolant is a formula I ,
such that I is implied by A, I and B are mutually unsatisfiable,
and the uninterpreted symbols in I occur both in A and B as
well as the free variables in I occur freely both in A and B.

Efficient interpolation algorithms have first been introduced
for Boolean systems. They rely on the enormous gain in
efficiency of modern SAT solvers and the observation that
DPLL-based SAT solving with learning of conflict clauses can
provide resolution proofs of unsatisfiability as a byproduct [2].
According to [3], [4] a Craig interpolant can be computed
in linear time based on a resolution proof of unsatisfiability
for A ∧ B. In [4] interpolants have been introduced into the
verification domain and have been used as over-approximations
of reachable state sets; their use turns bounded model-checking
into a complete method.

Modeling by Boolean formulas is not adequate for many
systems of practical interest which go beyond hardware
components (such as software programs, timed systems, or
hybrid systems). For handling such systems SAT solvers
have been generalized to SMT (“SAT Modulo Theory”)
solvers. SMT solvers for several fragments of first-order logic
have been developed [5] and SMT interpolation has been
introduced [6], [7]. Those interpolants have been successfully
applied in software verification using predicate abstraction
and refinement [8]–[11]. Moreover, for the verification of
hybrid systems interpolants have been used to optimize
symbolic state set representations [12], [13]. Interpolants play
another role in the verification of timed and hybrid systems,
when bounded model checking for those systems [14]–[16] is
combined with the ideas from [4], [6].

In general, an interpolant between two formulas A and B

is by far not unique. Therefore many researchers have been
looking for simple interpolants.

In the context of Boolean interpolation simplicity is often
understood as compact size, and interpolants with small And-
Inverter-Graph representations are preferred. For applications
of interpolation in logic synthesis [17], [18] this optimization
goal is near at hand, but also in verification applications (when

This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (http://www.avacs.org/).

978-3-9815370-2-4/DATE14/ c©2014 EDAA

interpolants may be used as symbolic state set predicates,
e.g.) not only their logical strength, but also their size has an
essential impact on the efficiency of the overall verification
algorithm. A number of approaches restructure resolution
proofs of unsatisfiability in various ways to obtain smaller
interpolants afterwards [19]–[23]. Other approaches consider
proof transformations [24] and new interpolation systems [25],
[26] which aim at influencing the strength (in a logical sense)
of interpolants and not their size.

Simplicity of interpolants has been considered for formulas
of (fragments of) first-order logic as well. In [27] both the
size of interpolants and the number of linear constraints
have been considered as measures of simplicity. Proofs are
modified with the goal of replacing linear constraints in
interpolants by constants (additionally leading to smaller
interpolant sizes by constant propagation). Interpolants are
used there in order to optimize or approximate state set
representations of hybrid systems [13]. In [28] a general
interpolation technique which applies for arbitrary theories
has been presented (possibly leading to interpolants with
quantifiers). [28] computes “simple interpolants” with several
optimization goals: the (weighted or unweighted) number of
ground atoms in the interpolant or the number of quantifiers
in the interpolant. In [29] interpolation is used for software
verification. [29] shows that simple invariants (in terms of
the number of linear constraints in the interpolant) may be
beneficial for an improved generation of program invariants.

In our paper we consider interpolation for the theory
of linear arithmetic with rational coefficients LA(Q). Our
interpolant computation is based on [6], [7], i.e., the Boolean
structure of the interpolant results from the resolution proof
graph whereas clauses corresponding to conflicts in the under-
lying theory (called theory lemmata) contribute to the inter-
polant by linear inequations (so-called LA(Q)-interpolants).
During SMT solving each theory lemma results from a theory
conflict, i.e., an inconsistent conjunction of linear constraints.
The mentioned LA(Q)-interpolants are computed by LA(Q)-
interpolation for a partition of theory conflicts into two parts.
We compute simple interpolants with less linear inequations
by generalizing the approach from [30] which computes
LA(Q)-interpolants by linear programming. In contrast to
[30] we do not compute LA(Q)-interpolants for single theory
conflicts, but we compute shared LA(Q)-interpolants for a
maximal number of theory conflicts, and thus we minimize
the number of linear inequations occurring in the interpolant.
In that way our interpolation approach fits seamlessly into
existing approaches for interpolation based on proofs [6],
[7]. We provide two algorithms for minimizing the number
of linear inequations: The first algorithm greedily constructs
larger and larger sets of shared LA(Q)-interpolants by linear
programming; the second algorithm maximizes the number
of shared LA(Q)-interpolants by solving an SMT problem.
From first experiments we learned that especially with the
minimized theory conflicts learned by modern SMT solvers
the potential of finding shared LA(Q)-interpolants was much
smaller than expected. For that reason we propose several
methods to increase the degrees of freedom for selecting

scholl
Textfeld
Preprint from Proceedings of DATE 14, Dresden, Germany, March 2014

LA(Q)-interpolants: (1) We relax the constraints given in
[30] in a natural way, (2) we extend theory conflicts by so-
called implied literals, and (3) we use the push-up method
from [27] to extend theory conflicts. Whereas (3) transforms a
resolution proof of unsatisfiability into another valid resolution
proof [27] (but with more degrees of freedom for LA(Q)-
interpolants), (2) may destroy the resolution proof in general.
However we can prove that the interpolants computed after
this transformation are still valid interpolants though.

Our approach coincides with [28] in the general goal of
computing simple interpolants. Whereas [28] is very gen-
eral by considering arbitrary closed first-order formulas and
reduces interpolant minimization to solving pseudo-boolean
constraints with a number of variables which is linear in the
size of the (potentially large) proof, our method is currently
restricted to a special theory (LA(Q)) and focusses more on
efficiency. In [28] the interpolants are Boolean combinations
of subformulas occurring in a proof of unsatisfiablity. Our
approach computes “smooth” interpolants with a small number
of linear constraints not necessarily occurring in the proof.
Recently, [29] considered shared LA(Q)-interpolants as well,
but not in the context of interpolant generation from resolution
proofs, but in the context of “compositional SMT” which
constructs interpolants step by step by considering so-called
samplesets (disjunctions of polytopes implying the original
formulas A and B for which shared LA(Q)-interpolants are
computed). In compositional SMT the SMT solver never sees
the formula A ∧ B, but only combinations of the current
candidate interpolant and A (resp. B). By construction, the
computed interpolant in [29] is always in disjunctive normal
form, whereas our approach produces interpolants with an
arbitrary Boolean structure (which is certainly advantageous
for examples combining linear constraints with non-trivial
Boolean subformulas with many variables). [27] also considers
linear arithmetic, but is more restricted than our method, since
its Lemma Localization approach is only able to optimize
interpolants by replacing linear constraints by constants.

Besides the motivation given by invariant generation given
in [29], interpolants with a small number of linear constraints
may also play an important role when state sets are repre-
sented by formulas in linear arithmetic, e.g. in hybrid system
verification [13], [31], [32]. Especially when those state set
representations are subject to operations whose complexity
strongly depends on the number of linear constraints in the
representation (like quantifier elimination methods for rational
variables which in the worst-case lead to a quadratic increase
of the number of linear constraints after elimination of a
single variable), such applications may profit from simple
interpolants with a minimized number of linear constraints.
Simple interpolants may optimize given state set represen-
tations or approximate them by a “smoother shape” with
less linear constraints. For applications with fully symbolic
representations of state sets like [13] it has already been shown
that intensive compaction efforts based on interpolation are
the key ingredient to avoid exploding state set representations.
In those applications interpolants can be directly used for
further processing, in other applications with semi-symbolic
representations (e.g. unions of polyhedra) [31], [32] a back-
translation into the used representation form may be necessary
after “smoothening” the state set.

The paper is structured as follows: We will give a brief
review of SMT solving, theory proofs, and interpolation in
Sect. II. Our approach computing simple interpolants is pre-
sented in Sect. III, together with an illustration by means of
a running example. Our method is extensively evaluated and
compared to interpolation in MathSAT [33] and to interpo-
lation with Lemma Localization [27] in Sect. IV. Sect. V
summarizes the paper and gives directions for future research.

II. PRELIMINARIES

A signature Σ is a collection of function symbols and
predicate symbols. A theory T gives interpretations to a subset
of the symbols occuring in Σ. These symbols are called T-
symbols, symbols without interpretations are are called unin-
terpreted. A term is a first-order term built from the function
symbols of Σ. For terms t1, . . . , tn and an n-ary predicate p,
p(t1, . . . , tn) is an atom. An uninterpreted 0-ary atom is called
proposition or Boolean variable. A (quantifier-free) formula is
a Boolean combination of atoms. A literal is either an atom
or the negation of an atom. A literal built from an n-ary
interpreted atom with n > 0 is called T-literal. A clause is a
disjunction of literals; for a clause l1∨ . . .∨ ln we also use the
set-notation {l1, . . . , ln}. An empty clause, which is equivalent
to ⊥, is denoted with ∅. A clause, which contains a literal l and
its negation ¬l, is called tautologic clause, since it is equivalent
to ⊤. In this paper we only consider non-tautologic clauses.

Let C be a clause and φ be a formula. With C \ φ, we
denote the clause that is created from C by removing all atoms
occurring in φ; C ↓ φ denotes the clause that is created from
C by removing all atoms that are not occurring in φ.

A formula is T-satisfiable if it is satisfiable in T, i.e., if
there is a model for the formula where the T-symbols are
interpreted according to the theory T. If a formula φ logically
implies a formula ψ in all models of T, we write φ |=T ψ.
Satisfiability Modulo Theory T (SMT(T)) is the problem of
deciding the T-satisfiability of a formula φ.

Typical SMT(T)-solvers combine DPLL-style SAT-solving
[34] with a separate decision procedure for reasoning on T

[5]. Such a solver treats all atomic predicates in a formula
φ as free Boolean variables. Once the DPLL-part of the
solver finds a satisfying assignment, e. g. l1 ∧ . . . ∧ ln, to
this “Boolean abstraction”, it passes the atomic predicates
corresponding to the assignment to a decision procedure for
T, which then checks whether the assignment is feasible when
interpreted in the theory T.1 If the assignment is feasible,
the solver terminates since a satisfying assignment to the
formula φ has been found. If the assignment is infeasible
in T, the decision procedure derives a cause for the infea-
sibility of the assignment, say η = m1 ∧ . . . ∧ mk, where
{m1, . . . ,mk} ⊆ {l1, . . . , ln}. We call the cause η a T-conflict,
since η |=T ⊥. The SMT(T)-solver then adds the negation of
the cause, ¬η = {¬m1, . . . ,¬mk}, which we call T-lemma, to
its set of clauses and starts backtracking. The added T-lemma
prevents the DPLL-procedure from selecting the same invalid
assignment again. Usually, the T-conflicts η used in modern
SMT-solvers are reduced to minimal size (i. e. η becomes T-
satisfiable, if one of its literals is removed) in order to prune
the search space as much as possible. Such T-conflicts η are
often called minimal infeasible subsets.

One can extend an SMT(T)-solver of this style in a
straightforward way to produce proofs for the unsatisfiability
of formulas [7].

Definition 1 (T-Proof): Let S = {c1, . . . , cn} be a set
of non-tautologic clauses and C a clause. A DAG P is a
resolution proof for the deduction of

∧

ci |=T C, if
(1) each leaf n ∈ P is associated with a clause ncl; ncl is
either a clause of S or a T-lemma (ncl = ¬η for some T-
conflict η);
(2) each non-leaf n ∈ P has exactly two parents nL and nR,
and is associated with the clause ncl which is derived from nLcl
and nRcl by resolution, i. e. the parents’ clauses share a common
variable (the pivot) np such that np ∈ nL

cl and ¬np ∈ nR
cl, and

ncl = nL
cl \ {np} ∪ n

R
cl \ {¬np}; ncl (the resolvent) must not

1 For simplicity this review describes the lazy SMT approach [35] using an
off-line schema instead of an on-line schema where already partial assignments
to Boolean abstraction variables are checked for consistency with the theory.

A : (l1 ∨ l3)

A : (l1 ∨ l4) A : (l2 ∨ l3)

¬η1 : (¬l1 ∨ ¬l2 ∨ ¬l5)

¬η2 : (¬l3 ∨ ¬l4 ∨ ¬l6) B : (l6)

B : (l5)

(¬l2 ∨ l3)

(¬l1 ∨ ¬l2)

(¬l3 ∨ ¬l4)

(¬l2 ∨ ¬l4)(¬l2 ∨ l4) A : (l2 ∨ l4) (l2 ∨ ¬l4)

(¬l2) (l2)

()
Figure 1. A proof

∨

∧

∧

∨∨ ∨

∨ ∨

∨

⊤2x1 − x2 ≤ 2

⊥ x1 − 2x2 ≤ −4 ⊤

⊥ ⊥

⊥

Figure 2. An interpolant

be a tautology;
(3) there is exactly one root node r ∈ P ; r is associated with
clause C; rcl = C.

Intuitively, a resolution proof provides a means to derive a
clause C from the set of clauses S and some additional facts
of the theory T. If C is the empty clause, P is proving the
T-unsatisfiability of S.

Example 1: Fig. 1 shows a resolution proof for the unsatis-
fiability of S = (l1∨ l3)∧ (l1∨ l4)∧ (l2∨ l3)∧ (l2∨ l4)∧ l5∧ l6
with l1 = (−x2 ≤ 0), l2 = (x1 ≤ 1), l3 = (−x2 ≤ −5),
l4 = (x1 ≤ 6), l5 = (−2x1+x2 ≤ −6), l6 = (−x1+2x2 ≤ 0).
To prove the unsatisfiability, the solver added two T-lemmata
¬η1 = (¬l1 ∨ ¬l2 ∨ ¬l5) and ¬η2 = (¬l3 ∨ ¬l4 ∨ ¬l6).

Definition 2 (Craig Interpolant [1]): Let A and B be two
formulas, such that A ∧ B |=T ⊥. A Craig interpolant I is
a formula such that (1) A |=T I , (2) B ∧ I |=T ⊥, (3) the
uninterpreted symbols in I occur both in A and B, the free
variables in I occur freely both in A and B.

Given a T-unsatisfiable set of clauses S = {c1, . . . , cn},
a disjoint partition (A,B) of S, and a proof P for the
T-unsatisfiability of S, an interpolant for (A,B) can be
constructed by the following procedure [6]:
(1) For every leaf n ∈ P associated with a clause ncl ∈ S,
set nI = ncl ↓ B if ncl ∈ A, and set nI = ⊤ if ncl ∈ B.
(2) For every leaf n ∈ P associated with a T-lemma ¬η
(ncl = ¬η), set nI = T-INTERPOLANT(η \ B, η ↓ B).
(3) For every non-leaf node n ∈ P , set nI = nL

I ∨ nRI if
np /∈ B, and set nI = nLI ∧ nR

I if np ∈ B.
(4) Let r ∈ P be the root node of P associated with the
empty clause rcl = ∅. rI is an interpolant of A and B.

Note that the interpolation procedure differs from pure
Boolean interpolation [4] only in the handling of T-lemmata.
T-INTERPOLANT(·, ·) produces an interpolant for an unsatisfi-
able pair of conjunctions of T-literals. (In [7], the authors list
interpolation algorithms for several theories.)

In this paper we consider the theory of linear arithmetic
over rationals LA(Q). We write Ax ≤ a for a conjunction of
m linear inequations over rational variables (x1, . . . , xn)

T = x
with A ∈ Qm×n, a ∈ Qm.2 Every row vector in the m × n-
matrix A describes the coefficients of the corresponding linear
inequation.

There exist several methods to construct an LA(Q)-
interpolant from conflicts in an LA(Q)-proof as described in
[6], [7], [30]. Here we review the approach from [30], since
our method is based on this approach.

We assume an LA(Q)-conflict η which is produced during
the proof of unsatisfiability of two formulas A and B. From η
we may extract a conjunction η \B of linear inequations only
occurring in formula A and a conjunction η ↓ B of linear
inequations occurring in formula B. η \ B and η ↓ B are
represented by the inequation systems Ax ≤ a and Bx ≤ b,
respectively (A ∈ QmA×n, a ∈ QmA , B ∈ QmB×n, b ∈ QmB).
Since η is an LA(Q)-conflict, the conjunction of Ax ≤ a and
Bx ≤ b has no solution. Then, according to Farkas’ lemma,

2 For simplicity we confine ourselves to non-strict inequations. A general-
ization to mixed strict and non-strict inequations is straightforward.

there exists a linear inequation iTx ≤ δ (i ∈ Qn, δ ∈ Q) which
is an LA(Q)-interpolant for Ax ≤ a and Bx ≤ b. iTx ≤ δ
can be computed by linear programming from the following
(in)equations with additional variables λ ∈ QmA , µ ∈ QmB :
(1) λTA+ µTB = 0

T , (2) λTa+ µT b ≤ −1,
(3) λTA = iT , (4) λTa = δ, (5) λ ≥ 0, µ ≥ 0.

The coefficients λ and µ define a positive linear combi-
nation of the inequations in Ax ≤ a and Bx ≤ b leading
to a contradiction 0 ≤ λTa + µT b with λTa + µT b ≤ −1
(see (1) and (2)). The interpolant iTx ≤ δ just “sums up”
the “Ax ≤ a”-part of the linear combination leading to the
contradiction (see (3) and (4)), thus iTx ≤ δ is implied by
Ax ≤ a. iTx ≤ δ is clearly inconsistent with Bx ≤ b, since it
derives the same contradiction as before. Altogether iTx ≤ δ
is an interpolant of Ax ≤ a and Bx ≤ b.

Example 2 (cont.): Fig. 2 shows a Craig interpolant result-
ing from the proof in Fig. 1, when partitioning S into (A,B)
with A = (l1∨l3)∧(l1∨l4)∧(l2∨l3)∧(l2∨l4) and B = l5∧l6.
The LA(Q)-interpolant for the LA(Q)-conflict η1 is a positive
linear combination of η1’s A-literals (i.e. l1 and l2), which is
conflicting with a positive linear-combination of the remaining
literals (i.e. l5), e. g. 1·(−x2 ≤ 0)+2·(x1 ≤ 1) ≡ (2x1−x2 ≤
2) and 1 · (−2x1 + x2 ≤ −6) lead to the conflict 0 ≤ −4 .
Similarly, the interpolant x1 − 2x2 ≤ −4 is derived from the
LA(Q)-conflict η2. Propagating constants, the final interpolant
of A and B becomes (2x1−x2 ≤ 2)∨(x1−2x2 ≤ −4). Fig. 3
gives a geometric illustration of the example. A is depicted
in blue, B in orange, the interpolant is represented by the
green or blue areas. η1 says that l1 ∧ l2 (the blue area with
vertical lines) does not intersect with l5 (leading to interpolant
l7 = (2x1 − x2 ≤ 2)) and η2 says that l3 ∧ l4 (the blue area
with horizontal lines) does not intersect with l6 (leading to
interpolant l8 = (x1 − 2x2 ≤ −4)).

III. COMPUTING SIMPLE INTERPOLANTS

A. Basic idea
Now we present a method computing simpler interpolants

than the standard methods mentioned in Sect. II. The basic
idea is as follows: It is based upon the observation that in
previous interpolation schemes the inconsistency proofs and
thus the interpolants derived from different T-conflicts are
uncorrelated. In most cases different T-conflicts lead to dif-
ferent LA(Q)-interpolants contributing to the final interpolant,
thus, complicated proofs with many T-conflicts tend to lead
to complicated Craig interpolants depending on many linear
constraints.

Example 3 (cont.): In Ex. 2 we have two different T-
conflicts leading to two different interpolants (see green lines
in Fig. 3). However, it is easy to see from Fig. 4 that there
is a single inequation l9 = (x1 − x2 ≤ 1) which can be used
as an interpolant for A and B (A implies l9 and l9 does not
intersect with B).

Our idea is to share LA(Q)-interpolants between differ-
ent T-conflicts. In order to come up with an interpolation
scheme using as many shared interpolants as possible, we first
introduce a check whether a fixed set of T-conflicts can be
proved by a shared proof, leading to a single shared LA(Q)-
interpolant for that set of T-conflicts.

A

Bl1

l2

l3

l4

l5

l6

l7

l8

x11 2 3 4 5 6

x2

1

2

3

4

5

6

Figure 3. Two LA(Q)-interpolants l7 and l8 for
the interpolation between A and B.

A

Bl1

l2

l3

l4

l5

l6

l9

x11 2 3 4 5 6

x2

1

2

3

4

5

6

Figure 4. A single LA(Q)-interpolant l9 replacing
l7 and l8.

A

B

l2

l3

l6

l10

l11

l12

l13

x11 2 3 4 5 6

x2

1

2

3

4

5

6

Figure 5. Relaxing constraints to enable l12 as
shared interpolant.

We assume a fixed set {η1, . . . , ηr} of T-conflicts. Each T-
conflict ηj defines two systems of inequations: Ajx ≤ aj for
the A-part and Bjx ≤ bj for the B-part. Extending [30] we ask
whether there is a single inequation iTx ≤ δ and coefficients
λj , µj with

(1j) λTj Aj + µT
j Bj = 0

T , (2j) λTj aj + µT
j bj ≤ −1,

(3j) λTj Aj = iT , (4j) λTj aj = δ, (5j) λj ≥ 0, µj ≥ 0

for all j ∈ {1, . . . , r}. Note that the coefficients λj and
µj for the different T-conflicts may be different, but the
interpolant iTx ≤ δ is required to be identical for all T-
conflicts. Again, the problem formulation consisting of all
constraints (1j)–(5j) can be solved by linear programming in
polynomial time.

Unfortunately, first results showed that the potential to find
shared interpolant was not as high as expected using this basic
idea. By a further analysis of the problem we observed that
more degrees of freedom are needed to enable a larger number
of shared interpolants.

B. Relaxing constraints
Consider Fig. 5 for motivating our first measure to increase

the degrees of freedom for interpolant generation. Fig. 5 shows
a slightly modified example compared to Figs. 3 and 4 with
A = (l10 ∧ l2) ∨ (l3 ∧ l11) and B = l6. Again we have two
T-conflicts: η3 which says that l10 ∧ l2 ∧ l6 is infeasible and
η4 which says that l3∧ l11∧ l6 is infeasible. We can show that
the interpolation generation according to [30] only computes
interpolants which touch the A-part of the T-conflict (as long
as the corresponding theory conflict is minimized, and both
A-part and B-part are not empty). Thus the only possible
interpolants for η3 and η4 according to (1)–(5) are l12 and
l13, respectively. I.e. it is not possible to compute a shared
interpolant for this example according to equations (1j)–(5j).
On the other hand it is easy to see that l12 may also be used as
an interpolant for η4, if we do not require interpolants to touch
the A-part (which is l3 ∧ l11 in the example). We achieve that
goal simply by relaxing constraint (4j) to (4′j) λjaj ≤ δ and

by modifying (2j) to (2′j) δ+µ
T
j bj ≤ −1 (all other constraints

(i′j) remain the same as (ij)). An inequation iTx ≤ δ computed

according to (1′j)–(5′j) is still implied by Ajx ≤ aj (since

iTx ≤ λjaj is implied and λjaj ≤ δ) and it contradicts
Bjx ≤ bj , since 0 ≤ λTj aj + µT

j bj ≤ δ + µT
j bj is conflicting

with δ + µT
j bj ≤ −1.

C. Extending T-conflicts
There is a second restriction to the degrees of freedom

for shared interpolants which follows from the computation of
minimized T-conflicts in SMT–solvers (see Sect. II). (Note that
minimized T-conflicts are used with success in modern SMT–
solvers in order to prune the search space as much as possible.
Unfortunately, minimization of T-conflicts impedes the search
for shared interpolants.) We can prove the following lemma
(the proof is omitted due to lack of space):

Lemma 1: If a LA(Q)-conflict η is minimized, and both
η \ B and η ↓ B are not empty, then the direction of vector i
of an LA(Q)-interpolant iTx ≤ δ for η \B and η ↓ B is fixed.

Example 4 (cont.): Again consider Fig. 3. Since the
LA(Q)-conflict η1 = l1 ∧ l2 ∧ l5 is minimized, the direction
vector of the interpolant l7 is fixed. The same holds for
LA(Q)-conflict η2 = l3 ∧ l4 ∧ l6 and the direction vector of
l8. Thus, there is no shared interpolant for η1 and η2.

Fortunately, T-conflicts which are extended by additional
inequations remain T-conflicts. (If the conjunction of some
inequations is infeasible, then any extension of the conjunction
is infeasible as well.) Therefore we may extend η1 to η′1 =
l1 ∧ l2 ∧ l5 ∧ l6 and η2 to η′2 = l3 ∧ l4 ∧ l5 ∧ l6. It is easy
to see that the linear inequation l9 = (x1 − x2 ≤ 1) from
Fig. 4 is a solution of (1′j)–(5′j) applied to η′1 and η′2 (with

coefficients λ1,1 = λ1,2 = 1, µ1,1 = µ1,2 = 1

3
, λ2,1 = λ2,2 =

1, µ2,1 = µ2,2 = 1

3
). This means that we really obtain the

shared interpolant l9 from Fig. 4 by (1′j)–(5′j), if we extend
the T-conflicts appropriately.

We learn from Ex. 4 that an appropriate extension of T-
conflicts increases the degrees of freedom in the computation
of interpolants, leading to new shared interpolants. Clearly, in
the general case an extension of T-conflicts ηj (and thus of
T-lemmata ¬ηj) may destroy proofs of T-unsatisfiability. In
the following we derive conditions when interpolants derived
from proofs with extended T-lemmata are still correct.

1) Implied literals:
Definition 3: Let A and B be two formulas, and let l be a

literal. l is an implied literal for A (implied literal for B), if
A |=T l and l does not occur in B (if B |=T l).

Lemma 2: Let P be a proof of T-unsatisfiability of A∧B,
let ¬η be a T-lemma in P not containing literal ¬l, and let l
be implied for A (for B). Then Craig interpolation according
to [6] (see Sect. II) applied to P with ¬η replaced by ¬η∨¬l
computes a Craig interpolant for A and B.

Proof: Here we prove only the case that l is an implied
literal for A. In P we replace the node labeled by ¬η with
a new non-leaf node n with parents nL and nR. n is labeled
by ncl = ¬η, too. Its pivot variable is np = l. nL is a leaf
labeled by clause (l) and nR is a leaf labeled by the T-lemma
¬η ∨ ¬l. It is easy to see that the resulting proof P ′ is a
proof of T-unsatisfiability of (A ∧ l) ∧ B. Therefore the Craig
interpolant I computed from P ′ is an interpolant for (A ∧ l)
and B. Since l is implied by A, (A ∧ l) and A are equivalent
modulo theory, i.e., I is also an interpolant for A and B. Since
according to the rules in [6] the partial interpolant at node n
is nI = ⊥ ∨ T-INTERPOLANT((η ∧ l) \ B, (η ∧ l) ↓ B) ≡
T-INTERPOLANT((η∧ l)\B, (η∧ l) ↓ B), I coincides with the
interpolant which results by interpolation in P after replacing
¬η by ¬η ∨ ¬l.

We can conclude from Lemma 2 that we are free to
arbitrarily add negations of implied literals for A or B to T-
lemmata without losing the property that the resulting formula
according to [6] is an interpolant of A and B.

Example 5 (cont.): Again consider Fig. 3. l1 and l4 are
clearly implied literals for A, l5 and l6 are implied literals for
B. Therefore we can extend T-conflict η1 to η′′1 = l1∧ l2∧ l4∧
l5 ∧ l6 and η2 to η′′2 = l1 ∧ l3 ∧ l4 ∧ l5 ∧ l6. (1′j)–(5′j) applied

to η′′1 and η′′2 and interpolation according to [6] leads to l9 as
an interpolant of A and B (similarly to Ex. 4, see Fig. 4).

2) Lemma Localization: In [27] the authors introduced
another method called Lemma Localization that extends T-
conflicts with additional T-literals. The additional T-literals
are derived by the so-called pushup operation which detects
redundant T-literals in the proof structure. A T-literal l is called
redundant in a proof node, if the clauses of all successor nodes
contain the literal l and the current node does not use it as the
pivot variable for the resolution. Such a redundant T-literal can
then be added to the current node without losing correctness
of the proof. A redundant literal l may eventually be pushed
into a leaf of the proof which represents a T-lemma ¬η. The
corresponding T-conflict η is extended by ¬l. The method in
[27] uses the pushup-algorithm in order to replace potentially
complex T-interpolants by constants: If (η ∧ ¬l) \ B is still a
T-conflict, then ⊥ is a valid T-interpolant, and if (η ∧¬l) ↓ B

is still a T-conflict, then ⊤ is a valid T-interpolant. Of course,
extending theory conflicts by additional literals increases the
chance of obtaining constant T-interpolants. In our work we
make use of the pushup operation to increase the degrees of
freedom for computing shared T-interpolants. (Nevertheless,
before computing shared interpolants we look for constant
T-interpolants as in [27], since this method contributes to a
minimization of non-trivial T-interpolants as well and the sizes
of overall Craig-interpolants may decrease significantly due to
the propagation of constants.)

D. Overall algorithm

Our overall algorithm starts with a T-unsatisfiable set of
clauses S and a disjoint partition (A,B) of S, and computes
a proof P for the T-unsatisfiability of S. P contains r T-
lemmata ¬η1, . . . ,¬ηr. The system of (in)equations (1′j)–(5′j)

from Sect. III-B with j ∈ {j1, . . . , jk} provides us with a
check whether there is a shared interpolant iTx ≤ δ for
the subset {ηj1 , . . . , ηjk} of T-conflicts. We call this check
SharedInterpol({ηj1 , . . . , ηjk}). Our goal is to find an
interpolant for A and B with a minimal number of different T-
interpolants. At first, we use SharedInterpol to precom-
pute an (undirected) compatibility graph Gcg = (Vcg, Ecg)
with Vcg = {η1, . . . , ηr} and {ηi, ηj} ∈ Ecg iff there is a
shared interpolant of ηi and ηj .

1) Iterative greedy algorithm: Our first algorithm is a sim-
ple iterative greedy algorithm based on SharedInterpol.
We iteratively compute sets SIi of T-conflicts which have a
shared interpolant. We start with SI1 = {ηs} for some T-
conflict ηs. To extend a set SIi we select a new T-conflict
ηc /∈ ∪i

j=1SIj with {ηc, ηj} ∈ Ecg for all ηj ∈ SIi. Then we

check whether SharedInterpol(SIi∪{ηc}) returns true or
false. If the result is true, we set SIi := SIi ∪{ηc}, otherwise
we select a new T-conflict as above. If there is no appropriate
new T-conflict, then we start a new set SIi+1. The algorithm
stops when all T-conflicts are inserted into a set SIj .

Of course, the quality of the result depends on the selection
of T-conflicts to start new sets SIi and on the decision which
candidate T-conflicts to select if there are several candidates.
So the cardinality of sets SIi and their total number (i.e. the
number of computed LA(Q)-interpolants) is not necessarily
minimal.

2) Maximum subsets of shared interpolants: We present a
second algorithm to improve on the order dependency of the
iterative greedy algorithm. The second algorithm is based on
a procedure MaxSubsetSI({ηj1 , . . . , ηjk}) which computes

a maximum subset of T-conflicts in {ηj1 , . . . , ηjk} which has
a shared interpolant.

First of all we extend (in)equations (1′j)–(5′j) from

Sect. III-B with activation variables α1, . . . , αr ∈ {0, 1} for
each T-conflict and obtain an SMT-formula MS which is a
conjunction of r subformulas of the form
(

αj ⇒
[

(λTj Aj + µT
j Bj = 0

T) ∧ (δ + µT
j bj ≤ −1)∧

(λTj Aj = iT) ∧ (λTj aj ≤ δ)
])

∧ (λj ≥ 0) ∧ (µj ≥ 0).

A solution to MS with αi1 = . . . = αil = 1 provides a
shared interpolant for {ηi1 , . . . , ηil}. Thus our goal is to find
a solution to MS which maximizes

∑r

j=1
αj .

To increase the efficiency of our search we partition the
graph Gcg into connected components and restrict our search
for maximum subsets with shared interpolants to connected
components. Let {ηj1 , . . . , ηjk} be the set of T-conflicts in
the current connected component CC. We set αj = 0 for all
j /∈ {j1, . . . , jk} to “turn off the constraints for T-conflicts
outside the current connected component”. For maximization

we introduce the Boolean cardinality constraint
∑k

i=1
αji ≥ b

into MS and perform a binary search for a maximum b.
There are several approaches for translating Boolean cardi-
nality constraints into SAT or SMT (see [36], [37], e.g.). In
our implementation we use a sorter network [38] with inputs
α1, . . . , αr and constrain the bth output of the sorter network to
1. If CC contains more than one T-conflict, the binary search
starts with b = 2 as a lower bound; an upper bound for b
results from an upper bound on the size of the largest clique
in CC. After a maximum subset of T-conflicts in the current
connected component has been found, the corresponding nodes
are removed from Gcg and we continue with searching for the
next maximum subset.

IV. EXPERIMENTAL RESULTS

We implemented the approach from Sect. III and applied
it to a set of benchmarks representing intermediate state sets
produced by a hybrid model checker [13]. As in [27] the
formula “A” for interpolation is given by the original state
set and the formula “¬B” is a “bloated version” of A where
all inequations are pushed outwards by a positive distance ǫ.
The formulas representing A and B contain up to 5 rational
variables, up to 1,380 inequations, up to 18,914 Boolean
variables, and up to 56,721 clauses.

The LA(Q)-proofs of unsatisfiability of A ∧ B were gen-
erated with MathSat 5 [33]. We compare the results of the
two algorithms from Sect. III-D1 and III-D2 to the original
interpolation technique implemented in MathSat 5 and to the
Lemma Localization method from [27]. All experiments were
conducted on one core of an Intel Xeon machine with 3.0 GHz
and a memory limit of 4GB RAM.

Benchmark
0

50

100

150

200

250

#
LC

s

orig
pushup
iterative

Figure 6. Absolute numbers of LCs

Figs. 6 and 7 show
a comparison of the
original interpolation
(‘orig’, magenta line) with
[27] (‘pushup’, blue line)
and the iterative greedy
method from Sect. III-D1
(‘iterative’, black line).
The x-axis represents
the different benchmarks,
ordered by the number of
linear constraints in the
original interpolant. In Fig. 6 the y-axis represents the absolute
numbers of linear constraints in the corresponding interpolants.
(Here benchmarks with less than 15 linear constraints in the
original interpolant are omitted for facility of inspection.) In
Fig. 7 the y-axis represents the relative numbers of linear

constraints (the original interpolants are all normalized to
100%, so the values for ‘original’ are 1.0 by definition);
again the benchmarks are ordered by the number of linear
constraints in the original interpolant. Whereas ‘pushup’ leads
to an overall reduction of the number of linear constraints
by 9.9% compared to ‘orig’ (with a maximum reduction of
60.0%), ‘iterative’ leads to an overall reduction by 34.6%
compared to ‘orig’ (with a maximum reduction of 70.7%).

Benchmark
0.0

0.2

0.4

0.6

0.8

1.0

#
LC

s

orig
pushup
iterative

Figure 7. Relative numbers of LCs

The CPU times for
computing the original in-
terpolants are all below
3.7 CPU seconds. Due to
the effort of minimizing
the numbers of linear con-
straints the CPU times for
‘iterative’ increase by an
average factor of 27.5; all
CPU times for ‘iterative’
remain below 7 min, 22 s.

Again for facility of
inspection, we omitted the results for the algorithm computing
maximum subsets of shared interpolants from Sect. III-D2
(‘max_subset’) in Fig. 6, since they do not differ much from
the results of the iterative algorithm. Compared to algorithm
‘iterative’, the maximum reduction of linear constraints in one
interpolant obtained by ‘max_subset’ was 3 and the overall
improvement was only by 0.07%. Since the CPU times for
‘max_subset’ again increase by a factor of 6 compared to
‘iterative’, we can conclude that the increased effort made
by ‘max_subset’ obviously does not pay off for this set of
benchmarks.

In summary, the experimental results demonstrate a consid-
erable potential of our minimization method computing shared
LA(Q)-interpolants. The results definitely suggest to use our
iterative method in applications which profit from simple
interpolants with a minimized number of linear constraints.

V. CONCLUSION AND FUTURE WORK

In this paper we demonstrated that interpolants based
on proofs of unsatisfiablity may be simplified to a great
extent by a method computing shared interpolants. The key
to successful simplification is a step which preprocesses the
proofs and increases the degrees of freedom in the selection of
interpolants for theory conflicts. Our current implementation is
restricted to linear arithmetic. In the future we will investigate
generalizations to other theories. Certain generalizations, like a
generalization to the combination of linear arithmetic and un-
interpreted functions, are straightforward, since in modular ap-
proaches like [30], [39] we only need to exchange the interpo-
lation construction method for linear arithmetic by our method.

REFERENCES

[1] W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” Journal of Symbolic Logic, vol. 22,
no. 3, pp. pp. 269–285, 1957.

[2] L. Zhang and S. Malik, “Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions,” in DATE, 2003, pp. 880–885.

[3] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” Journal on Symbolic Logic, vol. 62, no. 3,
pp. 981–998, 1997.

[4] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. of CAV, 2003, vol. 2742, pp. 1–13.

[5] L. de Moura, H. Ruess, and M. Sorea, “Lazy Theorem Proving for
Bounded Model Checking over Infinite Domains,” in Proc. of CADE,
2002, pp. 1–4.

[6] K. L. McMillan, “An Interpolating Theorem Prover,” Theoretical Com-
puter Science, vol. 345, no. 1, pp. 101 – 121, 2005.

[7] A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient Generation of Craig
Interpolants in Satisfiability Modulo Theories,” ACM Trans. Comput.
Logic, vol. 12, no. 1, pp. 7:1–7:54, Nov. 2010.

[8] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Ab-
stractions from Proofs,” in Proc. of POPL, 2004, pp. 232–244.

[9] K. L. McMillan, “Lazy abstraction with interpolants,” in Proc. of CAV,
2006, pp. 123–136.

[10] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri,
“Kratos - A Software Model Checker for SystemC,” in Proc. of CAV,
2011, pp. 310–316.

[11] D. Kroening and G. Weissenbacher, “Interpolation-Based Software
Verification with Wolverine,” in Proc. of CAV, 2011, pp. 573–578.

[12] C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid, “Computing
Optimized Representations for Non-convex Polyhedra by Detection and
Removal of Redundant Linear Constraints,” in Proc. of TACAS, 2009,
pp. 383–397.

[13] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl,
U. Waldmann, and B. Wirtz, “Exact and Fully Symbolic Verification of
Linear Hybrid Automata with Large Discrete State Spaces,” Science of
Computer Programming, vol. 77, no. 10-11, pp. 1122–1150, 2012.

[14] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani, “Bounded
Model Checking for Timed Systems,” in FORTE, 2002, pp. 243–259.

[15] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani, “Verifying
Industrial Hybrid Systems with MathSAT,” Electr. Notes Theor. Comput.
Sci., vol. 119, no. 2, pp. 17–32, 2005.

[16] M. Fränzle and C. Herde, “HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems,” Formal Methods in
System Design, vol. 30, no. 3, pp. 179–198, 2007.

[17] R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung, “Bi-decomposing large
boolean functions via interpolation and satisfiability solving,” in DAC,
2008, pp. 636–641.

[18] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee, “To SAT or not to SAT:
Ashenhurst Decomposition in a Large Scale,” in ICCAD, 2008, pp.
32–37.

[19] C. Sinz, “Compressing Propositional Proofs by Common Subproof
Extraction,” in Proc. of EUROCAST, 2007, pp. 547–555.

[20] S. F. Rollini, R. Bruttomesso, and N. Sharygina, “An Efficient and
Flexible Approach to Resolution Proof Reduction,” in Proc. of HVC,
2011, pp. 182–196.

[21] J. D. Backes and M. D. Riedel, “Reduction of Interpolants for Logic
Synthesis,” in Proc. of ICCAD, 2010, pp. 602–609.

[22] O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman,
“Reducing the size of resolution proofs in linear time,” STTT, vol. 13,
no. 3, pp. 263–272, 2011.

[23] A. Gupta, “Improved single pass algorithms for resolution proof reduc-
tion,” in ATVA, ser. LNCS, vol. 7561, 2012, pp. 107–121.

[24] R. Jhala and K. L. McMillan, “Interpolant-Based Transition Relation
Approximation,” Logical Methods in Computer Science, vol. 3, no. 4,
2007.

[25] V. D’Silva, M. Purandare, G. Weissenbacher, and D. Kroening, “Inter-
polant Strength,” in Proc. of VMCAI, 2010, pp. 129–145.

[26] G. Weissenbacher, “Interpolant strength revisited,” in SAT, ser. LNCS,
vol. 7317. Springer, 2012, pp. 312–326.

[27] F. Pigorsch and C. Scholl, “Lemma localization: A practical method for
downsizing SMT-interpolants,” in Proc. of DATE, 2013, pp. 1405–1410.

[28] K. Hoder, L. Kovács, and A. Voronkov, “Playing in the grey area of
proofs,” in POPL. ACM, 2012, pp. 259–272.

[29] A. Albarghouthi and K. L. McMillan, “Beautiful interpolants,” in CAV,
ser. LNCS, vol. 8044. Springer, 2013, pp. 313–329.

[30] A. Rybalchenko and V. Sofronie-Stokkermans, “Constraint Solving for
Interpolation,” in Proc. of VMCAI, 2007, pp. 346–362.

[31] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech,” STTT, vol. 10, no. 3, pp. 263–279, 2008.

[32] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in CAV, ser. LNCS, vol. 6806. Springer,
2011, pp. 379–395.

[33] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The Math-
SAT5 SMT Solver,” in Proceedings of TACAS, ser. LNCS, vol. 7795.
Springer, 2013.

[34] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, Jul. 1962.

[35] R. Sebastiani, “Lazy satisability modulo theories,” JSAT, vol. 3, no. 3-4,
pp. 141–224, 2007.

[36] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Principles and Practice of Constraint Programming,
ser. LNCS, vol. 3709. Springer, 2005, pp. 827–831.

[37] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” JSAT, vol. 2, no. 1-4, pp. 1–26, 2006.

[38] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the AFIPS Spring Joint Computer Conference, 1968, pp. 307–314.

[39] D. Beyer, D. Zufferey, and R. Majumdar, “CSIsat: Interpolation for
LA+EUF,” in CAV, ser. LNCS, vol. 5123. Springer, 2008, pp. 304–
308.

