
Verifying Incomplete Networks of Timed Automata ∗

Christian Miller and Christoph Scholl and Bernd Becker
Institute of Computer Science

Albert-Ludwigs-University
79110 Freiburg, Germany

{millerc,scholl,becker}@informatik.uni-freiburg.de

Abstract

Verification of real-time systems – e.g. communication protocols or embedded controllers –
is an important task. One method to detect errors is called bounded model checking (BMC). In
BMC a system is iteratively unfolded and then transformed into a satisfiability problem. If an
appropriate solver finds the k-th instance to be satisfiable, a counterexample for a given safety
property has been found. In this paper, we present a novel approach to apply BMC to networks of
timed automata (i.e. a system of several interacting subautomata) where parts of the network are
unspecified (so-called blackboxes). Here, we would like to answer the question of unrealizability,
that is, is there a path of a certain length violating a safety property regardless of the imple-
mentation of the blackboxes. Focusing on two prevalent communication models for networks of
interacting timed automata, we introduce two methods to solve these types of BMC problems.
The first is based on fixed transitions, which in some cases is too coarse of an abstraction. In the
second approach we prove unrealizability by introducing universal quantification, yielding more
advanced quantified SAT-Modulo-Theory formulas.

1. Introduction

Real-time systems appear in many areas of life, such as time critical communication protocols, or in
embedded controllers for automobiles. As these systems grow in complexity, verifying their correct-
ness becomes harder, but increasingly more important. One method to prove the presence of errors
in complex systems is bounded model checking (BMC) [1, 2]. BMC accomplishes this by iteratively
unfolding the system k times until a predefined maximum unfolding depth is reached. After adding
the negated property, the BMC instance is converted into a satisfiability problem and then solved by
an appropriate solver. If the solver finds the k-th instance satisfiable, a path of length k violating the
property has been found. Whereas BMC for conventional discrete circuits result in SAT-problems,
BMC instances for real-time systems are encoded into so-called SAT-Modulo-Theory (SMT) formu-
las, since they are augmented with continuous time constraints over real-valued variables. BMC for
timed automata has been studied and improved by several groups [3–6]. All this previous work has
made the assumption that the entire design is specified. In contrast, this work focuses on BMC with
incomplete information, that is designs where parts of the system are not known (so-called black-
boxes). For discrete circuits this has been examined extensively in [7–9], where the encoding of the
BMC instances can yield a SAT or QBF formula, depending on the abstraction level.

∗This work has been partially funded by the German Research Council (DFG) as part of the Transregional Collaborative
Research Center ”Automatic Verification and Analysis of Complex Systems“ (SFB/TR 14 AVACS, www.avacs.org)

scholl
Textfeld
Preprint from Proceedings of GI/ITG/GMM-Workshop "Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen", Oldenburg, Germany, February 2011

In this paper, we describe our approach for analyzing incomplete designs in the continuous domain
with the goal of answering the question of unrealizability, that is, for a given safety property (here,
reachability of locations of the system) is there a counterexample which exists regardless of the im-
plementation of the blackboxes? If so, we call this property unrealizable for the network of timed
automata. For interactions between the subautomata in the network we focus on two prevalent mod-
els, namely synchronization and bounded integer communication. In [10] we presented an approach
to prove unrealizability for each communication model separately. In contrast, we now extend our
methods to handle both communication models simultaneously. First experimental results show the
efficiency of our methods.
Next, in Section 2 we present some preliminary information. Section 3 defines the BMC encoding
for a network of timed automata and then extends this encoding for both communication models.
Then in Section 4 we introduce blackboxes into networks of timed automata and show our approach
for encoding and solving these blackbox BMC problems. After presenting preliminary results in
Section 5, we conclude the paper in Section 6.

2. Preliminaries

In this paper we focus on timed automata based on the model in [11]. Timed automata are an extension
of conventional automata by real-valued clock variables. For these clocks, time is continuous, and
transitions and invariants on locations can be labeled with constraints over clocks. The set CC(X) of
clock constraints over a set of clock variablesX is a conjunction of comparisons of clocks to constants
and is defined inductively by g := true | x ∼ c | g1 ∧ g2 with c ∈ N, x ∈ X , and ∼∈ {<,≤, >,≥}.
A timed automaton is defined as a tuple TA = 〈L, l0, X, Inv, E〉 with:

• a set of locations L,

• an initial location l0 ∈ L,

• a set of real-valued clock variables X ,

• a function Inv : L→ CC(X), which assigns a clock constraint to each location and

• a set of edges E ⊆ L× CC(X)× 2X × L.

A transition e = 〈l, g, res, l′〉 ∈ E can be taken if the guard g ∈ CC(X) is satisfied. If res ⊆ 2X

is not empty then all clock variables in res are reset to 0. Additionally the current assignment (after
resetting clocks in res) to the clock variables must not violate the invariant of the successor location
l′. A state s = 〈l, ν〉 of a timed automaton is given by the current location l and the current assignment
ν to the clock variables. Note, transitions happen instantaneously, and a timed automaton can stay
in one location for an arbitrary amount of time unless the invariant of the location is violated. To
prevent the invariant from being violated, the automaton is forced to take a transition leading out of
its current location. If several transitions are enabled at the same time, the automaton can choose
non-deterministically, which one to take.

2.1. Networks and Communication Models
Usually, the systems we are considering are networks N := {TA1, . . . ,TAn} of several timed au-
tomata which run in parallel and can interact in multiple ways. Note, that in networks of timed
automata we allow global clocks, that is all clock variables can be read and reset by any subautoma-
ton. So, instead of defining Xj for each subautomaton TAj , one set XN for all clock variables is
introduced. For the synchronization model, we extend the network N of timed automata by a set of

lq

l′q

TAq
gq, ch,
resqch

lp

l′p

TAp
gp, ch,
resp

(a) Synchronization

lq

l′q

TAq
gq ∧ (v == c),

resqv

lp

l′p

TApgp,
resp,

(v := c)

(b) Bounded Integer Communication

Figure 1: Communication models

so-called channels ChN . In this extended model, edges in several subautomata can be labeled together
in one channel ch ∈ ChN if they are to be executed simultaneously. This means that an edge within
a channel can only be taken if it happens synchronously with all other edges labeled with the same
channel in other subautomata1. Of course all guards as well as all invariants of the successor states
have to be satisfied for this to happen. Figure 1(a) illustrates a synchronization of two subautomata
TAp and TAq via the channel ch. If these subautomata are in the locations lp and lq respectively, and
both guards gp and gq are satisfied, then either both transitions can be taken simultaneously, or none
of them is taken. In many real-world designs bounded integer variables are used for communication
of timed automata. They can be read and written to by any timed automaton of the network, and
will keep their value until they are re-assigned. Bounded integer variables have a minimum and a
maximum value that they can be assigned. Furthermore, they must be initialized to a certain value
(default is the lower bound). Let VN := {v1, . . . , vm} be the set of global integer variables for the
network of timed automata N , with each vk, 1 ≤ k ≤ m having a lower bound vk,min and an upper
bound vk,max and an initial value vk,init. For the sake of convenience we limit assignments (vk := c)
and comparisons (vk == c) of bounded integer variables to constants c ∈ N with vk,min ≤ c ≤ vk,max.
Figure 1(b) shows an example for a bounded integer variable communication. First the transition in
automaton TAp has to be taken and thus, the variable v is assigned to a constant c. Then, an arbitrary
amount of time may pass until the transition on automaton TAq is taken.

3. Encoding of the Bounded Model Checking Problem

The BMC procedure iteratively searches for a counterexample starting at length 0, and up to a pre-
defined length k. Using the initial state I0 (upper index denotes the unfolding depth), the system is
unfolded by a conjunction of transition relations T i,i+1 and the negated property ¬P k. This formula
I0 ∧T 0,1 ∧ . . .∧T k−1,k ∧¬P k is a satisfiability problem, which is satisfied if there is a path of length
k leading to a state violating the property. We encode the BMC problem for a network of timed
automata N according to an interleaving semantics similar to [11]. Additionally, unless writing con-
flicts on clock variables or bounded integer variables occur, we allow parallel transitions. Preserving
the conventional interleaving semantics can be achieved by a slight modification of the formulas de-
scribed in this section. For the locations of each subautomaton TAp of the network, we introduce new
boolean variables atp which represent its binary encoding.
In the initial state of the network all subautomata are in their initial location and all clocks are set to
zero. Furthermore, all bounded integer variables are set to their initial value:

I0 :=
n∧

j=1

(at0j = lj,0) ∧
∧

x∈XN

(x0 = 0) ∧
∧

v∈VN

(v0 = vinit)

1In UPPAAL [12] a similar synchronization model is used, where exactly two automata synchronize on one channel
(so-called binary channels).

For the transition relation, we have to differentiate between a discrete step T i,i+1
jump , which describes

all possibilities of changing a location, and a continuous step T i,i+1
flow describing the passing of time.

We introduce boolean variables rx,j which are true if clock x is reset in subautomaton TAj , and false
otherwise. In this way, we can later define a noreset-formula which ensures that un-reset clocks keep
their values. Since bounded integer variables are global variables, we can encode assignments in the
same manner as the reset of clock variables by introducing new boolean variables z (zv,j is true, if the
bounded integer variable v was assigned to in subautomaton TAj). Similar to the noreset-formula we
will then define a noassign-formula for bounded integer variables which do not change their values.
Additionally, in our model of timed automata an edge can be labeled with one synchronization mark
ch ∈ Chj (to keep it simple we allow edges to be labeled with at most one channel). Synchronized
transitions are encoded by again introducing a new boolean variable for each channel. We then
simply set the boolean variable corresponding to ch to true and the variables corresponding to all
other channels occurring in TAj to false (for edges not labeled with a channel, all channels of TAj

are set to false). Using these extensions it is ensured that all transitions within ch are executed
simultaneously. In the communication model using bounded integer variables, edges are extended by
comparisons (as guards of transitions) and assignments (as actions of transitions) of bounded integer
variables to constants. Let Ae (resp. Ce) be the set of bounded integer variables which are assigned
(resp. compared) on one edge e and cv the corresponding constant for each v ∈ Ae (resp. v ∈ Ce). For
each edge e = 〈l, g, Ce, res, ch, Ae, l

′〉 in a subautomaton TAj we encode the transition as follows:

T i,i+1
jump (e, j) := (atij = l) ∧ gi ∧

∧
v∈Ce

(vi = cv) ∧ (ati+1
j = l′) ∧ Invi+1(l′) ∧ chi ∧

∧
d∈Chj\{ch}

¬di

∧
∧

x∈res

(
rix,j ∧ (xi+1 = 0)

)
∧

∧
x∈XN \res

¬rix,j

∧
∧
v∈Ae

(
ziv,j ∧ (vi+1 = cv)

)
∧

∧
w∈VN \Ae

¬ziw,j

To consider the case that one subautomaton does not perform a transition, it stays in its current
location and no clocks are reset, no bounded integer variables are assigned and no synchronization is
performed:

fixi,i+1(j) := (ati+1
j = atij) ∧

∧
x∈XN

¬rix,j ∧
∧

w∈VN

¬ziw,j ∧
∧

d∈Chj

¬di

Next, we can specify the noreset- and noassign-formulas mentioned above. Furthermore a range-
formula to ensure the bounds of the integer variables is defined:

noreseti,i+1 :=
∧

x∈XN

((n∧
j=1

¬rix,j
)

=⇒ (xi+1 = xi)
)

noassigni,i+1 :=
∧

v∈VN

((n∧
j=1

¬ziv,j
)

=⇒ (vi+1 = vi)
)

rangei :=
∧

v∈VN

(
(vi ≥ vmin) ∧ (vi ≤ vmax)

)
Finally, the discrete step T i,i+1

jump of the whole network is encoded as follows:

T i,i+1
jump :=

n∧
j=1

(∨
e∈Ej

T i,i+1
jump (e, j) ∨ fixi,i+1(j)

)
∧ noreseti,i+1 ∧ noassigni,i+1 ∧ rangei,i+1

A continuous step of the network simply states that all subautomata stay in their locations and time
passes equally for all clocks while no invariants are violated. Additionally, all bounded integer vari-
ables keep their values:

T i,i+1
flow :=

n∧
j=1

(
(ati+1

j = atij) ∧
∧
l∈Lj

(
(ati+1

j = l) =⇒ Invi+1(l)
))

∧(λi > 0) ∧
∧

x∈XN

(xi+1 = xi + λi) ∧
∧

v∈VN

(vi+1 = vi)

Since we restrict ourselves to the reachability of locations of the subautomata, we allow properties P

of the form P := l | ¬P | P1 ∨ P2 with l ∈
n⋃

i=1

Li.

In each transition step of the network, a discrete step or a continuous step can be performed. So we
construct the final formula BMC(k) for the k-th unfolding of the BMC problem as follows:

BMC(k) := I0 ∧
k−1∧
i=0

(T i,i+1
jump ∨ T i,i+1

flow) ∧ ¬P k

If BMC(k) is satisfiable, there is a run r = 〈s0, s1, . . . , sk〉 with si = 〈li, νi〉, 0 ≤ i ≤ k of length k
leading into a state sk violating the property P .

4. Bounded Model Checking of Incomplete Networks of Timed Automata

In a network of timed automata we model whole subautomata as blackboxes, allowing both syn-
chronization labels and bounded integer variables to act as interfaces between the blackboxes and
the implemented system. Let N bb ⊂ N be the set of blackboxed automata. While the behavior of
these subautomata is unknown, the interface to the remaining network is defined. More precisely, we
know all synchronization channels the blackbox can possibly synchronize on (Chbb ⊆ ChN) and all
bounded integer variables which could possibly be assigned in the blackbox (V bb ⊆ VN).
Here, we only build the BMC formula for N \ N bb. Similarly, we can ignore all sets of clocks
Xbb ⊆ XN only occurring in the blackboxed automata. Note, that we require that clocks which are
read in the implemented system are not reset in blackboxes. Otherwise, this would lead to a universal
quantification of real-valued variables which is beyond the scope of this paper.

4.1. Blackbox Bounded Model Checking based on Fixed Transitions
Our first approach to prove unrealizability of incomplete networks of timed automata relies on the
observation that it must be possible to find a counterexample which is independent of the implemen-
tation of the blackboxes. One way to achieve this, is to find a path into the bad states using transitions
which are neither labeled with a blackboxed channel, nor labeled with comparisons of blackboxed
bounded integer variables to constants. We call these transitions fixed. All other transitions may be
blocked by a corresponding behavior of the blackboxes. Thus, when a counterexample is found which
is only based on fixed transitions, the property is not realizable.
In our encoding, we adapt T i,i+1

jump (e, j) for any edge e = 〈l, g, Ce, res, ch, Ae, l
′〉 of the remaining

implemented automata as follows:

T i,i+1
jump,bb(e, j) :=

{
false, if (ch ∈ Chbb) ∨ (Ce ∩ V bb 6= ∅)

T i,i+1
jump (e, j), else

Additionally, all assignments to variables v ∈ V bb in the implemented automata are removed.

a

v := 1

l1,0
x < 2

v == 1 ∧ w == 1

x ≥ 1

x := 0

b

x ≤ 1

x := 0

l3,0
x < 2

l2,0 l2,3

l2,2

l2,1
a

x ≤ 1

x := 0

w == 2

x > 1

v == 2

x > 1

TA1

TA2
TA3

a b

Blackbox

a

v := 2

b

w := 1

b

w := 2

v w

Figure 2: Incomplete network of interacting timed automata

Example

Figure 2 shows a network of three timed automata which interact over two channels a, b and two
bounded integer variables v, w. There is one clock x, which is reset only in TA2. Property P states
that location l2,3 of TA2 can never be reached. Assume TA1 is a blackbox, and that we only know
the synchronization channel a, and the bounded integer variable v that it uses. Furthermore, in this
example we have the additional constraint that v and w are within the range of 1 and 2. Now, only
those transitions labeled neither with a nor with a comparison to v are considered when performing
BMC (in Fig. 2 these fixed transitions are represented with solid arrows):

I0 = (at02 = l2,0) ∧ (at03 = l3,0) ∧ (x0 = 0) ∧ (w0 = 1)

T i,i+1
flow = (ati+1

2 = ati2) ∧ (ati+1
3 = ati3) ∧

(
(ati+1

3 = l3,0) =⇒ (xi+1 < 2)
)
∧

(λi > 0) ∧ (xi+1 = xi + λi) ∧ (wi+1 = wi)

T i,i+1
jump =

[[
(ati2 = l2,0) ∧ (xi ≤ 1) ∧ (ati+1

2 = l2,2) ∧ rix,2 ∧ (xi+1 = 0) ∧ ¬ziw,2 ∧ bi
]

∨
[
(ati2 = l2,2) ∧ (xi > 1) ∧ (wi = 2) ∧ (ati+1

2 = l2,3) ∧ ¬rix,2 ∧ ¬ziw,2 ∧ ¬bi
]

∨
[
(ati+1

2 = ati2) ∧ ¬rix,2 ∧ ¬ziw,2 ∧ ¬bi
]]

∧
[[

(ati3 = l3,0) ∧ (ati+1
3 = l3,0) ∧ ¬rix,3 ∧ ziw,3 ∧ (wi+1 = 1) ∧ bi

]
∨
[
(ati3 = l3,0) ∧ (ati+1

3 = l3,0) ∧ ¬rix,3 ∧ ziw,3 ∧ (wi+1 = 2) ∧ bi
]

∨
[
(ati+1

3 = ati3) ∧ ¬rix,3 ∧ ¬ziw,3 ∧ ¬bi
]]

∧
[
(¬rix,2 ∧ ¬rix,3) =⇒ (xi+1 = xi)

]
∧
[
(¬zix,2 ∧ ¬zix,3) =⇒ (wi+1 = wi)

]
∧
[
(wi+1 ≥ wmin) ∧ (wi+1 ≤ wmax)

]
P i = ¬(ati2 = l2,3)

Obviously, the BMC formula for step 3 shown next is satisfied.

BMC(3) = I0 ∧ (T 0,1
jump ∨ T 0,1

flow) ∧ (T 1,2
jump ∨ T 1,2

flow) ∧ (T 2,3
jump ∨ T 2,3

flow) ∧ ¬P 3

One possible solution is the following run of the system (with 〈at2, at3, x〉):

〈l2,0, l3,0, 0〉 jump(b),w:=2−−−−−−−→ 〈l2,2, l3,0, 0〉 flow−−→ 〈l2,2, l3,0, 1.5〉 jump−−→ 〈l2,3, l3,0, 1.5〉

Since no single transition depends on a or v, this run can occur regardless of the implementation of the
blackbox (thus, the property is unrealizable). Furthermore, this encoding of fixed transitions yields a
conventional SMT formula and state-of-the-art SMT solvers like Yices [13] or MathSAT [14] can be
used.
Consider a slight modification of the example in Fig. 2 where the edge leading from l2,0 to l2,2 in TA2

is additionally labeled with the comparison v == 2 (a blackboxed bounded integer variable). In this
situation, there is no single fixed transition leading out of the initial location l2,0, and thus, no coun-
terexample can be found performing BMC using the fixed transitions mentioned above. To overcome
this problem, we now present a BMC encoding based on universal quantification of bounded integer
variables. Note, that these problems cannot be solved with the conventional SMT solvers mentioned
above.

4.2. Blackbox Bounded Model Checking based on Universal Quantification
In some situations it is not possible to prove unrealizability when considering fixed transitions based
on blackboxed channels and blackboxed bounded integer variables as defined in the previous section.
Since we allow for arbitrary behavior of the blackboxes, the blackboxed bounded integer variables
can hold any value at any particular time. That is, we can prove unrealizability of a property, if we find
a path into the bad states for all possible values of these variables. This can be achieved by extending
the encoding by introducing universal quantification of blackboxed bounded integer variables. Thus,
for Tjump we consider fixed transitions which are based on blackboxed synchronization channels only,
and similarly to [8, 9] we build a quantifier prefix for the BMC formula as follows:

∃at0x0 ∀v0bb ∃v0ch0λ0r0xz0vat1x1 ∀v1bb ∃v1ch1λ1r1xz1vat2x2 ∀v2bb ∃v2ch2λ2r2xz2vat3x3 . . .︸ ︷︷ ︸
T

jump
0,1 ∨T flow

0,1

T
jump
1,2 ∨T flow

1,2︷ ︸︸ ︷︸ ︷︷ ︸
T

jump
2,3 ∨T flow

2,3

In other words, this quantifier prefix asks, whether there exists a state of the system at depth 0
(〈at0x0〉) such that for all blackbox outputs at depth 0 (v0bb) there is an assignment to the v0, ch0,
λ0, r and z variables leading to a successor state at depth 1 (〈at1x1〉) . . . , such that the BMC formula
BMC(k) holds.
For every depth k the corresponding successor state for each vkbb can result either from a discrete step
or from a continuous step. Note, that we also have to modify the BMC formula in some way. First,
all assignments to the bounded integer variables in V bb are removed from the initial state I0, and the
transition relations T i,i+1

flow and T i,i+1
jump . This must be done because the blackboxes can assign any value

to these variables at any time. Since we are interested in all values of the blackboxed bounded integer
variables, which are within the predefined bounds of these variables, we extend the BMC formula for
k > 0 in the following way:

BMCbb(k) :=
(k−1∧
j=0

range(V bb,j)
)

=⇒ BMC(k)

Example

Figure 3 shows the same network of timed automata as in Fig. 2 with the modification described in
the previous section. Now we consider all transitions which are not labeled with a (again, these fixed
transitions are represented with solid arrows). To verify that we can reach location l2,3 regardless of

a

v := 1

l1,0
x < 2

v == 1 ∧ w == 1

x ≥ 1

x := 0

b

v == 2

x ≤ 1

x := 0

l3,0
x < 2

l2,0 l2,3

l2,2

l2,1
a

x ≤ 1

x := 0

w == 2

x > 1

v == 2

x > 1

TA1

TA2
TA3

a b

Blackbox

a

v := 2

b

w := 1

b

w := 2

v w

Figure 3: Modified incomplete network of interacting
timed automata

〈l2,0, l3,0, 0〉

〈l2,0, l3,0, 1〉 〈l2,2, l3,0, 0〉

〈l2,2, l3,0, 1.5〉〈l2,3, l3,0, 0〉 〈l2,2, l3,0, 0〉

〈l2,3, l3,0, 1.5〉

v = 1
w = 1
(flow)

v = 2
w = 1

(jump - b)

v = 1/2
w = 2
(flow)

v = 2
w = 1

(jump - b)

v = 1
w = 1
(jump)

v = 1/2
w = 2
(jump)

Figure 4: One possible solution tree for example in
Fig. 3

the implementation of the blackbox, we build the BMC formula analog to the example in Figure 2,
and let the solver try to find solutions for quantified SMT formulas as follows:

k = 0 : ∃at02, at03, x0 : BMC(0)

k = 1 : ∃at02, at03, x0∀v0∃w0, b0, λ0, r0x,2/3,, z
0
w,2/3,

∃at12, at13, x1 : BMCbb(1)

k = 2 : ∃at02, at03, x0∀v0∃w0, b0, λ0, r0x,2/3,, z
0
w,2/3,

∃at12, at13, x1∀v1∃w1, b1, λ1, r1x,2/3,, z
1
w,2/3,

∃at22, at23, x2 : BMCbb(2)
...

Figure 4 shows one possible solution tree for this example at depth 4 (with 〈at2, at3, x〉). For each
state, we have to find a successor state (following either a continuous or a discrete transition) for
valid values of the blackboxed bounded integer variable v. So, for our example, starting from the
initial state of the network 〈l2,0, l3,0, 0〉, we can follow a discrete step for v = 2 using channel b
to 〈l2,2, l3,0, 0〉. For v = 1, we can perform a continuous transition resulting in 〈l2,0, l3,0, 1〉. If we
continue this, we will see that regardless of which value v is set to by the blackbox in each step, the
network reaches a state violating the property after at most 4 steps.

5. Experimental Results

We implemented a prototype BMC tool to verify incomplete networks of timed automata. It uses the
UTAP parser to read benchmarks in the UPPAAL file format and Yices, MathSAT and LIRA [15] as
back-end solvers. To evaluate our methods for BMC based on fixed transitions we first used three
instances of the Fischer mutual exclusion protocol with 10, 15 and 20 processes [16], interacting
only via synchronization. The communication of the processes relies on a synchronization automaton
which determines which process may enter the critical section. We inserted an error into each process
by changing a clock constraint consisting of a strict inequality to a non-strict inequality and tested
whether a network state can be reached where the first n processes are in the critical section at the
same time. Second, we used two instances (15 and 20 processes) of a mutual exclusion protocol,
where each process has its own arbiter. In contrast to the Fischer protocol, the subautomata are inter-
acting via synchronization and bounded integer variables. Here, we verified that the first n processes
can reach a safe location at the same time. All experiments were performed on an AMD Opteron

processes
n k

complete incomplete
in total system system

10 2 12 0.23 0.05
3 26 57.65 2.55
4 40 9622.51 555.83
5 - - -

15 2 12 0.65 0.10
3 26 104.87 2.61
4 40 19774.76 539.53
5 - - -

20 2 12 1.41 0.16
3 26 330.91 2.69
4 40 29805.93 633.47
5 - - -

(a) Results Fischer protocol

processes
n k

complete incomplete
in total system system

15 3 22 8.05 0.26
4 28 15.72 0.88
5 34 29.87 3.59
6 40 65.61 13.88
7 46 129.32 42.32
8 52 331.75 128.26
9 58 661.99 346.98
10 64 1686.08 1103.08
11 70 4330.16 3807.03
12 76 20647.73 18171.59

20 3 22 15.09 0.27
4 28 36.37 0.95
5 34 62.44 3.84
6 40 127.72 12.69
7 46 253.14 48.55
8 52 520.18 156.49
9 58 1317.66 640.81
10 64 2717.79 1380.33
11 70 5380.39 3809.41
12 76 18557.84 9244.04

(b) Results Processes With Arbiters

Table 1: Experimental Results using Yices SMT Solver

processor running at 2.4 GHz with 4 GB of main memory and a timeout of 36,000 seconds2.
Table 1(a) gives the results for the Fischer protocol for n = 2, . . . , 5 using Yices. In the first column
the total number of processes of the instance followed by the number of processes checked by the
property can be found. The third column denotes the depth k where the counterexample was found.
For the complete and incomplete cases where all processes not occurring in the property are black-
boxed, the times are given in seconds. The results show the efficiency of abstracting all processes not
occurring in the property. By using blackboxes we are able to prove unrealizability for all solvable
instances in significant less time. On all benchmarks we are one to two orders of magnitude faster
when verifying the incomplete system.
Table 1(b) gives the results for the processes with arbiters for n = 3, . . . , 12. The columns are
organized similar to Table 1(a) and all times are given in seconds. Here, in addition to the effectiveness
of abstracting irrelevant processes, the results show that a higher speedup can be achieved when more
processes are modeled as blackboxes.
Our first approach for BMC based on the universal quantification of bounded integer variables relies
on Yices and MathSAT, as they offer an integer data type in their input language. Additionally,
they allow universal and existential quantification of variables making it possible to form a quantifier
prefix for the resulting SMT formula. But even for the very small example shown in Fig. 3, it was
not possible to obtain a result. The solvers mentioned above return UNKNOWN, since they are not
capable of resolving the universal quantifiers due to incompleteness. On the other hand, it also was not
possible to prove unrealizability with a complete solver like LIRA, since the computational resources
(out of memory) were exceeded at depth three. These results show that quantified SMT formulas
resulting from the communication model based on bounded integer variables are more challenging.

2Note, as was introduced in [17] we use a slightly modified BMC formula alternating T jump and T flow, leading to an
additional speedup of the whole process.

6. Conclusion

In this paper we introduced BMC for incomplete networks of timed automata. For the two com-
munication models synchronization and bounded integer communication we presented approaches to
prove unrealizability. BMC based on fixed transitions shows very promising preliminary results. For
solving the class of BMC problems based on universal quantification, modifications to current solvers
are necessary. At the moment we are working on transition relation methods for networks of timed
automata where the bounded integer variables are binary encoded. In this case, only boolean vari-
ables would be universally quantified allowing us to use adequate data structures such as linAIGs [18]
which can efficiently handle universally quantified boolean variables. Alternatively, we are working
on a combination of a search-based QBF solver with a conventional SMT solver. This combination
shows great promise in handling the problem class of quantified SMT formulas.

Acknowledgments
We would like to thank Karina Gitina and Matthew Lewis for fruitful discussions and Georges Morbé
for providing the processes with arbiters benchmarks.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In TACAS, 1999.

[2] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving. Formal Methods
in System Design, 2001.

[3] M. Sorea. Bounded model checking for timed automata. In ENTCS, 2002.

[4] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain. Verification of timed automata via satisfia-
bility checking. In Formal Techniques in Real-Time and FaultTolerant Systems FTRTFT, 2002.

[5] B. Wozna, W. Penczek, and A. Zbrzezny. Checking reachability properties for timed automata via sat. Fundamenta
Informaticae, 2002.

[6] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking for timed systems. In Int’l
Conf. on Formal Techniques for Networked and Distributed Systems, 2002.

[7] M. Herbstritt and B. Becker. On SAT-based Bounded Invariant Checking of Blackbox Designs. In MTV, 2005.

[8] M. Herbstritt, B. Becker, and C. Scholl. Advanced SAT-techniques for bounded model checking of blackbox
designs. In MTV, 2006.

[9] M. Herbstritt and B. Becker. On Combining 01X-Logic and QBF. In EUROCAST, 2007.

[10] C. Miller, K. Gitina, C. Scholl, and B. Becker. Bounded model checking of incomplete networks of timed automata.
In MTV, 2010. to appear.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[12] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology Transfer, 1997.

[13] B. Dutertre and L. De Moura. The yices SMT solver. Technical report, SRI, 2006.

[14] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The mathsat 4 smt solver. In Int’l Conf. on
Computer Aided Verification, 2008.

[15] B. Becker, C. Dax, J. Eisinger, and F. Klaedtke. LIRA: Handling constraints of linear arithmetics over the integers
and the reals. In Int’l Conf. on Computer Aided Verification, 2007.

[16] L. Lamport. A fast mutual exclusion algorithm, 1986.

[17] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing bounded model checking for linear hybrid systems.
In Int’l Conf. on Verification, Model Checking and Abstract Interpretation, 2005.

[18] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz. Exact state
set representations in the verification of linear hybrid systems with large discrete state space. In ATVA, 2007.

