A Dynamic Virtual Memory Management
under Real-Time Constraints

Martin Bohnert
Department of Computer Science
University of Freiburg, Germany
Email: boehnert@informatik.uni-freiburg.de

Abstract—In this work we describe a new memory manage-
ment concept which allows the use of both virtual and dynamic
memory management at the same time in the context of real-
time systems. For a fixed size of the virtual address space, the
operations of memory allocation, de-allocation and access have a
constant complexity. Therefore our approach is highly suited for
real-time environments with hard deadlines. We employ efficient
data-structures to yield runtimes that are close to traditional
static memory management concepts, and — at the same time
— provide the user with the full flexibility of both virtual and
dynamic memory management. Our approach is based on novel
operating system components and a novel real-time aware virtual
memory management unit (RTMMU) in hardware.

Our experimental results demonstrate the applicability of our
concept and compare its performance with a classical approach.
The results show that our new approach does not only provide
constant-time memory management operations, but is also able
to reduce the memory footprint to a large extent.

I. INTRODUCTION

Complex embedded microsystems which contain micro-
controllers and processors for controlling and data processing
usually depend on standard functions for their communication
with the hardware / software interface. To be able to develop
application software in a convenient and efficient manner these
standard functions should be realized by system calls of a real-
time operating system (i.e. by pre-designed components). For
embedded microsystems with limited resources this approach
is only possible if it does not imply a large overhead leading to
a violation of efficiency requirements (wrt. energy and memory
consumption) or to a violation of real-time constraints.

The focus of this work lies on memory management under
real-time constraints. Since large memories are opposed to
the need for miniaturization and low power consumption,
memory resources of embedded microsystems are often strictly
limited. The goals of our memory management methods are
the following:

1) Dynamic memory allocation [1], [2] should be sup-
ported, e.g., for being able to react to dynamic
changes in the system environment.

2) Available memory resources should be used as ef-
ficiently as possible. Wasting memory (e.g. by frag-
mentation, delayed release of unused memory) should
be avoided as much as possible.

3) Virtual memory management (VMM) [3], [4], [5]
should be supported. VMM provides independent
address spaces for different tasks, is able to realize
memory protection, and helps to prevent fragmen-
tation of the physical memory when memory is
allocated and de-allocated dynamically.

Christoph Scholl
Department of Computer Science
University of Freiburg, Germany

Email: scholl@informatik.uni-freiburg.de

4) In order to fulfill real-time requirements, basic op-
erations like memory allocation, access and release
should be as fast as possible; the complexity of these
operations should be data independent and limited by
(small) upper bounds.

Both dynamic and virtual memory management are widely
used concepts in desktop and server environments. Despite the
benefits of these concepts (e.g. making software development
much more convenient), their use in the context of embedded
real-time systems has been limited so far. Existing virtual
memory management systems have runtimes that depend on
the size of the requested memory. For this reason embedded
real-time systems refrain from using virtual memory, because
these mechanisms are viewed as a main obstacle to tight
estimates of worst-case execution times [6] and thus to an
efficient scheduling of processes with deadlines — see Sect. II-B
for a more detailed discussion. In many cases, fixed (and
contiguous) memory regions are assigned to each process and
there is a static memory management strategy for each process
[71, [8], [9], [10], [11], [12]. Clearly, this typically leads to a
large overestimation of the memory resources which are really
needed.

Here we present an approach which makes dynamic and
virtual memory management available for real-time systems.
Our approach introduces algorithms and data structures for
memory management in the operating system as well as our
real-time aware virtual memory management unit (RTMMU)
supporting the operating system.

Our proposed RTMMU allows, for the first time, to com-
bine dynamic and virtual memory management with constant
runtime bounds that do not depend on the memory usage
profile. For this purpose we introduce an efficient data structure
named Virtual Regions Tree for constant-time management
of typical memory operations including de-allocations. Unlike
standard approaches, our approach does not rely on delayed
memory de-allocations to achieve its runtime efficiency. In
contrast, every de-allocation is immediately executed, leading
to minimized memory footprints. Insofar our methods pave
the way for tight estimations of worst-case execution times
and worst-case memory consumption.

Our experimental results clearly confirm the theoretical
expectations concerning the applicability of our approach in
the real-time domain.

The rest of the paper is organized as follows: In Sect. II
we give a brief introduction to dynamic memory management,
virtual memory management and basic data structures used in
our memory management approach. Sect. III reviews related
work. Our approach is presented in Sect. IV followed by the

experimental results in Sect. V. Finally, Sect. VI summarizes
the results of our paper.

II. PRELIMINARIES
A. Dynamic Memory Management

Dynamic memory management [1], [2] is a concept, where
processes can allocate and de-allocate memory at runtime.
When processes use data structures whose memory consump-
tion changes over time, then it is highly desirable to have
an operating system providing routines for dynamic memory
allocation and de-allocation. Fixed memory assignments to
processes are usually based on overestimates for the memory
consumption, waste memory and make software development
more complex than needed. Memory de-allocation can be
performed explicitly or implicitly by garbage collection. In
the context of our paper we restrict ourselves to explicit de-
allocations.

B. Virtual Memory Management

In a virtual memory management (VMM) environment
[3]1, [4], [5] each process may “virtually” operate on the
complete address space. Moreover, VMM helps to prevent
fragmentation of physical memory when memory is allocated
and de-allocated dynamically, and it facilitates memory protec-
tion mechanisms. Operating system and memory management
hardware work together to map virtual memory pages to the
physical memory at runtime as soon as they are actually needed
by a process [5]. First of all, the physical memory and the
virtual address space are partitioned into pages. These pages
are numbered and the numbers are part of the memory address.
A single memory cell within a page can be addressed with an
offset which forms the rest of a physical memory address.

Now, a connection between the virtual and the physical
memory has to be established. This is achieved with a page
table, which simply is a look-up table, indexed with the virtual
page number. The result of the look up is the corresponding
physical page number. Combined with the offset (which is
not part of the translation process) the virtual address is
transformed into the physical one. The translation is done in
hardware by the memory management unit (MMU). Hierar-
chical and inverted page tables are alternatives to the direct
page tables as described here [5], [13]. We have generalized
our concepts to the case of hierarchical page tables as well.
However, in order to keep the presentation as clear as possible,
we confine ourselves to direct page tables in this paper.

When a memory page is accessed for the first time, the
MMU reports a page fault (i.e. it reports that the page is not
yet present in the physical memory) and the page is mapped
to a page in the physical memory. When a page of memory
is de-allocated, then the mapping to the physical memory
may be undone and the physical memory may be returned
to the system. In general purpose systems with secondary
memory, the return of physical memory to the system is usually
not performed explicitly, but implicitly via page replacement
strategies. Unused memory pages are usually not returned
to the system before the system runs out of free physical
memory. Although this approach is certainly efficient on the
average, the runtimes increase when the memory load is high.
For this reason (and because most embedded systems do not
have secondary memory at all) embedded real-time systems
usually refrain from using virtual memory with implicit page
replacement strategies.

0123 456 789

h helper array

s stack

sp stack pointer

Fig. 1: Principle of the initialization-free array

If implicit page replacements are not used, memory has
to be de-allocated explicitly when using VMM in a dynamic
memory management context. Then de-allocation with un-
mapping of memory pages leads to runtimes which are linear
in the number of deallocated memory pages. In order to avoid
this overhead, processes often do not return memory pages to
the system, but use them internally for subsequent memory
allocations. Nevertheless, from time to time processes shrink
their memory footprint (e.g. when memory blocks at the end
of the heap are released) to avoid too much memory overhead
[14]. When shrinking the memory footprint, un-mapping of
virtual memory pages still leads to runtimes which are linear
in the number of de-allocated pages. Such an approach has
two undesired effects: First, runtimes of memory de-allocations
become highly unpredictable, since from time to time they
trigger a large runtime overhead when shrinking the memory
footprint. However, predictability is of uttermost importance
for hard real-time systems. Second, such a delayed memory
de-allocation may lead to a large memory overhead.

Due to these difficulties most embedded real-time systems
do not use VMM at all. Instead, in many cases, fixed (and
contiguous) memory regions are assigned to each process and
there is a static memory management strategy for each process.
Clearly, this typically leads to a large overestimation of the
memory resources which are really needed.

C. Data Structures

In the following we briefly review two existing data struc-
tures which we use in our implementation.

1) Initialization-free Arrays: In our work the idea of
initialization-free arrays [15] is mainly used to be able to
invalidate whole blocks of page mappings in constant time
when memory is de-allocated. Initialization-free arrays are
usually employed when the (linear) cost for array initialization
should be avoided. To implement initialization-free arrays, as
in Fig. 1, the contents of the original array d[0...n — 1] are
represented by means of a data array d[0...n — 1], a helper
array h[0...n — 1] and a stack. The stack stores at most
n elements and can thus be implemented by another array
s[0...n —1] and a stack pointer sp. Suppose that the default
initialization value for d[é] is -1. The following invariant is
maintained:

dfi] = ¢, if d[i] = ¢ and 0 < h[i] < sp and s[h[i]] = 1,
otherwise d[i] = —1.

‘Reading from d[i]” is performed using this invariant. For
initialization of d we set sp = —1 with the effect d[i] = —1
V0 < i < n. Writing a value ¢ to d[i] works as follows: If
0 < hli] < sp and s[h[i]] = i, we set d[i] := c, otherwise we
set sp := sp+1, h[i] := sp, s[sp] := i and d[i] := c. It is easy
to see that this maintains the invariant and that all operations

read, write and initialize can be performed in constant time.
The illustration in Fig. 1 shows an initialization-free array with
d(2) = x, d(6) = y, and d(i) = —1 else. Although it holds
(“by accident”) that s[h[4]] = 4, this connection is not secured
by the stack, since sp = 1. Thus d[4] = —1 and not z.

2) Layered Trees: The concept of layered trees is used
to manage intervals of virtual addresses which correspond to
allocated or free regions of virtual memory. Layered trees
solve the union-split-find problem [15], [16], [17]. They can
be used to handle dynamic partitions of sets {0,..., N — 1}
into disjoint intervals Iy, . .., I. In our application the integers
represent virtual page numbers. The operation union replaces
two neighboring intervals I; and I,y by I; U I;; 1. The
operation splif splits an interval I; = [a, ¢] at position b € [a, (]
into [a,b—1] and [b, ¢] and replaces I; by these new intervals.
For b € {0,...,N — 1} the operation find determines the
unique interval I; = [a,c] with b € I;. ! For layered trees
the runtime complexity of the operations union, split and find
is in O(loglog N).

III. RELATED WORK

In [18] an approach for real-time systems is presented
which organizes virtual memory regions into intervals and
uses a linear mapping of the virtual memory regions to
physical memory. This approach suffers from an increasing
fragmentation of the physical memory, although it uses virtual
memory. Moreover, the runtime complexity is not independent
from the number of entries in the page table.

Other approaches use virtual memory management only
for components without hard real-time constraints (such as the
virtual ROM concept for mobile phone applications [19]).

Bennett and Audsley [20] introduce a specialized virtual
memory management for hard real-time tasks by so-called
modular page tables, but they do not solve the problem of
explicit de-allocations in constant time.

For real-time systems without virtual memory management
the two-level segregated fit (TLSF) allocator [21], [22] is
a widely known and accepted implementation of dynamic
memory management. TLSF combines fast response times
for allocation and release of memory with a low memory
consumption (by restricting the memory fragmentation). All
operations (allocation, release, splitting and coalescing adja-
cent free memory areas) can be performed with a number of
machine operations bounded by a constant, if one assumes that
certain common bit operations are available in the instruction
set. Otherwise the number of machine operations is logarithmic
in the address width of the underlying architecture, i.e., it is
in O(loglog N), if N is the number of addressable memory
cells. However, the original TLSF concept for embedded real-
time systems [21], [22] only works directly on the physical
memory. Later on, TLSF has been used in desktop and
server environments as well and has been extended for virtual
memory usage. However, in these extensions TLSF uses the
mmap/sbrk system calls of POSIX compatible operating
systems to allocate and de-allocate virtual memory pages.
These calls are used without consideration of the runtimes of
nmap and sbrk. Potential paging situations where memory
pages are stored on hard drive are also neglected. Thus, TLSF
loses its hard real-time capabilities in this context and runtimes
of allocation and de-allocation are hard to predict as long as
the state of the underlying operating system is not known. In

In our application, it is sufficient to find the left bound a of I;.

this paper we present — for the first time — a concept which
provides the underlying operating system and hardware support
for an dynamic memory allocator in a way that hard real-time
capabilities of allocators such as TLSF can be retained in a
virtual memory management context.

IV. DYNAMIC REAL-TIME AWARE VMM

Our goal of a dynamic real-time aware virtual memory
management is achieved by sophisticated data structures used
in operating system routines supported by the proposed new
real-time aware management unit (RTMMU). All operations
(allocation, de-allocation, access) are bounded by small and
strict upper runtime limits. These bounds are not related to
the size of the memory regions, but only to the fixed size of
the virtual address space in the given memory architecture.

In the following we assume that a virtual address space
A; with a size of n memory cells is assigned to process p;.
When p; is started, the operating system provides a new virtual
address space, copies the program to a predefined location and
starts the program. If the program needs additional memory
at runtime, then the operating system dynamically allocates
new virtual pages for process p;. To save as much memory as
possible physical memory corresponding to the virtual memory
addresses is only allocated by the page fault mechanism, if
there are accesses to the allocated virtual pages.

We further assume that the operating system provides the
following system calls for allocation and release of virtual
memory: The call malloc (A;,) reserves an arbitrary num-
ber of = contiguous virtual addresses inside the virtual address
space A;. Upon success, the call returns a virtual address a;
the virtual memory at addresses a to a+ (z — 1) is reserved by
this call. The call free (A;,a) releases the memory formerly
allocated with start address a.

Our memory management is designed for a hierarchical
use. The higher level systems calls malloc (A;,z) and
free (A;,a) make use of corresponding procedures at a
lower level which allocate and release whole pages of virtual
memory. This higher level can be served by an allocator like
binary buddy [2] or TLSF. In this paper we focus on the lower
level, i.e., memory management on the basis of virtual pages.

A. Memory Management Based on Virtual Pages

For our memory management, we consider allocation and
releases of whole memory pages. As already mentioned above,
we would like to make the runtimes for allocation and de-
allocation independent from the size of the allocated / de-
allocated memory when we combine dynamic and virtual
memory management for embedded real-time systems.

Allocations do not form any problem here, if the page fault
technique is used and a mapping is not done before a virtual
memory page is accessed for the first time.

De-allocation could be supported by page replacement
strategies in a memory hierarchy using secondary memory. In
our approach we consciously do without secondary memory,
because delays caused by swapping pages to the hard disk
are difficult to estimate. Thus, swapping pages is not desirable
for embedded real-time systems. Instead, such systems need
to rely on the assumption that the available amount of main
memory is sufficient to meet the memory demands of the
running processes. Upper bounds for memory consumption
may be computed statically (similarly to worst-case execution
time computations [6]). As we will see later, such analyses are

simplified to a great extent by our eager and explicit memory
de-allocation mechanisms.

For de-allocation of p memory pages in a memory-efficient
system without secondary memory a straightforward option
which makes de-allocated memory available to other processes
would be as follows: Upon de-allocation explicitly return the
free physical memory pages to the system and mark the
corresponding mappings in the page table as invalid. However,
this needs a runtime linear in p for de-allocation which we
would like to avoid.

Our system implements system calls similar to the
mmap (A;,a,z) and sbrk (x) functions from standard
POSIX operating systems. Here, A; denotes the virtual address
space, where x contiguous virtual pages should be mapped at
address a. In contrast to sbrk (z) which shrinks the heap of
a process by releasing x pages at the end, our system is able
to release arbitrary regions of contiguous memory pages and
it does this in constant time.

The new system call mapVRH (A;,a) marks a new vir-
tual memory region in virtual address space A; at virtual
address (respectively page) a. For all virtual pages in this
memory region (which reaches up to the next following virtual
memory region) an unmapping together with a release of
the corresponding physical memory pages can be performed
using one single operation in constant time. This is done
with the unmapRegion (A;,a) system call. For every first
access to a virtual page, mapPage (A;,a) needs to be called.
Usually this is done as part of a page fault handling routine.
mapPage (A;,b) allocates a new physical memory page,
maps it to the virtual page b in address space A; and
links it to the corresponding memory region established by
mapVRH (A4;,a) .

We would like to emphasize that our new system calls
provide an efficient opportunity to unmap virtual memory
(and free the corresponding physical memory) not only at the
end of the virtual memory space used for a process, but at
any arbitrary position. Our experimental results show that this
property is essential to maintain a small memory footprint.

Like in a standard environment, the higher level memory
allocator communicates the memory requests on the basis of
pages to the operating system with system calls, while the
according processes directly access their corresponding virtual
address space using hardware support (for an illustration see
Fig. 2).

In order to efficiently realize our system supporting dy-
namic virtual memory management for real-time systems we
introduce the data structures as illustrated in Fig. 3. We
derive the need for these data structures step by step from
the requirements of the different operations of our memory-
efficient real-time approach.

1) Releasing virtual pages: To support a constant-time
operation unmapRegion (A;,a) releasing x memory pages
with numbers a to a + (z — 1) (which are the pages up to
the beginning of the next region of memory pages) we have
to fulfill two requirements:

1) We have to invalidate all mappings from virtual pages
a,...,a+(x—1) to physical pages in constant time.
2) We have to release all physical memory pages which
have been mapped to virtual addresses b with a <
b < a+ (xz—1) by some call mapPage (A;,b) . This
operation should be performed in constant time, too.

access

mapVRH()
unmapRegion()

mapPage()

access

Fig. 2: Dataflow between processes, OS/memory management,
RTMMU and physical memory. The red arrows indicate con-
trol flows for function calls like malloc and free, while the
green ones indicate memory accesses.

To fulfill Requirement 1 we customized the idea of
initialization-free arrays (see Sect. II-C1). Each region of
memory previously allocated by a call mapVRH (A;,a) has
its own initialization-free array consisting of a data array
d.[0...2 — 1], a helper array ho[0...2z — 1], a stack array
$4[0...2—1], and a stack pointer sp,. = denotes the number of
memory pages from the beginning of this memory region to the
next region. Invalidating all mappings from virtual addresses
a,...,a+ (x—1) to physical pages at once can be performed
by setting sp, := —1. It is easy to see that the initialization-
free arrays for all regions of allocated memory in a virtual
address space A; with N pages numbered by 0,...,N — 1
can be combined into global arrays d[0...N — 1] (for data
arrays), h[0... N — 1] (for helper arrays), s[0... N — 1] (for
stacks), and sp[0... N — 1] (for stack pointers). These global
arrays replace the original page table pt[0...N — 1]. For
each allocated virtual memory region with virtual addresses
a,...,a+(x—1) we have a stack pointer sp[a] and sub-arrays
dla...a+(x-1)],hla...a+(z—1)],and s[a...a+ (z—1)].
For a < b < a+ (z — 1) we maintain the invariant “pt[b] = c,
if d[b] = ¢ and a < h[b] < spla] and s[h[b]] = b, otherwise

pt[b] = —17 just as described in Sect. II-C1. Invalidating
all mappings from this region can then be performed by
spla] := a — 1, e.g. (we always interpret the stack beginning

at index a as empty, if spla] < a).

The resulting data structure (illustrated in Fig. 4) is called
Pages Validity Array (PVA) in our context.

To be able to fulfill Requirement 2, after each mapping of a
physical page to a virtual page b with a < b < a+ (z—1), the
corresponding virtual page has to be included into a linked list
I[a] of physical pages. A pointer to this linked list is stored at
address a. Then the operation unmapRegion (A;,a) needs
only constant time to add this linked list to the list of free
physical memory pages.

2) Access to Virtual Pages: When we make an access to
a virtual memory page b in a region a,...,a + (z — 1), we
have to check first, whether this virtual page is already mapped
to physical memory. To decide this question using our Pages
Validity Array we need information on the beginning a of the
memory region. If we have the page number a, then we can
access the stack pointer sp[a], check whether a < h[b] < sp[a],

s[h[b]] = b, and d[b] # —1. If all these conditions are true,

layered tree

virtual regions cache

page table

virtual
address space

helper array
stack PVA

stack pointer

physical
address space

[] unused memory pages [|

unused memory areas within [

memory pages belonging to an [
allocated region VRH

used memory areas within the W
the PVA PVA &

representation of
the physical
memory pages

memory pages representing the

VRC cells with cache value in use

Fig. 3: Data structures for memory management based on virtual pages

then J[b] provides a valid page mapping, otherwise we have
observed a page fault.

It is important to note that we have to be able to compute
for each page number b the beginning a of the memory region
a,...,a+(x—1) witha < b < a+(z—1). For this purpose, we
make use of layered trees as described in Sect. II-C2. The set of
virtual pages with adresses A; = {0,..., N —1} is partitioned
into disjoint intervals of virtual page numbers corresponding
to contiguous allocated or free regions of virtual pages. For
a page number b the operation find provides exactly the left
bound a of the interval a,...,a + (x — 1) with a < b <
a + (x — 1). The complexity of the find operation in layered
trees is O(loglog N) (see also Sect. IV-A5).

a) First access to a virtual page: When we access a
virtual page b for the first time, we obtain the information that
the virtual page is not yet mapped to physical memory. Then
the page fault mechanism assigns a free physical page to this
virtual page, updates the initialization-free array accordingly,
and collects the mapped page in the linked list {[a] (in order
to prepare the release operation as described above). Note that
we need the left interval bound a corresponding to b to identify
the head pointer of the linked list, too.

We call the auxiliary data stored at the left bound a of a
memory region the Virtual Region Header (VRH). The Virtual
Region Header represents an allocated but not necessarily
mapped memory region and points to the head of the linked list
l[a]. Since the VRH represents a memory region, it can also be
used to store additional information not immediately needed
for memory management, e.g. access rights to the region.

The layered tree, which is able to compute the beginning
of a memory region and thus the corresponding VRH, is called
Virtual Regions Tree (VRT).

b) Subsequent accesses to a virtual page: After a vir-
tual page b has been accessed for the first time, all subsequent
accesses will not lead to a page fault any more as b has
now been mapped to a physical memory page. However, if
we would use the same method as for the first access, then
we would need O(loglog N) operations again for the find
operation in the VRT to be able to evaluate the initialization-
free array and thus to find the physical memory page mapped to

01234 5678910112 1314 1516 17 18 1920 21 page number
L [T ESZSNZE ¢ oo b
HEEBE I ISR hoiper aray
. [ENENER < stock aray
I [o I (OO HOIRTN op stack pointer array

Region A

Region B Region C

Fig. 4: The generalization of the initialization free array to
global arrays for each task — the PVA. Regions A, B and C
denote allocated and partly mapped memory regions.

b. O(loglog N) additional operations are acceptable in the case
of page faults, but any delays on regular memory accesses are
definitely unacceptable. For that reason we introduce a cache
to store the results of find operations in the VRT.

This cache c|0, ..., N — 1] (which is global to the address
space) is called Virtual Regions Cache (VRC). When a virtual
page b is accessed for the first time and the find operation in
the VRT results in a, then the page fault handler sets c[b] to
a.

_ During an access to a page b, lookups in the data array
d[b], in the VRC c[b], and in the helper array h[b] can be
parallelized. If c[b] is valid, then s[h[b]] and sp[c[b]] can be
computed in parallel in a second step and the page mapping
can be evaluated. If we assume that the VRC c, the helper array
h, the stack array s and the stack pointers sp are implemented
by fast memory with double speed compared to original page
table, then the original memory access times of a traditional
page table based system are preserved.’

We want to make clear, that the VRC only stores the result
of the find operation in the Virtual Regions Tree. In contrast,
the translation lookaside buffer (7LB) of a standard MMU

2If fast memory is not available for that purpose, one could also think of
a pipelined application of the two steps described above. Then the latency of
memory accesses is delayed by one read cycle, but the speed is preserved.

stores the result of the address translation.’

3) Allocating virtual pages: The operation
mapVRH (A;,a) performs a split operation in the VRT
at position a, just as the de-allocation operation performs a
union operation in the VRT (which has not been mentioned
yet in the description above). Then we ‘initialize’ the
initialization-free array by sp[a] := a — 1 and we initialize
the linked list in the VRH by the empty list.

4) Correctness and Complexity:

Theorem 1. Our algorithm handles accesses (with and without
page faults) and allocation, de-allocation of pages correctly.
Allocations, de-allocations and handling of page faults are
performed in O(loglog N) (with N equal to the size of the
virtual address space).* Memory accesses without page fault
are performed in constant time.

The proof of Theorem 1 basically follows from the argu-
ments given above and the correctness resp. complexity of the
operations on our data structures (initialization-free arrays and
layered trees). There is one subtle point concerning correctness
which needs an additional consideration:

As described in Sect. IV-A1 we invalidate all mappings
from a region with virtual addresses a,...,a + (x — 1) in
constant time by setting spla] := a — 1. We neither perform
assignments in the global arrays d[0...N —1], h[0... N —1],
and s[0...N — 1] (which is justified by the concept of
initialization-free arrays), nor we perform any assignments
in the global cache c (the Virtual Regions Cache) storing
the results of find operations in the Virtual Regions Tree.
Here the question arises whether we need to initialize (or re-
initialize) the cache ¢ in order to avoid problems with old
(or uninitialized) cache entries, when the same virtual pages
are used again after following allocations of memory regions.
Re-initializing every entry in ¢ for the whole memory region
which has been released is clearly not suitable, as this would
introduce a linear runtime and destroy our real-time properties.
Fortunately, we can show that initializations in the cache c are
not needed.

Lemma 1. As long as the stack pointer array sp is initialized
when the complete system is started,’ mapping of memory
pages can be implemented correctly without any initializations
to the Virtual Regions Cache c.

Proof (Sketch): Consider a page b within a memory
region of allocated pages a,...,a + (x — 1) (@ < b <
a + (x — 1)). Possibly the page b has been part of another
memory region which has been allocated and freed before. If
b has been accessed after the previous allocation (leading to
a valid entry in ¢[b] at that time) and not accessed after the
current allocation, then c[b] may hold an outdated value. We
have to prove that even in this case it is possible to detect that

30f course, if needed, our memory address translation can simply be
extended by a translation lookaside buffer for caching address translation
results. If TLBs are used in the final memory system, then the WCET (worst-
case execution time) analysis has the task to analyze situations when there are
definite hits in the TLB just as in the standard analysis for hits in the data
and instruction cache [6]. Since the additional use of TLBs is orthogonal to
our approach, we omitted them in our exposition.

4This is called “quasi-constant” in [21], [22], since N is constant in a given
architecture.

SRemember that the stack for a region with virtual addresses a, . . ., a+(x—
1) is considered to be empty, if sp[a] < a. Thus, in a practical implementation
one option for initialization of sp would be to ensure sp[i] = 0 at power-up
of the memory and to exclude virtual page O from further usage.

a current access to b is the first one after the new allocation,
without interference by the old value c[b].

In order to prove this fact we have to consider several cases:

o Case 1: c[b] > b. In this case it is clear that c[b] is
invalid. Every valid entry c[b] points to the beginning
of a memory region c[b], . .., c[b]+ (2’ —1) with ¢[b] <
b. Thus we can detect that the access to b is the first
one after the allocation and the entry c[b] is invalid (in
that case due to a lack of initializations to the array
c).

e Case 2: ¢[b] < b. Here we have to differentiate
between two sub-cases:

Case 2.1: splc[b]] < c[b]. This inequation indicates that
the stack beginning at c[b] is empty (see Sect. IV-Al).
Since the array sp is initialized when the system is
started (precondition of the lemma) and only changed
in a correct way during page faults, page allocations,
and page releases, we can rely on the entries in
sp. Thus, in case of ¢[b] = a the stack for region
a,...,a+ (x — 1) is empty and the access to b is
the first one after the allocation (as there has not been
any access to the region at all). In case of c[b] # a,
the entry ¢[b] is outdated. In any of the two cases a
page fault handling takes place, the correct position a
of the Virtual Regions Header is found in the Virtual
Regions Tree during page fault handling and finally
c[b] is overwritten by a.

Case 2.2: sp[c[b]] > c[b]. With the same argument as
in the case before we can rely on the fact that the
position ¢[b] is the beginning of a non-empty stack
slefb]l, - . ., s[sp[c[b]]]. This stack definitely belongs to
a memory region c[b], ..., ¢[b]4+ (2’ —1). There may be
two cases for the corresponding intervals: [c[b], ¢[b] +
(' =] =la,a+ (x—1)] and c[b] + (¢’ — 1) < a.

Case 2.2.1: ¢[b] + (2’ — 1) < a. In this case c[b] is
definitely outdated. We have to show to be able to
detect that the access to page b is the first one after the
allocation. Due to the construction of the initialization-
free array we know that s[i] < ¢[b] + (¢’ —1) < a for
all c[b] < < splc[b]]. Even if ¢[b] < h[b] < splc[b]],
we have s[h[b]] < a and thus s[h[b]] # b. So we
detect that the mapping at b is not valid, handle the
page fault, perform a lookup in the Virtual Regions
Tree during page fault handling, and update c[b] to
the correct value a.

Case 2.2.2: [c[b], ¢[b] + (2’ — 1)] = [a,a+ (x — 1)]. In
this case the value in c[b] is correct (either by chance
or since there has been an access to page b after the last
allocation of the region containing b). The algorithm
uses the initialization-free array to check whether the
mapping at page b is valid. In every case the value of
¢[b] remains correct after the access to page b.

5) Optimizations and Cost: Of course, for achieving the
runtimes given in Theorem 1 we need additional memory for
our data structures.

For a more detailed analysis we first consider the VRT
which is based on layered trees. In general, layered trees
are used to handle dynamic partitions of totally ordered sets.
Implementations according to [15], [16] assume these totally
ordered sets to be lists of dynamic size. Elements can be added
to or erased from these lists, i.e., there are operations add and

erase in addition to the operations union, split, and find. This
leads to a rather involved data structure where the different
nodes of the list and of the layered tree are linked by several
pointers (for successor and predecessor relations, links to tree
structures at higher layers etc.) as well as several copies of the
original list at different hierarchy levels have to be stored. The
overall space complexity is in O(N -loglog N) (where N is the
size of the list). In contrast, since the size of the virtual address
space is fixed in our work, we have to handle partitions of
a fixed set {0,...,2¥ — 1} where N = 2*. This allows for
rather sophisticated measures to simplify the layered tree and
to reduce its size. Due to lack of space we only mention a few
optimizations without going into detail:

1) First of all, our layered tree has a static structure.

2) Moreover, we can do without pointers between nodes
at different hierarchy levels, since the connections
between these nodes are given implicitly in the static
structure, i.e., they can be computed based on node

numbers.’
3) In contrast to [15] we can avoid to copy the rep-
resentation of the original set {0,...,2%¥ — 1} for

several times at different hierarchy levels and we
can combine other nodes in the layered tree into one
representative without losing any information.

The sum of these measures leads to a data structure with space
complexity O(N) instead of O(N - loglog N).

Moreover, the constant factors both for space and runtime
requirements are reduced by using bit arrays instead of list
elements for representing the virtual pages {0, ...,2¥ —1}, by
using bitvector operations (like least significant one bit, most
significant one bit), and by inlining recursive calls.

220

For instance, for a system with virtual pages, this leads
220

to a memory consumption of (2-+2'0.4.342°.4.3+4.3)
Bytes = 143756 Bytes ~ 140K:B for the layered tree,
whereas a lower bound to the memory consumption of the
original implementation [15] (for the case of a complete
layered tree, corresponding to the finest possible partition of
the set, e.g.) is given by 220.5.10-4 Bytes = 200MiB. This
means that we managed to reduce the VRT to a size below the
size of the page table for realistic memory architectures (e.g.
for the one used in our experiments in Sect. V).

The memory requirement for the Virtual Regions Cache,
the Pages Validity Array and the page table altogether exceeds
the memory requirement for the usual page table only by
a constant factor of 5. Bearing in mind that the memory
consumption for the page table is far below the size of
the managed memory in a realistic memory architecture, the
additional effort for our data structures is negligible.

Finally, we would like to emphasize that

1) the runtime O(loglog N) for union, split and find in
the VRT does not depend on the sizes of the released,
allocated or accessed regions, but only on the number
of memory pages in the system, and

2) it is a small constant given a fixed and realistic
memory architecture.

Thus, the runtimes of these operations can be estimated
independently from the sizes of the memory regions and can
be bounded by small constants.

6 As the total amount of memory in a system does not change during runtime.

TProvided that we additionally pay attention to build the levels in the layered
tree in a way that the nodes are distributed to substructures in a uniform way
and the numbers of nodes at different levels are powers of two.

B. The Real-Time Memory Management Unit

Up to this point we presented the algorithms which are used
in our new dynamic virtual memory management scheme. Here
we will briefly introduce the Real-Time Memory Management
Unit (RTMMU).

The RTMMU is located between the CPU and the memory
subsystem. Each memory access of the CPU leads to three
parallel memory requests which are initiated by the RTMMU.
To this end the RTMMU has three independent bus ports to
the memory subsystem. One port first accesses the VRC to
get the position of the actual VRH and subsequently accesses
the stack pointer in the PVA at the found position. The second
port reads the helper array in the PVA, followed by an access
to the stack in the PVA at the found position. The third port
reads the page table and waits for the other two ports to finish
and decide whether the physical memory address is correct. If
no page fault is detected,