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Abstract—In this work we describe a new memory manage-
ment concept which allows the use of both virtual and dynamic
memory management at the same time in the context of real-
time systems. For a fixed size of the virtual address space, the
operations of memory allocation, de-allocation and access have a
constant complexity. Therefore our approach is highly suited for
real-time environments with hard deadlines. We employ efficient
data-structures to yield runtimes that are close to traditional
static memory management concepts, and – at the same time
– provide the user with the full flexibility of both virtual and
dynamic memory management. Our approach is based on novel
operating system components and a novel real-time aware virtual
memory management unit (RTMMU) in hardware.

Our experimental results demonstrate the applicability of our
concept and compare its performance with a classical approach.
The results show that our new approach does not only provide
constant-time memory management operations, but is also able
to reduce the memory footprint to a large extent.

I. INTRODUCTION

Complex embedded microsystems which contain micro-
controllers and processors for controlling and data processing
usually depend on standard functions for their communication
with the hardware / software interface. To be able to develop
application software in a convenient and efficient manner these
standard functions should be realized by system calls of a real-
time operating system (i.e. by pre-designed components). For
embedded microsystems with limited resources this approach
is only possible if it does not imply a large overhead leading to
a violation of efficiency requirements (wrt. energy and memory
consumption) or to a violation of real-time constraints.

The focus of this work lies on memory management under
real-time constraints. Since large memories are opposed to
the need for miniaturization and low power consumption,
memory resources of embedded microsystems are often strictly
limited. The goals of our memory management methods are
the following:

1) Dynamic memory allocation [1], [2] should be sup-
ported, e.g., for being able to react to dynamic
changes in the system environment.

2) Available memory resources should be used as ef-
ficiently as possible. Wasting memory (e.g. by frag-
mentation, delayed release of unused memory) should
be avoided as much as possible.

3) Virtual memory management (VMM) [3], [4], [5]
should be supported. VMM provides independent
address spaces for different tasks, is able to realize
memory protection, and helps to prevent fragmen-
tation of the physical memory when memory is
allocated and de-allocated dynamically.

4) In order to fulfill real-time requirements, basic op-
erations like memory allocation, access and release
should be as fast as possible; the complexity of these
operations should be data independent and limited by
(small) upper bounds.

Both dynamic and virtual memory management are widely
used concepts in desktop and server environments. Despite the
benefits of these concepts (e.g. making software development
much more convenient), their use in the context of embedded
real-time systems has been limited so far. Existing virtual
memory management systems have runtimes that depend on
the size of the requested memory. For this reason embedded
real-time systems refrain from using virtual memory, because
these mechanisms are viewed as a main obstacle to tight
estimates of worst-case execution times [6] and thus to an
efficient scheduling of processes with deadlines – see Sect. II-B
for a more detailed discussion. In many cases, fixed (and
contiguous) memory regions are assigned to each process and
there is a static memory management strategy for each process
[7], [8], [9], [10], [11], [12]. Clearly, this typically leads to a
large overestimation of the memory resources which are really
needed.

Here we present an approach which makes dynamic and
virtual memory management available for real-time systems.
Our approach introduces algorithms and data structures for
memory management in the operating system as well as our
real-time aware virtual memory management unit (RTMMU)
supporting the operating system.

Our proposed RTMMU allows, for the first time, to com-
bine dynamic and virtual memory management with constant
runtime bounds that do not depend on the memory usage
profile. For this purpose we introduce an efficient data structure
named Virtual Regions Tree for constant-time management
of typical memory operations including de-allocations. Unlike
standard approaches, our approach does not rely on delayed
memory de-allocations to achieve its runtime efficiency. In
contrast, every de-allocation is immediately executed, leading
to minimized memory footprints. Insofar our methods pave
the way for tight estimations of worst-case execution times
and worst-case memory consumption.

Our experimental results clearly confirm the theoretical
expectations concerning the applicability of our approach in
the real-time domain.

The rest of the paper is organized as follows: In Sect. II
we give a brief introduction to dynamic memory management,
virtual memory management and basic data structures used in
our memory management approach. Sect. III reviews related
work. Our approach is presented in Sect. IV followed by the



experimental results in Sect. V. Finally, Sect. VI summarizes
the results of our paper.

II. PRELIMINARIES

A. Dynamic Memory Management

Dynamic memory management [1], [2] is a concept, where
processes can allocate and de-allocate memory at runtime.
When processes use data structures whose memory consump-
tion changes over time, then it is highly desirable to have
an operating system providing routines for dynamic memory
allocation and de-allocation. Fixed memory assignments to
processes are usually based on overestimates for the memory
consumption, waste memory and make software development
more complex than needed. Memory de-allocation can be
performed explicitly or implicitly by garbage collection. In
the context of our paper we restrict ourselves to explicit de-
allocations.

B. Virtual Memory Management

In a virtual memory management (VMM) environment
[3], [4], [5] each process may “virtually” operate on the
complete address space. Moreover, VMM helps to prevent
fragmentation of physical memory when memory is allocated
and de-allocated dynamically, and it facilitates memory protec-
tion mechanisms. Operating system and memory management
hardware work together to map virtual memory pages to the
physical memory at runtime as soon as they are actually needed
by a process [5]. First of all, the physical memory and the
virtual address space are partitioned into pages. These pages
are numbered and the numbers are part of the memory address.
A single memory cell within a page can be addressed with an
offset which forms the rest of a physical memory address.

Now, a connection between the virtual and the physical
memory has to be established. This is achieved with a page
table, which simply is a look-up table, indexed with the virtual
page number. The result of the look up is the corresponding
physical page number. Combined with the offset (which is
not part of the translation process) the virtual address is
transformed into the physical one. The translation is done in
hardware by the memory management unit (MMU). Hierar-
chical and inverted page tables are alternatives to the direct
page tables as described here [5], [13]. We have generalized
our concepts to the case of hierarchical page tables as well.
However, in order to keep the presentation as clear as possible,
we confine ourselves to direct page tables in this paper.

When a memory page is accessed for the first time, the
MMU reports a page fault (i.e. it reports that the page is not
yet present in the physical memory) and the page is mapped
to a page in the physical memory. When a page of memory
is de-allocated, then the mapping to the physical memory
may be undone and the physical memory may be returned
to the system. In general purpose systems with secondary
memory, the return of physical memory to the system is usually
not performed explicitly, but implicitly via page replacement
strategies. Unused memory pages are usually not returned
to the system before the system runs out of free physical
memory. Although this approach is certainly efficient on the
average, the runtimes increase when the memory load is high.
For this reason (and because most embedded systems do not
have secondary memory at all) embedded real-time systems
usually refrain from using virtual memory with implicit page
replacement strategies.
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Fig. 1: Principle of the initialization-free array

If implicit page replacements are not used, memory has
to be de-allocated explicitly when using VMM in a dynamic
memory management context. Then de-allocation with un-
mapping of memory pages leads to runtimes which are linear
in the number of deallocated memory pages. In order to avoid
this overhead, processes often do not return memory pages to
the system, but use them internally for subsequent memory
allocations. Nevertheless, from time to time processes shrink
their memory footprint (e.g. when memory blocks at the end
of the heap are released) to avoid too much memory overhead
[14]. When shrinking the memory footprint, un-mapping of
virtual memory pages still leads to runtimes which are linear
in the number of de-allocated pages. Such an approach has
two undesired effects: First, runtimes of memory de-allocations
become highly unpredictable, since from time to time they
trigger a large runtime overhead when shrinking the memory
footprint. However, predictability is of uttermost importance
for hard real-time systems. Second, such a delayed memory
de-allocation may lead to a large memory overhead.

Due to these difficulties most embedded real-time systems
do not use VMM at all. Instead, in many cases, fixed (and
contiguous) memory regions are assigned to each process and
there is a static memory management strategy for each process.
Clearly, this typically leads to a large overestimation of the
memory resources which are really needed.

C. Data Structures
In the following we briefly review two existing data struc-

tures which we use in our implementation.
1) Initialization-free Arrays: In our work the idea of

initialization-free arrays [15] is mainly used to be able to
invalidate whole blocks of page mappings in constant time
when memory is de-allocated. Initialization-free arrays are
usually employed when the (linear) cost for array initialization
should be avoided. To implement initialization-free arrays, as
in Fig. 1, the contents of the original array d[0 . . . n − 1] are
represented by means of a data array d̃[0 . . . n − 1], a helper
array h[0 . . . n − 1] and a stack. The stack stores at most
n elements and can thus be implemented by another array
s[0 . . . n− 1] and a stack pointer sp. Suppose that the default
initialization value for d[i] is -1. The following invariant is
maintained:

d[i] = c, if d̃[i] = c and 0 ≤ h[i] ≤ sp and s[h[i]] = i,
otherwise d[i] = −1.

‘Reading from d[i]’ is performed using this invariant. For
initialization of d we set sp = −1 with the effect d[i] = −1
∀0 ≤ i < n. Writing a value c to d[i] works as follows: If
0 ≤ h[i] ≤ sp and s[h[i]] = i, we set d̃[i] := c, otherwise we
set sp := sp+1, h[i] := sp, s[sp] := i and d̃[i] := c. It is easy
to see that this maintains the invariant and that all operations
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read, write and initialize can be performed in constant time.
The illustration in Fig. 1 shows an initialization-free array with
d(2) = x, d(6) = y, and d(i) = −1 else. Although it holds
(“by accident”) that s[h[4]] = 4, this connection is not secured
by the stack, since sp = 1. Thus d[4] = −1 and not z.

2) Layered Trees: The concept of layered trees is used
to manage intervals of virtual addresses which correspond to
allocated or free regions of virtual memory. Layered trees
solve the union-split-find problem [15], [16], [17]. They can
be used to handle dynamic partitions of sets {0, . . . , N − 1}
into disjoint intervals I1, . . . , Ik. In our application the integers
represent virtual page numbers. The operation union replaces
two neighboring intervals Ii and Ii+1 by Ii ∪ Ii+1. The
operation split splits an interval Ii = [a, c] at position b ∈ [a, c]
into [a, b−1] and [b, c] and replaces Ii by these new intervals.
For b ∈ {0, . . . , N − 1} the operation find determines the
unique interval Ii = [a, c] with b ∈ Ii. 1 For layered trees
the runtime complexity of the operations union, split and find
is in O(log logN).

III. RELATED WORK

In [18] an approach for real-time systems is presented
which organizes virtual memory regions into intervals and
uses a linear mapping of the virtual memory regions to
physical memory. This approach suffers from an increasing
fragmentation of the physical memory, although it uses virtual
memory. Moreover, the runtime complexity is not independent
from the number of entries in the page table.

Other approaches use virtual memory management only
for components without hard real-time constraints (such as the
virtual ROM concept for mobile phone applications [19]).

Bennett and Audsley [20] introduce a specialized virtual
memory management for hard real-time tasks by so-called
modular page tables, but they do not solve the problem of
explicit de-allocations in constant time.

For real-time systems without virtual memory management
the two-level segregated fit (TLSF) allocator [21], [22] is
a widely known and accepted implementation of dynamic
memory management. TLSF combines fast response times
for allocation and release of memory with a low memory
consumption (by restricting the memory fragmentation). All
operations (allocation, release, splitting and coalescing adja-
cent free memory areas) can be performed with a number of
machine operations bounded by a constant, if one assumes that
certain common bit operations are available in the instruction
set. Otherwise the number of machine operations is logarithmic
in the address width of the underlying architecture, i.e., it is
in O(log logN), if N is the number of addressable memory
cells. However, the original TLSF concept for embedded real-
time systems [21], [22] only works directly on the physical
memory. Later on, TLSF has been used in desktop and
server environments as well and has been extended for virtual
memory usage. However, in these extensions TLSF uses the
mmap/sbrk system calls of POSIX compatible operating
systems to allocate and de-allocate virtual memory pages.
These calls are used without consideration of the runtimes of
nmap and sbrk. Potential paging situations where memory
pages are stored on hard drive are also neglected. Thus, TLSF
loses its hard real-time capabilities in this context and runtimes
of allocation and de-allocation are hard to predict as long as
the state of the underlying operating system is not known. In

1In our application, it is sufficient to find the left bound a of Ii.

this paper we present – for the first time – a concept which
provides the underlying operating system and hardware support
for an dynamic memory allocator in a way that hard real-time
capabilities of allocators such as TLSF can be retained in a
virtual memory management context.

IV. DYNAMIC REAL-TIME AWARE VMM
Our goal of a dynamic real-time aware virtual memory

management is achieved by sophisticated data structures used
in operating system routines supported by the proposed new
real-time aware management unit (RTMMU). All operations
(allocation, de-allocation, access) are bounded by small and
strict upper runtime limits. These bounds are not related to
the size of the memory regions, but only to the fixed size of
the virtual address space in the given memory architecture.

In the following we assume that a virtual address space
Ai with a size of n memory cells is assigned to process pi.
When pi is started, the operating system provides a new virtual
address space, copies the program to a predefined location and
starts the program. If the program needs additional memory
at runtime, then the operating system dynamically allocates
new virtual pages for process pi. To save as much memory as
possible physical memory corresponding to the virtual memory
addresses is only allocated by the page fault mechanism, if
there are accesses to the allocated virtual pages.

We further assume that the operating system provides the
following system calls for allocation and release of virtual
memory: The call malloc(Ai, x) reserves an arbitrary num-
ber of x contiguous virtual addresses inside the virtual address
space Ai. Upon success, the call returns a virtual address a;
the virtual memory at addresses a to a+(x−1) is reserved by
this call. The call free(Ai, a) releases the memory formerly
allocated with start address a.

Our memory management is designed for a hierarchical
use. The higher level systems calls malloc(Ai, x) and
free(Ai, a) make use of corresponding procedures at a
lower level which allocate and release whole pages of virtual
memory. This higher level can be served by an allocator like
binary buddy [2] or TLSF. In this paper we focus on the lower
level, i.e., memory management on the basis of virtual pages.

A. Memory Management Based on Virtual Pages
For our memory management, we consider allocation and

releases of whole memory pages. As already mentioned above,
we would like to make the runtimes for allocation and de-
allocation independent from the size of the allocated / de-
allocated memory when we combine dynamic and virtual
memory management for embedded real-time systems.

Allocations do not form any problem here, if the page fault
technique is used and a mapping is not done before a virtual
memory page is accessed for the first time.

De-allocation could be supported by page replacement
strategies in a memory hierarchy using secondary memory. In
our approach we consciously do without secondary memory,
because delays caused by swapping pages to the hard disk
are difficult to estimate. Thus, swapping pages is not desirable
for embedded real-time systems. Instead, such systems need
to rely on the assumption that the available amount of main
memory is sufficient to meet the memory demands of the
running processes. Upper bounds for memory consumption
may be computed statically (similarly to worst-case execution
time computations [6]). As we will see later, such analyses are
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simplified to a great extent by our eager and explicit memory
de-allocation mechanisms.

For de-allocation of p memory pages in a memory-efficient
system without secondary memory a straightforward option
which makes de-allocated memory available to other processes
would be as follows: Upon de-allocation explicitly return the
free physical memory pages to the system and mark the
corresponding mappings in the page table as invalid. However,
this needs a runtime linear in p for de-allocation which we
would like to avoid.

Our system implements system calls similar to the
mmap(Ai, a, x) and sbrk(x) functions from standard
POSIX operating systems. Here, Ai denotes the virtual address
space, where x contiguous virtual pages should be mapped at
address a. In contrast to sbrk(x) which shrinks the heap of
a process by releasing x pages at the end, our system is able
to release arbitrary regions of contiguous memory pages and
it does this in constant time.

The new system call mapVRH(Ai, a) marks a new vir-
tual memory region in virtual address space Ai at virtual
address (respectively page) a. For all virtual pages in this
memory region (which reaches up to the next following virtual
memory region) an unmapping together with a release of
the corresponding physical memory pages can be performed
using one single operation in constant time. This is done
with the unmapRegion(Ai, a) system call. For every first
access to a virtual page, mapPage(Ai, a) needs to be called.
Usually this is done as part of a page fault handling routine.
mapPage(Ai, b) allocates a new physical memory page,
maps it to the virtual page b in address space Ai and
links it to the corresponding memory region established by
mapVRH(Ai, a).

We would like to emphasize that our new system calls
provide an efficient opportunity to unmap virtual memory
(and free the corresponding physical memory) not only at the
end of the virtual memory space used for a process, but at
any arbitrary position. Our experimental results show that this
property is essential to maintain a small memory footprint.

Like in a standard environment, the higher level memory
allocator communicates the memory requests on the basis of
pages to the operating system with system calls, while the
according processes directly access their corresponding virtual
address space using hardware support (for an illustration see
Fig. 2).

In order to efficiently realize our system supporting dy-
namic virtual memory management for real-time systems we
introduce the data structures as illustrated in Fig. 3. We
derive the need for these data structures step by step from
the requirements of the different operations of our memory-
efficient real-time approach.

1) Releasing virtual pages: To support a constant-time
operation unmapRegion(Ai, a) releasing x memory pages
with numbers a to a + (x − 1) (which are the pages up to
the beginning of the next region of memory pages) we have
to fulfill two requirements:

1) We have to invalidate all mappings from virtual pages
a, . . . , a+(x−1) to physical pages in constant time.

2) We have to release all physical memory pages which
have been mapped to virtual addresses b with a ≤
b ≤ a+(x−1) by some call mapPage(Ai, b). This
operation should be performed in constant time, too.

physical memory

RTMMU

OS

process 1

malloc()
free()

access
mapVRH()

unmapRegion()
mapPage()

access

malloc()
free()

virtual mem 1

Fig. 2: Dataflow between processes, OS/memory management,
RTMMU and physical memory. The red arrows indicate con-
trol flows for function calls like malloc and free, while the
green ones indicate memory accesses.

To fulfill Requirement 1 we customized the idea of
initialization-free arrays (see Sect. II-C1). Each region of
memory previously allocated by a call mapVRH(Ai, a) has
its own initialization-free array consisting of a data array
d̃a[0 . . . x − 1], a helper array ha[0 . . . x − 1], a stack array
sa[0 . . . x−1], and a stack pointer spa. x denotes the number of
memory pages from the beginning of this memory region to the
next region. Invalidating all mappings from virtual addresses
a, . . . , a+(x− 1) to physical pages at once can be performed
by setting spa := −1. It is easy to see that the initialization-
free arrays for all regions of allocated memory in a virtual
address space Ai with N pages numbered by 0, . . . , N − 1
can be combined into global arrays d̃[0 . . . N − 1] (for data
arrays), h[0 . . . N − 1] (for helper arrays), s[0 . . . N − 1] (for
stacks), and sp[0 . . . N − 1] (for stack pointers). These global
arrays replace the original page table pt[0 . . . N − 1]. For
each allocated virtual memory region with virtual addresses
a, . . . , a+(x−1) we have a stack pointer sp[a] and sub-arrays
d̃[a . . . a+(x−1)], h[a . . . a+(x−1)], and s[a . . . a+(x−1)].
For a ≤ b ≤ a+ (x− 1) we maintain the invariant “pt[b] = c,
if d̃[b] = c and a ≤ h[b] ≤ sp[a] and s[h[b]] = b, otherwise
pt[b] = −1” just as described in Sect. II-C1. Invalidating
all mappings from this region can then be performed by
sp[a] := a − 1, e.g. (we always interpret the stack beginning
at index a as empty, if sp[a] < a).

The resulting data structure (illustrated in Fig. 4) is called
Pages Validity Array (PVA) in our context.

To be able to fulfill Requirement 2, after each mapping of a
physical page to a virtual page b with a ≤ b ≤ a+(x−1), the
corresponding virtual page has to be included into a linked list
l[a] of physical pages. A pointer to this linked list is stored at
address a. Then the operation unmapRegion(Ai, a) needs
only constant time to add this linked list to the list of free
physical memory pages.

2) Access to Virtual Pages: When we make an access to
a virtual memory page b in a region a, . . . , a + (x − 1), we
have to check first, whether this virtual page is already mapped
to physical memory. To decide this question using our Pages
Validity Array we need information on the beginning a of the
memory region. If we have the page number a, then we can
access the stack pointer sp[a], check whether a ≤ h[b] ≤ sp[a],
s[h[b]] = b, and d̃[b] 6= −1. If all these conditions are true,
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Fig. 3: Data structures for memory management based on virtual pages

then d̃[b] provides a valid page mapping, otherwise we have
observed a page fault.

It is important to note that we have to be able to compute
for each page number b the beginning a of the memory region
a, . . . , a+(x−1) with a ≤ b ≤ a+(x−1). For this purpose, we
make use of layered trees as described in Sect. II-C2. The set of
virtual pages with adresses Ai = {0, . . . , N−1} is partitioned
into disjoint intervals of virtual page numbers corresponding
to contiguous allocated or free regions of virtual pages. For
a page number b the operation find provides exactly the left
bound a of the interval a, . . . , a + (x − 1) with a ≤ b ≤
a + (x − 1). The complexity of the find operation in layered
trees is O(log logN) (see also Sect. IV-A5).

a) First access to a virtual page: When we access a
virtual page b for the first time, we obtain the information that
the virtual page is not yet mapped to physical memory. Then
the page fault mechanism assigns a free physical page to this
virtual page, updates the initialization-free array accordingly,
and collects the mapped page in the linked list l[a] (in order
to prepare the release operation as described above). Note that
we need the left interval bound a corresponding to b to identify
the head pointer of the linked list, too.

We call the auxiliary data stored at the left bound a of a
memory region the Virtual Region Header (VRH). The Virtual
Region Header represents an allocated but not necessarily
mapped memory region and points to the head of the linked list
l[a]. Since the VRH represents a memory region, it can also be
used to store additional information not immediately needed
for memory management, e.g. access rights to the region.

The layered tree, which is able to compute the beginning
of a memory region and thus the corresponding VRH, is called
Virtual Regions Tree (VRT).

b) Subsequent accesses to a virtual page: After a vir-
tual page b has been accessed for the first time, all subsequent
accesses will not lead to a page fault any more as b has
now been mapped to a physical memory page. However, if
we would use the same method as for the first access, then
we would need O(log logN) operations again for the find
operation in the VRT to be able to evaluate the initialization-
free array and thus to find the physical memory page mapped to

12 25 1 4 17 21 2 13 6 15 22 5 22

0 1 2 5 8 7 9 6 15 18 16 17 19

0 2 4 5 12 7 6 10 15 17 18 16 20

2 9 19

d͂ page table

h helper array

s stack array

sp stack pointer array

Region A Region CRegion B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 page number

Fig. 4: The generalization of the initialization free array to
global arrays for each task – the PVA. Regions A, B and C
denote allocated and partly mapped memory regions.

b. O(log logN) additional operations are acceptable in the case
of page faults, but any delays on regular memory accesses are
definitely unacceptable. For that reason we introduce a cache
to store the results of find operations in the VRT.

This cache c[0, . . . , N − 1] (which is global to the address
space) is called Virtual Regions Cache (VRC). When a virtual
page b is accessed for the first time and the find operation in
the VRT results in a, then the page fault handler sets c[b] to
a.

During an access to a page b, lookups in the data array
d̃[b], in the VRC c[b], and in the helper array h[b] can be
parallelized. If c[b] is valid, then s[h[b]] and sp[c[b]] can be
computed in parallel in a second step and the page mapping
can be evaluated. If we assume that the VRC c, the helper array
h, the stack array s and the stack pointers sp are implemented
by fast memory with double speed compared to original page
table, then the original memory access times of a traditional
page table based system are preserved.2

We want to make clear, that the VRC only stores the result
of the find operation in the Virtual Regions Tree. In contrast,
the translation lookaside buffer (TLB) of a standard MMU

2If fast memory is not available for that purpose, one could also think of
a pipelined application of the two steps described above. Then the latency of
memory accesses is delayed by one read cycle, but the speed is preserved.
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stores the result of the address translation.3

3) Allocating virtual pages: The operation
mapVRH(Ai, a) performs a split operation in the VRT
at position a, just as the de-allocation operation performs a
union operation in the VRT (which has not been mentioned
yet in the description above). Then we ‘initialize’ the
initialization-free array by sp[a] := a − 1 and we initialize
the linked list in the VRH by the empty list.

4) Correctness and Complexity:

Theorem 1. Our algorithm handles accesses (with and without
page faults) and allocation, de-allocation of pages correctly.
Allocations, de-allocations and handling of page faults are
performed in O(log logN) (with N equal to the size of the
virtual address space).4 Memory accesses without page fault
are performed in constant time.

The proof of Theorem 1 basically follows from the argu-
ments given above and the correctness resp. complexity of the
operations on our data structures (initialization-free arrays and
layered trees). There is one subtle point concerning correctness
which needs an additional consideration:

As described in Sect. IV-A1 we invalidate all mappings
from a region with virtual addresses a, . . . , a + (x − 1) in
constant time by setting sp[a] := a − 1. We neither perform
assignments in the global arrays d̃[0 . . . N −1], h[0 . . . N −1],
and s[0 . . . N − 1] (which is justified by the concept of
initialization-free arrays), nor we perform any assignments
in the global cache c (the Virtual Regions Cache) storing
the results of find operations in the Virtual Regions Tree.
Here the question arises whether we need to initialize (or re-
initialize) the cache c in order to avoid problems with old
(or uninitialized) cache entries, when the same virtual pages
are used again after following allocations of memory regions.
Re-initializing every entry in c for the whole memory region
which has been released is clearly not suitable, as this would
introduce a linear runtime and destroy our real-time properties.
Fortunately, we can show that initializations in the cache c are
not needed.

Lemma 1. As long as the stack pointer array sp is initialized
when the complete system is started,5 mapping of memory
pages can be implemented correctly without any initializations
to the Virtual Regions Cache c.

Proof (Sketch): Consider a page b within a memory
region of allocated pages a, . . . , a + (x − 1) (a ≤ b ≤
a + (x − 1)). Possibly the page b has been part of another
memory region which has been allocated and freed before. If
b has been accessed after the previous allocation (leading to
a valid entry in c[b] at that time) and not accessed after the
current allocation, then c[b] may hold an outdated value. We
have to prove that even in this case it is possible to detect that

3Of course, if needed, our memory address translation can simply be
extended by a translation lookaside buffer for caching address translation
results. If TLBs are used in the final memory system, then the WCET (worst-
case execution time) analysis has the task to analyze situations when there are
definite hits in the TLB just as in the standard analysis for hits in the data
and instruction cache [6]. Since the additional use of TLBs is orthogonal to
our approach, we omitted them in our exposition.

4This is called “quasi-constant” in [21], [22], since N is constant in a given
architecture.

5Remember that the stack for a region with virtual addresses a, . . . , a+(x−
1) is considered to be empty, if sp[a] < a. Thus, in a practical implementation
one option for initialization of sp would be to ensure sp[i] = 0 at power-up
of the memory and to exclude virtual page 0 from further usage.

a current access to b is the first one after the new allocation,
without interference by the old value c[b].

In order to prove this fact we have to consider several cases:

• Case 1: c[b] > b. In this case it is clear that c[b] is
invalid. Every valid entry c[b] points to the beginning
of a memory region c[b], . . . , c[b]+(x′−1) with c[b] ≤
b. Thus we can detect that the access to b is the first
one after the allocation and the entry c[b] is invalid (in
that case due to a lack of initializations to the array
c).

• Case 2: c[b] ≤ b. Here we have to differentiate
between two sub-cases:
Case 2.1: sp[c[b]] < c[b]. This inequation indicates that
the stack beginning at c[b] is empty (see Sect. IV-A1).
Since the array sp is initialized when the system is
started (precondition of the lemma) and only changed
in a correct way during page faults, page allocations,
and page releases, we can rely on the entries in
sp. Thus, in case of c[b] = a the stack for region
a, . . . , a + (x − 1) is empty and the access to b is
the first one after the allocation (as there has not been
any access to the region at all). In case of c[b] 6= a,
the entry c[b] is outdated. In any of the two cases a
page fault handling takes place, the correct position a
of the Virtual Regions Header is found in the Virtual
Regions Tree during page fault handling and finally
c[b] is overwritten by a.
Case 2.2: sp[c[b]] ≥ c[b]. With the same argument as
in the case before we can rely on the fact that the
position c[b] is the beginning of a non-empty stack
s[c[b]], . . . , s[sp[c[b]]]. This stack definitely belongs to
a memory region c[b], . . . , c[b]+(x′−1). There may be
two cases for the corresponding intervals: [c[b], c[b] +
(x′ − 1)] = [a, a+ (x− 1)] and c[b] + (x′ − 1) < a.
Case 2.2.1: c[b] + (x′ − 1) < a. In this case c[b] is
definitely outdated. We have to show to be able to
detect that the access to page b is the first one after the
allocation. Due to the construction of the initialization-
free array we know that s[i] ≤ c[b] + (x′ − 1) < a for
all c[b] ≤ i ≤ sp[c[b]]. Even if c[b] ≤ h[b] ≤ sp[c[b]],
we have s[h[b]] < a and thus s[h[b]] 6= b. So we
detect that the mapping at b is not valid, handle the
page fault, perform a lookup in the Virtual Regions
Tree during page fault handling, and update c[b] to
the correct value a.
Case 2.2.2: [c[b], c[b] + (x′ − 1)] = [a, a+(x− 1)]. In
this case the value in c[b] is correct (either by chance
or since there has been an access to page b after the last
allocation of the region containing b). The algorithm
uses the initialization-free array to check whether the
mapping at page b is valid. In every case the value of
c[b] remains correct after the access to page b.

5) Optimizations and Cost: Of course, for achieving the
runtimes given in Theorem 1 we need additional memory for
our data structures.

For a more detailed analysis we first consider the VRT
which is based on layered trees. In general, layered trees
are used to handle dynamic partitions of totally ordered sets.
Implementations according to [15], [16] assume these totally
ordered sets to be lists of dynamic size. Elements can be added
to or erased from these lists, i.e., there are operations add and
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erase in addition to the operations union, split, and find. This
leads to a rather involved data structure where the different
nodes of the list and of the layered tree are linked by several
pointers (for successor and predecessor relations, links to tree
structures at higher layers etc.) as well as several copies of the
original list at different hierarchy levels have to be stored. The
overall space complexity is in O(N ·log logN) (where N is the
size of the list). In contrast, since the size of the virtual address
space is fixed in our work,6 we have to handle partitions of
a fixed set {0, . . . , 2k − 1} where N = 2k. This allows for
rather sophisticated measures to simplify the layered tree and
to reduce its size. Due to lack of space we only mention a few
optimizations without going into detail:

1) First of all, our layered tree has a static structure.
2) Moreover, we can do without pointers between nodes

at different hierarchy levels, since the connections
between these nodes are given implicitly in the static
structure, i.e., they can be computed based on node
numbers.7

3) In contrast to [15] we can avoid to copy the rep-
resentation of the original set {0, . . . , 2k − 1} for
several times at different hierarchy levels and we
can combine other nodes in the layered tree into one
representative without losing any information.

The sum of these measures leads to a data structure with space
complexity O(N) instead of O(N · log logN).

Moreover, the constant factors both for space and runtime
requirements are reduced by using bit arrays instead of list
elements for representing the virtual pages {0, . . . , 2k−1}, by
using bitvector operations (like least significant one bit, most
significant one bit), and by inlining recursive calls.

For instance, for a system with 220 virtual pages, this leads
to a memory consumption of ( 2

20

8 +210 ·4 ·3+25 ·4 ·3+4 ·3)
Bytes = 143756 Bytes ≈ 140KiB for the layered tree,
whereas a lower bound to the memory consumption of the
original implementation [15] (for the case of a complete
layered tree, corresponding to the finest possible partition of
the set, e.g.) is given by 220 · 5 · 10 · 4 Bytes = 200MiB. This
means that we managed to reduce the VRT to a size below the
size of the page table for realistic memory architectures (e.g.
for the one used in our experiments in Sect. V).

The memory requirement for the Virtual Regions Cache,
the Pages Validity Array and the page table altogether exceeds
the memory requirement for the usual page table only by
a constant factor of 5. Bearing in mind that the memory
consumption for the page table is far below the size of
the managed memory in a realistic memory architecture, the
additional effort for our data structures is negligible.

Finally, we would like to emphasize that
1) the runtime O(log logN) for union, split and find in

the VRT does not depend on the sizes of the released,
allocated or accessed regions, but only on the number
of memory pages in the system, and

2) it is a small constant given a fixed and realistic
memory architecture.

Thus, the runtimes of these operations can be estimated
independently from the sizes of the memory regions and can
be bounded by small constants.

6As the total amount of memory in a system does not change during runtime.
7Provided that we additionally pay attention to build the levels in the layered

tree in a way that the nodes are distributed to substructures in a uniform way
and the numbers of nodes at different levels are powers of two.

B. The Real-Time Memory Management Unit
Up to this point we presented the algorithms which are used

in our new dynamic virtual memory management scheme. Here
we will briefly introduce the Real-Time Memory Management
Unit (RTMMU).

The RTMMU is located between the CPU and the memory
subsystem. Each memory access of the CPU leads to three
parallel memory requests which are initiated by the RTMMU.
To this end the RTMMU has three independent bus ports to
the memory subsystem. One port first accesses the VRC to
get the position of the actual VRH and subsequently accesses
the stack pointer in the PVA at the found position. The second
port reads the helper array in the PVA, followed by an access
to the stack in the PVA at the found position. The third port
reads the page table and waits for the other two ports to finish
and decide whether the physical memory address is correct. If
no page fault is detected, the third port finally makes an access
to the translated physical memory address.

If the memory accesses through all three ports can be
performed fully in parallel (e.g. using a crossbar switch and
dedicated memory modules) and one can guarantee that VRC
and PVA are accessible twice as fast as the page table (or if
pipelining is used accordingly as mentioned in Sect. IV-A2b),
then there is no additional cost for accessing a physical
memory address compared to an access using a standard page
table approach.

V. EXPERIMENTAL RESULTS

A. Experimental setup
To evaluate our approach we built an experimental platform

based on an OpenRISC CPU softcore [23] which is run on an
Altera Stratix III FPGA development board. We replaced the
original Memory Management Unit (MMU) in the OpenRISC
core by the proposed RTMMU supporting our approach. The
bus system used in this microcontroller system is an instance of
the Avalon Bus developed by Altera [24]. Basically the Avalon
Bus forms a cross bar switch for all components connected to
the bus. This enables a fully parallel access of the RTMMU
to different memory components.

The Virtual Regions Cache (VRC) and the stack pointer
array of the PVA are located in one discrete DDR2 DRAM
chip, the stack array and the helper array of the PVA are
located in a second discrete DDR2 DRAM chip. The page
table is located in a DDR2 DRAM module on the board. This
enables parallel access to the VRC, the helper array, and the
page table on the one hand, and to the stack array and the stack
pointer array on the other hand (see Sect. IV-B). The discrete
DDR2 DRAM chips are operated at double speed compared to
the DDR2 DRAM module. By this measure the access times
of the original approach can be preserved.

For the experiments we did not integrate the memory man-
agement completely into an operating system, rather we pro-
vided software implementations of the operations malloc()
and free() by implementing the TLSF allocator with some
effective modifications which make use of our explicit deallo-
cation scheme with tremendous effects on the memory foot-
print of a task. The software parts are located in a static RAM.
Memory allocations, read/write accesses and releases are per-
formed for memory located in the DDR2 DRAM module. To
be able to collect statistical data we trigger the execution of
commands via a network interface, measure execution times
using a timer component located in the microcontroller and
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communicate the measured results via the network interface.
The controller program running on a workstation is able to
execute a given trace of de-/allocations and memory accesses.

For an evaluation of our approach, we ran several bench-
marks. First we used a synthetic workload which enables an
extensive evaluation with a large number of allocations, de-
allocations and accesses. In addition to this, we used traces
from different real programs.

The synthetic workload consists of about one million
randomly chosen actions. Allocations and de-allocations had a
probability of 10 percent whereas read and write accesses had
a probability of 40 percent each. After the random decision
which action will be taken, we either decided the size of
the allocation, which allocation has to be deallocated or the
address of the access.

We gathered the real world traces with the help of one
of the Valgrind tools [25]. The Dynamic Heap Analyzer Tool
(DHAT) traces every allocation and de-allocation as well as
every access to this allocated heap memory. So we ran different
programs together with Valgrind/DHAT and logged all relevant
memory actions. Afterwards we used these data and reran the
logs using our experimental setup. With this toolchain we are
able to execute the memory operations of real programs on
our RTMMU hardware without the need of an implementation
in a fully featured operation system. The applications we
used for our benchmarks are as follows: avconv is a Linux
command line tool for audio/video-transcoding and we ran it
with a short video. FFT is a simple fast fourier transformation
which runs on a small input vector. mc is a program which
successively processes several input streams and computes for
each input stream and each element in the input stream the
number of its occurrences. sharpSAT and antom are both tools
from the satisfiability domain and they are run on SAT solving
benchmarks. Finally, we ran a PHP programm which models
the training phase of a neural network.

For comparison, we used a second system containing an
MMU with a simple traditional page table instead of our
RTMMU. To obtain a better traceability of the results, neither
our RTMMU nor the standard MMU use a TLB. Since we did
not want to obscure the results of the comparison by the use of
different allocation schemes, we used TLSF as the higher-level
memory allocator here as well. In the second system we use
a conventional approach where de-allocation with un-mapping
of memory pages needs linear effort in the number of memory
pages. As usual, in order to avoid this effort as far as possible,
memory pages are not un-mapped and returned to the system
with every de-allocation. Instead they are kept for internal re-
use in the same process and only returned to the system by a
special shrink operation sbrk() [14] when the last page of
the allocated memory footprint is de-allocated. In the following
we denote this system as “conventional MMU” in brief.

B. Results
Both systems were run on exactly the same traces. Figures

5, 6, and 7 show the results of the synthetic trace with the
same axis scaling for both systems.

Fig. 5a and Fig. 5b show the measured times of roughly
100,000 allocation calls, Fig. 5a for our approach and Fig. 5b
for the conventional MMU. The times are ordered by the size
of the allocated memory region, i.e., for a single data point the
x-value gives the size of the allocated region and the y-value
the runtime in µs. Both approaches show similar structures
in their runtime behavior. The most frequent situation occurs

when a free virtual memory block needs to be split and also a
page mapping takes place for a new “boundary tag”8 needed
in the TLSF algorithm [21], [22]. This refers to the upper thick
band in the diagrams. The thin, lower band represents the case,
when a free block does not need to be split and all necessary
pages are already mapped, because this block is surrounded
by used ones. Another case, mostly happening with smaller
allocation calls, occurs, when a free block needs to be split,
but no mapping has to be done. This situation is reflected by
the middle band. Concerning the maximum runtimes, a small
offset compared to the conventional approach is added for our
new scheme due to the operations in the Pages Validity Array
and the Virtual Regions Tree.

In contrast to allocations, the de-allocations in Fig. 6a
and Fig. 6b behave completely different for the two variants.
Again, x-values are ordered wrt. the sizes of the de-allocated
memory regions, y-values correspond to runtimes in µs. Our
memory management scheme shows a runtime behavior which
is clearly bounded by a strict upper limit (see Fig. 6a). In
the conventional MMU (see Fig. 6b) the runtimes lose their
predictability due to the scheme how allocated pages are
handed back to the systems. The data points near the x-axis
are the cases where an allocation somewhere in the middle of
all active allocations is returned to the system. But whenever
a block at the end of the heap is deallocated and the memory
footprint is shrunk, a linear runtime in relation to its allocation
size is introduced. This can be observed from the rising linear
band in the middle of Fig. 6b. Further, de-allocation times get
even worse in the case where a used allocation at the end
of the heap is preceded by free memory, which is not used.
In this situation, these free memory pages are also handed
back to the system, resulting in an even worse runtime. For
an extreme case consider the single upper left data point in
Fig. 6b which corresponds to the de-allocation of a small
memory region at the end of the heap which triggers a large
number of page un-mappings when the memory footprint is
shrunk. This behavior heavily depends on the allocator which
is used and even if the internals of the allocator are known,
is it hard to predict when this will happen. Considering this
unpredictability, almost no runtime guarantees can be given. In
contrast to this, our approach is well behaved in every situation
and gives strict upper bounds which depend on the underlying
computer architecture but neither on allocation sizes nor on
special situations.

In Fig. 7a and Fig. 7b we compare the memory footprints
of the two variants. In this comparison the x-axis represents
the time, whenever an allocation or de-allocation takes place,
the y-axis represents the number of memory pages mapped
into the virtual memory at that time. Starting with Fig. 7b
one can basically see three rising curves, each ended with a
drop down to almost no mapped memory pages. The rising
arcs are formed by the fact that only de-allocations at the end
of the heap result in memory handed back to the system. As
long as the last allocation is not freed, the arc tends to grow
because of page faults in the allocated regions. Ultimately
this would lead to a plateau in the chart where a steady state
of mapped memory is reached. The random trace eventually
frees almost every used memory which leads to the high
drops. Interestingly, the single upper left data point in Fig. 6b
mentioned above (with an excessively large runtime for a
small de-allocation) corresponds to the de-allocation causing
the highest drop in Fig. 7b. In contrast to this we can see

8A small data structure situated at the beginning of an allocation.

8



 0

 100

 200

 300

 400

 131072  262144  393216

Ti
m

e
 i
n
 [

µ
s]

Allocation size in [kilobyte]

Real-Time MMU

(a) Allocation runtimes RTMMU

 0

 100

 200

 300

 400

 131072  262144  393216

Ti
m

e
 i
n
 [

µ
s]

Allocation size in [kilobyte]

Conventional MMU

(b) Allocation runtimes conventional MMU

Fig. 5: Allocation runtimes
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Fig. 6: De-allocation runtimes
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Fig. 7: Memory footprint

TABLE I: Maximum runtimes for allocations and de-allocations, maximum memory footprint during the runs.

RTMMU Traditional

Benchmark Allocation Deallocation Memory Footprint Allocation Deallocation Memory Footprint

Synthetic 339 945 2 971 237 4 145 462 180 132
avconv (A/V-Transcoding) 327 547 621 233 2 263 781
FFT 326 524 6 263 233 94 305 6 263
mc 336 747 206 232 2 899 292 96 035
sharpSAT 327 702 4 522 233 73 454 4 718
antom 325 668 2 942 233 37 854 3 176
PHP (neural net) 322 437 476 233 1 423 306 476
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considerable smaller memory footprints in Fig. 7a. We can
clearly see that our strategy to hand virtual memory pages back
as fast as we can pays off and that we only need a fraction of
the memory used in the conventional MMU.

Next we consider the traces of real programs in Table I.
The allocation and deallocation columns show the maximum
runtime in µs observed for these operations in the different
benchmark traces (including the synthetic trace). The mem-
ory footprint gives the maximum number of memory pages
mapped into the virtual memory of the task. The results for
the traces produced by real programs basically confirm our
observations made for the synthetic trace: The allocation times
both in our and the conventional approach are strictly bounded,
with a small runtime penalty for our approach. The differences
wrt. the maximal memory footprint are still apparent, but
not always as extreme as in the synthetic benchmark (apart
from the benchmark mc). Again, the strongest effect can be
observed with respect to the de-allocation times.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new memory management unit which
provides for the first time both dynamic and virtual memory
management for real-time systems. We achieve runtimes which
do not depend on the size of allocated and de-allocated
memory regions for memory allocations, de-allocations, and
page faults. In addition, for simple read/write accesses the
application of the virtual regions cache and a parallel hardware
access to data structures in small fast memories enables the
new real-time aware approach to act as fast as the traditional
page table based MMU. Especially for de-allocations we
reached the goal to reduce the runtimes from a linear behavior
to a small bound by utilizing the VRT and the PVA.

Another key advantage of our approach using virtual mem-
ory is its increased memory efficiency: Physical memory is
only used (mapped), if it is really needed for read or write
accesses, and unused physical memory is immediately returned
to the system.

We implemented the memory management algorithms in
software and designed a novel real-time aware virtual memory
management unit (RTMMU) in hardware to evaluate the
approach. Our experimental results confirm the theoretical
expectations concerning the applicability of our approach in
the real-time domain.

Using non-delayed memory de-allocations our approach
paves the way for tight estimations of worst-case execution
times and worst-case memory consumption for systems using
dynamic and virtual memory. For the future we plan to profit
from this feature in the context of real-time scheduling with
hard memory bounds.
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