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Abstract—We consider the partial equivalence checking prob-
lem (PEC), i. e., checking whether a given partial implementation
of a combinational circuit can (still) be extended to a complete
design that is equivalent to a given full specification. To solve PEC,
we give a linear transformation from PEC to the question whether
a dependency quantified Boolean formula (DQBF) is satisfied.

Our novel algorithm to solve DQBF based on quantifier
elimination can therefore be applied to solve PEC. We also present
first experimental results showing the feasibility of our approach
and the inaccuracy of QBF approximations, which are usually
used for deciding the PEC so far.

I. INTRODUCTION

Verification of incomplete (or partial) system designs has

received a lot of research efforts during the last decade [1],

[2], [3], [4], [5]. In a partial system design some parts are

so-called black boxes, i. e., modules of which the internal

structure and behavior is not known. The concept of incomplete

or partial designs can be used, 1) if parts of the system

have not been implemented yet, 2) if the complexity of the

verification task is too high and therefore some parts which

are supposed not to influence the validity of some properties

(e. g., multiplier or memory modules) have been removed to

make verification feasible, and 3) if a designer wants to localize

errors (then one can remove parts of the design and if for all

possible implementations of the removed parts the error does

not disappear, the remaining parts must be erroneous).

For circuits with black boxes (i. e. circuits where parts of

the implementation are not (yet) available), we ask whether

the implementation is equivalent to the specification for some

realization of the black box parts. If this is the case, then we call

the specification realizable. We call the corresponding problem

the partial equivalence checking problem (PEC). If it turns out

that there is no feasible extension, the already implemented

parts are erroneous. This helps detecting errors in an early stage

of a design.

As in [1], we assume that the specification and the partial

design are combinational circuits, where the partial design

additionally contains black boxes. There are also existing

generalizations to sequential circuits (based on bounded model

checking) [4], which we do not consider in this work.

Several approximate and exact methods to solve PEC are

presented in [1]. If an approximate algorithm reports that

there is no implementation for the black boxes, such that the

specification can be realized, the desired specification is indeed
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not realizable. However, if such an algorithm is not able to

prove unrealizability, this can be due to the approximate nature

of the method, and the desired functionality may nevertheless

be not realizable. The algorithms in [1] are based on solving

SAT or QBF formulations of PEC. The SAT formulations are

efficient to solve, but also rather inaccurate due to a coarse

approximation. Their accuracy is improved in several steps,

leading to a QBF formulation that can solve PEC for a single

black box exactly. The authors of [1] additionally give an

exact characterization of realizability of PEC for multiple black

boxes. However, no feasible algorithmic method for solving

the problem is given.

We show that for solving PEC with multiple black boxes

exactly, an extension of QBF called dependency quantified

Boolean formulae (DQBF) can be used. A DQBF is a propo-

sitional formula with a quantifier prefix containing Henkin-

quantifiers [6]. In QBF an existentially quantified variable

depends on all universal quantifiers appearing on the left

of this variable in the prefix, defining a linear order on

the variables. Contrarily, in DQBF the universally quantified

variables on which an existential one depends are specified

explicitly, allowing partially ordered quantifier prefixes.

In [7] the complexity of PEC is proven by showing that PEC

is polynomially equivalent to DQBF. Therefore PEC lies in the

same complexity class as DQBF, namely both are NEXPTIME-

complete.

The first algorithmic approach that considers DQBF is stated

in [8], but no detailed experimental evaluation is given. The

algorithm is based on the QBF-extension QDLL [9] for the

search-based DLL [10] algorithm for SAT. In [11] an algorithm

is presented which evaluates QBF by encoding the function

tables of the Skolem functions for the existential variables

into a propositional SAT-formula. In principle this can also be

applied to solve DQBF [12].

In the QBF domain 1.) variable elimination based algorithms

tend to be beneficial and 2.) And-Inverter graphs (AIG) [13] as

symbolic representation of circuit related verification problems

turn out to be fruitful [14], [15]. Also there is no DQBF solver

publicly available so far. Hence, in this paper we present a new

approach for solving DQBF by using variable elimination [16],

give some details of our implementation using AIGs, and show

that our algorithm is sound and complete.

In the experiments with a prototypical implementation of

our DQBF algorithm we check both artificial and realistic PEC

instances for realizability using exact DQBF and approximate

QBF formulations. The results show the inaccuracy of QBF in

comparison with DQBF, demonstrating clearly that QBF gives

978-1-4799-2987-0/13/$31.00 ©2013 IEEE 978-1-4799-2987-0/13/$31.00 ©2013 IEEE 396

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext
Preprint from IEEE 31st International Conference on Computer Design (ICCD),
Asheville, NC, USA, October 6-9, 2013



incorrect results in a significant number of cases.
The remainder of the paper is structured as follows. In

Section II we give the foundations of equivalence checking

of partial designs and DQBF. In Section III we show how

to translate a partial design into a DQBF. Then we state

an algorithm to solve DQBF and give proof for its sound-

and completeness in Section IV. Finally we present first

experimental results in Section V and conclude the paper in

Section VI.

II. FOUNDATIONS

In this section we introduce dependency quantified Boolean

formulae and equivalence checking for partial circuits.

A. Dependency Quantified Boolean Formulae

Let V := {v1, . . . , vn} be a set of Boolean variables. A variable

assignment for V is a function ν : V → {0, 1}. We denote the

set of variable assignments for V by AV .
If ϕ is a Boolean expression containing the variable v ∈ V ,

and ψ an expression not containing v, we denote by ϕ[ψ/v]
the expression that results from ϕ by replacing each occurrence

of v with ψ. Replacing each v ∈W ⊆ V by an expression ψv
is denoted by ϕ[ψv/v ∀v ∈ W ]. In this case we require that

the expressions ψv do not contain any w ∈ W such that the

resulting formula does not depend on the replacement order.
In the following we use the symbols x1, . . . , xn for uni-

versally quantified variables and y1, . . . , ym for existentially

quantified variables.
Definition 1: Let ϕ be a Boolean formula, containing the

Boolean variables x1, . . . , xn, y1, . . . , ym, and D1, . . . , Dm ⊆
{x1, . . . , xn} sets of Boolean variables. A dependency-

quantified Boolean formula (DQBF) ψ has the form:

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The sets Di are called dependency sets of yi and the formula ϕ
is called the matrix of ψ.

We denote V ∃
ψ = {y1, . . . , ym} as the set of existential

variables and V ∀
ψ = {x1, . . . , xn} the set of universal variables.

If yi ∈ V ∃
ψ is an existential variable with dependency set Di, a

Skolem function for yi is a function syi,Di
: ADi

→ {0, 1}. In

this case, ϕ[syi,Di
/yi] denotes the expression resulting from ϕ

by replacing each occurrence of yi by a Boolean expression

for the Skolem function syi,Di
.

For a variable x ∈ Di we denote by syi,Di|x=0 the Skolem

function syi,Di\{x} : ADi\{x} → {0, 1} which results from

syi,Di
by setting the variable x constantly to 0. Accordingly

for syi,Di|x=1.
Definition 2: Let ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2)

. . . ∃ym(Dm) : ϕ be a DQBF. It is satisfied (written � ψ) if

and only if there are Skolem functions syi,Di
for i = 1, . . . ,m

such that ϕ[syi,Di
/yi ∀yi ∈ V ∃

ψ ] is a tautology.
Note that DQBF is a generalization of quantified

Boolean formulae (QBF). A QBF of Boolean vari-

ables {x1, . . . , xn, y1, . . . , ym} has the form: ψ :=
∀X1∃Y1 . . . ∀Xn∃Yn : ϕ, where Xi ⊆ {x1, . . . , xn} and

Yi ⊆ {y1, . . . , yn} are disjoint sets of variables. An existential

variable yj ∈ Yi always depends on all universal variables

which are stated in the prefix left of yj , and hence QBF is

limited to a linear order of existential variable dependencies.

BBi−1

BBi

�Yi

xn. . .x1

�Fi(x1, . . . , xn, �Y1, . . . , �Yi−1)

�Ii

•
•

• �Yi−1

�Ii−1

. . .

. . .
•

...

R(x1, . . . , xn, �Y1, . . . , �Ym)

...
...

...
...

Fig. 1. Notation for partial designs

B. Partial Equivalence Checking

Equivalence checking considers the problem to decide whether

two combinational circuits always produce the same outputs,

given the same inputs. In case that one of the circuit is

not completely given, but contains missing parts, so-called

black boxes, we ask if there are implementations of the black

boxes such that the two circuits become equivalent. If these

implementations exist, we say the partial design is realizable,

otherwise unrealizable. We call this the partial equivalence

checking problem (PEC).

We introduce notations for partial combinational circuits P :

• x1, . . . , xn are the primary inputs of the circuit.

• BB1, . . . ,BBm are the black boxes of the circuit1.

• �Ii are the inputs of BB i (i = 1, . . . ,m).

• �Yi are the outputs of BB i (i = 1, . . . ,m).

• �Fi(x1, . . . , xn, �Y1, . . . , �Yi−1) is the vector of functions

defining �Ii.
• R(x1, . . . , xn, �Y1, . . . , �Ym) is the output function of the

circuit.

These notations are illustrated in Fig. 1.

Example 1: Consider x1 ⊕ x2 as the specification and as an

implementation a partial circuit with three gates and two black

boxes as given in Fig. 2. The PEC problem asks: Is there a

realization of both black boxes BB1 and BB2 such that the

implementation is equivalent to the specification for every value

of the inputs x1 and x2? To answer this question, we add an

additional equivalence (or XNOR) gate for each corresponding

output of the specification and implementation and require the

outputs of these equivalence gates to be constantly 1.

We will revisit this example in the next sections and show

how to formulate an appropriate DQBF to determine whether

the PEC is realizable.

1To guarantee that the circuit is combinational, we assume that
BB1, . . . ,BBm are in topological order, i. e., BB i does not depend on
BBj for i < j
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BB1 BB2

≡ 1?

y1 y2

x1 x2

Specification

Implementation

Fig. 2. Example for PEC

III. FROM PARTIAL DESIGNS TO QBF AND DQBF

A. DQBF Formulation

In order to decide PEC we specify a linear transformation from

PEC to DQBF such that the resulting DQBF is satisfied if and

only if the PEC is realizable. Together with a linear transfor-

mation in the opposite direction this not only yields a way to

solve PEC but also a complexity-theoretic characterization.

Consider a PEC with black boxes BB1, . . . ,BBm. We

assume that the partial circuit and the specification have already

been combined into a single circuit with the requirement that

the output has to be constantly 1 (cf. Example 1). We follow

the notations introduced in Section II-B, i. e., a black box BB i

has outputs �Yi and inputs �Ii etc..

We assume w. l. o. g. that �Yi ∩ �Ij = ∅ for all i, j. That means

no output of a black box is directly connected to an input of

another black box. Since we need to use universal quantification

for black box inputs, but existential quantification for black

box outputs, having �Yi ∩ �Ij �= ∅ would lead to a contradiction.

If �Yi ∩ �Ij �= ∅, we insert a buffer, “computing” the identity

function, between BB i and BB j to separate the outputs of BB i

and the inputs of BB j . This does not change the functionality

of the circuit and causes at most a linear blow-up.

We first construct the quantifier prefix of the DQBF. The

primary inputs x1, . . . , xn and the black box inputs �I1, . . . , �Im
are universally quantified, all other variables are existentially

quantified. The dependency set of black box output yi,j contains

exactly the inputs �Ii of BB i. Hence the quantifier prefix is

∀x1 . . . ∀xn∀�I1 . . . ∀�Im∃�Y1(�I1) . . . ∃�Ym(�Im).

If the black boxes are not directly connected to the primary

inputs but to internal signals, we have to take into account that

not all possible combinations of values may arrive at the inputs

of the black boxes. Since we use universal quantification for

the black box inputs we have to ensure that our formula is

satisfied if the value of the black box inputs �Ii deviates from

the values obtained as a function �Fi(x1, . . . , xn, �Y1, . . . , �Yi−1).

ϕ :=
(
�I1 �≡ �F1(x1, . . . , xn)

)
∨ · · ·

∨
(
�Im �≡ �Fm(x1, . . . , xn, �Y1, . . . , �Ym−1)

)
∨R(x1, . . . xn, �Y1, . . . , �Ym). (1)

By applying Tseitin transformation [17], which is essentially

introducing auxiliary variables �A = (a1, . . . , ap) for the

internal signals of the circuit, one can obtain a CNF ϕ′ that

is satisfiability equivalent to ϕ and whose size is linear in the

size of ϕ. The variables in �A are existentially quantified in

the quantifier prefix. Their dependency set encompasses all

universally quantified variables.

The resulting DQBF is:

ψ := ∀x1 . . . ∀xn∀�I1 . . . ∀�Im∃�Y1(�I1) . . . ∃�Ym(�Im)

∃ �A(x1, . . . , xn, �I1, . . . , �Im) : ϕ′.

The formula ψ is satisfied if and only if we can replace

all �Yi with Skolem functions �s�Yi,�Ii
such that ϕ′ becomes a

tautology. The Skolem functions �s�Yi,�Ii
exist if and only if there

are implementations for the black boxes BBi of the PEC, such

that the specification is realized. Therefore any PEC can be

translated with linear effort into a DQBF such that the PEC is

realizable if and only if the DQBF is satisfied. Using Tseitin

transformation, it is always possible to obtain a matrix of ψ
whose length is linear in the size of the circuit. This is captured

in the following lemma:

Lemma 1: Any PEC can be translated into an equivalent

DQBF with linear effort.

We illustrate this transformation with an example (which

for simplicity omits the conversion into CNF by Tseitin

transformation):

Example 2: Consider again the PEC in Example 1. The

corresponding DQBF is:

ψDQBF = ∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2).

The primary inputs x1 and x2 get universally quantified.

The input functions F1 and F2 are the identity functions of

x1 and x2, respectively. The black box inputs are directly

connected to the primary inputs and therefore we do not need

additional variables for them. The black box outputs y1 and y2
are existentially quantified, whereby signal y1 depends on x1,

since BB1 has this signal as input. Accordingly for y2 and x2.

The three gates of the implementation (cf. Example 1) are

represented by the Boolean expression
(
(y1∨y2)∨(x1∧¬x2)

)
.

For the matrix we require that either the inputs of the black

boxes are inconsistently assigned (which is trivially not the

case, thus we can omit the corresponding contradictions in the

disjunctive formula (1) above) or the requirement has to be

satisfied, i. e., the implementation has to be equal to (x1 ⊕ x2).
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xn

D1 Dm
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C(ϕ)

x1
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Fig. 3. Translation from DQBF to PEC

We will use this example again in the next section illustrating

our proposed algorithm and thereby show whether the PEC is

realizable.

Following Lemma 1, the formulation of a PEC as DQBF

leads to an approach for solving this problem.

For the sake of completeness we state the following lemma,

which allows to show the complexity of the PEC problem.

Lemma 2: Any DQBF can be translated into an equivalent

PEC with linear effort.

Proof: Consider a DQBF

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The matrix ϕ can be easily transformed into a combinational

circuit C(ϕ) with inputs x1, . . . , xn and y1, . . . , ym by replac-

ing the logical connectives ∨, ∧, and ¬ with the corresponding

gates. The input yi of C(ϕ) is the output of a new black

box BB i in the PEC. The inputs of BB i are exactly the signals

in Di. Requiring the output of C(ϕ) to be constantly 1 is

equivalent to comparing the incomplete circuit P with the 1-

function as the specification S. The translation is illustrated

in Fig. 3. It can be shown that the resulting PEC is realizable

if and only if the DQBF is satisfied [7]. Its size (number of

gates, signals, and black boxes) is linear in the length of the

DQBF.

We have shown that for each PEC P there is a DQBF ψ
whose size is linear in the size of P such that P is realizable

if and only if ψ is satisfied (cf. Lemma 1). Conversely, for

each DQBF ψ there is a PEC P whose size is linear in the

size of ψ such that ψ is true if and only if P is satisfiable (cf.

Lemma 2). This is captured in the following theorem:

Theorem 1: PEC and DQBF are polynomially equivalent.

Finally we can state the following corollary using the known

complexity class of DQBF:

Corollary 1: PEC is NEXPTIME-complete.

Proof: Since DQBF is NEXPTIME-complete [18] and

PEC and DQBF are polynomially equivalent (Theorem 1), PEC

is also NEXPTIME-complete.

B. QBF Approximations

In [1] QBF formulations for PEC have been defined. Here

we will show the relationship between QBF and DQBF

formulations.

Definition 3: Let

ψDQBF := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

be a DQBF and

ψQBF := ∀X1∃Y1∀X2∃Y2 . . . ∃Yk : ϕ

a QBF with the same matrix, such that {Xi ⊆
{x1, . . . , xn} | i = 1, . . . , k} is a partition of the universal

and {Yi ⊆ {y1, . . . , ym} | i = 1, . . . , k} a partition of the

existential variables. ψQBF is an approximation of ψDQBF

(written ψDQBF � ψQBF) if yi ∈ Yj implies Di ⊆
⋃j
�=1

X�

for all i = 1, . . . ,m.

That means, ψQBF is an approximation of ψDQBF if for all

existential variables yi of ψDQBF, the universal variables in Di

appear in the quantifier prefix of ψQBF on the left of yi.
Lemma 3: If ψDQBF � ψQBF, then � ψDQBF implies � ψQBF.

Proof: If y is an existential variable of ψDQBF and ψQBF,

and ψDQBF � ψQBF, then each Skolem function for y in ψDQBF

is also a Skolem function for y in ψQBF.

If a QBF approximation is unsatisfied, we can therefore

conclude that the original DQBF is also unsatisfied, but a

satisfied QBF approximation does not give us any information

about the satisfaction of the DQBF.

Definition 4: Let ψQBF := ∀X1∃Y1∀X2∃Y2 . . . ∃Yk : ϕ and

ψ′
QBF := ∀X ′

1∃Y
′
1∀X

′
2∃Y

′
2 . . . ∃Y

′
k′ : ϕ be two approximations

of ψDQBF. ψQBF is stronger than ψ′
QBF (written ψQBF � ψ′

QBF)

if for all existential variables y holds: y ∈ Yi ∩ Y ′
j implies⋃i

k=1
Xk ⊆

⋃j
k=1

X ′
k.

Stronger approximations are more favorable in terms of

approximation quality:

Lemma 4: If ψQBF � ψ′
QBF, then � ψQBF implies � ψ′

QBF.

Proof: If y is an existential variable of ψQBF and ψ′
QBF,

and ψQBF � ψ′
QBF, then each Skolem function for y in ψQBF is

also a Skolem function for y in ψ′
QBF.

Definition 5: Let ψDQBF be a DQBF and ψQBF a QBF

approximation of ψDQBF. ψQBF is a strongest approximation or

strongest formulation if ψ′
QBF � ψQBF implies ψ′

QBF = ψQBF

for all approximations ψ′
QBF.

That means the strongest approximations are the ones that

are closest to the original DQBF formula.

Remark 1: If the PEC contains a single black box, the corre-

sponding (unique) strongest QBF approximation is equivalent

to the DQBF formulation (i. e. PEC with single black boxes

can be solved exactly by QBF, see also [1]).

Example 3: Consider again the DQBF from the previous

example:

ψDQBF = ∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2).

In order to obtain a QBF approximation, we have to take the

dependencies into account: y1 has to be placed right of x1
and y2 right of x2 in the quantifier prefix. Therefore we obtain

three different QBF approximations, where ϕ is the matrix of

ψDQBF:

ψ1
QBF = ∀x1∃y1∀x2∃y2 : ϕ,

ψ2
QBF = ∀x2∃y2∀x1∃y1 : ϕ,

ψ3
QBF = ∀x1∀x2∃y1∃y2 : ϕ.

where ϕ is the matrix as in ψDQBF. Note, in ψ1
QBF the variable y2

depends on both universal variables x1 and x2, whereas y1 only
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depends on x1 and vice versa for ψ2
QBF. In ψ3

QBF, both y1 and

y2 depend on both x1 and x2.

There are two strongest approximations, namely ψ1
QBF and

ψ2
QBF. In both formulations all universal variables appearing

left of y1 (y2) also appear left of y1 (y2) in ψ3
QBF. Therefore

ψ3
QBF is not a strongest approximation.

In our experiments in Section V we will compare the results

obtained for a series of PEC case studies using DQBF and only

the strongest QBF approximations.

IV. ELIMINATION-BASED DQBF SOLVING

In this section we describe variable elimination procedures for

DQBF and prove their correctness. They yield an algorithm to

decide whether a given DQBF is satisfied.

Let in the following

ψ := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

be a DQBF with Di ⊆ {x1, . . . , xn} for i = 1, . . . ,m. For a

set V of Boolean variables let V ′ denote the set V ′ = {x′ |x ∈
V } of new Boolean variables, indicating that x′ is a copy of x.

To eliminate a universal variable xi, we construct the

conjunction of the two co-factors of ϕ and replace in one

co-factor the variables in Exi
with their copy. Therefore we

have to double all existential variables which depend on xi,
i. e., all variables in Exi

.

Theorem 2 (Elimination of universal variables): Let Exi
={

yj ∈ V ∃
ψ

∣∣xi ∈ Dj

}
be the set of existential variables which

depend on the universal variable xi. Then ψ is equivalent to

the following DQBF:

ψ′ := ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn

∃y1(D1 \ {xi}) . . . ∃ym(Dm \ {xi}) ∃y
′
j(Dj \ {xi})︸ ︷︷ ︸

for all yj ∈ Exi

:

ϕ[0/xi] ∧ ϕ[1/xi][y
′
j/yj ∀yj ∈ Exi

].

Proof: To simplify notation, w. l. o. g. assume i = 1, i. e.,

we eliminate x1. Then we have:

� ψ

⇔ ∃sy1,D1
, . . . , sym,Dm

with

� ∀x1 . . . ∀xn : ϕ[syj ,Dj
/yj ∀yj ∈ V ∃

ψ ]

⇔ ∃sy1,D1
, . . . , sym,Dm

with

� ∀x2 . . . ∀xn : ϕ[syj ,Dj
/yj ∀yj ∈ V ∃

ψ ][0/x1]

∧ ϕ[syj ,Dj
/yj ∀yj ∈ V ∃

ψ ][1/x1]

⇔ ∃sy1,D1
, . . . , sym,Dm

with � ∀x2 . . . ∀xn :

ϕ[0/x1][syk,Dk
/yk ∀yk ∈ V ∃

ψ \ Ex1
]

[syj ,Dj |x1=0/yj ∀yj ∈ Ex1
]

∧ ϕ[1/x1][syk,Dk
/yk ∀yk ∈ V ∃

ψ \ Ex1
]

[syj ,Dj |x1=1/yj ∀yj ∈ Ex1
]

⇔ ∃sy1,D1
, . . . , sym,Dm

with

� ∀x2 . . . ∀xn :
(
ϕ[0/x1] ∧ ϕ[1/x1][y

′
j/yj ∀yj ∈ Ex1

]
)

[syk,Dk
/yk ∀yk ∈ V ∃

ψ \ Ex1
]

[syj ,Dj |x1=0/yj ∀yj ∈ Ex1
][syj ,Dj |x1=1/y

′
j ∀yj ∈ Ex1

]

⇔ � ∀x2 . . . ∀xn ∃yk(Dk)︸ ︷︷ ︸
for all yk �∈Ex1

∃yj(Dj \ {x1}) ∃y
′
j(Dj \ {x1})︸ ︷︷ ︸

for all yj∈Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y
′
j/yj ∀yj ∈ Ex1

]

⇔ � ∀x2 . . . ∀xn

∃y1(D1 \ {x1}) . . . ∃ym(Dm \ {x1}) ∃y
′
j(Dj \ {x1})︸ ︷︷ ︸

for all yj ∈ Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y
′
j/yj ∀yj ∈ Ex1

].

In the following we state elimination rules for two special

cases. First, consider the case of eliminating a universal

variable xi with Exi
= ∅, i. e., there is no existential variable

depending on xi. We obtain the following elimination rule:

Corollary 2: If Exi
= ∅, ψ is equivalent to

ψ′ := ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) :

ϕ[0/xi] ∧ ϕ[1/xi].

In a second case consider an existential variable depending

on all universal variables. For this we apply the elimination

rule which is stated in the following:

Lemma 5 (Elimination of existential variables): Consider the

following DQBF:

ψ := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

If Di = {x1, . . . , xn}, i. e., if yi depends on all universal

variables, ψ is equivalent to:

∀x1 . . . ∀xn∃y1(D1) . . . ∃yi−1(Di−1)

∃yi+1(Di+1) . . . ∃ym(Dm) : ϕ[0/yi] ∨ ϕ[1/yi].

This is the standard QBF variable elimination rule for existential

variables on the innermost quantifier level [16].

Algorithm 1 shows how to apply quantifier elimination

to decide a given DQBF. It takes the set V∀ of universally

quantified variables, the set V∃ of existentially quantified

variables together with their dependency sets, and the matrix ϕ
of the DQBF as inputs. First we compute for each universal

variable x ∈ V∀ which existential variables depend on x. As

long as the formula contains universal variables we repeat the

following elimination process:

We first check if there are existential variables which depend

on all universal variables (cf. Line 5). These are eliminated first

by using Lemma 5, because they would otherwise be doubled

for each universal variable that is eliminated. This in particular

applies in a PEC to the Tseitin variables which are introduced

to generate a matrix in conjunctive normal form. The function

∃-eliminate takes care of this elimination. We have to remove

the eliminated variables from V∃ and all Ex for x ∈ V∀.

If no existential variables are left that can be eliminated, we

choose a universal variable x∗ for elimination upon which a

minimal number of existential variables depend. This heuristic

choice is based on the fact that the smaller the number

of depending existential variables the less variables have to

be doubled. The elimination is carried out by the function

∀-eliminate. Here, we first expand ϕ by duplicating the

existential variables depending on x∗. Then x∗ is substituted by
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Algorithm 1 Solving DQBF using quantifier elimination

SolveDQBF(ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ)

begin

V∀ ← {x1, . . . , xn} (1)

V∃ ← {(y1, Dy1), . . . , (ym, Dym)} (2)

Ex ← {y | (y,Dy) ∈ V∃ ∧ x ∈ Dy} for all x ∈ V∀ (3)

while V∀ �= ∅ do (4)

// eliminate existential variables

P ← {y | (y,Dy) ∈ V∃ ∧Dy = V∀} (5)

if P �= ∅ then (6)

ϕ← ∃-eliminate(ϕ, P ) (7)

Ex ← Ex \ P for x ∈ V∀ (8)

V∃ ← V∃ \ {(y,Dy) | y ∈ P} (9)

end if (10)

// variable selection and elimination:

x∗ ← argminx∈V∀
|Ex| (11)

ϕ← ∀-eliminate(ϕ, x∗, Ex∗) (12)

// update of the variable and dependency sets:

V∀ ← V∀ \ {x∗} (13)

V∃ ← {(y,D \ {x∗} | (y,D) ∈ V∃}
∪̇ {(y′, Dy′) | (y,Dy) ∈ Ex∗ ∧Dy′ = Dy \ {x

∗}}
(14)

Ex ← Ex ∪̇ {y′ | y ∈ Ex∗ ∩ Ex} for all x ∈ V∀ (15)

end while (16)

return SAT(ϕ) (17)

end

0 and 1 as described in Theorem 2 and finally a logical AND

of both sub-formulae is built. Afterward the sets V∀, V∃ and

Ex for x ∈ V∀ have to be adjusted. The eliminated variable x∗

has to be removed from V∀ and from all dependency sets.

Additionally we have to insert all newly created existential

variables y′ into V∃ and into the Ex sets.

This algorithm terminates after finitely many iterations of

the while-loop since in each iteration the number of universally

quantified variables decreases by one.

If we have obtained a formula without universal variables,

we can use a propositional SAT-solver to decide if the formula

is satisfied (cf. Line 17).

Example 4: Consider again our running example from the

previous sections. We want to show whether

∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

is satisfied. Applying Algorithm 1 we first eliminate one of the

universal variables according to Theorem 2, say x1, since there

is no existential variable which depends on every universal one.

This yields

∀x2∃y1(∅)∃y
′
1(∅)∃y2(x2) :(

(y1 ∨ y2) ≡ x2
)

︸ ︷︷ ︸
setting x1 = 0

∧
(
(y′1 ∨ y2 ∨ ¬x2) ≡ ¬x2

)
︸ ︷︷ ︸

setting x1 = 1 and replacing y1 → y′
1

Now y2 depends on all remaining universal variables and gets

eliminated (cf. Lemma 5):

∀x2∃y1(∅)∃y
′
1(∅) :

(y1 ≡ x2) ∧
(
(y′1 ∨ ¬x2) ≡ ¬x2

)
︸ ︷︷ ︸

setting y2 = 0

∨
(
(1 ≡ x2) ∧ (1 ≡ ¬x2)

)
︸ ︷︷ ︸

setting y2 = 1

.

⇔ ∀x2∃y1(∅)∃y
′
1(∅) : (y1 ≡ x2) ∧

(
(y′1 ∨ ¬x2) ≡ ¬x2

)
.

Now the algorithm eliminates x2. Note that we do not have

to double any existential variable because none of them depends

on x2. This finally yields the formula (cf. Corollary 2):

∃y1(∅)∃y
′
1(∅) :(
(y1 ≡ 0) ∧ (1 ≡ 1)

)
︸ ︷︷ ︸

setting x2 = 0

∧
(
(y1 ≡ 1) ∧ (y′1 ≡ 0)

)
︸ ︷︷ ︸

setting x2 = 1

,

which is obviously not satisfied and hence, the PEC is not

realizable.

Now we consider the two strongest QBF formulations from

Example 3, first

ψ1
QBF = ∀x1∃y1∀x2∃y2 :

(
(y1∨y2)∨(x1∧¬x2)

)
≡ (x1⊕x2).

We can see that ψ1
QBF is satisfied by giving appropriate Skolem

functions for the existential variables. Note that the Skolem

functions depend on all universal variables on the left of

the existential variable. We use sy1,{x1}(x1) = 0 for y1 and

sy2,{x1,x2}(x1, x2) = x1 ⊕ x2 for y2. Replacing y1 and y2 (or,

equivalently, the left and the right black box) by their Skolem

functions, we get

∀x1∀x2 :
(
(0 ∨ (x1 ⊕ x2)) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 :
(
(x1 ⊕ x2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 :
(
x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 : (x1 ⊕ x2) ≡ (x1 ⊕ x2),

which is satisfied.

For the second QBF formulation

ψ2
QBF = ∀x2∃y2∀x1∃y1 :

(
(y1∨y2)∨ (x1∧¬x2)

)
≡ (x1⊕x2)

we can use the Skolem functions sy2,{x2}(x2) = 0 for y2 and

and sy1,{x1,x2}(x1, x2) = x1 ⊕ x2 for y1. Replacing y1 and y2
by their Skolem functions yields

∀x2∀x1 :
(
((x1 ⊕ x2) ∨ 0) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2),

which is the same formula as before and therefore also satisfied.

We observe that both strongest QBF formulations give the

wrong answer, due to their approximate character, and only the

DQBF formulation is correct.

Note that for the third (non strongest) QBF approximation

ψ3
QBF from Example 3 we could use either the Skolem functions

for ψ1
QBF or for ψ2

QBF leading to a tautological matrix.
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BB1

x1 x2

y1 y2

≡ 1?

Specification

Implementation

BB2

circuit with

four inputs

Fig. 4. Circuit template for two black boxes

TABLE I
RESULTS FOR XOR TEMPLATES

#BBs total SAT UNSAT
total correct wrong depends

2
65536 32378 33168 16798 4584 11776

100 % 50.6 % 13.8 % 35.5 %

3
50000 9124 40876 2344 15979 22553

100 % 5.7 % 39.1 % 55.2 %

4
50000 199 49801 16 21626 28159

100 % <0.1 % 43.4 % 56.5 %

V. EXPERIMENTS

In this section we first describe some implementation details

of our DQBF solver, followed by a short description of the

experimental setup. Finally we present experimental results and

their evaluation.

We have implemented Algorithm 1 in C++ in a prototypical

solver called henaig. As the basic data structure we use

functionally reduced And-Inverter graphs (FRAIGs) [13], [19],

[20]. They are essentially circuits consisting of AND gates and

inverters only. A FRAIG is a ‘semi-canonical’ form of AIGs,

i. e., there are no two distinct gates in the FRAIG representing

the same (or inverse) function. Nevertheless FRAIGs still

allow multiple structurally different representations of the

same function. FRAIGs support all necessary operations like

conjunction, disjunction, and replacing an input by an arbitrary

FRAIG (in particular the constant 0- and 1-FRAIG).

Currently our solver can handle PECs with a few hundred

gates, but in this paper we focused on showing the qualitative

differences between QBF and DQBF formulations. So far our

available instances tend to fall into two classes: instances which

are rather fast to solve and secondly instances which cannot be

solved due to memory or timing constraints. This is a similar

situation as in the early days of related solving engines for SAT

or QBF and we expect to see scalability in the near future.

We have generated all 216 = 65 536 possible Boolean

functions with four inputs and used an implementation of them

as the four-input circuit in Fig. 4. We checked if there are

realizations of the black boxes such that the implementation

becomes equivalent to the XOR of the primary inputs. For

this we used the DQBF formulation as well as both strongest

approximate QBF formulations as seen in Example 3. We

abstain from making a comparison with SAT-based approaches,

since they are even less accurate than the QBF-based approach.

We extended this example by considering 3 black boxes and

primary inputs as well as 4 black boxes and primary inputs.

The demanded specification is again an XOR of all primary

inputs and we compare the DQBF results with all strongest

QBF approximations. Due to the mere number of possible

functions we did not consider all of them and ran only 50 000

randomly picked instances for both 3 and 4 black boxes. Each

of these instances could be solved in significantly less than one

second.

All results are given in Table I. The first column states the

number of black boxes (“BB”) followed by the number of

total instances and their classification (“SAT” or “UNSAT”,

i. e., realizable or unrealizable) obtained from our DQBF

solver. The fourth column shows the total number of instances

classified as UNSAT and the last three columns show the

results of the QBF formulation compared with the unsatisfied

DQBF one. Here the number of instances are given where all

strongest QBF formulations return the same result as the DQBF

version (“correct”), where all strongest QBF formulations return

a different result (“wrong”), and finally where some QBF

formulations report the same result and some a different one

(“depends”). The given percentages are related to the total

number of unsatisfied DQBF instances, since the satisfied DQBF

instances are also (correctly) stated as satisfied in any QBF

approximation.

If the DQBF formulation reports realizability, the QBF always

detects realizability, too. For 2 black boxes, this happened in

32378 cases. The remaining 33168 cases, where DQBF detects

unrealizability, can be partitioned in the following three cases:

In 16 798 cases (50.6 %) the result of all strongest QBF

formulations are correct, i. e., also unsatisfiable. In all other

cases at least one of the QBF formulations returns an incorrect

result: In 4584 cases (13.8 %), both QBF formulations reported

the contrary result, and in 11 776 additional cases (35.5 %), one

of the QBF formulations correctly reported unrealizability, but

the other QBF formulation was satisfied.

This means, in 13.8 % of these cases, DQBF is the only way

to obtain a correct result, and in additional 35.5 % of these

cases, one only obtains a correct result by chance.

The number of possible implementations decreases signifi-

cantly with the number of black boxes—from about 50% with 2

black boxes to 199 out of 50 000 cases with 4 black boxes—and

at the same time the number of incorrect QBF results increases.

For the unsatisfied instances with 4 black boxes in only 16 out

49 801 cases all strongest QBF formulations return the correct

result and 43.4% return that the PEC is realizable although it

is not.

We applied a similar scenario using PEC problems described

in [1]. These problems consist of a carry ripple adder circuit as

specification and a copy of this specification as implementation.

In addition at least one and up to six gates are removed from the

implementation and replaced by a distinct black box for each
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TABLE II
RESULTS FOR CARRY RIPPLE ADDER

# DQBF instances # QBF instances
# BBs total SAT UNSAT total correct wrong

1 96 24 72 96 96 0
2 56 21 35 112 95 17
3 48 14 34 288 153 125
4 28 10 18 672 294 378
5 8 2 6 960 275 685
6 4 1 3 2880 751 2119

total 240 74 168 5008 1664 3324

gate. There are 20 different versions of this circuit, which are

obviously realizable. For each version there exist 11 additional

variations, where random faults have been added to the non

black boxed parts of the implementation, resulting in 240

benchmarks in total.

For all of these 240 instances we have generated the

corresponding DQBF as well as all 5008 strongest QBF

approximations. The results are shown in Table II. Each instance

could be solved within three seconds. Again the first column

shows the number of black boxes in the design (“# BBs”). The

next three columns show the total number of different PEC

versions as well as their classification (“SAT” and “UNSAT”)

by the DQBF formulation. The last three columns show the

number of different QBF instances (“total”) and their result

compared to the DQBF formulation (“correct” and “wrong”).

Note, that for n black boxes there are n! different strongest

QBF approximations.

For one black box all strongest QBF versions return the

correct result, since it is accurate for one black box. But

one can clearly observe that the number of incorrect QBF

answers increases again significantly with the number of black

boxes—up to 73.6% for 6 black boxes. We observed that for

these particular benchmarks there is no instance for which

all strongest QBF approximations provide the wrong answer,

but there is a significant amount of strongest prefix variations

returning the wrong result for most of the instances. Consider

in particular the 3 unrealizable DQBF instances with 6 black

boxes. We considered 6! = 720 different strongest QBF

approximations for each. In only 31 out of in total 2 160

instances (1.4%) the correct result is returned that the PEC is

unrealizable.

VI. CONCLUSION AND FUTURE WORK

We have shown how to decide exactly whether a partial

combinational circuit can be extended such that it becomes

equivalent to a complete specification. Our approach is based

on a transformation from PEC to DQBF. We have presented

an algorithm to solve DQBF based on variable elimination.

Preliminary experimental results show the feasibility and

necessity of this approach.

Future work will encompass making the solver more efficient

by transferring more of the techniques commonly used in state-

of-the-art QBF solvers to the domain of Henkin quantifiers.

Preprocessing of DQBF to simplify the formula is also a current

research topic. We expect from both considerably improved

scalability to large-scale circuits. Additionally we plan to use

DQBF in bounded model checking of sequential circuits.
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