
Exact and Fully Symbolic Verification of Linear Hybrid Automata
with Large Discrete State SpacesI,II

Werner Damma,b, Henning Dierksc, Stefan Dischd, Willem Hagemanne, Florian Pigorschd, Christoph Scholld,∗,
Uwe Waldmanne, Boris Wirtzb

aOFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany
bCarl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

cHAW Hamburg, Berliner Tor 5, 20099 Hamburg, Germany
dAlbert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg, Germany

eMax-Planck-Institut für Informatik, Campus E1.4, 66123 Saarbrücken, Germany

Abstract

We propose an improved symbolic algorithm for the verification of linear hybrid automata with large discrete state
spaces (where an explicit representation of discrete states is difficult). Here both the discrete part and the continuous
part of the hybrid state space are represented by one symbolic representation called LinAIGs. LinAIGs represent (pos-
sibly non-convex) polyhedra extended by boolean variables. Key components of our method for state space traversal
are redundancy elimination and constraint minimization: Redundancy elimination eliminates so-called redundant lin-
ear constraints from LinAIG representations by a suitable exploitation of the capabilities of SMT (Satisfiability Modulo
Theories) solvers. Constraint minimization optimizes polyhedra by exploiting the fact that states already reached in
previous steps can be interpreted as “don’t cares” in the current step. Experimental results (including comparisons to
the state-of-the-art model checkers PHAVer and RED) demonstrate the advantages of our approach.

1. Introduction

We target the verification of safety properties for embedded control applications in the transportation domain. A
characteristic property of such applications is the presence of diagnostic and fault-tolerance measures integrated into
the controller, which often drastically dominate the core control algorithms. Typically, the ratio of the total number
of control states over the number of distinct modes governing the continuous evolution of system variables in closed-
loop control grows exponentially when elaborating a nominal specification of controllers into a complete design model
catering for non-nominal behavior [4]. Large discrete state spaces arise naturally in industrial hybrid systems, due to
the need to represent discrete inputs (such as setting of control switches), counters, sanity checkbits, possibly multiple
concurrent state machines, system-degradation modes, and finite switching variables, which typically jointly with
properties of sensor values determine the selection of the relevant control laws. While the number of control laws is
typically small (say, less than 50 per electronic control unit, respectively) even for industrial control units, the discrete
state space is extremely large. As an example, an autopilot model recently analyzed [4] exhibited 250 discrete state
variables – clearly emphasizing the need to employ symbolic methods for discrete state space representation.

Such applications are out of reach of existing hybrid verification tools such as CheckMate [5], HyTech [6],
PHAVer [7], d/dt [8]: While their strength rests in being able to address complex dynamics, they do not scale in the

IThis work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

IIParts of the results of this paper have been previously presented in [1, 2, 3].
∗Corresponding author
Email addresses: damm@offis.de (Werner Damm), henning.dierks@haw-hamburg.de (Henning Dierks),

disch@informatik.uni-freiburg.de (Stefan Disch), hagemann@mpi-sb.mpg.de (Willem Hagemann),
pigorsch@informatik.uni-freiburg.de (Florian Pigorsch), scholl@informatik.uni-freiburg.de (Christoph Scholl),
uwe@mpi-inf.mpg.de (Uwe Waldmann), Boris.Wirtz@uni-oldenburg.de (Boris Wirtz)

Preprint accepted for publication by Science of Computer Programming January 18, 2011

scholl
Schreibmaschinentext
The final version of this paper appeared in Science of Computer Programming, Volume 77, Issues 10–11, 1 September 2012, pages 1122–1150 http://dx.doi.org/10.1016/j.scico.2011.07.006

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

discrete dimension, since modes – the only discrete states considered – are represented explicitly when performing
reachability analysis. On the other hand, hardware verification tools such as SMV [9] and VIS [10] scale to extremely
large discrete systems, but clearly fail to be applicable to systems with continuous dynamics. To prove safety of such
controllers, we must thus combine methods for analyzing the pure control part with state space exploration methods
dealing with large discrete state spaces. Our paper closes this gap, in providing a fully symbolic approach for the
verification of control loops with both continuous time and discrete time models of hybrid controllers. In that way
we are able to verify models from different design phases: models used for control law design (typically carried out
in Matlab/Simulink R⃝1) and models used for automatic code generation (such as for embedded code generation with
TargetLink R⃝2).

A key characteristic of our approach is the use of precise abstractions: we use a novel fully symbolic predicate
abstraction of hybrid state spaces in backward reachability analysis, and provide an increasingly powerful suite of
optimization techniques ultimately allowing to mitigate both a blow up in the discrete state space and in the number
of required predicates while maintaining preciseness of the abstraction. The approach thus allows both verification
and falsification of safety requirements of hybrid controllers, and, additionally, avoids an outer counter-example
guided abstraction refinement loop as required for imprecise abstractions.

Several insights have been instrumental in maintaining both compactness and exactness of symbolic representa-
tions of hybrid state spaces in backward model checking:

• We lift the SAT modulo theory approach [11, 12] to symbolic model checking by providing an extension of
And-Inverter-Graphs called LinAIGs. LinAIGs represent boolean combinations of boolean variables and dy-
namically computed linear predicates over real variables. We tightly integrate an SMT solver for identification
of equivalent subgraphs into our symbolic model checking algorithm, both for obtaining functionally reduced
LinAIGs and for fixed point detection. Based on representations of sets of states by LinAIGs we are able to
perform an exact verification of safety requirements on (real-valued) plant and controller variables.

• We exploit the fact that in spite of the huge discrete state space the number of control laws tends to be rather
small, so that we can use co-factoring on modes when symbolically evaluating the effect of flows using differ-
ential inclusions.

• We employ Loos-Weispfenning quantifier elimination [13] for backward reachability analysis along continuous
evolutions. The Loos-Weispfenning method is especially suited for our LinAIG representations, since it reduces
quantifier elimination to a series of substitutions which can be easily performed in the LinAIG environment
without the need of conversions into disjunctive or conjunctive normal forms.

• We provide a new method for detection and removal of redundant constraints in non-convex polyhedra to
counteract the blow-up from such quantifier elimination steps. For the detection of redundant constraints we
use incremental SMT solving [11, 12]. Then redundant constraints are removed based on conflict clauses learnt
from SMT calls and based on Craig interpolation [14, 15, 16, 17].

• We use automatically derived Boolean invariants to further prune symbolic representations.

• We further optimize backward model checking by lifting the well-known “onion technique” from symbolic BDD
based verification [18, 19] to the LinAIG level. Here we use again Craig interpolation to derive an optimized
representation between the “onion ring” – the set of states newly reached in the previous pre-image step – and
the set of all states reached in the previous pre-image step.

Fully symbolic representations of state sets by BDDs have been originally introduced in the context of hardware
verification by Burch et al. [20, 9]. For real time system verification, BDDs in combination with clock difference
diagrams (CDDs) have been used as symbolic representation, and were shown to be more efficient than difference
bounded matrices (DBMs) [21]. Closer to our research is the work by Wang resulting in the tool RED [22]. Wang

1From The Mathworks Inc., www.mathworks.com
2From dSpace GmbH, www.dSPACE.de

2

proposes HRDs (Hybrid Restriction Diagrams) as a BDD-like data-structure which is able to represent hybrid state
spaces symbolically. To optimize paths in HRDs he proposes a normalization method called downward 2-redundant
detection. Paths in HRDs correspond to convex polyhedra and downward 2-redundant detection is able to find only
special types of redundant linear constraints in these convex polyhedra. Straightforward containment checking is a
second method which detects whether a path in an HRD specifying a polyhedron is subsumed by another path [22].
Frehse [23] uses a complete method to eliminate redundant linear constraints from convex polyhedra. In contrast,
our approach allows to handle non-convex polyhedra, and it is thus more general than the methods in [22, 23], which
only work for convex polyhedra. Other optimizations which are addressed in [23, 24] limit the degree of precision in
coefficients of linear constraints or overapproximate convex polyhedra by dropping constraints. These methods can
speed up fixpoint computations, but also can generate spurious counterexamples. In contrast, our approach maintains
precise abstractions.

We demonstrate the relevance of our approach with benchmarks from the transportation and automation domain,
such as an aircraft flap controller which is supposed to correct the pilot’s commands on flap extension and retraction
in order to avoid retractions or extensions which could cause de-stabilization of the aircraft. We provide an extensive
comparison of our approach with the PHAVer tool [23] as a leading representative for engines geared towards analysis
of complex dynamics, and show that for the targeted class of applications with a large number of discrete states our
tool drastically outperforms PHAVer. Moreover, we also compare our approach to the RED tool [22] which provides
symbolic representations of hybrid state spaces based on HRDs. The results clearly show the advantages of our
approach which arise from a non-trivial interaction of a series of different optimization methods compressing symbolic
state set representations.

The presented methods are orthogonal and may be combined with techniques to further enhance scalability and
cover richer classes of dynamics, e. g., incorporating robustness [25, 26] or slackness [27, 28] in models allowing
precise abstractions by finite grids under robustness or slackness assumptions, counterexample-guided abstraction re-
finement as in [29, 30, 4], and techniques such as hybridization [31] for approximate linearization of richer dynamics.

Our paper is structured as follows: In Sect. 2 we describe syntax and semantics of our version of linear hybrid
automata, which differs from the classical definition in distinguishing between modes – governing the evolution of
continuous variables – and discrete states (such as used for protocols, health monitoring, fault-tolerance, counters,
etc.). We also present LinAIGs as a fully symbolic representation of the state space of our extended linear hybrid
automata. Sect. 3 introduces the basic model checking algorithm. We exploit the structural characteristics of industrial
applications, where the number of control laws is drastically smaller than the number of discrete states, by factoring
our symbolic state space representation according to modes, performing exact continuous pre-image computations per
mode, and then re-combining these to obtain the complete continuous pre-image. Both the continuous and discrete
pre-image computations (along discrete transitions, creating substitution instances of linear constraints occurring in
the image) typically entail a drastic blow up. A suite of optimization techniques counteracting this effect is presented
in Sect. 4 to 6. Each of these contains an elaboration of the approach and experimental data supporting the relevance
of the presented heuristics. Sect. 4 discusses how to gradually increase the power of LinAIG compaction techniques
at the price of increased algorithmic complexity from SAT based reasoning to the integration of information on linear
constraints, and then to SMT based reasoning. Moreover, we show how automatically computed invariants on a
boolean abstraction of the model allow further optimizations in space and time complexity. Section 5 elaborates our
key technique for detecting and eliminating redundant linear constraints in LinAIGs. In Section 6 we demonstrate how
to find Craig interpolants between the “onion ring” and the set of all previously reached states for further reducing the
number of linear constraints. Section 7 provides a comprehensive evaluation of all presented optimization techniques
with a suite of benchmarks covering both discrete time and continuous time extended linear hybrid automata from
aerospace and industrial control applications. This includes a comparison with PHAVer and RED. The conclusion
summarizes the finding and gives suggestions for further research.

2. Preliminaries

2.1. System model

In this section we give a brief review of our system model. We consider linear hybrid automata extended with
discrete states (LHA+Ds), that is, an extension of linear hybrid automata (LHA) [32] with a set of discrete variables.

3

A similar definition (called “continuous-time hybrid systems”) can be found in [2]. In the sequel, for brevity we will
often just refer to “linear hybrid automata”.

We assume disjoint sets of variables C, D, I and M. The elements of C are continuous variables. They are
interpreted over the reals R and represent sensor values, actuator values, plant states, and other real-valued variables
used for the modeling of control-laws and plant dynamics. The elements of D and I are discrete variables, where I
will be used for inputs. For simplicity, we assume that they are of type boolean and range over the domain B = {0, 1}.
Discrete variables represent states from state-machines, switches, counters, sanity bits of sensor values, etc.. In the
same way we assume that modes are encoded by a set M ⊆ {0, 1}l of boolean vectors of some fixed length l, leading
to a set M of l (boolean) mode variables. The finite (and typically small) set of modes corresponds to discrete states
of an LHA. A mode determines how the continuous valuation evolves over time as long as the system is in the given
mode. Each mode defines an appropriate subset of possible slopes for each continuous variable; the restrictions to the
slopes are expressed by linear inequalities on the derivatives of the continuous variables.

Valuations d, c, and m of the variables in D, C, and M, respectively, represent states (d, c,m) of our automata.
Sets of states can be represented symbolically using a suitable (quantifier-free) logic formula over D ∪ C ∪ M. Here
we restrict terms over C to the class of linear terms of the form

∑
αici + α0 with ci ∈ C and rational constants αi.

Predicates are given by the set L(C) of linear constraints, they have the form t ∼ 0, where ∼ ∈ {=, <,≤} and t is a
linear term. Finally, P(D, I,C,M) (resp. P(D,C,M)) is the set of all boolean combinations of variables from D∪ I∪M
(resp. D ∪ M) and linear constraints over C. As usual a formula ξ(D,C,M) ∈ P(D,C,M) represents the sets of states
(d, c,m) in which ξ(d, c,m) is true.

The formal definition of a ct-LHA+D is as follows:

Definition 1. (Syntax of a ct-LHA+D) A continuous-time linear hybrid automaton with discrete states (ct-LHA+D)
contains six components:

• C = {c1, . . . , c f } is a finite set of continuous variables.

• D = {d1, . . . , dn} is a finite set of discrete variables, I = {dn+1, . . . , dp}, (p ≥ n) is a finite (and possibly empty)
set of discrete inputs.

• M = {m1, . . . ,ml} is a finite set of boolean mode variables that are used to represent a finite set of modes
M = {m1, . . . ,mk} ⊆ {0, 1}l using a suitable encoding. Each mode mi is associated with a conjunction Wi(v) of
linear inequations

∧
j wi jv ≤ wi j with wi j ∈ R f and wi j ∈ R, where f is the number of continuous variables.

The linear inequation system Wi describes the possible derivatives of the evolution of the continuous variables
(c1, . . . , c f), that is, during the mode mi at any time t the derivative v(t) = (v1(t), . . . , v f (t)) must satisfy Wi.

• GC is a global constraint given by a formula ξgc(D,C,M) ∈ P(D,C,M). (The typical usage of GC is to specify
lower and upper bounds for continuous variables in runs to be considered.)

• Init is a set of initial states, given by a formula ξinit ∈ P(D,C,M).

• DT is the set of discrete transitions; each discrete transition is given as a guarded assignment gai (i = 1, . . . , u
and u ≥ 1) in the form

ξi → (d1, . . . , dn) := (gi,1, . . . , gi,n);
(c1, . . . , c f) := (ti,1, . . . , ti, f);
(m1, . . . ,ml) := m ji ,

where ξi ∈ P(D,C,M), gi, j ∈ P(D, I,C,M), ti, j ∈ L(C) and m ji ∈M.

The set DT of discrete transitions is partitioned into three disjoint sets DT d, DT d2c, and DT c2d. DT d contains
the purely discrete transitions, DT d2c contains the discrete-to-continuous transitions and DT c2d the continuous-
to-discrete transitions. We assume that input variables occur only in transitions from DT c2d.

The guards of the transitions from DT d (DT d2c, DT c2d) must be mutually exclusive, i. e., for guarded assign-
ments gai, ga j ∈ DT d (∈ DT d2c, ∈ DT c2d) with i , j: ξi ⇒ ¬ξ j. The guards of the transitions from DT d and
DT d2c form complete case distinctions, i. e., the disjunction of all guards of transitions from DT d (DT d2c) is
true. Every transition from DT c2d is labeled as either urgent or non-urgent.

4

For each mode mi its boundary condition βi is given by the cofactor of the disjunction of all urgent discrete
transition guards from DT c2d w. r. t. mi.3 For each valuation of variables in D, the boundary condition must be
equivalent to a disjunction of non-strict (≤) linear inequations.

2

Compared to standard definitions of LHA [32], the transitions in DT c2d correspond to “jumps” out of continuous flows.
Since we allow a (possibly empty) series of purely discrete transitions after each jump, we additionally introduce
discrete transitions in DT d and discrete-to-continuous transitions in DT d2c (which again lead to a continuous flow).
Thus, the system evolves by alternating between continuous flows, in which time passes and only continuous variables
are changed according to the differential equations associated with the currently active mode of the system, and
sequences of discrete transitions, which – following the synchrony hypothesis [33] – happen in zero time.

The following example illustrates Def. 1. The model describes a simple flap controller. A pilot wants to move the
flaps of his aircraft either to the flap angles minangle or to maxangle by selecting one of the flap positions minpos or
maxpos. The flap controller reads the pilot’s choice in a regular interval, and controls the actual flap movement by
choosing one of the modes extend, retract, or standstill, in which the flap is either extended or retracted with a fixed
rate flaprate, or is not moved at all. This is modeled by the ct-LHA+D (C,D ∪ I,M,GC, Init,DT c2d ∪ DT d2c) :

• The set C = {clock, flapangle} contains a clock variable, which controls the activation of the controller, and the
current flap angle.

• The discrete variables and inputs are defined by the sets D = {desired_flappos} and I = {pilot_selection}.
The input pilot_selection describes the choice of the pilot, which is saved by the controller to the variable
desired_flappos.

• There are three mode variables M = {extend, retract, standstill}, which (using one-hot encoding) span the three
modes M = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The associated linear inequations are given by

W(1,0,0) = (deriv_clock = 1 ∧ deriv_flapangle = flaprate)
W(0,1,0) = (deriv_clock = 1 ∧ deriv_flapangle = −flaprate)
W(0,0,1) = (deriv_clock = 1 ∧ deriv_flapangle = 0)

where the variables deriv_clock and deriv_flapangle represent the time derivatives of clock and flapangle, re-
spectively, and x = c is an abbreviation for x ≤ c ∧ x ≥ c.

• The clock variable is reset if it reaches a value maxclock, and the flap can only move between minangle and
maxangle, so GC = (0 ≤ clock ≤ maxclock ∧ minangle ≤ flapangle ≤ maxangle).

• Initially, the clock is 0 and the flap is within its valid range: Init = (clock = 0 ∧ minangle ≤ flapangle ≤
maxangle).

• Finally, the discrete transitions are given by the sets Dc2d and Dd2c. (For this simple model, purely discrete
transitions are not necessary.) We use the convention that trivial assignments of the form x := x are left out in
the assignment part.

The controller is activated if the current pilot’s decision needs to be read, or if the flaps have reached an extremal
position. Thus Dc2d is defined by the urgent transitions

clock ≥ clock_max =⇒ desired_flappos := pilot_selection;
clock := 0;

clock < clock_max ∧ extend ∧ flapangle ≥ maxangle =⇒ ;
clock < clock_max ∧ retract ∧ flapangle ≤ minangle =⇒ ;

3The cofactor is the partial evaluation of the disjunction w. r. t. (m1, . . . ,ml) = mi. It does not depend on M anymore.

5

The boundary condition of a mode is computed by the cofactor of the disjunction of all urgent discrete transition
guards from DT c2d w. r. t. this mode. Thus, the boundary conditions are (equivalent to) clock ≥ clock_max ∨
flapangle ≥ maxangle for mode (1, 0, 0), clock ≥ clock_max ∨ flapangle ≤ minangle for mode (0, 1, 0), and
clock ≥ clock_max for mode (0, 0, 1).

In the DT d2c transitions the next mode is selected:

desired_flappos = maxpos ∧ flapangle < maxangle =⇒ (extend, retract, standstill) := (1, 0, 0);
desired_flappos = maxpos ∧ flapangle ≥ maxangle =⇒ (extend, retract, standstill) := (0, 0, 1);
desired_flappos = minpos ∧ flapangle > minangle =⇒ (extend, retract, standstill) := (0, 1, 0);
desired_flappos = minpos ∧ flapangle ≤ minangle =⇒ (extend, retract, standstill) := (0, 0, 1);

The semantics of a ct-LHA+D is defined by specifying its trajectories:

Definition 2. (Semantics of a ct-LHA+D)

• A state of a ct-LHA+D is a valuation s = (d, c,m) of D, C and M.

• There is a continuous transition from a state si = (di, ci,mi) to a state si+1 = (di+1, ci+1,mi+1) if there exists a
λ ∈ R≥0 and a function v from R to R f such that the following conditions are satisfied:

– W(v(t)) holds for all t with 0 ≤ t ≤ λ, where W is the linear inequation system associated with mi;

– (di+1, ci+1,mi+1) = (di, ci +
∫ λ

0 v(t) dt,mi);

– For every 0 ≤ λ′ < λ, the state (di, ci +
∫ λ′

0 v(t) dt,mi) satisfies GC and does not satisfy βi (i. e., neither we
violate the global constraints nor hit an urgent discrete transition guard along the way).

We also say that si+1 is a λ-time successor of si, written as si →λ si+1.

• A trajectory of a ct-LHA+D is a finite sequence of states (si = (di, ci,mi))0≤i≤n or an infinite sequence of states
(si = (di, ci,mi))i≥0 where all states satisfy GC and one of the following conditions holds for each i ≥ 0 (or
0 ≤ i ≤ n − 1):

1. There is a continuous-to-discrete transition gai ∈ DT c2d from si = (di, ci,mi) to si+1 = (di+1, ci+1,mi+1),
i. e., the guard ξi is true in (di, ci,mi) and there is a valuation i of the input variables such that the values in
(di+1, ci+1,mi+1) result from executing the assignments in gai. If i > 0, then the previous transition from
si−1 to si is a continuous transition.

2. There is a discrete transition gai ∈ DT d from si = (di, ci,mi) to si+1 = (di+1, ci+1,mi+1), i. e., the guard ξi is
true in (di, ci,mi) and the values in (di+1, ci+1,mi+1) result from executing the assignments in gai. If i > 0,
then the previous transition gai−1 from si−1 to si is a discrete transition in DT d or a continuous-to-discrete
transition in DT c2d.

3. There is a discrete-to-continuous transition gai ∈ DT d2c from si = (di, ci,mi) to si+1 = (di+1, ci+1,mi+1)
(defined in the same way as given above). If i > 0, then the previous transition gai−1 is in DT d or in DT c2d.

4. There is a continuous transition from si = (di, ci, mi) to si+1 = (di+1, ci+1,mi+1) (i. e., si →λ si+1 for some
λ ∈ R≥0). If i > 0, then the previous transition gai−1 from si−1 to si is in DT d2c.

• A state s′ = (d′, c′,m′) is reachable from the state s = (d, c,m), if there is a trajectory that starts from s =
(d, c,m) and ends in s′ = (d′, c′,m′). The reachable state set of a ct-LHA+D contains all states that are reachable
from the initial states which satisfy ξinit.

By the definition given above, a trajectory always contains subsequences of a continuous transition, followed
by a continuous-to-discrete transition, followed by a (potentially empty) series of discrete transitions, followed by a
discrete-to-continuous transition and so on. Trajectories may start with an arbitrary type of transition. Time passes
only during continuous flows and continuous flows only change continuous variables in such a way that the derivative
of the evolution satisfies the respective inequation system W. Discrete transitions happen in zero time, update both

6

discrete and continuous variables, and finally select the next active mode. Transitions from DT c2d are usually urgent
in our applications, that is, they fire once they become enabled. Non-urgent transitions are also permitted, though.

Our approach can be applied mutatis mutandis to discrete-time linear hybrid automata extended with discrete
states (dt-LHA+D) where the sets DT d2c and DT c2d are empty and trajectories consist only of discrete transitions. In
this case, input variables may occur in DT d. Most of our considerations hold for both variants, and in this case, we
will just refer to LHA+Ds.

In summary, our models are closed-loop models without continuous input variables, combining controller and its
controlled plant, hence sensors and actuators are internal continuous variables. Interactions of the environment are
only possible through discrete input variables, allowing, e. g., to select set-points, and to react to protocol messages.
Non-deterministic choices are also modeled using discrete input variables. Non-determinism in plant dynamics is
modeled by choosing appropriate bounds on the derivatives.

A LHA+D may be accompanied by an invariant Inv given by a formula ξinv(D,C,M) ∈ P(D,C,M). Invariants
characterize properties of the LHA+D that have already been proved – for instance by a separate run of the model
checker – and can now be used in order to accelerate the current run of the model checker. They are thus a tool
to modularize larger verification tasks. We emphasize the difference between invariants and global constraints: A
global constraint GC defines that trajectories violating GC are irrelevant and should be ignored, for instance because
they cannot correspond to actual behavior of the plant, or because some time bound is reached. An invariant Inv
postulates that all trajectories starting from Init have the property Inv – if the invariant is unsound, that is, if there
exists a trajectory violating Inv, the result of the model checker is unspecified.

2.2. Representation of State Sets

Our goal is to check whether all states of a LHA+D reachable from Init are within a given set of (safe) states Safe.
To establish this, a backward fixpoint computation is performed. We start with the set ¬Safe and repeatedly compute
the pre-image until a fixpoint is reached or some initial state is reached during the backward analysis. In the latter
case, a state outside of Safe is reachable.

For this fixpoint computation we need a compact representation of sets of states of LHA+Ds. Sets of states
of LHA+Ds are represented by formulas from P(D,C,M) (which are boolean combinations over D, M and linear
constraints L(C)) and for efficiently implementing such formulas we make use of a specific data structure called
LinAIGs [1, 2]. By using LinAIGs both the discrete part and the continuous part of the hybrid state space are represented
by one symbolic representation.

Using efficient methods for keeping LinAIGs as compact as possible is a key point for our approach. This goal
is achieved by a rather complex interaction of various methods. In this section we give a brief overview of the basic
components of LinAIGs. In the Sect. 4.1, 4.2, 5 and 6 we describe optimizations to increase the efficiency of the data
structure.

Boolean Part. The component of LinAIGs representing boolean formulas consists of a variant of AIGs, the so-called
Functionally Reduced AND-Inverter Graphs (FRAIGs) [34, 35]. AIGs enjoy a widespread application in combinational
equivalence checking and Bounded Model Checking (BMC). They are basically boolean circuits consisting only of
AND gates and inverters. In contrast to BDDs, they are not a canonical representation for boolean functions, but they
are “semi-canonical” in the sense that every node in the FRAIG represents a unique boolean function. To achieve this
goal several techniques like structural hashing, simulation4 and SAT solving are used:

First, local transformation rules are used for node minimization. For instance, we apply structural hashing for
identifying isomorphic AND nodes which have the same pairs of inputs.

Moreover, we maintain the so-called “functional reduction property”: Each node in the FRAIG represents a unique
boolean function. Using a SAT solver we check for equivalent nodes while constructing a FRAIG and we merge
equivalent nodes immediately.5

4In this context, simulation means the evaluation of FRAIG nodes for a set of given inputs; it does not refer to the simulation of controller
models.

5In the same way we prevent the situation that one node in a FRAIG represents the complement of the boolean function represented by another
node in the same FRAIG.

7

ql1

f1

dnd1
c1 cf

fm

qlk

AIG

lin. constraints

boolean domain
variables

continuous domain
variables

mapping between
linear constraints and
boolean variables

Represented predicates

...
...

...

...

Figure 1: Structure of LinAIGs

Of course, checking each possible pair of nodes would be quite inefficient. However, simulation using test vectors
of boolean values restricts the number of candidates for SAT checks to a great extent: If for a given pair of nodes
simulation is already able to prove non-equivalence (i. e., the simulated values are different for at least one test vector),
the more time consuming SAT checks are not needed. The simulation vectors are initially random, but they are updated
using feedback from satisfied SAT instances (i. e., from proofs of non-equivalence).

For the pure boolean case, enhanced with other techniques such as quantifier scheduling, node selection heuristics
and BDD sweeping, FRAIGs proved to be a promising alternative to BDDs in the context of symbolic model check-
ing, replacing BDDs as a compact representation of large discrete state spaces [35]. Similar techniques have been
successfully applied for satisfiability checking of quantified boolean formulas (QSAT), too [36, 37].

Continuous part. In LinAIGs, the FRAIG structure is enriched by linear constraints. We use a set of new (boolean)
constraint variables Q as additional inputs to the FRAIG. Every linear constraint ℓi ∈ L(C) is connected to the boolean
part by some qℓi ∈ Q. The constraints are of the form

∑n
i=1 αici + α0 ∼ 0 with rational constants α j, real variables ci,

and ∼ ∈ {=, <,≤}.The structure of LinAIGs is illustrated in Fig. 1.
During our model checking algorithm we avoid introducing linear constraints which are equivalent to existing

constraints. The restriction to linear constraints makes this task simple, since it reduces to the application of (straight-
forward) normalization rules.

2.3. Quantifier Elimination for Linear Real Arithmetic
For the computation of continuous steps based on state set representations given by LinAIGs (see Sect. 3.1.2) we

need quantifier elimination for linear real arithmetic. For this we use the Loos-Weispfenning test point method [13,
38], which replaces existentially quantified formulas by finite disjunctions using sets of symbolic substitutions.

The Loos-Weispfenning method is based on the following observation: Assume that a formula ψ(x, y⃗) is written as
a positive boolean combination of linear constraints x ∼i ti(⃗y) and 0 ∼′j t′j (⃗y), where ∼i,∼′j ∈ {=,,, <,≤, >,≥}. Let us
keep the values of y⃗ fixed for a moment. If the set of all x such that ψ(x, y⃗) holds is non-empty, then it can be written as
a finite union of (possibly unbounded) intervals, whose boundaries are among the ti (⃗y). To check whether ∃x. ψ(x, y⃗)
holds, it is therefore sufficient to test ψ(x, y⃗) for either all upper or all lower boundaries of these intervals. The test
values may include +∞, −∞, or a positive infinitesimal ε, but these can easily be eliminated from the substituted
formula. For instance, if x is substituted by t j (⃗y) − ε, then both the linear constraints x ≤ ti (⃗y) and x < ti (⃗y) are turned
into t j (⃗y) ≤ ti(⃗y), and both x ≥ ti(⃗y) and x > ti (⃗y) are turned into t j(⃗y) > ti (⃗y).

There are two possible sets of test points, depending on whether we consider upper or lower boundaries:

TP1 = {+∞} ∪ { ti (⃗y) | ∼i ∈ {=,≤} } ∪ { ti (⃗y) − ε | ∼i ∈ {,, <} }
TP2 = {−∞} ∪ { ti (⃗y) | ∼i ∈ {=,≥} } ∪ { ti (⃗y) + ε | ∼i ∈ {,, >} }.

Let TP be the smaller one of the two sets and let T be the set of all symbolic substitutions x/t for t ∈ TP. Then the
formula ∃x. ψ(x, y⃗) can be replaced by an equivalent finite disjunction

∨
σ∈T ψ(x, y⃗)σ. The size of TP is in general

linear in the size of ψ, so the size of the resulting formula is quadratic in the size of ψ. This is independent of the
boolean structure of ψ – conversion to DNF is not required. On the other hand, if ψ is a disjunction

∨
ψi, then the test

point method can also be applied to each of the formulas ψi individually, leading to a smaller number of test points.
Moreover, when the test point method transforms each ψi into a finite disjunction

∨
ψ

j
i , then each ψ j

i contains at most
as many linear constraints as the original ψi, and only the length of the outer disjunction increases.

8

The Loos-Weispfenning method can easily be generalized to formulas that involve both linear constraints and
boolean variables. It can therefore work directly on the internal formula representation of LinAIGs – in contrast to
the classic Fourier-Motzkin algorithm, there is no need for a separation of boolean and numerical parts or for a costly
CNF or DNF conversion before eliminating quantifiers. Moreover, the resulting formulas preserve most of the boolean
structure of the original ones: the method behaves largely like a generalized substitution.

3. Model Checking of Linear Hybrid Automata

3.1. Step computation
As already mentioned above, we check safety properties by using a backward fixpoint algorithm which computes

the set of states from which states in ¬Safe can be reached (and we check whether one of these states is contained
in Init). For the fixpoint computation we need pre-image computations to evaluate both discrete and continuous
transitions.6

3.1.1. Discrete Steps
The step computation is similar for discrete, continuous-to-discrete and discrete-to-continuous transitions. For

that reason we consider here only purely discrete transitions which are given by guarded assignments gai (i = 1, . . . , v
and v ≥ 1) and we just give a brief review of the step computation [1].

We differentiate between the discrete variables in D ∪ M and the constraint variables Q.
In a discrete transition the term gi, j(D, I,C,M) is assigned to the discrete variable d j ∈ D under condition

ξi(D,C,M). This translates to the following (logical) function, assigning a boolean formula over D ∪ I ∪ C ∪ M
to each d j ∈ D:

pre(d j) =
v∧

i=0

(
ξi(D,C,M) ⇒ gi, j(D, I,C,M)

)
Analogously, pre is defined for the variables in M. For the continuous part, qℓ ∈ Q is updated by

pre(qℓ) =
v∧

i=0

(
ξi(D,C,M) ⇒ qℓ[c1,...,c f /ti,1(C),...,ti, f (C)]

)
that is, qℓ is replaced by a boolean combination of boolean and constraint variables, where qℓ[c1,...,c f /ti,1(C),...,ti, f (C)] is a
(possibly new) constraint variable representing the linear constraint that results from ℓ by replacing every c j by the
term ti, j(C).

Finally, the set of states which can be reached by a backward step from a set of states described by ϕ is computed
by substituting in parallel the pre-images for the respective variables.

Pred(ϕ) = ϕ[d/pre(d), d ∈ D ∪ M] [q/pre(q), q ∈ Q]

Note that the correctness of the discrete step computation relies on the fact that the guards in the guarded assign-
ments form a complete and disjoint case distinction (see Def. 1).

3.1.2. Continuous Steps
In our system model, the time steps only concern the evolutions of continuous variables and leave the discrete part

unchanged. For the symbolic treatment of continuous pre-image computations we exploit the fact that the number of
modes (i. e., of distinct control laws) for a given control applications is drastically smaller than the number of discrete
states and typically well below 100. This allows to factor our symbolic representation according to modes, and thus
to perform a precise analysis of continuous pre-image computations for each mode individually. For each mode, the
continuous unsafe pre-image Prec can be expressed as a formula with two quantified real variables (time) and one

6We have chosen the backward direction, because for discrete transitions the pre-image can be expressed essentially by a substitution (see
Hoare’s program logic [39]). By contrast, forward model checking makes use of the discrete image, and computing the latter with a LinAIG
representation requires quantifier elimination.

9

quantified function from R to R f denoting the derivative of the continuous evolution at some time. We will show how
to eliminate these quantifiers to arrive at a formula which can again be represented by a LinAIG.

Let ϕ(D,C,M) be a representation of a state set and let ϕ(D,Q,M) be its boolean abstraction replacing linear
constraints ℓi ∈ L(C) by qℓi ∈ Q. Each valuation mi of the mode variables in M encodes a concrete mode with a
boundary condition βi and an inequation system Wi(v) ⇔ ∧ j wi jv ≤ wi j characterizing the possible derivatives v of
the continuous evolution. Let ϕi be the cofactor of ϕ w. r. t. mode mi. Thus we have ϕ⇔ ∨k

i=1 ϕi ∧ (m1, . . . ,ml) = mi,
where each ϕi is a boolean formula over D and Q.7 For each mode mi, we must now determine the set of all valuations
for which there exists some (arbitrarily long) evolution that has a derivative satisfying the inequation system Wi and
leads to a valuation satisfying ϕi and does not meet any point that satisfies the boundary condition βi or violates the
global constraints GC before.8 We denote this set by Prec(ϕi,Wi, βi). Logically, it can be described by the formula

∃λ. λ ≥ 0
∧ ∃v. (∀t.Wi(v(t)))

∧ ϕi(c +
∫ λ

0 v(t) dt)
∧ GC(c +

∫ λ
0 v(t) dt)

∧ ∀λ′. (λ′ < λ ∧ 0 ≤ λ′)→ (¬βi(c +
∫ λ′

0 v(t) dt) ∧ GC(c +
∫ λ′

0 v(t) dt))

Under the assumption that the set described by GC is convex, Wi is a conjunction of linear inequations, and βi is
equivalent to a disjunction of linear inequations for any valuation of the variables in D, we may replace without loss
of generality the function v(t) by a constant v; moreover one can replace the universal quantification over λ′ by two
test points, namely 0 and λ − ε, where the formula with ε represents the limit for ε → +0. Using the fact that we are
only interested in states satisfying GC, the formula can be simplified (modulo GC) to

ϕi(c) ∨ ∃λ. λ > 0 ∧ ∃v.Wi(v) ∧ ϕi(c + λv) ∧ GC(c + λv) ∧ ¬βi(c) ∧ ¬βi(c + (λ − ε)v)

If βi is a disjunction of linear constraints, one can show that ¬βi(c)∧¬βi(c+(λ−ε)v) is equivalent to ¬βi(c)∧¬β′i(c+λv)
where β′i is the disjunction of linear constraints one obtains from βi by replacing all non-strict inequalities (≤) by strict
ones (<), or in other words, βi without its boundary. To get rid of the non-linearity of quantified variables, we use the
trick of Alur, Henzinger and Ho [40] and replace the product λv by a new vector u. We obtain:

ϕi(c) ∨ ∃λ. λ > 0 ∧ ∃u.W ′i (u, λ) ∧ ϕi(c + u) ∧ GC(c + u) ∧ βi(c) ∧ β′i(c + u)

where the inequation system W′i (u, λ) is given by
∧

j wi ju ≤ wi jλ.
It remains to convert this formula over λ, u = (u1, . . . , u f), C, and D into an equivalent formula over the original

variables in C and D. This amounts to variable elimination for linear real arithmetic (with variables u1, . . . , u f and λ)
and may be performed by the Loos-Weispfenning test point method already described in Sect. 2.3.

3.2. Model Checking Algorithm

Using the pre-image computations described above, we can now define the model checking algorithm. Starting
from a representation of the unsafe states, the backward reachability analysis alternates between series of discrete steps
and continuous flows, where the latter are surrounded by continuous-to-discrete (c2d) and discrete-to-continuous (d2c)
steps. Since input variables are read during c2d steps, these variables are existentially quantified in the results of c2d
pre-image computations.9 The iteration is performed until a global fixpoint is finally reached or until an initial state is
reached.

7The variables in D are assumed to remain constant during mode mi, so boolean expressions over D behave like propositional variables. For
simplicity, we will ignore them in the rest of this section.

8Recall that βi is the cofactor of the disjunction of all urgent discrete transition guards w. r. t. mi; non-urgent transitions are ignored at this point.
9For discrete-time LHA+Ds, only discrete steps are performed and the existential quantification over input variables happens there.

10

begin1

ϕd2c
0 := ¬safe;2

i := 0;3

repeat4

i := i + 1;5

// Discrete fixed point iteration:
j := 0;6

ϕd
0 := ϕd2c

i−1 ;7

repeat8

j := j + 1;9

ϕd
j := (Pred(ϕd

j−1 ∧GC)) ∨ ϕd2c
i−1 ;10

until GC ∧ ϕd
j ∧ ¬ϕd

j−1 = 0 ;11

ϕ
dfp

i := ϕd
j ;12

// Evaluate c2d transitions:
ϕc2d

i :=
(
∃dn+1, . . . dp(Prec2d(ϕdfp

i ∧GC)) ∧∨k
j=1 β j

)
∨ ¬safe;13

// Evaluate continuous flow:
ϕ

f low
i :=

∨k
h=1 Prec(ϕc2d

i |−→m=mh
,Wi, βi) ∧ (−→m = mh);14

// Evaluate d2c transitions:
ϕd2c

i := (Pred2c(ϕ f low
i ∧GC)) ∨ ¬safe;15

until GC ∧ ϕd2c
i ∧ ¬ϕd2c

i−1 = 0 ;16

if GC ∧ (ϕdfp

i ∨ ϕc2d
i ∨ ϕ f low

i ∨ ϕd2c
i) ∧ init , 0 then return false;17

return true;18

end19

4. Basic optimizations of LinAIG representations

4.1. LinAIG optimizations using information on linear constraints

In this section we describe optimizations to our LinAIG data structure which go beyond a separate treatment
of the boolean part and the continuous part (linear constraints). Of course, just keeping the boolean part and the
continuous part (linear constraints) of LinAIGs separate would lead to a loss of information: Since we would forget
correlations between linear constraints, we would give up much of the potential for optimizing the representations.
Moreover, we need this information when we have to check whether two sets of states are equivalent during the
fixpoint check of the model checking procedure. As a simple example consider the two predicates ϕ1 = (c1 < 5) and
ϕ2 = (c1 < 10) ∧ (c1 < 5). If c1 < 5 is represented by the boolean constraint variable qℓ1 and c < 10 by variable
qℓ2 , then the corresponding boolean formulas qℓ1 and qℓ1 ∧ qℓ2 are not equivalent, whereas ϕ1 and ϕ2 are certainly
equivalent. Both as a means for further compaction of our representations and as a means for detecting fixpoints we
need methods for transferring knowledge from the continuous part to the boolean part. (In the example above this
may be the information that qℓ1 = 1 and qℓ2 = 0 can not be true at the same time or that ϕ1 and ϕ2 are equivalent when
replacing boolean variables by the corresponding linear constraints.)

4.1.1. Implication-based compaction
As a first method to transfer information from the continuous to the boolean part we consider dependencies be-

tween linear constraints that are easy to detect a priori.

Computing implications between linear constraints. It is not known initially which dependencies are actually needed
in the rest of the computation; for this reason we restrict to two simple cases: First, we compute unconditional
implications between linear constraints α1c1 + . . .+αncn +α0 ≤ 0 and α1c1 + . . .+αncn +α

′
0 ≤ 0, where α0 > α

′
0 (and

analogously implications involving negations of linear constraints). Second, we use a sound but incomplete method to

11

detect implications which follow from global constraints. Here we restrict ourselves to global constraints of the form
li ≤ ci ≤ ui for the continuous variables. If (α1 − α′1)b1 + . . . + (αn − α′n)bn + α0 − α′0 ≥ 0, where bi = li if α′i < αi and
bi = ui otherwise, then the linear constraint α′1c1 + . . . + α

′
ncn + α

′
0 ≤ 0 follows from α1c1 + . . . + αncn + α0 ≤ 0 and

the global lower and upper bounds li ≤ ci ≤ ui.

Using implications between linear constraints. Implications between linear constraints are used for compaction of
the FRAIG part as follows:

Suppose we have found a pair of linear constraints ℓ1 and ℓ2 with ℓ1 ⇒ ℓ2, where ℓ1 and ℓ2 are represented by
the constraint variables qℓ1 and qℓ2 in the boolean part. Then we know that the combination of values qℓ1 = 1 and
qℓ2 = 0 is inconsistent w. r. t. the continuous part, i. e., it will never be applied to inputs qℓ1 and qℓ2 of the boolean
part. We transfer this knowledge to the boolean part by a modified behavior of the FRAIG package: First we adjust
the simulation test vectors (over boolean variables and constraint variables qℓi), such that they become consistent with
the found implications (potentially leading to the fact that proofs of non-equivalence by simulation will not hold any
longer for certain pairs of nodes). This is achieved by maintaining a directed graph Gimpl = (V, E) with V = { qℓi | ℓi ∈
L(C) }∪{ qℓi | ℓi ∈ L(C) } and E = { (qℓi1

, qℓi2
) | ℓi1 ⇒ ℓi2 , ℓi1 , ℓi2 ∈ L(C) }∪{ (qℓi2

, qℓi1
) | ℓi1 ⇒ ℓi2 , ℓi1 , ℓi2 ∈ L(C) }. The

resulting graph is skew-symmetric10 and acyclic, since a cycle in the graph would mean that certain linear constraints
are equivalent (or antivalent), which is prevented by normalization during insertion of linear constraints. Thus we are
able to adjust test vectors following a topological order in this graph Gimpl: After adding newly found implications
between linear constraints to G, we traverse the graph in topological order and at each vertex qℓi we modify the test
vector values of all successors qℓ j of qℓi such that they become consistent with the implication ℓi ⇒ ℓ j.

Secondly, we make use of implications ℓi1 ⇒ ℓi2 found between linear constraints during SAT checking: We
introduce the implication qℓi1

⇒ qℓi2
as an additional binary clause in every SAT problem checking equivalence of two

nodes depending on qℓi1
and qℓi2

. In that way, non-equivalences of LinAIG nodes which are only caused by differences
w. r. t. inconsistent input value combinations with qℓi1

= 1 and qℓi2
= 0 will be turned into equivalences, removing

redundant nodes in the LinAIG.
Note that it is not necessary to add all existing implications to the SAT problems: Implications which follow from

transitivity may be omitted. In fact, experimental results show that it pays off to add only a minimal number of clauses
for implications. These clauses result from the transitive reduction of the acyclic directed graph Gimpl [41].11

4.1.2. Using a decision procedure for deciding equivalence
In addition to the eager check for implications between linear constraints above, we use an SMT (SAT modulo

theories) solver [11, 12] as a decision procedure for the equivalence of nodes in LinAIGs (representing boolean combi-
nations of linear constraints and boolean variables). The sub-LinAIGs rooted by two nodes which are to be compared
are translated into the input format of the SMT solver12 and the solver decides equivalence or non-equivalence. If
two nodes are proven to be equivalent (taking the linear constraints into account), then these nodes can be merged,
leading to a compaction of the representation (or even leading to the detection of a fixpoint in the model checking
computation).

Remark 1. Note that it is also possible to merge nodes which are equivalent “modulo invariants” which have been
proved separately (see page 7). Assume that invariants Inv are described by the predicate ξinv. During our backward
reachability analysis we consider sets ϕ of states from which the unsafe states are reachable. Since we are only
interested in the question whether we can reach an unsafe state from the initial states, we may arbitrarily add states in
¬Inv to ϕ or remove states in ¬Inv from ϕ: By adding a state s in ¬Inv to ϕ we never add a path from an initial state
via s to an unsafe state. By removing a state s in ¬Inv from ϕ we never remove an existing path from an initial state
via s to an unsafe state. Both statements are true, because (by definition) states in ¬Inv can never be reached from the
initial states.

10A directed graph is skew-symmetric iff it is isomorphic to the graph formed by reversing all of its edges. Here, the corresponding isomorphism
σ is given by σ(qℓi) = qℓi

and σ(qℓi
) = qℓi , for all ℓi ∈ L(C).

11The (unique) transitive reduction of a acyclic directed graph can be computed in O(|V | · |E|) [42].
12In our implementation we use Yices [11] for this task.

12

Thus, we are allowed to merge two nodes n1 and n2, if the represented predicates fn1 and fn2 are equivalent
“modulo invariants”, i. e., if (fn1 ⊕ fn2) ∧ ξinv is unsatisfiable.13

Concerning node merging based on SMT solver applications we consider two possible strategies:

• A first variant we implemented is a fully lazy application of an SMT solver. The fully lazy variant invokes
the SMT solver only when explicit equivalence checks and fixpoint checks are used in the model checking
procedure.

• On the other hand, it is possible to use an SMT solver in an eager manner whenever a new node is inserted into
the LinAIG, just as SAT (together with simulation) is used in the FRAIG representation of the boolean part. This
leads to an LinAIG representation where different nodes always represent different predicates.

However, to avoid as many SMT checks as possible, we make use of the boolean reasoning features offered by
FRAIGs during insertion of nodes into the FRAIG part of the LinAIG. This leads to the following layered approach:

1. At first, the FRAIG package uses structural hashing for identifying an existing AND node which has the same
pair of inputs. If such a node already exists, it is not necessary to insert a new (equivalent) node. Moreover,
identification of identical nodes is assisted in the FRAIG package by (restricted) local transformation and nor-
malization rules.

2. Second, it is checked whether there is already a node in the representation which represents the same boolean
function, when constraint variables qℓi are not interpreted by their corresponding linear constraints ℓ. When
the node which is about to be inserted is compared to an existing node, we have to solve a boolean problem
with pure boolean input variables and constraint variables qℓi . This boolean problem is encoded as an input to
a CNF-based (boolean) SAT solver. If the SAT solver proves that two nodes are equivalent, it is clear that the
nodes remain equivalent when constraint variables qℓi are interpreted by their corresponding linear constraints
ℓi. Thus, in case of equivalence the existing node and the node to be inserted can be merged.14. Note that the
translation step into a SAT instance includes additional clauses for implications between linear constraints as
described in Sect. 4.1.1.

The set of candidate nodes for SAT checks is determined by simulation: Simulation assigns values to pure
boolean variables and constraint variables qℓi . SAT checks for proving equivalence need only be applied to pairs
of nodes which show the same results for all simulation vectors used. (As already mentioned in Sect. 4.1.1 we
use only simulation vectors which are consistent w. r. t.detected implications between linear constraints.)

3. Finally, an SMT solver is used for checking whether the node to be inserted represents a predicate which is
already represented in the LinAIG. Similarly to the simulation approach for FRAIGs the number of potential
SMT-based equivalence checks is reduced based on simulation: We use simulation with test vectors as an in-
complete but cheap method to show the non-equivalence of LinAIG nodes. However, note that for this purpose
we can not use the same simulation vectors as we use for the pure FRAIG part of the LinAIG (assignments
of values to pure boolean variables and constraint variables qℓi which are initially random, but are enhanced
by counterexamples learnt from SAT applications later on), since these vectors are not necessarily consistent
w. r. t. the interpretation of constraint variables qℓi by their corresponding linear constraints ℓi. If a proof of
non-equivalence for two nodes is based on non-consistent simulation vectors, it may be incorrect. For this
reason we use an appropriate set of test vectors in terms of real variables such that we can compute consis-
tent boolean valuations of linear constraints based on the real valued test vectors. These values, combined
with assignments to the pure boolean variables, may be used for proving non-equivalences of LinAIG nodes
representing predicates over boolean variables and linear constraints.

13A similar optimization can be performed w. r. t. the global constraints represented by GC, because in our model checking algorithm the
(backward) reachable states are intersected with GC after each preimage step. However, it is not semantically sound to optimize ϕ ∧GC “modulo
GC” before preimage computation by substitutions; we have to be careful with the order of operations when performing optimizations modulo
global constraints. Technical details are omitted here.

14Our FRAIG package does not necessarily choose the existing node, but selects the smallest of the two representations.

13

At first, test vectors consist of arbitrary values for real-valued variables ci (taking global constraints GC and
invariants Inv into account, if they exist). Later on, we add test vectors learnt from successful applications
of the SMT solver. If we are able to prove non-equivalence of two LinAIG nodes, the SMT solver returns
an assignment to the boolean variables and the real-valued variables (occurring in linear constraints) which
witnesses a difference between the two corresponding formulas over boolean variables and linear constraints.
Based on the intuition that these assignments represent interesting corner cases for distinguishing between
different predicates we learn the corresponding vectors for later applications of simulation. Our experimental
results clearly demonstrate that this is a effective strategy for reducing the number of SMT checks in the future.

The details given above show that even in the eager variant SMT checks will not be used during node insertion, if
we find an equivalent node based on pure boolean reasoning in steps 1 and 2. Implications between linear constraints
computed as given in Sect. 4.1.1 help in finding more equivalences by boolean reasoning. Moreover, if it is proven by
simulation that the new node is different from all existing nodes, then SMT checks can be avoided, too.

4.1.3. Effect of LinAIG optimizations using information on linear constraints
We use a simplified version of the flap controller case study presented in Sect. 7 to demonstrate the effect of our

basic LinAIG optimizations using information on linear constraints. (In the simplified version the number of goal
positions of the flap was reduced from 4 to 3.)

At first, we used a fully lazy application of an SMT solver (with SMT checks only for explicit equivalence checks
and fixpoint checks in the model checking procedure) and omitted implication-based compaction. In the second
experiment we used lazy SMT application together with implication-based compaction and finally we used eager SMT
checking as described above. In Fig. 2 the evolution of the number of active LinAIG nodes over time is shown (dotted
line without implication-based compaction, dashed line with implication-based compaction, and solid line for eager
SMT application). Fig. 3 shows the same comparison regarding the number of active linear constraints. The figures
show that implication-based compaction is indeed able to reduce the number of active LinAIG nodes and active linear
constraints. With implication-based compaction the model checking run was finished within 1 CPU hour whereas the
version without implication-based compaction did not finish within the time limit of 3 CPU hours. For eager SMT
application we additionally observe considerable improvements compared to the lazy version with implication-based
compaction both w. r. t. the numbers of active LinAIG nodes and active linear constraints. The time for the complete
model checking run was reduced from 1 CPU hour to 4 CPU minutes.

�
�
�
�
�
�
�
�
	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��

�

�

�

�

�

�

�����������������

�����������������

��������

������������������

!
�"
��
#
$%
��
�
&
�
�

Figure 2: Evolution of LinAIG nodes without implications, with im-
plications, and with eager SMT checks.

�
�
�
�
�
�
�
�
	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��
��
��
�	
�

��
��
��
��
��
��

�

�

�

�

�

�

�

�����������������

�����������������

��������

������������������

!
��
��
�
�
��
�
�
�
�
�
�
��
�

Figure 3: Number of linear constraints without implications, with im-
plications, and with eager SMT checks.

In the following we confine ourselves to the eager SMT application and provide a more detailed analysis demon-
strating the effect of our layered approach using boolean reasoning, simulation and SMT checks during node insertion.

For 92.1 % of our attempts to insert a node into the LinAIG we obtained the result that there was a functionally
equivalent node already in the representation. For the remaining cases when no equivalent node was found we were
able to prove non-equivalence already by simulation with our (real-valued) test vectors in 97.4 % of these cases; only

14

in 2.6 % of these non-equivalent cases we had to use an SMT check, because the test vectors were not yet strong
enough.

When we consider the cases when a functionally equivalent node was found during node insertion, we also observe
that in almost all cases an SMT check was unnecessary: In 99.97 % of these cases we were able to prove equivalence
just by boolean reasoning, i. e., by local reasoning like structural hashing or by SAT strengthened by implications.

If we consider only the cases when we tried to prove equivalence using boolean reasoning, we can observe that
90.7 % of the potential SAT checks were avoided by structural arguments and 7.8 % by simulation (proving boolean
non-equivalence). Only in the remaining 1.5 % of the cases SAT checks were performed (of which 89.1 % were
successful in proving boolean equivalence). This again proves the importance of less expensive methods to filter out
simple cases.

Altogether we can observe that by a sophisticated interaction between all components in our layered approach we
can reduce the number of expensive SMT checks to a great extent, even if we use the eager version of SMT checking.

4.2. Optimization by Boolean Invariants

In our experiments we made the observation that backward reachability analysis often visits a large number of
discrete states (or even modes) which are not reachable from the initial states. For an extreme case consider a unary
encoding of n discrete states: Backward reachability analysis starting from the unsafe states potentially has to traverse
2n discrete states, since it is not clear in advance that at most n patterns of state bits can be reached from the initial
state.

This is not really surprising and in fact forward and backward reachability analysis have “symmetrical disadvan-
tages”: A forward traversal usually visits large sets of states which do not have a connection to the unsafe states and
a backward traversal usually visits large sets of states which do not have a connection to the initial states. (The most
extreme case occurs when there is no path from the initial states to the unsafe states.)

In order to mitigate this problem we follow the idea of supporting backward analysis by information obtained from
an approximate forward analysis. More precisely, we compute an overapproximation of the states reachable from the
initial states based on a boolean abstraction of our system model.

For boolean abstraction, predicates ξ ∈ P(D, I,C,M) in the system model are replaced by their boolean abstraction
ba(ξ): We assign a new boolean input variable dℓi

j to each linear constraint ℓi in the system model. ba(ξ) results from

ξ by replacing each linear constraint ℓi occurring in ξ by dℓi
j . Guarded assignments

ξi → (d1, . . . , dn) := (gi,1, . . . , gi,n); (c1, . . . , c f) := (ti,1, . . . , ti, f); (m1, . . . ,ml) := m ji

are replaced by
ba(ξi)→ (d1, . . . , dn) := (ba(gi,1), . . . , ba(gi,n)); (m1, . . . ,ml) := m ji .

The boolean abstraction of the system model then results only from the boolean abstractions of discrete transitions,
continuous transitions are neglected. If dp+1, . . . , dm are the new boolean input variables assigned to linear constraints
and if the initial states of the hybrid automaton are given by the predicate ξinit, then the initial states of the boolean
abstraction are defined by ∃dp+1, . . . , dmba(ξinit).

Now it is clear that the forward reachable states fwreachba of the boolean abstraction of an automaton overapprox-
imate the forward reachable states fwreach of the original automaton. In other words, fwreachba is a (purely boolean)
invariant of the automaton. We compute fwreachba by a standard symbolic forward model checker for discrete systems
[10]. This invariant can then be used to optimize state set representations as described in Remark 1 on page 12.

Effect of Optimization by Boolean Invariants. In a first (and simpler) version of our flap controller case study (for
details see in Sect. 7) we used a model without error detection capabilities and a unary encoding of the states (4LP-
noHM). The model checking time for this model was 177 CPU minutes (with all optimizations described in the
previous section). Using the boolean overapproximation of the forward reachable states we were able to reduce the
run time to 122.7 CPU seconds. This is due to the fact that 75 % of the discrete states were proved to be unreachable
from the initial states. These unreachable states were used to optimize state sets during backward analysis.

15

5. Redundancy Elimination

5.1. Motivation

In Sect. 2.2 and Sect. 4.1 we already introduced several methods which turn LinAIGs into an efficient data struc-
ture for boolean combinations of boolean variables and linear constraints over real variables. However, especially
in connection with Loos-Weispfenning quantifier elimination used to compute continuous steps, one observes that
the number of “redundant” linear constraints grows rapidly during the fixpoint iteration of the model checker. For
illustration see Fig. 4 and 5, which show a typical example from a model checking run representing a small state set
based on two real variables: Lines in Figures 4 and 5 represent linear constraints, and the gray shaded area represents
the space defined by some boolean combination of these constraints. Whereas the representation depicted in Fig. 4
contains 24 linear constraints, a closer analysis shows that an optimized representation can be found using only 15
linear constraints as depicted in Fig. 5.

Figure 4: Before redundancy removal Figure 5: After redundancy removal

Removing such redundant constraints from our representations is a crucial task for the success of our methods.
The motivation for this lies in the observation that for preimage computations the complexity of the result strongly
depends on the number of linear constraints on which the original representation depends: Suppose the original
representation depends on n linear constraints. The result of a discrete step may depend on n × v linear constraints
in the worst case, if v is the number of guarded assignments in the discrete transition relation (see Sect. 3.1.1).
Eliminating a single quantifier by the Loos-Weispfenning method used in continuous step computations may lead to
an quadratic increase in the number of linear constraints in the result.

5.2. Redundancy Detection and Removal for Convex Polyhedra

It should be noted that, since we represent arbitrary boolean combinations of linear constraints (and boolean
variables), removing redundant linear constraints is not as straightforward as for other approaches such as [32, 24],
which represent sets of convex polyhedra, i. e., sets of conjunctions ℓ1 ∧ . . . ∧ ℓn of linear constraints. If one is
restricted to convex polyhedra, the question whether a linear constraint ℓ1 is redundant in the representation reduces to
the question whether ℓ2∧. . .∧ℓn represents the same polyhedron as ℓ1∧. . .∧ℓn, or equivalently, whether ¬ℓ1∧ℓ2∧. . .∧ℓn

represents the empty set. This question can simply be answered by a linear program solver.

5.3. Redundancy Detection for LinAIGs

Redundancy of linear constraints is defined as follows:

Definition 3 (Redundancy of linear constraints). Let F be a boolean function, let d1, . . . , dn be boolean variables
and let ℓ1, . . . , ℓk be linear constraints over real-valued variables C = {c1, . . . , c f }. The linear constraints ℓ1, . . . , ℓr

(1 ≤ r ≤ k) are called redundant in the representation of F(d1, . . . , dn, ℓ1, . . . , ℓk) iff there is a boolean function G with
the property that F(d1, . . . , dn, ℓ1, . . . , ℓk) and G(d1, . . . , dn, ℓr+1, . . . , ℓk) represent the same predicates.

Our check for redundancy is based on the following theorem:

Theorem 1 (Redundancy check) For all 1 ≤ i ≤ k let ℓi be a linear constraint over real-valued variables {c1, . . . , c f }
and ℓ′i exactly the same linear constraint as ℓi, but now over a disjoint copy {c′1, . . . , c′f } of the variables. Let ≡

16

denote boolean equivalence. The linear constraints ℓ1, . . . , ℓr (1 ≤ r ≤ k) are redundant in the representation of
F(d1, . . . , dn, ℓ1, . . . , ℓk) if and only if the predicate(

F(d1, . . . , dn, ℓ1, . . . , ℓk) ∧ ¬F(d1, . . . , dn, ℓ
′
1, . . . , ℓ

′
k)
)
∧∧k

i=r+1(ℓi ≡ ℓ′i) (1)

is not satisfiable by any assignment of boolean values to d1, . . . , dn and real values to the variables c1, . . . , c f and
c′1, . . . , c

′
f .

Note that the check from Thm. 1 can be performed by a (conventional) SMT solver (e. g. [11, 12]).
At first, we give a proof for the only-if-part of Thm. 1.

Proof (of Thm. 1, only-if-part). Let us assume that the predicate from formula (1) is satisfiable and under this as-
sumption we prove that it cannot be the case that all linear constraints ℓ1, . . . , ℓr are redundant, i. e., there is no
boolean function G such that F(d1, . . . , dn, ℓ1, . . . , ℓk) and G(d1, . . . , dn, ℓr+1, . . . , ℓk) represent the same predicates.

Consider some satisfying assignment to the predicate from formula (1) as follows: For the real variables c1 :=
vc1 , . . . , c f := vc f with (vc1 , . . . , vc f) ∈ R f , for the copied real variables c′1 := vc′1 , . . . , c

′
f := vc′f with (vc′1 , . . . , vc′f) ∈ R

f ,
and for the boolean variables d1 := vd1 , . . . , dn := vdn with (vd1 , . . . , vdn) ∈ {0, 1}n.

This satisfying assignment implies a corresponding truth assignment to the linear constraints by ℓi(vc1 , . . . , vc f) =
vℓi (1 ≤ i ≤ k) with vℓi ∈ {0, 1} and to the copied linear constraints by ℓ′i (vc′1 , . . . , vc′f) = vℓ′i (1 ≤ i ≤ k) with vℓ′i ∈ {0, 1}.

Since the assignment satisfies formula (1), it holds that

F(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) = 1, (a) F(vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′k) = 0, (b)
vℓi = vℓ′i for all r + 1 ≤ i ≤ k. (c)

Then F(d1, . . . , dn, ℓ1, . . . , ℓk) = G(d1, . . . , dn, ℓr+1, . . . , ℓk) would imply G(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) = 1 because of
(a) and G(vd1 , . . . , vdn , vℓ′r+1

, . . . , vℓ′k) = 0 because of (b). However, since vℓi = vℓ′i for all r + 1 ≤ i ≤ k (c), this is a
contradiction. �

A constructive proof for the if-part of Thm. 1 is given in Sect. 5.4.

Overall algorithm for redundancy detection. Now we can present our overall algorithm detecting a maximal set of
linear constraints which can be removed from the representation at the same time. We start with a small example
demonstrating the effect that it is not enough to consider redundancy of single linear constraints and to construct
larger sets of redundant constraints simply as unions of smaller sets.

Example 1. Consider the predicate F(c1, c2) = (c1 ≥ 0) ∧ (c2 ≥ 0) ∧ ¬(c1 + c2 ≤ 0) ∧ ¬(2c1 + c2 ≤ 0). It is easy
to see that both the third and the forth linear constraint in the conjunction have the effect of “removing the value
(c1, c2) = (0, 0) from the predicate F′(c1, c2) = (c1 ≥ 0) ∧ (c2 ≥ 0)”. Therefore both ℓ3 = (c1 + c2 ≤ 0) and
ℓ4 = (2c1 + c2 ≤ 0) are obviously redundant linear constraints in F. However, it is also easy to see that ℓ3 and ℓ4 are
not redundant in the representation of F at the same time, i. e., only ¬(c1 + c2 ≤ 0) or ¬(2c1 + c2 ≤ 0) can be omitted
in the representation for F.

This observation motivates the following overall algorithm to detect a maximal set of redundant linear constraints:
Input : Predicate F(d1, . . . , dn, ℓ1, . . . , ℓk)
Output: S : Maximal set of redundant linear constraints
begin1

S := ∅;2
for i := 1 to k do3

if redundant(F, S ∪ {ℓi}) then S := S ∪ {ℓi};4

return S ;5

end6

redundant(F, S ∪ {li}) implements the check from Thm. 1 by using an SMT solver. It is important to note that
the k SMT problems to be solved in the above loop share almost all of their clauses. For that reason we make use
of an incremental SMT solver to solve this series of problems. An incremental SMT solver is able to profit from
the similarity of the problems by transferring learned knowledge from one SMT solver call to the next (by means of
learned conflict clauses).

17

5.4. Removal of Redundant Linear Constraints
Suppose that formula (1) of Thm. 1 is unsatisfiable. Now we are looking for an efficient procedure to compute

a boolean function G such that G(d1, . . . , dn, ℓr+1, . . . , ℓk) and F(d1, . . . , dn, ℓ1, . . . , ℓk) represent the same predicates.
The construction of an appropriate function G provides a constructive proof for the if–part of Thm. 1. Obviously, the
boolean functions F and G do not need to be identical in order to achieve this objective given above; they are allowed
to differ for “inconsistent” arguments which can not be produced by evaluating the linear constraints with real values.
The set of these arguments is described by the following “don’t care set” dcinc:

Definition 4. The don’t care set dcinc induced by linear constraints ℓ1, . . . , ℓk is defined as

dcinc := {(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) | (vd1 , . . . , vdn) ∈ {0, 1}n, (vℓ1 , . . . , vℓk) ∈ {0, 1}k

and ∀vc ∈ R f ∃1 ≤ i ≤ k with ℓi(vc) , vℓi }.
(2)

As we will see in the following, it is possible to compute a function G as needed by making use of the don’t care
set dcinc. However, an efficient realization would certainly need a compact representation of the don’t care set dcinc.
Fortunately, a closer look at the problem reveals the following two interesting observations which turn our basic idea
into a feasible approach:

1. In general, we do not need the complete set dcinc for the computation of the boolean function G.

2. A representation of a sufficient subset dc′inc of dcinc which is needed for removing the redundant constraints
ℓ1, . . . , ℓr is already computed by an SMT solver when checking the satisfiability of formula (1) (if one assumes
that the SMT solver uses the option of minimizing conflict clauses, as we will see later on).

In order to explain how an appropriate subset dc′inc of dcinc is computed by the SMT solver (when checking the
satisfiability of formula (1)) we start with a brief review of the functionality of an SMT solver:15

An SMT solver introduces constraint variables qℓi for linear constraints ℓi (just as in LinAIGs as shown in Fig. 1).
First, the SMT solver looks for satisfying assignments to the boolean variables (including the constraint variables).
Whenever the SMT solver detects a satisfying assignment to the boolean variables, it checks whether the assignment
to the constraint variables is consistent, i. e., whether it can be produced by replacing real-valued variables by reals in
the linear constraints. This task is performed by a linear program solver. If the assignment is consistent, then the SMT
solver has found a satisfying assignment, otherwise it continues searching for satisfying assignments to the boolean
variables. If some assignment ϵ1, . . . , ϵm to constraint variables qℓi1

, . . . , qℓim
was found to be inconsistent, then the

boolean “conflict clause” (¬qϵ1
ℓi1
∨ . . . ∨ ¬qϵm

ℓim
) is added to the set of clauses in the SMT solver to avoid running into

the same conflict again.16 The negation of this conflict clause describes a set of don’t cares due to an inconsistency of
linear constraints.

Now consider formula (1), which has to be solved by an SMT solver, and suppose that the solver introduces
boolean constraint variables qℓi for linear constraints ℓi and qℓ′i for ℓ′i (1 ≤ i ≤ k). Whenever there is some satisfying
assignment to boolean variables (including constraint variables) in the SMT solver, it will be necessarily shown to be
inconsistent, since formula (1) is unsatisfiable.

In order to define an appropriate function G we introduce the concept of so-called orbits: For an arbitrary value
(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) ∈ {0, 1}n+k−r the corresponding orbit is defined by

orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓn) := {(vd1 , . . . , vdn , vℓ1 , . . . , vℓr , vℓr+1 , . . . , vℓn) | (vℓ1 , . . . , vℓr) ∈ {0, 1}r}.

The following essential observation results from the unsatisfiability of formula (1):
If some orbit orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) contains two different elements v(1) := (vd1 , . . . , vdn , vℓ1 , . . . , vℓr , vℓr+1 ,

. . . , vℓk) and v(2) := (vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′r , vℓr+1 , . . . , vℓk) with F(v(1)) , F(v(2)), then

(a) v(1) ∈ dcinc or v(2) ∈ dcinc and

15Here we refer to the lazy approach to SMT solving, see [43], e. g., for an overview.
16By definition q1

ℓi j
:= qℓi j

and q0
ℓi j

:= ¬qℓi j
.

18

(b) the SMT solver detects and records this don’t care when solving formula (1).

In order to show fact (a), we consider the following assignment to boolean variables and boolean abstraction
variables in formula (1): Let d1 := vd1 , . . . , dn := vdn , qℓ1 := vℓ1 , . . . , qℓr := vℓr , qℓ′1 := vℓ′1 , . . . , qℓ′r := vℓ′r , qℓr+1 :=
qℓ′r+1

:= vℓr+1 , . . . , qℓk := qℓ′k := vℓk . (Thus v(1) is assigned to the variables d1, . . . , dn, qℓ1 , . . . , qℓk and v(2) to the
variables d1, . . . , dn, qℓ′1 , . . . , qℓ′k .) It is easy to see that this assignment satisfies the boolean abstraction of formula
(1). Since formula (1) is unsatisfiable, the assignment has to be inconsistent w. r. t. the interpretation of constraint
variables by linear constraints. So there must be an inconsistency in the truth assignment to some linear constraints
ℓ1, . . . , ℓk, ℓ′1, . . . , ℓ

′
k. Since the linear constraints ℓi and ℓ′i are based on disjoint sets of real variables C = {c1, . . . , c f }

and C′ = {c′1, . . . , c′f }, already the partial assignment to ℓ1, . . . , ℓk or the partial assignment to ℓ′1, . . . , ℓ
′
k has to be

inconsistent, i. e., v(1) ∈ dcinc or v(2) ∈ dcinc.
Fact (b) follows from the simple observation that the SMT solver has to detect and record the inconsistency of the

assignment mentioned above in order to prove unsatisfiability of formula (1) and with minimization of conflict clauses
it detects only conflicts which are confined either to ℓ1, . . . , ℓk or to ℓ′1, . . . , ℓ

′
k.17

Altogether this means that the elements of some orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) which are not in the subset dc′inc
of dcinc computed by the SMT solver are either all mapped by F to 0 or are all mapped by F to 1. Thus, we can define
an appropriate function G by don’t care assignment as follows:

1. If orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) ⊆ dc′inc, then G(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) is chosen arbitrarily.

2. Otherwise G(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) = δ with F(orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) \ dc′inc) = {δ}, δ ∈ {0, 1}.

It is easy to see that G does not depend on variables qℓ1 , . . . , qℓr and that G is well-defined (this follows from
|F(orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) \ dc′inc)| = 1), i. e., G is a possible solution according to Def. 3. This considera-
tion also provides a proof for the “if-part” of Thm. 1.

A predicate DC′inc which describes the don’t cares in dc′inc may be extracted from the SMT solver as a disjunction
of negated conflict clauses which record inconsistencies between linear constraints.

Note that according to case 1 of the definition of G there may be several possible choices fulfilling the definition
of G.

Redundancy Removal by Existential Quantification. A straightforward way of computing an appropriate function G
relies on existential quantification:

• At first by G′ = F ∧ ¬DC′inc all don’t cares represented by DC′inc are mapped to the function value 0.

• Secondly, we perform an existential quantification of the variables qℓ1 , . . . , qℓr in G′: G = ∃qℓ1 , . . . , qℓrG
′. This

existential quantification maps all elements of an orbit orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) to 1, whenever the orbit
contains an element ϵ with dc′inc(ϵ) = 0 and F(ϵ) = 1. Since due to the argumentation above there is no
other element δ in such an orbit with dcinc(δ) = 0 and F(δ) = 0, G eventually differs from F only for don’t
cares defined by DC′inc and it certainly does not depend on variables qℓ1 , . . . , qℓr , i. e., existential quantification
computes one possible solution for G according to Def. 3 (more precisely it computes exactly the solution for
G which maps a minimum number of elements of {0, 1}n+k−r to 1).

Redundancy Removal with Craig Interpolants. Although our implementation of LinAIGs supports quantification of
boolean variables by a series of methods like functional reduction (see Sect. 2.2), quantifier scheduling, BDD sweeping
and node selection heuristics (see [35]), there remains the risk of doubling the representation size by quantifying a
single boolean variable.18 Therefore the computation of G by G = ∃qℓ1 , . . . , qℓrG

′ as shown above may potentially
lead to large LinAIG representations (although it reduces the number of linear constraints).

17For our purposes, it does not matter whether the inconsistency is given in terms of linear constraints ℓ1, . . . , ℓk or ℓ′1, . . . , ℓ
′
k . We are only

interested in assignments of boolean values to linear constraints leading to inconsistencies; of course, the set of all inconsistencies is the same both
for ℓ1, . . . , ℓk and their copies ℓ′1, . . . , ℓ

′
k.

18Basically, existential quantification of a boolean variable is reduced to a disjunction of both cofactors w. r. t. 0 and w. r. t. 1.

19

On the other hand, this choice for G is only one of many other possible choices. Motivated by these facts we
looked for an alternative solution. Here we present a solution which needs only one application of Craig interpolation
[14, 15] instead of a series of existential quantifications of boolean variables.

Recently, Craig interpolation was applied by McMillan for generating an overapproximated image operator to
be used in connection with Bounded Model Checking [16] and by Lee et al. for computing a so-called dependency
function in logic synthesis algorithms [17]. According to [14, 15], a Craig interpolant is computed for an unsatisfiable
boolean formula H in Conjunctive Normal Form (CNF) (i. e., for a conjunction of disjunctions of boolean variables)
which is partitioned into two parts A and B with H = A ∧ B = 0.

Note that (in contrast to McMillan’s application [16]) Craig interpolation leads to an exact result (as one of several
possible choices) in our context and not to an approximation.

Don’t cares can be assigned arbitrarily in order to make our function G independent from qℓ1 , . . . , qℓr , thus our
task is to find a boolean function G(d1, . . . , dn, qℓr+1 , . . . , qℓk) with

(F ∧ ¬DC′inc)(d1, . . . , dn, qℓ1 , . . . , qℓk) =⇒ G(d1, . . . , dn, qℓr+1 , . . . , qℓk), (3)

G(d1, . . . , dn, qℓr+1 , . . . , qℓk) =⇒ (F ∨ DC′inc)(d1, . . . , dn, qℓ1 , . . . , qℓk). (4)

Now let A(d1, . . . , dn, qℓ1 , . . . , qℓr , qℓr+1 , . . . , qℓk , h1, . . . , hl) represent the CNF for a Tseitin transformation [44] of
(F∧¬DC′inc)(d1, . . . , dn, qℓ1 , . . . , qℓr , qℓr+1 , . . . , qℓk) (with new auxiliary variables h1, . . . , hl). Likewise, let B(d1, . . . , dn,
qℓ′1 , . . . , qℓ′r , qℓr+1 , . . . , qℓk , h

′
1, . . . , h

′
l′) be the CNF for a Tseitin transformation of (¬F ∧ ¬DC′inc)(d1, . . . , dn, qℓ′1 , . . . , qℓ′r ,

qℓr+1 , . . . , qℓk) (with new auxiliary variables h′1, . . . , h
′
l′).

Then A and B fulfill the precondition “A ∧ B = 0” for Craig interpolation [14, 15]:
Suppose that there is a satisfying assignment to A ∧ B given by d1 := vd1 , . . . , dn := vdn , qℓ1 := vℓ1 , . . . , qℓr :=

vℓr , qℓ′1 := vℓ′1 , . . . , qℓ′r := vℓ′r , qℓr+1 := vℓr+1 , . . . , qℓn := vℓn , and the corresponding assignments to auxiliary variables
h1, . . . , hl and h′1, . . . , h

′
l′ which are implied by these assignments. According to the definition of A and B this would

mean that the set orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) would contain two elements (vd1 , . . . , vdn , vℓ1 , . . . , vℓr , vℓr+1 , . . . , vℓk)
and (vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′r , vℓr+1 , . . . , vℓk) which do not belong to the don’t care set dc′inc and which fulfill F(vd1 , . . . , vdn ,
vℓ1 , . . . , vℓr , vℓr+1 , . . . , vℓk) = 1 and F(vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′r , vℓr+1 , . . . , vℓk) = 0. This is a contradiction to the property
shown above that the elements of orbit(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) which are not in dc′inc are either all mapped by F to
0 or are all mapped by F to 1.

A Craig interpolant G computed for A and B has the following properties [14, 15]:

• It depends only on common variables vd1 , . . . , vdn , qℓr+1 , . . . , qℓk of A and B,

• A =⇒ G, i. e., G fulfills equation (3), and

• G ∧ B is unsatisfiable, or equivalently, G =⇒ ¬B, i. e., G fulfills equation (4).

This shows that a Craig interpolant for (A, B) is exactly one of the possible solutions for G which we were looking for.
According to [15, 16] a Craig interpolant can be computed in linear time based on a proof by resolution that a formula
in CNF (in our case A ∧ B as defined above) is unsatisfiable. Such proofs can be computed by any modern SAT solver
with proof logging turned on.

5.5. Effect of Redundancy Removal
To demonstrate the effect of redundancy removal we consider the dam case study described in Sect. 7 (with

parameters t = 30, d = 50). In Fig. 6 the evolution of the number of linear constraints is compared for the version
without redundancy removal (line with squares), and for the version with redundancy removal (line with diamonds).
The figure shows that redundancy removal is able to keep the growth of the number of linear constraints under control.
The run time with redundancy removal by Craig interpolation is below 63 CPU minutes, model checking without
redundancy removal does not finish within the CPU limit of 4 hours (with a large growth rate w. r. t. the number of
linear constraints).

Using redundancy removal by existential quantification the number of linear constraints can be kept small as well,
but the run times are much higher compared to Craig interpolation and therefore the model checking run does not
finish within the CPU limit of 4 CPU hours. (Because the number of linear constraints does not differ between the two
versions of redundancy removal, we omitted the version with existential quantification in the figure.)

20

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �

�

�

�

�

�

�

�

������������������

������������������

��������� ��������

!
��
��
�
�
��

�
�
�
�
�
��
�

Figure 6: Number of linear constraints without redundancy removal, and with redundancy removal by Craig interpolation.

6. Constraint minimization

6.1. Observations w. r. t. Backward Reachability Analysis

According to Sect. 3 model checking is performed by a backward reachability analysis for LHA+Ds. Starting
from a representation of the unsafe states, the backward reachability analysis performs an evaluation of a continuous
flow, then an evaluation of a discrete-to-continuous step, a series of discrete steps until a local fixpoint is reached, a
continuous-to-discrete step, then again a continuous flow, and so on. This iteration is performed until a global fixpoint
is finally reached or until an initial state is reached.

In the following we present a further analysis and an improvement of the basic model checking algorithm. Since
the basic ideas can also be explained using a simplified version of the fixpoint iteration, we make use of such a
simplification for ease of explanation. In particular we assume here a fixpoint iteration just using discrete transitions.
The simplified fixpoint iteration is given by Algorithm 1.

begin1
ϕ0 := ¬safe; i := 0;2
if ϕ0 ∧ init , 0 then return false;3
repeat4

i := i + 1; ϕi := ∃dn+1, . . . dpPred(ϕi−1) ∨ ¬safe;5
if ϕi ∧ init , 0 then return false;6

until ϕi ∧ ¬ϕi−1 = 0 ;7
return true;8

end9
Algorithm 1: Simplified reachability analysis assuming only discrete transitions.

The set ϕ0 is initialized by the set of unsafe states. In the set ϕi we collect all states from which we can reach
an unsafe state by a trajectory of length ≤ i and in that way we compute representations of larger and larger sets. If
we use exactly Algorithm 1 we observe that we perform “duplicated work” in each step, since we start the preimage
computation in line 5 also from states in ϕi−1 which we were already included in ϕi−2 – and for these states we already
performed a preimage computation before.

This observation is not new, it has already been made when symbolic BDD based model checking was introduced
for discrete systems in the late eighties [18, 19]. A first idea for solving this problem is just to compute the preimage
only for the “onion ring”, i. e., for those states which were reached in the previous step and not before. This leads to
Algorithm 2.

However with symbolic representations it is by no means clear that the representation for a smaller set is indeed
more compact and thus needs less resources while computing preimages. Consider the following example which
illustrates this fact:

21

begin1
ϕ0 := ¬safe; ψ0 := ¬safe; i := 0;2
if ϕ0 ∧ init , 0 then return false;3
repeat4

i := i + 1; ψi := ∃dn+1, . . . dpPred(ψi−1);5
ψi := ψi ∧ ¬ϕi−1 ; // Newly reached states6
if ψi ∧ init , 0 then return false;7
ϕi := ϕi−1 ∨ ψi ; // All reached states8

until ϕi ∧ ¬ϕi−1 = 0 ;9
return true;10

end11
Algorithm 2: Changed reachability analysis.

Example 2. We consider the set of unsafe states represented by the formula

ϕ0 = (y > 1) ∧ (y < 33) ∧ (x > 4) ∧ (x < 36) ∧ (y − x < 5)
∧ [(y < 17) ∨ (x > 16)] ∧ [(y < 21) ∨ (x > 20)] ∧ [(y < 25) ∨ (x > 24)] ∧ [(y < 29) ∨ (x > 28)]
∧ [(x − y < 11) ∨ (y > 7) ∧ (x < 22) ∨ (y > 11) ∧ (x < 26) ∨ (y > 15) ∧ (x < 30) ∨ (y > 19) ∧ (x < 34)].

ϕ0 is illustrated in Fig. 7(a). With the assignment x := x + 1, y := y − 1 the preimage Pred(ϕ0) results in

ϕ1 = (y > 2) ∧ (y < 34) ∧ (x > 3) ∧ (x < 35) ∧ (y − x < 7)
∧ [(y < 18) ∨ (x > 15)] ∧ [(y < 22) ∨ (x > 19)] ∧ [(y < 26) ∨ (x > 23)] ∧ [(y < 30) ∨ (x > 27)]
∧ [(x − y < 9) ∨ (y > 8) ∧ (x < 21) ∨ (y > 12) ∧ (x < 25) ∨ (y > 16) ∧ (x < 29) ∨ (y > 20) ∧ (x < 33)].

Both ϕ0 and ϕ1 depend on 22 linear constraints. If we compute a formula for the newly reached states by ϕ1 ∧ ¬ϕ0 as
in Algorithm 2, we first obtain a representation depending on 44 constraints (and note that we obtain the same number
of linear constraints, if we compute ϕ1 ∨¬safe as in line 5 of Algorithm 1). By removing redundant linear constraints
from this representation of ϕ1 ∧ ¬ϕ0 we arrive at a representation depending on 24 linear constraints.19 ϕ1 ∧ ¬ϕ0 is
labeled by “onion ring” in Fig. 7(a). Unfortunately, the representation of ϕ1 ∧ ¬ϕ0 is not simpler than that of ϕ1, but
more complicated. This shows that computing ϕ1 ∧ ¬ϕ0 is not necessarily superior to just using ϕ1, if the state sets
are represented symbolically.

Again, there is an idea from symbolic BDD based model checking for discrete systems which can help in this context:
For the states in ψi := ψi ∧¬ϕi−1 computed in line 6 of Algorithm 2 we have to compute the preimage in the next step.
The states in ϕi−1 on the other hand may or may not enter the next preimage computation (without changing the final
set of reached states). That means that ψi can be optimized w. r. t. the “don’t care set” ϕi−1. In [18, 19] these don’t
cares were used in order to optimize the BDD representation of ψi by the constrain or restrict operation.

However it remains the question what is an appropriate cost measure for optimizing our state set representations
which are given by LinAIGs. Here we propose to use the number of linear constraints the representation depends on.
As already discussed in Sect. 5.1, removing redundant constraints is crucial for the success of our methods and we
strongly prefer to compute preimages for state set representations which are optimized w. r. t. the number of linear
constraints. By considering the set of already reached states as a “don’t care set”, we obtain additional degrees of
freedom for keeping the number of linear constraints under control. Using such an optimization we will arrive at a
modified version of Algorithm 2 where line 6 is replaced by ψi := constraint_minimization(ψi,¬ϕi−1).

6.2. Making use of additional degrees of freedom
Before we look into the question how to use don’t cares in order to minimize the number of linear constraints, we

have a look at Example 2 again:

19If ϕ1 ∧ ¬ϕ0 is represented by a LinAIG, the redundancy removal operation produces exactly such a representation with 24 linear constraints.

22

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

x axis

y
 a

x
is

 !
1

!
0

onion ring

(a) Preimage computation

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

x axis

y
 a

x
is

Optimized shape

don't care area

(b) Don’t care optimization

Figure 7: Motivating example for constraint minimization

Example 3. Now we interpret ϕ0 = ¬safe as a don’t care set and try to replace ϕ1 = Pred(¬safe) by a simpler
representation just by changing ϕ1 inside the don’t care set. Fig. 7(b) gives a solution (“optimized shape”) which
depends only on 14 linear constraints.

In the remainder of this section we present how to compute such solutions by a suitable algorithm. Our methods
generalize the approach for redundancy elimination from Sect. 5.

We start with a method to check whether a fixed set of linear constraints can be removed from a representation by
using don’t care conditions. In the following we assume a predicate F(d1, . . . , dn, ℓ1, . . . , ℓk) which is to be optimized,
a predicate DC(d1, . . . , dn, ℓ1, . . . , ℓk) for the don’t care conditions, and a set ℓ1, . . . , ℓr (1 ≤ r ≤ k) of linear constraints
which we would like to remove from F using don’t care optimization.

Definition 5. (DC-Removability of linear constraints) The linear constraints ℓ1, . . . , ℓr (1 ≤ r ≤ k) are called DC-
removable from the representation of F(d1, . . . , dn, ℓ1, . . . , ℓk) using don’t cares from DC(d1, . . . , dn, ℓ1, . . . , ℓk) iff there
is a boolean function G with the property that¬DC(d1, . . . , dn, ℓ1, . . . , ℓk)∧F(d1, . . . , dn, ℓ1, . . . , ℓk) and¬DC(d1, . . . , dn,
ℓ1, . . . , ℓk) ∧G(d1, . . . , dn, ℓr+1, . . . , ℓk) represent the same predicates.20

6.3. Checking DC-Removability

The check whether a set of linear constraints is DC-removable is based on the following theorem, which general-
izes Thm. 1:

Theorem 2 (DC-Removability Check) For all 1 ≤ i ≤ k let ℓi be a linear constraint over real-valued variables {c1,
. . . , c f } and ℓ′i exactly the same linear constraint as ℓi, but now over a disjoint copy {c′1, . . . , c′f } of the real-valued
variables. Let ≡ denote boolean equivalence. The linear constraints ℓ1, . . . , ℓr (1 ≤ r ≤ k) are DC-removable from
F(d1, . . . , dn, ℓ1, . . . , ℓk) using don’t cares from DC(d1, . . . , dn, ℓ1, . . . , ℓk) if and only if the predicate

F(d1, . . . , dn, ℓ1, . . . , ℓk) ∧ ¬F(d1, . . . , dn, ℓ
′
1, . . . , ℓ

′
k) ∧ ¬DC(d1, . . . , dn, ℓ1, . . . , ℓk) ∧ ¬DC(d1, . . . , dn, ℓ

′
1, . . . , ℓ

′
k)

∧∧k
i=r+1(ℓi ≡ ℓ′i)

(5)
is not satisfiable by any assignment of boolean values to d1, . . . , dn and real values to the variables c1, . . . , c f and
c′1, . . . , c

′
f .

20This means that F and G are the same except for don’t cares.

23

Proof (of Thm. 2, only-if-part). The proof of the only-if-part generalizes the corresponding part of the proof for
Thm. 1. We assume that the predicate from formula (5) is satisfiable and under this assumption we prove that it
cannot be the case that all linear constraints ℓ1, . . . , ℓr are DC-removable, i. e., there is no boolean function G such
that ¬DC(d1, . . . , dn, ℓ1, . . . , ℓk) ∧ F(d1, . . . , dn, ℓ1, . . . , ℓk) and ¬DC(d1, . . . , dn, ℓ1, . . . , ℓk) ∧G(d1, . . . , dn, ℓr+1, . . . , ℓk)
represent the same predicates.

As in the proof for Thm. 1 on page 16 we assume a satisfying assignment to the predicate from formula (5). This
satisfying assignment fulfills

F(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) = 1, (a) F(vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′k) = 0, (b)
vℓi = vℓ′i for all r + 1 ≤ i ≤ k, (c)

DC(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) = 0, (d) DC(vd1 , . . . , vdn , vℓ′1 , . . . , vℓ′k) = 0. (e)

Then ¬DC(d1, . . . , dn, ℓ1, . . . , ℓk) ∧ F(d1, . . . , dn, ℓ1, . . . , ℓk) = ¬DC(d1, . . . , dn, ℓ1, . . . , ℓk) ∧G(d1, . . . , dn, ℓr+1, . . . , ℓk)
would imply G(vd1 , . . . , vdn , vℓr+1 , . . . , vℓk) = 1 because of (a) and (d) and G(vd1 , . . . , vdn , vℓ′r+1

, . . . , vℓ′k) = 0 because of
(b) and (e). However, since vℓi = vℓ′i for all r + 1 ≤ i ≤ k (c), this is a contradiction. �

Just as for the detection of a maximal set of redundant linear constraints, we can define an overall algorithm
detecting a maximal set of linear constraints which are DC-removable at the same time. This algorithm is based on
the check from Thm. 2 and makes use of an incremental SMT solver.

6.4. Computing an optimized representation
The ideas for a constructive proof for the if-part of Thm. 2 and thus a method to compute an appropriate function G

as defined above are similar to the ideas behind the corresponding construction for the redundancy removal operation
which was already described in Sect. 5.4. (However, in contrast to constraint minimization, redundancy removal does
not change represented shapes at all).

We assume that formula (5) from Thm. 2 is unsatisfiable and try to change F(d1, . . . , dn, qℓ1 , . . . , qℓk) in a way
that the result G will be independent from qℓ1 , . . . , qℓr . In addition to the set dcinc of don’t cares due to inconsistent
assignments to constraint variables (Def. 4) (or the subset dc′inc ⊆ dcinc extracted from an SMT solver checking formula
(5)), we can make use of a set dc of don’t cares which results from the boolean abstraction of the don’t care predicate
DC:

dc = {(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) | (vd1 , . . . , vdn) ∈ {0, 1}n and ∃vc ∈ R f with ℓ1(vc) = vℓ1 , . . . , ℓk(vc) = vℓk

and DC(vd1 , . . . , vdn , vℓ1 , . . . , vℓk) = 1}.

Now we are looking for a boolean function G(d1, . . . , dn, qℓr+1 , . . . , qℓk) with

(F ∧ ¬DC ∧ ¬DC′inc)(d1, . . . , dn, qℓ1 , . . . , qℓk) =⇒ G(d1, . . . , dn, qℓr+1 , . . . , qℓk) and (6)

G(d1, . . . , dn, qℓr+1 , . . . , qℓk) =⇒ (F ∨ DC ∨ DC′inc)(d1, . . . , dn, qℓ1 , . . . , qℓk). (7)

With an argument which is analogous to Sect. 5.4 the computation of an appropriate function G can be performed by
Craig interpolation.

6.5. Effect of Constraint Minimization
To demonstrate the effect of constraint minimization we use again the dam case study described in Sect. 7 (with

parameters t = 30, d = 50). The run time for model checking using redundancy removal as presented in the sections
before is 62.2 CPU minutes. If we additionally use constraint minimization presented in this section, the run time
reduces to 11.7 CPU minutes. Fig. 8 gives the explanation for this effect: Here we compare the number of linear
constraints occurring in the predicates which go into the next preimage computation. We can observe that constraint
minimization is indeed successful in minimizing the number of these linear constraints. In the beginning, the variants
with and without constraint minimization do not differ much, but soon the gap between both methods becomes larger.
Since our techniques such as Loos–Weispfenning quantifier elimination (followed by redundancy removal) are rather
sensitive to the number of linear constraints in the representations, this explains the gain in performance for constraint
minimization.

24

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �

�

�

�

�

�

�

�������������
�����������

�������������
�����������

������������������

�
��
��

�
�
��
�
�
�
�
�
�
��

�

Figure 8: Evolution of linear constraints with / without constraint minimization

7. Experimental Results

7.1. Experimental Setup

To evaluate our approach, we ran experiments on an AMD Opteron with 2.3 GHz and 4 GB RAM for each single
experiment. Run times are always given in CPU seconds. The experiments had a timeout of 10800 CPU seconds (3
hours).

We implemented the ideas presented in the sections before in our model checker called FOMC. In FOMC we
use two SMT solvers. Yices [11] is used for all equivalence checks and redundancy detection and MathSAT [12] is
used for the generation and extraction of conflict clauses depending on constraint variables (“theory lemmas”, see
Sect. 5.4). For Craig interpolation based on proofs of unsatisfiability we use a modified (single-threaded) version of
the SAT solver Mira [45]. Additionally we use the CLN [46] library to implement exact arithmetic. Inside the boolean
optimization routines the SAT solver MiniSat [47] and the BDD package CUDD [48] are used.

7.2. Discrete-Time Model Checking

In a first series of experiments we have a closer look at the discrete-time variant of our model checking algorithm
(for dt-LHA+Ds as described in Sect. 2).

7.2.1. Case study – Flap Controller
Our first case study is derived from a case study for Airbus, a controller for the flaps of an aircraft. The flaps are

extended during take-off and landing to generate more lift at low velocity. As they are not robust enough for high
velocity, they must be retracted during other flight phases. It is the controller’s task to correct the pilot’s commands if
he endangers the flaps. Additionally, there is also an extensive monitoring of the health of its sub-systems, checking
for instance for hardware failures. The health monitoring system interacts with the flap control by enforcing a more
conservative behavior of the control when errors are supposed to be in the system.

The benchmark used here is a simplified version of the full system including the flap controller and a health
monitoring system. The model has two continuous variables: the velocity, and the flap angle. Discrete states of the
controller and of the health monitoring system contribute to the discrete state space.

The safety property to be established for our model is “For the current flap setting, the aircraft’s velocity shall not
exceed the nominal velocity (w. r. t. the flap position) plus 7 knots”. Whether this requirement holds for our model
depends on a “race” between flap retraction and speed increase. The controller is correct, if it initiates flap retraction
(by correcting the pilot) early enough.

For the experiments we considered different variants of this case study. We have benchmarks with 3 and 4 lever
positions for the flaps (denoted by 3LP and 4LP, respectively). Additionally there are simplified versions without
the health monitoring system and a simple one-hot encoding of discrete states (3LP-noHM and 4LP-noHM). For the
models with health monitoring we considered two variants which differ in the dynamics of the flaps: The first variant

25

(3LP-I, 4LP-I) retracts or increases the flaps with a constant rate. The second variant (3LP-II, 4LP-II) uses a slower
rate when the flaps are near to the commanded position.

Both for 4LP-I and 4LP-II the discrete state space contains 218 discrete states.

Table 1: Discrete-time flap controller case study with 3 lever positions

3LP-noHM 3LP-I 3LP-II
Configuration Runtime # Steps Nodes LC Runtime # Steps Nodes LC Runtime # Steps Nodes LC

basic version TO (36) TO (7) TO (5)
+ implications 3,618.4 46 53,601 604 891.3 14 23,231 227 TO (13)
+ eager SMT 225.0 46 24,815 332 274.8 14 10,223 156 790.6 14 33,193 334
+ bool. abstr. 38.2 34 12,882 315 273.2 14 10,223 156 802.6 14 33,193 334
+ quant-RR 1,264.3 34 3,095 116 17.7 14 1,436 53 22.3 14 1,669 87
+ craig-RR 126.5 34 4,512 97 12.5 14 1,706 53 18.6 14 1,964 87
+ onion & RR 3.5 34 519 118 8.3 14 2,172 54 15.4 14 1,967 88
+ constr. minim. 6.4 34 562 86 4.7 14 471 53 5.4 14 602 87

Table 2: Discrete-time flap controller case study with 4 lever positions

4LP-noHM 4LP-I 4LP-II
Configuration Runtime # Steps Nodes LC Runtime # Steps Nodes LC Runtime # Steps Nodes LC

basic version TO (27) TO (8) TO (5)
+ implications TO (48) TO (16) TO (11)
+ eager SMT 10,630.7 86 77,604 480 TO (22) TO (12)
+ bool. abstr. 122.7 33 24,763 389 TO (24) TO (12)
+ quant-RR 2,568.9 33 91,525 136 TO (14) TO (12)
+ craig-RR 1,500.5 33 20,315 153 2,212.3 26 22,349 111 601.7 26 11,896 199
+ onion & RR 5.8 33 1,213 171 9,143.3 26 139,055 117 TO (25)
+ constr. minim. 16.5 33 1,267 127 16.2 26 1,369 111 19.1 26 1,792 199

The results of the experiments are given in Tables 1 and 2. All of these models are safe, i. e., the step computation
has to iterate until a fixpoint is reached. In the first row of both tables the names of the used models are given.
For every benchmark we list the run-time given in seconds (Runtime), the number of steps until fixpoint or timeout
(# Steps), the maximum of the number of LinAIG nodes during the complete model checking run (Nodes), and the total
number of linear constraints created during the run (LC). When a timeout after 3 hours occurred we denote this with
“TO” and omit the numbers for nodes and linear constraints. The step number is then the step in which the timeout
occurred.

In the first column different configurations of our model checker with different optimizations are given. First,
we used a basic version without strengthening boolean reasoning by implications between linear constraints (see
Sect. 4.1). An SMT solver was only used during explicit checks like the fixpoint detection. Then we added the usage
of implications to SAT checks for equivalence of nodes (Sect. 4.1.1). The next configuration uses the SMT solver in
an eager manner (see Sect. 4.1.2), i. e., the SMT solver is used to prevent the insertion of LinAIG nodes which are
equivalent to already existing nodes (with interpretation of constraint variables by linear constraints). Then we add
the usage of the boolean invariants as described in Sect. 4.2. In the next configuration we add redundancy elimination
(Sect. 5). Here, we compare two variants: The first one uses quantification to remove redundant constraints (quant-
RR) and the second uses Craig interpolation (see Sect. 5.4). Finally, we have two configurations which compute state
sets only based on “onion rings” as described in Sec. 6. The first one uses only redundancy elimination based on
Craig interpolation and the second one implements the complete constraint minimization approach (Sect. 6.2) where
redundancy elimination is enhanced by DC-removability.

Our first and simplest configuration (“basic version”) is not able to solve any of the benchmarks within the time

26

limit.
When we add the usage of implications to strengthen the SAT solver, FOMC is able to solve two of the simpler

benchmark variants (3LP and 3LP-HM-I) within the time limit. However, compared to the following configurations
with additional optimizations, the number of created nodes and linear constraints is much higher, because this ap-
proach is not able to detect all equivalences between the nodes of the LinAIG data structure.

The picture changes drastically, if we use an SMT solver during node insertions (“eager SMT”). For the two
benchmarks solved by the previous configuration, the maximal number of LinAIG nodes and linear constraints is
reduced by about one half. Also the run-times are reduced to a large extent (e. g., by a factor of 16 for 3LP-noHM).
With the “eager SMT” configuration we can solve two more benchmarks (3LP-II and 4LP) within the time limit. The
results show that it is worthwhile to invest additional effort by an SMT solver to arrive at more compact representations
which can be handled more easily in subsequent model checking steps.

The next optimization we added is the computation of a boolean abstraction of the forward reachable states. Here
one can see that this method is able to reduce the number of necessary steps to compute the fixpoint in two experiments
(3LP-noHM and 4LP-noHM). E.g. for the 4LP-noHM model it reduces the number of necessary steps from 86 to 33.
In these cases the approximate forward reachability information is effectively used to prune the backward search
space w. r. t. states which are definitely not reachable from the initial states. In other experiments we observe that
this optimization is not helpful, but at least it does not slow down the run-time very much (for 4LP-noHM, e. g.,
computation of boolean invariants needs 0.8 CPU seconds).

When redundancy elimination is used, we can observe that the number of linear constraints is reduced by about
two-thirds. Comparing redundancy elimination based on quantification (“quant-RR”) and redundancy elimination
based on Craig interpolation (“craig-RR”) we see that the second version is clearly superior to the first (w. r. t. run-
time and in most cases also w. r. t. node counts), since it removes a complete set of redundant linear constraints in
one step. Redundancy elimination based on Craig interpolation is the first configuration which is able to solve all
benchmarks. The results demonstrate that removing redundant linear constraints is very important to get compact
representations of the sets of reachable states.

In the last two experiments (“onion & RR” and “constr. minim.”) we used a different pre-image computation
method which computes pre-images only for “onion rings” of newly reached states. As motivated in Sect. 6.1 by
Example 2, the difference in the pre-image computation alone does not necessarily lead to better results. Thus the
configuration “onion & RR” is sometimes faster than “craig-RR” and uses less LinAIG nodes (e. g., for 3LP-noHM
and 4LP-noHM), and sometimes it is much worse (e. g., for 4LP-I and 4LP-II). However, especially for the more
complex models, the full constraint minimization method using DC-removability clearly outperforms pure redundancy
elimination “craig-RR” with speedups up to 136.21

Altogether, in almost all cases our last version with all the optimizations presented in this paper provides the fastest
method with the most compact state set representations. Apparently, it is the most stable method amongst all the other
configurations.

7.3. Continuous-Time Model Checking

In a second set of experiments we evaluated our approach for two different case studies with continuous evolutions
interleaved with sequences of discrete transitions (ct-LHA+Ds as given in Sect. 2). For these benchmarks we also have
built models for PHAVer [7] and RED [22], two state-of-the-art model checkers for hybrid systems with continuous
evolutions.22 In contrast to FOMC, PHAVer uses unions of convex polyhedra to represent the continuous part of the
state space and the discrete part is represented by (explicit) locations. By default, PHAVer computes the reachable
state space in a forward manner. RED uses so-called HRDs which are BDD-like data-structures and allow symbolic
representations of the state space. By default, the traversal of the state space in RED works in a backward manner.

21At first sight it may be surprising that the numbers of linear constraints for constraint minimization are not always much smaller than those for
other methods such as “craig-RR”. However note that (in contrast to Fig.8 in Sect. 6.5) the numbers listed here are the maximal numbers of linear
constraints used during the complete model checking run. For the complexity of the step computation, the numbers of linear constraints in the
state sets used for the current step computation are much more important and these numbers are indeed much smaller for constraint minimization
– leading to much smaller run-times.

22We used PHAVer 0.38 and RED 8 for our experiments.

27

7.3.1. Case study – Flap Controller
The models used here are similar to the models from Sect. 7.2.1. Minor differences consist in a slightly more

complex behavior allowed for the pilot and a slightly different health-monitoring which raises only an alarm if an
error is visible for a certain time. The main difference however consists in the movement of the flaps and in the
change of velocity: In contrast to the time-discrete modeling used in Sect. 7.2.1, the system dynamics is described by
continuous evolutions here. We denote the continuous-time variants of the benchmarks with cont in the benchmark
names. Both for the 4LP-cont-I and the 4LP-cont-II benchmark the discrete state space contains 237 discrete states.
Again, all the models are safe.

Table 3: Continuous-time flap controller case study with 3 lever positions

3LP-cont-noHM 3LP-cont-I 3LP-cont-II
Configuration Runtime # Lps. Nodes LC Runtime # Lps. Nodes LC Runtime # Lps. Nodes LC

basic version TO (3) TO (2) TO (2)
+ implications TO (3) TO (3) TO (2)
+ eager SMT 7.4 3 779 250 TO (4) TO (3)
+ bool. abstr. 8.5 3 782 258 TO (4) TO (3)
+ quant-RR 8.8 3 717 99 408.8 4 9,953 140 TO (3)
+ craig-RR 9.3 3 787 109 418.0 4 10,422 120 492.7 4 9,932 226
+ onion & RR 8.7 3 883 96 290.6 4 11,495 140 1,943.1 4 15,914 705
+ constr. minim. 8.5 3 581 85 142.9 4 5,306 106 157.4 4 4,618 218

PHAVer (fwd) 1.2 TO TO
PHAVer (bwd) 2.5 TO TO

RED (fwd) TO TO TO
RED (bwd) 0.3 TO TO

Results for the flap controller case study. We used the same configurations of our model checker with different
optimizations as in the discrete-time experiments. The results of this case study are given in Tables 3 and 4. The tables
are labeled like in Sect. 7.2.1 with the only difference that the columns “# Steps” are replaced by columns “# Lps”.
Lps gives the number of loops needed until a fixpoint is detected. As shown in Sect. 3.2 a single loop consists of a
sequence of discrete transitions until a fixpoint is reached, a continuous-to-discrete transition, a continuous flow, and
finally a discrete-to-continuous transition. In case of a timeout, # Lps gives (in parentheses) the loop in which the
timeout occurred.

The last four rows show the run-times for PHAVer and RED, where (fwd) denotes model checking in the forward
direction and (bwd) denotes the backward direction, respectively.

The overall picture is similar to the discrete-time experiments. Neither the basic version nor the version with usage
of implications were able to solve any of the benchmarks. In contrast to the results from Sect. 7.2.1 optimization with
boolean abstraction does not reduce the number of needed loops and it does not help for any variant of the models.
Using redundancy elimination, the number of used linear constraints is significantly reduced and again, redundancy
elimination using Craig interpolation (craig-RR) is superior to the version using quantification (quant-RR). Comparing
rows “onion & RR” and “constr. minim.” one can see that the pre-image image computation based on “onion rings”
is only helpful in combination with constraint minimization. Altogether, the approach using constraint minimization
is clearly the best configuration both in terms of run-time and in terms of the representation size.

Comparison with PHAVer. Compared with our best configuration using constraint minimization, PHAVer is much
faster on the simplified benchmarks with a reduced discrete complexity (3LP-cont-noHM, 4LP-cont-noHM). How-
ever, PHAVer is not able to solve any of the benchmarks with full complexity (3LP-cont-I, 3LP-cont-II, 4LP-cont-I,
and 4LP-cont-II). In contrast, FOMC is able to solve these benchmarks within moderate run-times which indicates that
our approach can handle discrete complexity much better.

28

Comparison with RED. The model checker RED shows a similar picture as PHAVer. The simplified models without
health-monitoring (3LP-cont-noHM, 4LP-cont-noHM) are solved faster than FOMC and PHAVer when the default
backward model checking algorithm is used. On the other hand RED was not able to solve any model using health-
monitoring. We also observed that RED used up to 3.6 GB of memory before timeout whereas FOMC never used more
than 600 MB. These results show that our sophisticated methods for keeping the state set representations as compact
as possible really pay off for the more complex benchmarks.

Table 4: Continuous-time flap controller case study with 4 lever positions

4LP-cont-noHM 4LP-cont-I 4LP-cont-II
Configuration Runtime # Lps. Nodes LC Runtime # Lps. Nodes LC Runtime # Lps. Nodes LC

basic version TO (2) TO (2) TO (2)
+ implications TO (3) TO (2) TO (2)
+ eager SMT 19.8 4 2,985 651 TO (3) TO (2)
+ bool. abstr. 23.3 4 2,976 652 TO (3) TO (2)
+ quant-RR 18.5 4 1,524 177 TO (2) TO (2)
+ craig-RR 17.0 4 1,475 182 5,821.6 5 31,866 461 TO (4)
+ onion & RR 20.9 4 1,741 180 7,668.5 5 39,388 485 TO (3)
+ constr. minim. 15.9 4 1,291 163 3,392.0 5 23,750 434 9,165.7 5 46,943 871

PHAVer (fwd) 3.3 TO TO
PHAVer (bwd) 6.7 TO TO

RED (fwd) TO TO TO
RED (bwd) 0.3 TO TO

7.3.2. Case Study – Dam
In our second case study we consider a dam that impounds water and uses this to produce energy with the help of

turbines which the water has to pass. The safety property of this system is that the water level shall always stay within
given bounds.

The water level is influenced by an inflow of water towards the dam (with a rate between min_ in and max_ in) and
by the outflow through 3 turbines which can be controlled separately. The turbines can be switched into three different
operating modes with different outflows: In mode low a turbine consumes a reduced amount of water per time unit.
This is the preferable mode, because it is the most efficient one in terms of energy produced per water unit. In mode
high a turbine consumes the maximum amount of water it can consume. The mode maintenance represents a turbine
that is stopped for maintenance reasons. Here, no water passes the turbine.

Each turbine uses a separate continuous timer variable with values between 0 and the constant duration for mea-
suring the time until maintenance is finished. Maintenance of a turbine is triggered by a maintenance counter with
⌈log(threshold)⌉ discrete state bits per turbine. The turbines switch into the maintenance mode after threshold changes
from the low to the high mode.

The controller of the system observes the current water level and changes the modes of the turbines. It determines
an expected range for the water level depending on the number of turbines in mode low and mode high and uses a
fixed strategy switching turbines into mode high, if the water level is higher than expected, and switching turbines into
mode low, if the water level is lower than expected. The strategy of the controller is “disturbed” by turbines switching
into maintenance mode.

Given concrete instances of all parameters the verification question is whether the controller is able to keep the
water level always within the given bounds.

For our experiments we varied the the parameter threshold (t for short) from 10 to 80 and the parameter duration
(d for short) from 10 to 60. For instance, the model with t = 10 and d = 30 has 218 discrete states whereas the model
with t = 80 and d = 30 has 227 discrete states. Our results showed that all considered models were safe.

Again we used the same configurations of our model checker with different optimizations as in the previous
experiments. To give an overview of all run-times we present 3-dimensional charts, where the z-axis represents the
run-time and the other two axes represent the two parameters d and t, as labeled in the chart.

29

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 9: Dam case study: Using eager SMT solving

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 10: Dam case study: Using boolean invariants

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 11: Dam case study: Using redundancy elimination by quan-
tification

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 12: Dam case study: Using redundancy elimination by Craig
interpolation

Results for the dam case study. Altogether, our results for this case study are in line with the previous results:
Both for the basic version of FOMC and the version with usage of implications between linear constraints none of

the benchmarks finished within the CPU limit, so we omit figures for these configurations.
When eager SMT checking is enabled, all benchmarks with d = 10 can be solved (see Fig. 9), but increasing the

duration parameter leads to timeouts. The variant with additional boolean invariants shows the same behavior (see
Fig. 10).

The run-times of our model checker improve when we activate redundancy elimination. Again we observe that
the version using Craig interpolation is superior to the version using existential quantification (compare Fig. 12 and
Fig. 11). The configuration using Craig interpolation is now able to solve all benchmarks with a duration up to d = 40.
Another interesting observation is that our model checker does not seem to be very sensitive to the value of t, which
is influencing the size of discrete state space.

Now we consider the two methods with pre-image computation based on the “onion rings” of newly reached states.
As already observed for previous benchmarks, the changed pre-image computation combined only with redundancy
removal (without full constraint minimization) does not help much (see Fig. 13). However, as we can see in Fig. 14,
run-times improve to a great extent for full constraint minimization. The configuration with constraint minimization
is the only one which is able to solve all considered benchmarks. As observed before for redundancy elimination, the
run-time of FOMC is hardly influenced by an increase of the discrete complexity (i. e., by increasing values of t). The
maximum run-time (among all experiments) of almost 70 CPU minutes occurred for d = 60 and t = 20. Here the
maximum number of active LinAIG nodes was 19,137 and a total number of 1,551 linear constraints was generated

30

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 13: Dam case study: Using onion-slices and redundancy elimi-
nation

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 14: Dam case study: Using constraint minimization

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 15: Run time of PHAVer using encoding I

 10 20 30 40 50 60 70 80

 10
 20

 30
 40

 50
 60 0

 2000

 4000

 6000

 8000

 10000

time

threshold (t)

duration (d)

time

Figure 16: Run time of PHAVer using encoding II

during the complete model checking run.

Comparison with PHAVer. The results of PHAVer applied to the dam case study are shown in Fig. 15.
When the discrete complexity is low (t = 10), PHAVer is faster than FOMC. In this class of model configurations

PHAVer is able to solve all benchmarks within 26 seconds, whereas FOMC (with all optimizations) needs up to 19
minutes. Here one can see the strength of the PHAVer approach which is able to handle continuous complexity
combined with a small discrete complexity well. However, the run-times for PHAVer quickly increase when there is
a non-trivial discrete complexity combined with a reasonable continuous complexity. Here PHAVer is running into
timeouts soon. In contrast, our model checker FOMC is able to solve all instances within 70 CPU minutes (compare
Fig. 14 and Fig. 15). Concerning the memory consumption we observed that PHAVer is using up to 1.7 GB shortly
before a timeout occurs, whereas FOMC uses only up to 228 MB.

In order to obtain a fair comparison for PHAVer we also varied the modeling style: In a first variant (which was
presented so far) we modeled the maintenance counters by single variables which remain constant during continuous
evolutions (encoding I). In a second variant, the different values for the discrete maintenance counters were represented
by different locations (encoding II). Comparing Fig. 15 and Fig. 16 we observe that for the first variant strictly more
benchmarks can be solved. The second variant suffers from a huge memory consumption due to the large number
of explicit locations; we always run out of memory when the value of the threshold t exceeds 30.23 Of course, the

23We set the run-time to the timeout value when the memory limit of 4 GB is exceeded.

31

first style of modeling, which avoids large numbers of explicit locations for discrete complexity, is only possible for
special cases.

Altogether, these differences of PHAVer and FOMC show that the strengths of the approaches are somehow com-
plementary. PHAVer can handle hybrid state spaces efficiently as long as the discrete part is small, whereas FOMC is
tailored towards models with large discrete state spaces due to its fully symbolic approach.

In addition, we used PHAVer with backward model checking for the dam case study. We obtained the result that the
backward model checking variant of PHAVer exceeds the time limit for all instances of our parameterized benchmark,
even for the simplest ones. So we omitted the figure for this experiment. However, this clearly demonstrates that the
results discussed above are not based on the fact that FOMC performs backward model checking and PHAVer performs
forward model checking.

Comparison with RED. Finally we applied RED to this class of benchmarks. Again, we used the same benchmark
parameters and timeout. Unfortunately, RED was not able to solve any of the benchmarks before the timeout (neither
with the backward nor with the forward model checking variant), hence we omitted the diagrams for these results.

8. Conclusion and Future Work

We presented a method for model checking safety properties of hybrid systems with large discrete state spaces. To
compress state set representations our method relies on a complex interaction of a series of different methods which
altogether contribute to the overall performance: Simple sub-problems are filtered out and are solved using simulation,
purely boolean reasoning etc., whereas more demanding sub-problems are solved profiting from the strengths of
modern SMT solvers. Using novel optimization techniques called redundancy elimination and constraint minimization
we are able to handle non-trivial benchmarks which we could not cope with before. Our experiments also demonstrate
advantages of our method compared to hybrid model checkers like PHAVer as soon as the discrete part of the state space
is non-trivial. A comparison to RED, which also provides symbolic representations of state sets, again demonstrates
the success of our sophisticated methods for compressing state set representations.

Whereas we still relied on exact state space representations so far, we plan to extend our optimization methods by
incorporating over-approximations. Moreover, we are currently working on supporting richer dynamics.

Acknowledgments

We would like to thank Farn Wang from National Taiwan University for his support regarding our experiments
with the RED tool and appreciate his prompt answers to all of our questions.

References

[1] W. Damm, S. Disch, H. Hungar, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, B. Wirtz, Automatic verification of hybrid systems with large
discrete state space, in: ATVA, Vol. 4218 of LNCS, 2006, pp. 276–291.

[2] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, B. Wirtz, Exact state set representations in the
verification of linear hybrid systems with large discrete state space, in: ATVA, Vol. 4762 of LNCS, Springer, 2007, pp. 425–440.

[3] C. Scholl, S. Disch, F. Pigorsch, S. Kupferschmid, Computing optimized representations for non-convex polyhedra by detection and removal
of redundant linear constraints, in: TACAS, Vol. 5505 of LNCS, Springer, 2009, pp. 383–397.

[4] M. Segelken, Abstraction and counterexample-guided construction of ω-automata for model checking of step-discrete linear hybrid models,
in: CAV, Vol. 4590 of LNCS, Springer, 2007, pp. 433–448.

[5] B. I. Silva, K. Richeson, B. H. Krogh, A. Chutinan, Modeling and verification of hybrid dynamical system using CheckMate, in: 4th
Conference on Automation of Mixed Processes, 2000.

[6] T. A. Henzinger, P.-H. Ho, H. Wong-Toi, HyTech: A model checker for hybrid systems, Software Tools for Technology Transfer 1 (1–2)
(1997) 110–122.

[7] G. Frehse, PHAVer: Algorithmic verification of hybrid systems past HyTech, International Journal on Software Tools for Technology Transfer
(STTT) 10 (3).

[8] E. Asarin, T. Dang, O. Maler, The d/dt tool for verification of the hybrid systems, in: 14th Conference on Computer Aided Verification, Vol.
2404 of LNCS, Springer, 2002, pp. 365–370.

[9] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
[10] The VIS Group, VIS: A system for verification and synthesis, in: 8th Conference on Computer Aided Verification, Vol. 1102 of LNCS,

Springer, 1996, pp. 428–432.

32

[11] B. Dutertre, L. de Moura, A fast linear-arithmetic solver for DPLL(T), in: CAV, Vol. 4144 of LNCS, Springer, 2006, pp. 81–94.
[12] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani, The MathSAT 4 SMT solver, in: CAV, LNCS, Springer, 2008, pp.

299–303.
[13] R. Loos, V. Weispfenning, Applying linear quantifier elimination, The Computer Journal 36 (5) (1993) 450–462.
[14] W. Craig, Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory, Journal on Symbolic Logic 22 (3) (1957)

269–285.
[15] P. Pudlák, Lower bounds for resolution and cutting plane proofs and monotone computations, Journal on Symbolic Logic 62 (3) (1997)

981–998.
[16] K. L. McMillan, Interpolation and SAT-based model checking, in: CAV, Vol. 2725 of LNCS, Springer, 2003, pp. 1–13.
[17] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, A. Mishchenko, Scalable exploration of functional dependency by interpolation and incremental SAT

solving, in: ICCAD, 2007, pp. 227–233.
[18] O. Coudert, C. Berthet, J. C. Madre, Verification of synchronous sequential machines based on symbolic execution, in: Automatic Verification

Methods for Finite State Systems, Vol. 407 of LNCS, Springer Verlag, 1989, pp. 365–373.
[19] O. Coudert, J. C. Madre, A unified framework for the formal verification of sequential circuits, in: Int’l Conf. on CAD, 1990, pp. 126–129.
[20] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, J. Hwang, Symbolic model checking: 1020 states and beyond, in: 5th Annual IEEE

Symposium on Logic in Computer Science, IEEE Press, 1990, pp. 428–439.
[21] D. Beyer, A. Noack, Can decision diagrams overcome state space explosion in real-time verification?, in: Proceedings of the 23rd IFIP

International Conference on Formal Techniques for Networked and Distributed Systems, Vol. 2767 of Lecture Notes in Computer Science,
Springer, 2003, pp. 193–208.

[22] F. Wang, Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-structures, IEEE Trans. on Software Engineering
31 (1) (2005) 38–52.

[23] G. Frehse, PHAVer: Algorithmic verification of hybrid systems past HyTech, in: HSCC, Vol. 3414 of LNCS, Springer, 2005, pp. 258–273.
[24] G. Frehse, Compositional verification of hybrid systems using simulation relations, Ph.D. thesis, Radboud Universiteit Nijmegen (2005).
[25] A. Girard, G. J. Pappas, Approximation metrics for discrete and continuous systems, IEEE Transactions on Automatic Control 52 (5) (2007)

782–798.
[26] W. Damm, G. Pinto, S. Ratschan, Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid

systems, in: 3th Symposium on Automated Technology for Verification and Analysis, Vol. 3707 of LNCS, 2005, pp. 99–113.
[27] M. Agrawal, P. S. Thiagarajan, Lazy rectangular hybrid automata, in: 7th Workshop on Hybrid Systems: Computation and Control, Vol. 2993

of LNCS, Springer, 2004, pp. 1–15.
[28] M. Agrawal, P. S. Thiagarajan, The discrete time behavior of lazy linear hybrid automata, in: 8th Workshop on Hybrid Systems: Computation

and Control, Vol. 3414 of LNCS, Springer, 2005, pp. 55–69.
[29] A. Platzer, E. Clarke, The image computation problem in hybrid systems model checking, in: 10th Workshop on Hybrid Systems: Computa-

tion and Control, Vol. 4416 of LNCS, Springer, 2007, pp. 473–486.
[30] S. Jha, B. Brady, S. Seshia, Symbolic reachability analysis of lazy linear hybrid automata, Tech. rep., EECS Dept., UC Berkeley (2007).
[31] E. Asarin, T. Dang, A. Girard, Hybridization methods for the analysis of non-linear systems, Acta Informatica 43 (7) (2007) 451–476.
[32] T. A. Henzinger, The theory of hybrid automata, in: 11th IEEE Symposium on Logic in Computer Science, IEEE Press, 1996, pp. 278–292.
[33] A. Benveniste, G. Berry, The synchronous approach to reactive and real-time systems, Proceedings of the IEEE 79 (9) (1991) 1270–1282.
[34] A. Mishchenko, S. Chatterjee, R. Jiang, R. K. Brayton, FRAIGs: A unifying representation for logic synthesis and verification, Tech. rep.,

EECS Dept., UC Berkeley (2005).
[35] F. Pigorsch, C. Scholl, S. Disch, Advanced unbounded model checking by using AIGs, BDD sweeping and quantifier scheduling, in: FMCAD,

IEEE Press, 2006, pp. 89–96.
[36] F. Pigorsch, C. Scholl, Exploiting structure in an AIG based QBF solver, in: Conf. on Design, Automation and Test in Europe, 2009, pp.

1596–1601.
[37] F. Pigorsch, C. Scholl, An AIG-based QBF-solver using SAT for preprocessing, in: Design Automation Conference, 2009.
[38] A. Dolzmann, Algorithmic strategies for applicable real quantifier elimination, Ph.D. thesis, Universität Passau (2000).
[39] C. A. R. Hoare, An axiomatic basis for computer programming, Communication of the ACM 12 (1969) 576–583.
[40] R. Alur, T. A. Henzinger, P.-H. Ho, Automatic symbolic verification of embedded systems, IEEE Transactions on Software Engineering

22 (3) (1996) 181–201.
[41] F. Pigorsch, C. Scholl, Using implications for optimizing state set representations of linear hybrid systems, in: GI/ITG/GMM Workshop

“Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen”, 2009, pp. 77–86.
[42] A. V. Aho, M. R. Garey, J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput. 1 (2) (1972) 131–137.
[43] R. Sebastiani, Lazy satisability modulo theories, JSAT 3 (2007) 141–224.
[44] G. Tseitin, On the complexity of derivations in propositional calculus, in: Studies in Constructive Mathematics and Mathematical Logics,

1968.
[45] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT solving, in: 12th Asia and South Pacific Design Automation Conference, 2007, pp.

926–931.
[46] B. Haible, R. B. Kreckel, CLN - class library for numbers, http://www.ginac.de/CLN/.
[47] N. Eén, N. Sörensson, An extensible SAT-solver, in: SAT, Vol. 2919 of LNCS, Springer, 2003, pp. 541–638.
[48] F. Somenzi, CUDD: CU decision diagram package, http://vlsi.colorado.edu/~fabio/CUDD/.

33

