
Proving QBF-Hardness in Bounded Model Checking
for Incomplete Designs

Christian Miller and Christoph Scholl and Bernd Becker
Institute of Computer Science

University of Freiburg, Germany
millerc|scholl|becker@informatik.uni-freiburg.de

Abstract—Bounded Model Checking (BMC) is a major ver-
ification technique for finding errors in sequential circuits by
unfolding the design iteratively and converting the BMC instances
into Boolean satisfiability (SAT) formulas. Here, we consider
incomplete designs (i.e. those containing so-called black boxes)
where the verification task is to prove unrealizability of a
property. A property is called unrealizable by an incomplete
design, if there is an error which can not be compensated by
any implementation of the black boxes. While 01X-modeling of
the unknown behavior of the black boxes yields easy-to-solve
SAT problems, the logic of quantified Boolean formulas (QBF) is
needed for 01X-hard problems to obtain a more precise modeling.
However, QBF-modeling does not guarantee success in proving
unrealizability. To this purpose, we introduce the concept of QBF-
hardness in this paper, a classification of problems for which the
QBF-based modeling does not provide a result. Furthermore,
we present an iterative method to prove the QBF-hardness. We
provide a first practical example (a parameterized incomplete
arbiter bus system) to demonstrate the concept.

I. INTRODUCTION

Bounded Model Checking (BMC) is a verification method
for finding errors in sequential circuits [1], [2] and one of
the most successful applications of the Boolean satisfiability
problem (SAT). Starting with the initial state, the BMC proce-
dure iteratively unfolds a circuit k times, connects the negated
property to the last time frame, and finally converts the BMC
instance into a SAT formula. If a SAT solver finds the k-th
problem instance satisfiable, a path of length k violating the
property has been found.

In this paper we focus on BMC for incomplete designs,
meaning that certain parts of the circuit (combined into a so-
called black box) are not specified. The purpose is to add
a layer of abstraction if a design is too large to verify in
its entirety, or allow to start the verification process earlier
when certain components of the design are only partially
completed. Verification of incomplete designs is emerging as
larger system-on-chip (SoC) designs, containing multiple black
box IP cores, are becoming more prevalent. The aim of solving
black box BMC problems is to address the question of unreal-
izability of a property, where finding a path of length k proves
that the property is violated regardless of the implementation
of the black box. One option to model the unknown behavior
of the black box is to extend Boolean logic by a third value X

This work has been partially funded by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center “Auto-
matic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
www.avacs.org).

which then is applied to all black box outputs. Using a two-
valued encoding, the BMC problems still yield SAT formulas,
however, this so-called 01X-modeling might be too coarse for
some problems consecutively producing unsatisfiable BMC
instances. To this purpose the concept of 01X-hardness was
introduced in [3]. A fully automatic procedure based on Craig
interpolation was proposed which allows the classification of
problems for which 01X-modeling does not lead to success.
For those 01X-hard designs we make use of universally quan-
tified variables to model the unknown behavior of the black
box outputs, since this modeling allows for enough precision
to prove unrealizability even if the counterexamples depend on
the behavior of the black box [3]–[5]. BMC using the so-called
QBF-modeling yields quantified Boolean formulas (QBF), and
therefore necessitates the use of a QBF solver.

Under certain conditions even QBF-modeling is not ac-
curate enough to prove unrealizability. In those cases (and,
of course, in cases when the property is indeed realizable)
the BMC procedure naturally fails and continuously produces
unsatisfiable QBF formulas. To this purpose we introduce the
idea of QBF-hardness in this paper as the final step in our
verification workflow which we presented in [3]. We provide
an iterative method to prove QBF-hardness. By a proof of
QBF-hardness we prevent the QBF-based BMC procedure
from running into unsatisfiable unfoldings forever. To show
the applicability of the concept we consider a parametrized
incomplete arbiter bus system where the implementation of
the arbiter component is left open.

The paper is structured as follows. Section II will first intro-
duce the reader to QBF logic and BMC for incomplete designs.
The contribution of this paper is presented in Section III. Here,
we give a definition of QBF-hardness and provide a QBF-
based method to prove this property of an incomplete design.
Section IV will then give preliminary results demonstrating the
applicability of our concept. Finally, Section V concludes the
paper.

II. PRELIMINARIES

This section will give a brief introduction to the notation
and the formalisms used throughout this paper. It will start by
introducing quantified Boolean formulas, and then move on to
QBF-based BMC of incomplete designs.

A. QBF Logic

QBF formulas are a generalization of pure propositional
Boolean formulas where variables are either existentially or

scholl
Textfeld
Preprint from Proceedings of 14th International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 2013

· · ·

· · ·

......

x0
0 ... x0

n

Z0
0

.

.

.

Z0
l

y0
0 ... y0

m

black
box

· · ·

· · ·

...

x1
0 ... x1

n

Z1
0

.

.

.

Z1
l

s10

s1r

y1
0 ... y1

m

black
box

· · ·

· · ·

...

xk−1
0 ... xk−1

n

Zk−1
0

.

.

.

Zk−1
l

sk−1
0

sk−1
r

black
box

s20

s2r

...· · ·
sk0

skr

s00

s0r

TT T

I ¬P

yk−1
0 ... yk−1

m

Fig. 1. Encoding of the BMC Problem for Incomplete Designs.

universally quantified. Most modern QBF solvers require the
problem to be formatted in Quantified Conjunctive Normal
Form (QCNF):

ψ = Q1x1.Q2x2. . . . Qnxn.φ (1)

where n ∈ N, Qi ∈ {∀,∃} for all 1 ≤ i ≤ n is the prefix,
and φ, named matrix, is the propositional part in conjunctive
normal form (CNF) over {x1, . . . , xn}; this is a conjunction of
clauses, which are in turn disjunctions of literals. A literal is a
variable or its negation. For our QBF problems, we expect the
formula to be closed, meaning that each variable is quantified
in the prefix.

∃x1∀x2∃x3 : (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) (2)

Eqn. (2) shows a small illustration of a QCNF formula which
can be read as follows:

Does there exist an assignment x1, such that for
all the possible assignments to x2 there is also an
assignment to x3 such that the formula is always
satisfied?

This means that if a simple search based solver started with
x1 = 1, it would have to prove that a solution is possible for
both x2 = 1 and x2 = 0 (which requires the solver to find
two separate solutions). In this case, the formula is satisfiable
as the two solutions are (x1 = 1, x2 = 1, x3 = 0) and (x1 =
1, x2 = 0, x3 = 1). For more details on QBF logic, semantics
and solving techniques, the interested reader is referred to [6].

B. BMC for Incomplete Designs

BMC for incomplete designs aims to refute the realizability
of a property, that is, it tells the designer, no matter how the
unknown parts of the system will be implemented, the property
will always fail. To put it in other words, the error is already
in the implemented system. If this is the case, then we call the
property P unrealizable. In this paper we restrict the properties
to invariants and we make use of QBF modeling [3]–[5] where
the variables representing the black box outputs are universally
quantified. We allow black box replacements to have arbitrary
sequential behavior, that is, the black box can produce different
output values for the same input values at different time steps.
To encode the BMC problem of incomplete designs we are
naming the variables as shown in Figure 1. We use an upper
index to specify the time instance of a variable. sji denotes
the i-th state bit in the j-th unfolding (let ~sj = sj0, . . . , s

j
r).

The same holds for the primary inputs ~xj = xj0, . . . , x
j
n, the

primary outputs ~yj = yj0, . . . , y
j
m, and the black box outputs

~Zj = Zj
0 , . . . , Z

j
l . The next state variables ~sj+1 depend on the

current state, the primary inputs and the black box outputs.

The whole circuit is transformed according to [7] using addi-
tional auxiliary variables ~Hj for each unfolding depth j. The
predicate describing the initial states is given by I(~s0). Since
we assume a single initial state in this paper, the initial state
I(~s0) is encoded by unit clauses, setting the respective state
bits to their initial value. The transition relation of time frame
i is given by T (~si−1, ~xi−1, ~Zi−1, ~si). The invariant P (~sk) is
a Boolean expression over the state variables 1 of the k-th
unfolding. Using this information, the quantifier prefix (and
the matrix) for the unrealizability problem results in the QBF
formula (3) as proposed in [3]. For the sake of simplicity
we include the variables representing the primary outputs of
unfolding depth j into ~Hj .

BMC(k) := ∃ ~s0 ~x0 ∀ ~Z0 ∃ ~H0

∃ ~s1 ~x1 ∀ ~Z1 ∃ ~H1

...
∃ ~sk−1 ~xk−1 ∀ ~Zk−1 ∃ ~Hk−1

∃ ~sk

I(~s0) ∧
k∧

i=1

T (~si−1, ~xi−1, ~Zi−1, ~si) ∧ ¬P (~sk) (3)

The semantics following from the prefix corresponds to the
following question:

Does there exist a state ~s0 = s00, . . . , s
0
r and an

input vector ~x0 = x00, . . . , x
0
n at depth 0 such that

for all possible values of the black box outputs
~Z0 = Z0

0 , . . . , Z
0
m there exists an assignment to

all auxiliary variables ~H0 (resulting in a next state
~s1 = s10, . . . , s

1
r) and an input vector ~x1 = x10, ..., x

1
n

at depth 1, etc. such that the property is violated?

The BMC procedure iteratively unfolds the incomplete
circuit for k = 0, . . . ,K until a predefined maximal unfolding
depth K is reached. If a QBF solver finds BMC(k) satisfiable,
the unrealizability of the property P has been proven. In that
case the resulting system can reach a “bad state” after k steps,
no matter how the black box is implemented.

We can prove that, whenever BMC(k) is unsatisfiable, there
is an implementation of the black box which is able to avoid
error paths of length k as long as the black box is allowed
to read all primary inputs. However, if the black box in the
design at hand is not directly connected to all primary inputs,
(i.e. if the black box does not have “complete information”),
such an implementation does not need to exist. Thus, for black
boxes having “incomplete information” the property may be
unrealizable although BMC with QBF modeling is not able to
prove this.

Example 1. Consider the incomplete circuit shown in Fig-
ure 2. The state bits s0 and s1 depend on the current state,
the primary input x, and the black box outputs Z0 and Z1,
respectively, and are computed by the transition functions
s′0 = x + Z0 and s′1 = x · Z1 + s0 · ¬Z1. Let the invariant
property P = ¬(s0 ∧ s1) state that s0 and s1 must never be 1

1In general the property can also check the primary outputs, but for sake
of convenience, we omit details in the paper.

s0

s1

x

clk

black
box

Z0

Z1

Fig. 2. Example Incomplete Design.

at the same time. Let the initial state of the system be defined
as s00 = s01 = 0. After checking for an initial violation of the
property, the BMC procedure unfolds the system once, and
tries to find an assignment to x0 such that for all possible
assignments to Z0

0 and Z0
1 the state (1, 1) can be reached.

Indeed, x0 = 1 implies s0 = 1 for all assignments to the black
box outputs, however, for Z0

1 = 0 s1 = 1 can not be obtained
(neither by setting x0 = 0 nor x0 = 1). Thus, BMC(1) is
unsatisfiable and BMC continues by adding a second copy of
the transition relation to the problem. If x0 = 1, the current
state bit s10 at the second unfolding evaluates to 1 as well.
Furthermore, if x1 is set to 1, the next state bits s20 and
s21 evaluate to 1 for all values of Z1

0 and Z1
1 . Hence, when

applying the input pattern x0 = x1 = 1, a state violating P
can be reached after two steps for all actions of the black box
and thus, BMC(2) is satisfiable and P is unrealizable.

III. QBF-HARDNESS

As already discussed in Section II-B, under certain con-
ditions (black boxes having “incomplete information”) the
BMC procedure using a QBF formulation is not able to prove
unrealizability even if the property is indeed unrealizable. In
this sense the QBF formulation is a sound but incomplete
approximation (just as 01X-modeling which is also an approx-
imation, but is strictly coarser). If unrealizability can not be
proven due to the approximative nature of the method or if
the property is really realizable, then the BMC procedure as
described in Section II-B would produce unsatisfiable QBF
formulas for all unfoldings and would never return a result.
This motivates the following definition of QBF-hardness:

Definition 1. An incomplete design with an invariant P is
QBF-hard iff the QBF-modeled BMC problem is unsatisfiable
for every unfolding.

A. Proving QBF-Hardness

The idea of proving QBF-hardness is as follows: The QBF-
based BMC procedure classifies a property as unrealizable,
iff there exist input sequences of some length k such that
independently from the black box actions the property will
be violated after k steps. Conversely, the QBF-based BMC
procedure is not able to prove unrealizability with an unfolding

~s 0=~σ0
1

~s 1=~σ1
2

~Z0=~ζ02

~x0

~x1

~Z0=~ζ01
~Z0=~ζ0m

~Z1=~ζ11
~Z1=~ζ12

~Z1=~ζ1m

~s 1=~σ1
1

...

...
~s 2=~σ2

1 ~s 2=~σ2
m

k = 1

k = 2

~ξ01 ~ξ02

~ξ0m

~ξ11 ~ξ12

~ξ1m

Fig. 3. QBF-Hardness Graph.

of length k or smaller, if for each input valuation in each
time frame there is an action of the black box such that the
property is fulfilled after k steps, and additionally all states
on these paths also fulfill the property. Furthermore, if we can
prove for this scenario that after at most k steps every state has
already been visited before, we can be sure that the QBF-based
BMC procedure will never produce a satisfiable instance, since
for every input pattern it is possible to determine at least one
realization of the black box leading to a state which does
not violate the property, independently from the length of the
unfolding.

This concept is illustrated in Figure 3. Let ~s 0 = ~σ0
1 be

the initial state which fulfills P . Next, the graph branches
for all possible assignments ~ξ01 , . . . , ~ξ

0
m to the primary inputs

~x0. For each of these values ~ξ0i there exists an action of the
black box outputs ~Z0 = ~ζ0i leading to next states ~s1 = ~σ1

i
which all fulfill P . Once a state is equivalent to a state which
was visited before (which is indicated by a dashed backward
arrow in Figure 3 stating that ~σ1

1 = ~σ0
1 , ~σ2

1 = ~σ1
2 , ~σ2

m = ~σ0
1 ,

respectively), this branch does not need to be further explored.
If at some depth all so far explored states point back to already
visited states, then the black box outputs are set in a way
that the system remains in “good states” forever, i.e., we are
in the situation sketched above and we can be sure that the
QBF-based BMC procedure will never produce a satisfiable
instance, independently from the length of the unfolding. Thus,
determining whether a graph fulfilling the aforementioned
properties exists answers the question of whether a design is
QBF-hard.

Example 2. The incomplete design in Figure 4 is a slight
modification of the circuit in Figure 2 where the types of the
gate computing s0 and the gate having s0 and ¬Z1 as inputs
have switched. Hence the transition functions changed to s′0 =
x · Z0 and s′1 = x · Z1 + ¬Z1 + s0. Again, the invariant
P = ¬(s0 ∧ s1) states that s0 and s1 must never be 1 at
the same time. BMC for incomplete designs fails to prove
unrealizability, since it is impossible to simultaneously assign
the value 1 to both state bits for all possible values of Z0

and Z1. Rather, the QBF-hardness procedure finds the QBF-
hardness graph depicted in Figure 5 at the second iteration
step. To put it in words, the black box can be chosen in such
a way that the system – for all traces of the system implied by

s0

s1

x

clk

black
box

Z0

Z1

Fig. 4. QBF-Hard Incomplete Design

~s 0=(0,0)

x0

x1

~Z0=(0,1) ~Z0=(0,0)

~Z1=(0,1) ~Z1=(0,0)

~s 1=(0,0)

~s 2=(0,0) ~s 2=(0,1)

~s 1=(0,1)

0

0

1

1

Fig. 5. Example QBF-Hardness Graph.

different valuations of input x – only reaches the states (0,0)
and (0,1), and thus, P is never violated.

In fact, we can prove the following theorem:

Theorem 1. For black boxes with complete information (i.e.
black boxes which are connected to all primary inputs) QBF-
hardness coincides with realizability.

Proof: (Sketch) Consider the QBF-hardness graph
sketched in Figure 3. All valuations of states ~s i are implied
by the valuations for the variables ~x0, . . . , ~xi−1, ~Z0, . . . , ~Zi−1

before. The valuation of ~s 0 is fixed, since we assume a single
initial state. Thus, the ~s i-nodes have exactly one outgoing
edge and edges leading to them can be replaced by edges to
their unique successor. Afterwards all ~s i-nodes are removed.
The resulting graph fixes reactions of the black box outputs
to primary inputs which guarantee correctness. The graph can
be seen as a finite program with cycles which a black box
monitoring all primary inputs may execute in order to realize
the property.

• k = 0 :
∃~s0 I(~s0) · P (~s0)

• k = 1 :
∃~s0 (I(~s0) · P (~s0)·
∀~x0∃~Z0 ~H0~s1 T (~s0, ~x0, ~Z0, ~s1) · BL(~s0, ~s1))

• k = 2 :
∃~s0 (I(~s0) · P (~s0)·
∀~x0∃~Z0 ~H0~s1 T (~s0, ~x0, ~Z0, ~s1) · (BL(~s0, ~s1) + P (~s1)·
∀~x1∃~Z1 ~H1~s2 T (~s1, ~x1, ~Z1, ~s2) · BL(~s0, ~s1, ~s2)))

• k = 3 :
∃~s0 (I(~s0) · P (~s0)·
∀~x0∃~Z0 ~H0~s1 T (~s0, ~x0, ~Z0, ~s1) · (BL(~s0, ~s1) + P (~s1)·
∀~x1∃~Z1 ~H1~s2 T (~s1, ~x1, ~Z1, ~s2) · (BL(~s0, ~s1, ~s2)+P (~s2)·
∀~x2∃~Z2 ~H2~s3 T (~s2, ~x2, ~Z2, ~s3) · BL(~s0, ~s1, ~s2, ~s3))))

...
Fig. 6. Iterative Procedure to Prove QBF-Hardness.

B. Generating QBF Formulas for the QBF-Hardness Proce-
dure

The next step is to formulate the existence of such graphs
as QBF problems (Figure 6 lists the QBF formulas of the first
four iterations of our QBF-hardness procedure). First (k = 0)
we test if all initial states fulfill P .2 If not, the property
is unrealizable and the procedure for QBF-hardness stops.
Otherwise, we check in the next iteration (k = 1) whether
for every input pattern there exists a black box output pattern
such that after one transition the resulting state is the initial
state again. Since at the beginning we identified the initial state
as a “good state”, satisfiability of this QBF formula implies
QBF-hardness of the incomplete design. However, for those
states ~s 1 which are not equivalent to the initial state, we
continue to check the properties of the QBF-hardness graph
for the next unfolding depth, that is ~s 1 has to fulfill P and
for all input patterns there has to be at least one black box
action such that the resulting state ~s 2 either is equivalent
to ~s 0 or to ~s 1, etc. This iterative procedure continues until
a satisfiable instance could be found. Note, in Figure 6 the
backloop (BL) predicate determines whether a state ~s k has
already been explored before:

BL(~s 0, ..., ~s k) :=

k−1∨

i=0

(~s i ≡ ~s k)

Algorithm 1 gives the iterative procedure for proving QBF-
hardness of an incomplete design as it is currently implemented
in our verification tool. It produces exactly the formulas as in
Figure 6 with the only difference that the quantifiers of the
QBF formulas have been moved to left yielding equivalent
QBF formulas in prenex normal form. After checking for
an initial violation of P in lines 1 to 4 (k = 0), the main
loop iterates from k = 1 . . .K. Starting with the subformula
of time frames k − 1 to k in line 7, the QBF formula of
the k-th step is build by generating the subformulas from

2Note that we assume a single initial state, i.e., ∃~s0 I(~s0) · P (~s0) is
equivalent to ∀~s0 (I(~s0) =⇒ P (~s0)).

Algorithm 1: Proving QBF-Hardness
Input: init. state I , trans. rel. T , property P , max. depth K
Output: QBF-hardness
Φ = ∃~s0 I(~s0) · P (~s0);1
if QBFSolve(Φ) == false then2

return P initially violated3
end4
k = 1;5
while k ≤ K do6

Φ = P (~sk−1) ·T (~sk−1, ~xk−1, ~Zk−1, ~sk) ·BL(~s0, . . . , ~sk);7
for i = k − 1, . . . , 1 do8

Φ = P (~si−1) · T (~si−1, ~xi−1, ~Zi−1, ~si) ·9

(BL(~s0, . . . , ~si) + Φ);
end10

Φ = (I(~s0) · Φ);11

Φ = ∀~s0 ~x0∃ ~Z0 ~s1∀ ~x1∃ ~Z1 . . .∃ ~sk−1∀ ~xk−1∃ ~Zk−1 ~sk Φ;12
if QBFSolve(Φ) == true then13

return QBF-hard14
end15
k = k + 1;16

end17
return Unknown18

k − 1 downward to 1 in lines 8 to 10. Finally, the resulting
propositional formula is connected to the check for the initial
state in line 11. The quantifier prefix is generated at the end
in line 12 of the algorithm. Before passing the formula to
an arbitrary QBF solver, the matrix of the QBF formula (i.e.
its propositional part) has to be translated into CNF. Assuming
that the predicates I , P and T are already given by CNFs with
auxiliary variables, the main problem is to remove disjunctions
in the QBF formulas resulting from the QBF-hardness proce-
dure (e.g. . . .BL(~s0, . . . , ~si) + P (~si) · T (~si, ~xi, ~Zi, ~si+1) . . .).
To encode the disjunction (ϕ+ ψ) of two CNFs ϕ and ψ we
add one extra literal ¬a to each clause of ϕ yielding ϕ′, one
extra literal ¬b to each clause in ψ yielding ψ′ and obtain the
equisatisfiable CNF ϕ′ ∧ ψ′ ∧ (a∨ b). If the QBF solver finds
the instance satisfiable the QBF-hardness of the verification
problem has been proven (lines 13 to 15 of the algorithm).
Otherwise k is incremented for the next iteration step.

Remark 1. An overall algorithm which alternates for each k
between a QBF-based check for unrealizability and a QBF-
hardness check will stop (at latest) when k exceeds the reach-
ability recurrence diameter RRD of the design (without the
black box). The reachability recurrence diameter is the longest
loop-free path starting from the initial state [8]. As soon as k
exceeds RRD, either all paths in the QBF-hardness graph are
closed by loops or unrealizability is proven by Eqn. (3). An
alternative to proving QBF-hardness would be to compute the
reachability recurrence diameter RRD and solve a formula
similar to Eqn. (3) until RRD is exceeded. However, RRD
may be excessively large for practical designs. The advantage
of Algorithm 1 is that it always computes a minimal k which
suffices to prove QBF-Hardness. Algorithm 1 increases k step
by step and, implicitly, the QBF solver computes black box
actions which “close the loops” in the QBF-hardness graph as
soon as possible.

comp1 comp2 compn. . .

black box

resource

req1 req2 reqnack1 ack2 ackn

crit1 crit2 critn

Fig. 7. Incomplete Arbiter Bus System.

IV. EXPERIMENTAL RESULTS

A. Case Study

As a case study we use a parameterized arbiter bus sys-
tem [9] consisting of n abstract components which access a
shared resource (see Figure 7 for an illustration). A component
i sends a request signal reqi to the arbiter which grants access
to the resource by an appropriate acknowledge signal acki.
Then component i enters the resource by setting its criti signal
to 1. Additionally, the arbiter ensures that not more than one
component can access the resource at the same time (mutual
exclusion property). We inserted two kind of errors into comp1:

• error-1: The ack1 signal is incorrectly processed (in the
sense that the critical section can even be entered if ack1

is 0).
• error-2: The crit1 signal is always 1.

Regardless of which error is inserted, comp1 can enter the
critical section without having the acknowledge of the arbiter.
Thus, any other component could access the resource as well
and as a consequence the mutual exclusion property would
be violated. In the incomplete arbiter bus system the imple-
mentation of the arbiter is left open, i.e., unrealizability of the
mutual exclusion property would mean that it is not possible to
find an arbiter implementation guaranteeing mutual exclusion.
However, since there is at least one implementation of the
black box preserving the property (simply by granting access
to none of the components), unrealizability of the mutual
exclusion property can not be proven. Hence, this verification
problem is QBF-hard. In total, for n components the instance
has 15 · n gates, 2 · n latches, and n black box outputs.

B. Results

We integrated the QBF-hardness procedure into our QBF-
based BMC tool for incomplete designs [10]–[12]. The evalu-
ation was performed on one processor of a quad-core Intel
Xeon E5-2643 processor running at 3.3 GHz with 32 GB
of main memory. For each instance we set a timeout of
3600 seconds. Table I shows the results for proving QBF-
hardness of the incomplete arbiter bus system and is divided
into the results for error-1 and error-2, respectively. It gives the
number of instantiated components (Column 1) and the depth
at which QBF-hardness could be proven (Column 2). In order
to have a broad variety of QBF solving techniques, we used
the following QBF engines as back-end solvers:

error 01
comp. k QuBE DepQBF Quantor AIGsolve AQME

2 6 0.22 0.06 7.84 2.23 9.57
3 9 2.08 20.64 MO 344.89 14.89
4 12 26.57 TO MO MO 38.12
5 - TO TO MO MO MO
6 - TO TO MO MO MO

error 02
comp. k QuBE DepQBF Quantor AIGsolve AQME

2 3 0.01 0.00 0.02 0.23 5.24
3 4 0.06 0.04 7.24 4.77 3.91
4 5 0.42 5.85 MO 62.20 159.33
5 6 12.11 TO MO 1968.03 9.72
6 7 2550.52 TO MO MO 123.02

TABLE I. RESULTS ARBITER BUS SYSTEM.

• QuBE 7.2 [13], [14] is a search-based QBF solver that
offered good performance on the black box benchmark
set at the 2007 and 2008 QBF competitions.

• DepQBF [15] is a search-based QBF solver which won
the QBFEVAL’10 competition [16].

• Quantor [17] uses Q-resolution for ∃-variables and expan-
sion for ∀-variables until the resulting formula is purely
propositional which is then solved by a SAT solver.

• AIGsolve [18], [19] is a QBF solver based on And-
Inverter-graphs (AIGs) using quantifier elimination meth-
ods.

• AQME [20] is a self-adaptive multi-engine QBF solver
which chooses the engine which is most likely to solve a
given instance based on its syntactic features.

The solving times (Columns 3 to 7) are given in seconds.
For error-1 the depth at which QBF hardness can be proven
grows linearly in the numbers of components and using QuBE
or AQME we were able to prove QBF-hardness for up to 4
components within the given timeout. A similar picture results
for error-2. Here, the depth needed for proving QBF-hardness
is proportional to the numbers of components as well (but
it grows more slowly) and problem instantiations with up
to 6 components could be solved. Generally speaking, the
QBF formulas generated for proving QBF hardness seem to
be harder to solve than the ones generated during the BMC
process. This is not very surprising: Whereas optimizations for
proving QBF-hardness are at the very beginning, we developed
a series of optimizations to increase the efficiency of QBF-
based BMC [10]–[12]: For instance we formulated the problem
in a way that it is suitable for incremental QBF solving where
the solution process for BMC(k) profits from information
learned during the solution of BMC(i) with i < k, we extended
a QBF solver to allow incremental solving, and we integrated
incremental preprocessing techniques into QBF solving. At the
moment it remains an open question whether QBF-hardness
checks will be able to equal the success of QBF-based BMC
in processing large industrial designs by modifications in the
formulation of the QBF-hardness problems accounting for
special strengths of QBF solvers and / or by QBF solver
modifications supporting the QBF-hardness check.

Nevertheless, our first results show that QBF-hardness
checks can be successfully applied in order to stop a potentially
infinite (and thus expensive) series of QBF-based BMC checks
in cases when the property is realizable or when a proof of
unrealizability can not be found by QBF-based BMC due to
its approximative nature.

V. CONCLUSION

In this paper we presented the concept of QBF-hardness
to determine whether BMC for a QBF-modeled incomplete
design will fail by endlessly producing unsatisfiable BMC
instances. We provided a fully automatic QBF-based approach
to prove QBF-hardness which was integrated into our BMC
tool for incomplete designs. We showed the applicability of
our approach using an incomplete arbiter bus system.

In the future we will work on further optimizations of the
QBF-hardness check and we will investigate clever heuristics
for tightly integrating the QBF-hardness procedure into the
overall BMC procedure.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in TACAS, 1999, pp. 193–207.

[2] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design., pp.
7–34, 2001.

[3] C. Miller, S. Kupferschmid, M. Lewis, and B. Becker, “Encoding Tech-
niques, Craig Interpolants and Bounded Model Checking for Incomplete
Designs,” in Proc. SAT, ser. LNCS, vol. 6175. Springer, 2010.

[4] M. Herbstritt, B. Becker, and C. Scholl, “Advanced SAT-Techniques for
Bounded Model Checking of Blackbox Designs,” in Proc. Workshop on
Microprocessor Test and Verification, 2006, pp. 37–44.

[5] M. Herbstritt and B. Becker, “On Combining 01X-Logic and QBF,” in
Proc. 11th Intl. Conf. on Computer Aided Systems Theory (EuroCAST).
Springer, 2007.

[6] E. Giunchiglia, P. Marin, and M. Narizzano, Reasoning with Quantified
Boolean Formulas, ser. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, February 2009, vol. 185, ch. 24, pp. 761–780.

[7] G. Tseitin, “On the Complexity of Proofs in Propositional Logics,”
Seminars in Mathematics, 1970.

[8] D. Kroening and O. Strichman, “Efficient computation of recurrence
diameters,” in VMCAI, ser. LNCS, vol. 2575. Springer, 2003, pp.
298–309.

[9] T. Nopper and C. Scholl, “Symbolic model checking for incomplete
designs with flexible modeling of unknowns,” IEEE Transactions on
Computers, vol. 62, no. 6, pp. 1234–1254, 2013.

[10] P. Marin, C. Miller, M. Lewis, and B. Becker, “Verification of Partial
Designs Using Incremental QBF Solving,” in DATE, 2012.

[11] P. Marin, C. Miller, and B. Becker, “Incremental QBF Preprocessing for
Partial Design Verification (Poster Presentation),” in Proc. SAT, 2012.

[12] C. Miller, P. Marin, and B. Becker, “A Dynamic QBF Preprocessing
Approach for the Verification of Incomplete Designs,” in RCRA, 2012.

[13] E. Giunchiglia, M. Paolo, and M. Narizzano, “QuBE7.0, System De-
scription,” Journal of Satisfiability., vol. 7, no. 8, pp. 83–88, 2010.

[14] P. Marin, E. Giunchiglia, and M. Narizzano, “Conflict and Solution
Driven Constraint Learning in QBF,” in Doctoral Program of Constraint
Programming Conference, 2010.

[15] F. Lonsing and A. Biere, “DepQBF: A Dependency-Aware QBF
Solver,” JSAT, vol. 7, no. 2-3, pp. 71–76, 2010.

[16] C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, and
I. Lynce, “The Seventh QBF Solvers Evaluation (QBFEVAL’10),” in
SAT, ser. LNCS, vol. 6175. Springer, 2010.

[17] A. Biere, “Resolve and expand.” in Proc. SAT, 2004, pp. 59–70.
[18] F. Pigorsch and C. Scholl, “Exploiting Structure in an AIG Based QBF

Solver,” in Conf. on Design, Automation and Test in Europe (DATE),
April 2009, pp. 1596–1601.

[19] ——, “An AIG-based QBF-solver using SAT for preprocessing,” in
Design Automation Conference, 2010 47th ACM/IEEE, 2010, pp. 170
–175.

[20] L. Pulina and A. Tacchella, “A self-adaptive multi-engine solver for
quantified Boolean formulas,” Constraints, vol. 14, pp. 80–116, March
2009.

