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Georges Morbé, Florian Pigorsch, and Christoph Scholl

Department of Computer Science, University of Freiburg
{morbe,pigorsch,scholl}@informatik.uni-freiburg.de

Abstract. In this paper we introduce a new formal model, called finite
state machines with time (FSMT), to represent real-time systems. We
present a model checking algorithm for FSMTs, which works on fully
symbolic state sets containing both the clock values and the state vari-
ables. In order to verify timed automata (TAs) with our model checking
algorithm, we present two different methods to convert TAs to FSMTs. In
addition to pure interleaving semantics we can convert TAs to FSMTs
having a parallelized interleaving behavior which allows parallelism of
transitions causing no conflicts. This can dramatically reduce the num-
ber of steps during verification. Our experimental results show that our
prototype implementation outperforms the state-of-the-art model check-
ers UPPAAL and RED.

1 Introduction

The application area of real-time systems grows with an enormous speed and
along with that grows their complexity as well as the damage caused by their
failure. For these reasons verification of such systems becomes more and more
important. Timed automata (TAs) [1,2] turned out to be an adequate formalism
for modeling and verifying real-time systems. Timed automata generalize finite
automata by adding real-valued clock variables. All clock variables evolve over
time with the same rate and they can be reset during discrete steps which in
turn happen in zero-time. Verifying safety properties of TAs can be reduced
to the computation of all states reachable from the initial states and checking
whether an unsafe state can be reached (forward model checking). Equivalently
the problem can be reduced to the computation of all states from which unsafe
states can be reached and checking whether some initial states are included in
this set of states (backward model checking).

Model checking approaches for TAs based on reachability analysis can be classi-
fied into fully symbolic and semi-symbolic approaches. Semi-symbolic approaches
represent discrete locations of TAs explicitly whereas sets of clock valuations are
represented symbolically e.g. by unions of clock zones. Clock zones are convex re-
gions which result from an intersection of clock constraints of the form xi−xj ∼ d
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where d ∈ Q, ∼ ∈ {<,≤, =,≥, >} and xi, xj are clock variables. UPPAAL [13,3],
the probably most prominent semi-symbolic approach, represents clock zones by
so-called difference bound matrices (DBMs) and provides efficient methods for
manipulating DBMs. These techniques are well-suited when the sizes of the dis-
crete state space and the numbers of different clock regions per location remain
moderate. CDDs [12] make the attempt to represent unions of clock zones more
compactly. CDDs are BDD-like data structures where nodes are labeled by clock
differences xi−xj and the outgoing edges of nodes are labeled by (disjoint) inter-
vals of rational numbers. CRDs [23] are a variant of CDDs where outgoing edges
of nodes are labeled by upper bounds for clock differences instead of disjoint inter-
vals. CRDs were combined with BDDs (leading to CRD+BDDs) to provide a fully
symbolic representation of the state space in the tool RED [23].
Another fully symbolic representation has been given by difference decision di-
agrams (DDDs) [18] which are basically BDD representations where the decision
variables are boolean abstractions of clock constraints xi − xj ∼ d. Computing
all states reachable by evolution of time amounts to the existential quantification
of a real-valued variable. Both for CRD+BDDs and DDDs this quantification is
performed based on the classical Fourier–Motzkin technique which requires enu-
merating all paths in the diagram. Restricted to a path representing a conjunction
of clock constraints, the Fourier–Motzkin technique is strongly related to quan-
tifier elimination in DBMs by the shortest-path closure [14]. As in DDDs, Seshia
and Bryant [22] consider BDD representations using boolean abstractions of clock
constraints, however they reduce real-valued quantifier elimination to adding so–
called transitivity constraints followed by a series of quantifications for boolean
variables. Recently, Clock Matrix Diagrams (CMDs) were introduced [10]. CMDs
basically correspond to CRD+BDDs where sequences of edges representing con-
vex constraints are collapsed into single edges labeled by DBMs and boolean vari-
ables are restricted to the lowest levels in the variable orders.

In this paper we first introduce a new formal model for real-time systems, called
finite state machines with time (FSMT), which is especially suited for symbolic
verification algorithms. We present a fully symbolic model checking algorithm
for FSMTs. In order to verify TAs (with additional integer variables in the state
space) we present a method to convert a TA into an FSMT. In addition to normal
interleaving semantics (i.e. asynchronous semantics) of TAs we give a symbolic
representation of an FSMT simulating a ‘parallelized interleaving’ behavior, which
allows parallelism of transitions causing no conflicts. This parallelized interleaving
behavior can dramatically reduce the number of steps during verification.

In contrast to partial-order reduction (e.g. [16,19]) which reduces the number
of states to be considered during model checking, parallelized interleaving does
not avoid certain computation paths or states, but combines their traversal into
one symbolic step and thus accelerates state space traversal. Consider a TA T
composed from n components TA1, . . . , TAn and suppose – for simplicity – that
the local discrete transitions of the components are independent, i.e., they are
neither related through read or write conflicts nor they synchronize over actions.
According to the semantics of the concurrent asynchronous system T a discrete
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step of T consists in a discrete step of some component TAi. For the concurrent
execution of one discrete step per component, there are n! different sequences
and 2n different states (one state for each subset of executed components). If
the specification does not distinguish between these sequences, partial-order re-
duction can reduce n! sequences to one representative sequence consisting of
n transitions. Symbolic model checkers without partial-order reduction already
compute a symbolic representation of all 2n states visited on n! sequences by n
symbolic steps. Symbolic model checking with parallelized interleaving assumes
that each component TAi may or may not take a transition, considers all pos-
sible combinations in parallel, and computes a symbolic representation for all
these 2n states by one single step. Of course, for the general case we have to
analyze which components may run in parallel without changing the semantics.

Path reduction [24] provides an alternative possibility for mitigating negative
effects of pure interleaving. Path reduction analyzes components and replaces
certain computation paths by single transitions. In that way, computation paths
of components are compressed, leading to a reduced number of possible inter-
leavings of different components. Path reduction is orthogonal to our technique,
since it preprocesses components, whereas parallelized interleaving improves the
parallel execution of several components by combining computation paths re-
sulting from different interleavings into one symbolic step.

Our model checking algorithm uses LinAIGs (‘And-Inverter-Graphs with lin-
ear constraints’) [7,21,6] to describe the state space. LinAIGs provide a fully
symbolic representation both for the continuous part (i.e. the clock values) and
the discrete part (i.e. the state variables). For state space compaction LinAIGs
profit to a large extent from the enormous progress made in the area of SAT and
SMT (SAT modulo Theories) solving [4,9]. For the quantification of real-valued
variables, LinAIGs make use of the Weispfenning–Loos test point method [15]
which is especially suitable for LinAIG representations.

First experimental results show that our prototype implementation outper-
forms UPPAAL and RED in both configurations, for pure interleaving behav-
ior and for parallelized interleaving behavior. The results also indicate that for
benchmarks allowing parallelized interleaving behavior this approach has a stun-
ning performance due to reduction of the number of steps during verification.

The paper is organized as follows. In Sect. 2 we give a brief review of the
well-known timed automata (TA), then we introduce finite state machines with
time (FSMT) in Sect. 3. In Sect. 4 we provide an insight into the functioning
of our model checking algorithm. In Sect. 5 we introduce a method to convert
a TA into an FSMT using standard interleaving and parallelized interleaving.
Sect. 6 is dedicated to the results where we evaluate our approach with both
configurations. We conclude the paper in Sect. 7.

2 Preliminaries – Timed Automata

Real-time systems are often represented as timed automata (TAs) [1,2].
TAs use clock variables X := {x1, . . . , xn}. The set of clock constraints C(X)

contains atomic constraints of the form (xi ∼ d) and (xi − xj ∼ d) with d ∈ Q
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and ∼ ∈ {<,≤, =,≥, >}. Let Cc(X) be the set of conjunctions over clock con-
straints. c ∈ Cc(X) describes a subset of Rn, namely the set of all valuations of
variables in X which evaluate c to true.

xi ≤ 5

xi ≤ 5

int := i
int = i
xi := 0
int := 0

s
(i)
0

s
(i)
1

s
(i)
2

Fig. 1. Example TAi

We consider TAs with integer variables. Let
Int := {int1, . . . , intr} be a set of bounded inte-
ger variables. lb : Int→ Z and ub : Int→ Z assign
lower and upper bounds to inti ∈ Int (lb (inti) ≤
ub (inti)). Let Assign (Int) be the set of assign-
ments to integer variables. The right-hand side of
an assignment to an integer variable inti may be an
integer arithmetic expression over integer variables
and integer constants.

Let Cond(Int) be a set of constraints of the form (inti ∼ d) and (inti ∼ intj)
with d ∈ Z, ∼ ∈ {<,≤, =,≥, >} and inti, intj ∈ Int. Let Condc(X, Int) be the
set of conjunctions over clock constraints and constraints from Cond(Int).

Example 1. The timed automaton TAi shown in Fig. 1 has only one clock vari-
able, X = {xi}. It has three ‘locations’ s

(i)
0 , s

(i)
1 , and s

(i)
2 . Locations are connected

by transitions which may be labeled. The transition (s(i)
2 → s

(i)
0 ), e.g., is labeled

with the guard int = i, with an assignment int := 0, and with the clock reset
xi := 0. The location s

(i)
1 is labeled with a clock constraint xi ≤ 5 which is a

so-called location invariant.

In general, transitions in TAs are labeled with guards, actions, assignments to
integers and resets of clocks. Guards are restricted to conjunctions of clock con-
straints and constraints on integers. Actions from Act := {a1, . . . , ak} are used
for synchronization between different TAs. For our purposes they do not have a
special meaning when considering one timed automaton in isolation. Transitions
in different automata labeled with the same actions are taken simultaneously. If
a transition in a TA is not labeled by an action, then this transition can only
be taken, if all other TAs stay in their current location. Resets are assignments
to clock variables of the form xi := 0. Invariants in TAs are conjunctions of
clock constraints assigned to locations. A TA may stay in a location as long as
the location invariant is not violated. Timed automata are formally defined as
follows:

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple 〈L,
l0, X, Act, Int, lb, ub, E, Inv〉 where L is a finite set of locations, l0 ∈ L is an
initial location, X = {x1, . . . , xn} is a finite set of real-valued clock variables, Act
is a finite set of actions, Int = {int1, . . . , intr} is a finite set of integer variables.
lb : Int→ Z and ub : Int→ Z assign lower and upper bounds to each inti ∈ Int
with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ r, E ⊆ L × Condc(X, Int) × (Act ∪ {ε})×
2X × 2Assign(Int) × L is a set of transitions and the function Inv : L → Cc(X)
assigns a conjunction of clock constraints as invariant to each location. If for
e = (l, ge, act, re, assigne, l

′) ∈ E it holds that act ∈ Act, then we call e a
transition with a synchronizing action; if act = ε, then we call e a transition
without synchronizing action.
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Definition 2 (Semantics of a Timed Automaton). Let TA = 〈L, l0, X,
Act, Int, lb, ub, E, Inv〉 be a timed automaton. A state of TA is a combination
of a location and a valuation of the clock variables and integer variables.

– There is a continuous transition from state s = (l, xv
1, . . . , x

v
n, intv1, . . . , intvr)

to state s′ = (l, xw
1 , . . . , xw

n , intv1, . . . , intvr) (s →c s′) iff (xv
1 , . . . , x

v
n) and

(xw
1 , . . . , xw

n ) fulfill Inv(l), lb(inti) ≤ intvi ≤ ub(inti) ∀1 ≤ i ≤ r, and there
is t ∈ R+

0 with ∀1 ≤ j ≤ n : xw
j = xv

j + t.
– There is a discrete transition from state s = (l, xv

1, . . . , x
v
n, intv1, . . . , intvr) to

state s′ = (l′, xw
1 , . . . , xw

n , intw1 , . . . , intwr ) (s →d s′) iff (xv
1 , . . . , x

v
n) fulfills

Inv(l), (xw
1 , . . . , xw

n ) fulfills Inv(l′), lb(inti) ≤ intvi , intwi ≤ ub(inti), ∀1 ≤
i ≤ r, and ∃e = (l, ge, act, re, assigne, l

′) ∈ E with (xv
1 , . . . , x

v
n, intv1, . . . , intvr)

fulfills the guard ge, xw
i = 0 for xi ∈ re, xw

i = xv
i for xi /∈ re, the val-

ues intw1 , . . . , intwr result from intv1, . . . , intvr by applying the assignments in
assigne.

– →=→d ∪ →c is the transition relation of a TA. A trajectory of a TA is a fi-
nite or infinite sequence of states (sj)j≥0 with s0 = (l0, 0, . . . , 0, lb(int1), . . . ,
lb(intr)) and sj−1 → sj for each j > 0. A state is reachable, if there is a
trajectory ending in that state.

A timed system is a system of p timed automata {TA1, . . . , TAp}. A timed sys-
tem has an interleaving semantics, i.e., transitions in different timed automata
may not be taken simultaneously unless they synchronize over actions. For sim-
plicity, we assume that only two timed automata are able to synchronize over a
binary synchronization channel. As usual, the composition of p timed automata
is again a timed automaton.

3 Finite State Machines with Time

δ1...
δl

resetx1

resetxn

I

Y

X

...

..

.

..

.

Fig. 2. FSMT

Now we present a new formal model to represent real-time sys-
tems, the finite state machines with time, which are especially
suited for being represented symbolically. A finite state ma-
chine with time, to which we will refer as FSMT in this paper,
is an extension of finite state machines by real-valued clock
variables. Later on, we will present a fully symbolic model
checking algorithm for FSMTs and then a translation from
TAs into FSMTs.

Let X := {x1, . . . , xn} be the set of real-valued clock vari-
ables, Y := {y1, . . . , yl} a set of (binary) state variables,
I := {i1, . . . , ih} a set of (binary) input variables. Let Cb(X)
be the set of arbitrary boolean combinations of clock con-
straints and Cb(X, Y ) be the set of arbitrary boolean com-
binations of clock constraints and state variables (similarly
for Cb(X, Y, I)). As usual, c ∈ Cb(X, Y ) describes a subset of
Rn × {0, 1}l, namely the set of all valuations of variables in X and Y which
evaluate c to true. An FSMT is defined as follows (see Fig. 2 for an illustration):
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Definition 3 (FSMT). A finite state machine with time (FSMT) is a tuple
〈X, Y, I, init, (δ1, . . . , δl), (resetx1 , . . . , resetxn), Inv〉 where X := {x1, . . . , xn}
is a set of clock variables, Y := {y1, . . . , yl} is a set of state variables, I :=
{i1, . . . , ih} is a set of input variables, init : (R+

0 )n × {0, 1}l → {0, 1} is a pred-
icate describing the set of initial states, δi : (R+

0 )n × {0, 1}l × {0, 1}h → {0, 1}
(1 ≤ i ≤ l) are transition functions, resetxj : (R+

0 )n × {0, 1}l × {0, 1}h → {0, 1}
(1 ≤ j ≤ n) are reset functions, Inv : (R+

0 )n × {0, 1}l → {0, 1} is a predicate
describing a state invariant, and init ∧ ¬Inv = 0. The functions δi and resetxj

can be represented by boolean combinations from Cb(X, Y, I), init and Inv can
be represented by boolean combinations from Cb(X, Y ).

A state of an FSMT is a valuation s = (xv
1 , . . . , x

v
n, yv

1 , . . . , yv
l ) ∈ (R+

0 )n×{0, 1}l of
the clock variables and the state variables. A valuation (yv

1 , . . . , yv
l ) is also called

a location of the FSMT. Trajectories of an FSMT always start in states fulfilling
init and all states on these trajectories have to fulfill the state invariant Inv. An
FSMT may perform discrete steps which are defined by transition functions δi

based on the valuations of clocks, state variables, and inputs. When performing
a discrete step, a clock xi is reset to 0 iff resetxi evaluates to 1. Moreover an
FSMT may perform continuous steps (or time steps) where it stays in the same
location, but lets time pass. This means that all clocks may be increased by the
same constant as long as the resulting state stays in the set described by Inv.
More formally, the semantics of FMSTs is defined as follows:

Definition 4 (Semantics of an FSMT). Let F = 〈X, Y, I, init, (δ1, . . . , δl),
(resetx1 , . . . , resetxn), Inv〉 be an FSMT.

– There is a continuous transition from state s = (xv
1 , . . . , x

v
n, yv

1 , . . . , yv
l ) to

state s′ = (xw
1 , . . . , xw

n , yv
1 , . . . , yv

l ) (s →c s′) iff Inv(s) = Inv(s′) = 1 and
there is t ∈ R+

0 with ∀1 ≤ j ≤ n : xw
j = xn

j + t.1

– There is a discrete transition from state s = (xv
1 , . . . , x

v
n, yv

1 , . . . , yv
l ) to state

s′ = (xw
1 , . . . , xw

n , yw
1 , . . . , yw

l ) (s →d s′) iff Inv(s) = Inv(s′) = 1 and there
is (iv1, . . . , ivh) ∈ {0, 1}h with
∀1 ≤ i ≤ l : yw

i = δi(xv
1 , . . . , x

v
n, yv

1 , . . . , yv
l , iv1, . . . , i

v
h),

∀1 ≤ j ≤ n : xw
j =

{
xv

j , if resetxj(xv
1 , . . . , xv

n, yv
1 , . . . , yv

l , iv1, . . . , i
v
h) = 0

0, if resetxj(xv
1 , . . . , xv

n, yv
1 , . . . , yv

l , iv1, . . . , i
v
h) = 1.

– →=→d ∪ →c is the transition relation of F . A trajectory of F is a finite or
infinite sequence of states (sj)j≥0 with init(s0) = 1 and sj−1 → sj for each
j > 0. A state is reachable, if there is a trajectory ending in that state.

We consider systems of FSMTs {F1, . . . , Fp}, where the components are running
in parallel. Communication in such a system is realized just as for communicating
1 Usually we require that Inv fulfills the following property: If we fix variables y1, . . . , yl

of Inv to arbitrary constant values 0 or 1, then the resulting predicate shall describe
a convex set. If this would not be the case, then there could be a continuous transition
from s to s′ with time step of length t, but no continuous transition from s to s′′

with time step of length t′ < t, since Inv(s′′) = 0.
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FSMs. FSMTs communicate by reading each other’s state variables, clocks, and
shared input variables. Thus, composition of FSMTs is done just by replacing
input variables of the components by state variables of other components or by
inputs of the overall system. The composition of p FSMTs F1, . . . , Fp is again
an FSMT:

Definition 5. Let F1, . . . , Fp be FSMTs with Fi = 〈X, Y (i), I(i), init(i), δ(i),

(reset(i)x1 , . . . , reset
(i)
xn), Inv(i)〉, Y (i) = {y(i)

1 , . . . , y
(i)
li
}, I(i) = {i(i)1 , . . . , i

(i)
hi
}. Let

map :
⋃p

i=1 I(i) → (I ∪ ⋃p
i=1 Y (i)) be a mapping for the inputs of components

F1, . . . , Fp and let I = {i1, . . . , ih} be the set of (global) inputs. Then the composi-
tion of F1, . . . , Fp wrt. map is an FSMT F with F = 〈X,

⋃p
i=1 Y (i), I,

∧p
i=1 init(i),

(δ̃(1), . . . , δ̃(p)), (∨p
i=1reset

(i)
x1 , . . . ,∨p

i=1reset
(i)
xn), ∧p

i=1Inv(i)〉 and δ̃(i)(x1, . . . , xn,

y
(i)
1 , . . . , y

(i)
li

, i1, . . . , ih) = δ(i)(x1, . . . , xn, y
(i)
1 , . . . , y

(i)
li

, map(i(i)1 ), . . . , map(i(i)hi
)).

4 Model Checking Algorithm

Algorithm 1. Model checking algorithm
Φ0 := ¬safe; Φcollect := 0; i := 0
while (Φi ∧ ¬Φcollect �= 0) do

if (Φi ∧ init �= 0) then return false

Φcollect := Φcollect ∨ Φi

i := i + 1
Φi := Prec(Φi−1)
if (Φi ∧ init �= 0) then return false

Φi := Pred(Φi)

return true

Algorithm: Our model checking al-
gorithm is a backward model check-
ing algorithm working on an FSMT
F = 〈X, Y, I, init, (δ1, . . . , δl),
(resetx1 , . . . , resetxn), Inv〉 as de-
fined in Def. 3. It starts with the
negation of a safety predicate safe
and – step by step – computes sets
of states from which ¬safe can
be reached. The main loop con-
sists of a continuous step given by
Φi := Prec(Φi−1) and a discrete
step given by Φi := Pred(Φi). The
implementation of Prec and Pred

will be shown below. After each of these steps we test whether one of the ini-
tial states was reached. The main loop is left when an initial state was reached
(which means that the safety property is violated) or when a fixpoint is reached
(which means that the safety property holds).

Continuous step: Let Φ (x1, . . . , xn, y1, . . . , yl) be a state set of our model check-
ing algorithm. Then the state set reachable by a (backward) continuous step
(letting time pass) can be described by

Prec(Φ)(x1, . . . , xn, y1, . . . , yl) =
∃λ [(λ ≥ 0) ∧ Φ (x1 + λ, . . . , xn + λ, y1, . . . , yl)] ∧ Inv(x1, . . . , xn, y1, . . . , yl)

(1)

Discrete step: The resulting state set Pred(Φ) of a discrete step contains all
predecessors of Φ from which Φ can be reached by a discrete transition in the
FSMT. The first part of the discrete step is a substitution of the state variables
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and the clock constraints in the current state set representation Φ. (Note that
as an invariant of our model checking algorithm all computed state set represen-
tations are in Cb(X, Y ), i.e., they are boolean combinations of boolean variables
and clock constraints.) Each state variable yi is substituted with its transition
function δi:

yi ← δi (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (2)

Consider a clock constraint of the form (xi − xj ∼ d) with xi, xj ∈ X , ∼∈
{<,≤, =,≥, >} and d ∈ Q. There are only four possible cases how a clock con-
straint can be changed due to resets executed during a transition: (1) xi and xj

are reset, (2) only xi is reset, (3) only xj is reset or (4) none of the clock variables
in the constraint is reset. We use the reset conditions resetxi to determine when
a clock variable xi is reset. The substitution for each clock constraint of the form
(xi − xj ∼ d) in the state set is then

(xi − xj ∼ d)← ( ( resetxi ∧ resetxj ∧ (0 ∼ d) )∨
( resetxi ∧ resetxj ∧ (xi ∼ d) )∨
( resetxi ∧ resetxj ∧ (−xj ∼ d) )∨
( resetxi ∧ resetxj ∧ (xi − xj ∼ d) ) ) (3)

(Of course, (0 ∼ d) reduces to constant 0 or 1.)
Φ′ (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) is obtained from Φ (x1, . . . , xn, y1, . . . , yl)

by substituting all state variables as shown in Eqn. (2) and all clock constraints
as shown in Eqn. (3) simultaneously.

The second part of the discrete step is a quantification of the boolean input
variables i1, . . . , ih in Φ′ followed by an intersection with the invariant Inv:

Pred(Φ)(x1, . . . , xn, y1, . . . , yl) =
[∃i1, . . . , ih Φ′ (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)] ∧ Inv (x1, . . . , xn, y1, . . . , yl)

(4)

Implementation based on LinAIGs: We have implemented a prototype of the
model checking algorithm using LinAIGs [7,21,6] for representing sets of states.
LinAIGs are able to provide a compact representation for arbitrary boolean com-
binations of linear constraints and boolean variables (which of course include the
formulas from Cb(X, Y )). LinAIGs consist of both a boolean and a continuous
part. The boolean part of LinAIGs is represented by functionally reduced And-
Inverter-Graphs (FRAIGs) [17,20], which basically are boolean circuits consist-
ing only of and gates and inverters. In order to represent the continuous part,
LinAIGs use a set of boolean constraint variables Q where each linear constraint
is encoded by some ql ∈ Q. For keeping the overall representation as compact as
possible, LinAIGs make heavy use of SMT solvers [4,9]. SMT solvers are used
to prove that nodes represent equivalent predicates and thus can be merged.
Moreover, they are used to detect and remove ‘redundant linear constraints’,
i.e., constraints which are present in the current LinAIG, but not really needed
for describing the represented predicate. This operation fights the increase in the
number of linear constraints / boolean constraint variables which was already
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observed in [22]. Since in our application the linear constraints are restricted to
clock constraints, we do not need SMT solvers for full linear arithmetic, but only
for difference logic which can be solved much more efficiently.

Apart from boolean operations, LinAIGs support quantification of boolean
and real variables and thus fit exactly the technical needs of our implementa-
tion. For the quantification of real-valued variables, LinAIGs make use of the
Weispfenning–Loos test point method [15]. (This method can even be used for
linear constraints instead of more restricted clock constraints.) If there are k
clock constraints with variable xi, then the existential quantification ∃xiΦ for
LinAIG Φ can basically be reduced to O(k) substitutions of test points into Φ
with an overall worst-case increase of the representation by a factor of O(k).
The quantifier elimination method from [22] is specialized to difference logic and
adds up to O(n2) transitivity constraints to Φ (when n is the number of clock
variables), followed by O(k) quantifications of boolean variables. Quantification
of O(k) boolean variables may increase the representation including transitivity
constraints by a factor of O(2k) in the worst case. However, since such worst-
case considerations do not always reflect the situation in practical applications
we plan to implement the quantifier elimination method from [22] in the future
as well and compare the results.

5 From Timed Automata to FSMTs

In order to be able to verify systems of TAs using our framework presented so
far, we present how to convert a system of TAs into an FSMT.

Components of FSMTs run in parallel, whereas components of TAs run asyn-
chronously (one after the other) according to the interleaving semantics (unless
parallelism is enforced by synchronization actions). In our translation we con-
sider two different implementations of the interleaving semantics of TAs. At first,
in Sect. 5.2, we show how to transform a TA into an FSMT keeping its pure in-
terleaving behavior. Then, in Sect. 5.3, we present how to convert a TA into an
FSMT with a parallelized interleaving behavior, in which we allow – in addition
to single steps of components according to the interleaving semantics – paral-
lelism for transitions causing no conflicts when taken in parallel. The different
conflicts possible with parallelized interleaving behavior are also described in
Sect. 5.3. The motivation for the parallelized interleaving variant consists in an
accelerated state space traversal.

5.1 First Steps of Translation

We consider a system of p timed automata {TA1, . . . , TAp}. The locations of
timed automaton TAq = 〈L(q), l

(q)
0 , X, Act, Int, lb, ub, E(q), Inv(q)〉 (1 ≤ q ≤ p)

are encoded with boolean variables y
(q)
1 , . . . , y

(q)
lq

(the location bits) for which
we use a logarithmic encoding with lq =

⌈
log

(
L(q)

)⌉
. The sets of location

bits of two different TAs are disjoint. The integer variable inti with (1 ≤ i ≤ r)
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occurring in the timed system is replaced by a binary encoding of boolean vari-
ables b

(i)
1 , . . . , b

(i)
fi

(the integer bits). As lb (inti) and ub (inti) are known for
all 1 ≤ i ≤ r, the number of integer bits fi needed to represent inti is also
known. The location bits and the integer bits together form the set of state bits
{y1, . . . , yl}.

The location invariants in a TA can be merged into one condition for the
complete automaton of the form Inv(q)(y(q)

1 , . . . , y
(q)
lq

, x1, . . . , xn) (by a simple
conjunction of an implication for each location with the meaning ‘if TAq is in
location l, then the location invariant of l holds’).

A timed automaton TAq has a total of mq := |E(q)| transitions. Assume that
transition i in TAq is a transition with the discrete location (ε(i,s)1 , . . . , ε

(i,s)
lq

) as

source and the discrete location (ε(i,d)
1 , . . . , ε

(i,d)
lq

) as destination. Let the transi-

tion i be labeled with a guard g
(q)
i and a reset set r

(q)
i ∈ 2{x1,...,xn}. In order to

make things easier in Sect. 5.2 and Sect. 5.3, the guard g
(q)
i is extended by the

constraint that the source of its corresponding edge is location (ε(i,s)1 , . . . , ε
(i,s)
lq

),

i.e., it is changed to the new guard g
′(q)
i := g

(q)
i ∧

(
(y(q)

1 )ε
(i,s)
1 ∧ . . . ∧ (y(q)

lq
)ε

(i,s)
lq

)
.

Moreover, a transition i in TAq may be labeled with a synchronization action
aq,i. How to treat these actions is shown in Sect. 5.2 for interleaving behavior
and in Sect. 5.3 for parallelized interleaving behavior.

5.2 Modifications for Pure Interleaving Behavior

In order to use the model checking algorithm with pure interleaving behavior,
it has to be assured that at any time only one TA may take a transition while
the others remain in their current location unless of course two TAs synchronize.
(Remember that for simplicity we confine ourselves to binary synchronization.)
We have two types of transitions which have to be considered separately:

– For transitions of two different TAs without synchronization actions it has to
be ensured that they are not enabled at the same time. For this we use new
input variables {el−1, . . . , e0}, l = �log(p)� in a system of p timed automata
and we add different assignments for these new input variables to the guards
of such transitions: For each transition i in a timed automaton TAq which
is not labeled with a synchronization action we add these input variables to
the guard g

′(q)
i and get a new guard g

′′(q)
i = g

′(q)
i ∧ (

e
ql−1
l−1 ∧ . . . ∧ eq0

0

)
with

bin (q) = (ql−1, . . . , q0). (bin (q) is the binary representation of q.)
– For transitions labeled with a synchronization action we cannot use the previ-

ous modification as this would cause the synchronized transitions not be en-
abled at the same time. Let us assume that transition i in TAq and transition
j in TAk are labeled with the same action a{(q,i),(k,j)}. To assure synchro-
nization without the use of actions we extend the guards of the synchronized
transitions. The new guard of transition i in TAq and of transition j in TAk

is g
′′(q)
i = g

′′(k)
j := g

′(q)
i ∧ g

′(k)
j ∧

((
e

ql−1
l−1 ∧ . . . ∧ eq0

0

) ∨ (
e

kl−1
l−1 ∧ . . . ∧ ek0

0

))
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s
(1)
1

s
(2)
1

s
(1)
2

s
(2)
2

y ≤ 1

x ≤ 1

reset(y)

reset(x)

x > 5
reset(y)

y > 5
reset(x)

TA(1)

TA(2)

(a) Read/write problem on clocks

s
(1)
1

s
(2)
1

s
(1)
2

s
(2)
2

i = 0

j := 1

j = 0

i := 1

TA(3)

TA(4)

(b) Read/write problem on in-
tegers

Fig. 3. Conflicts caused by parallel behavior

with bin (k) = (kl−1, . . . , k0) and bin (q) = (ql−1, . . . , q0). This allows us to
realize synchronization without using actions simply by the fact that one
component may read the state bits and inputs of the other component.

Since for an FSMT we have to define transition functions, we have to avoid the
case that there is a state where no transition into a successor state is enabled. For
this reason we introduce a self loop to every location in each timed automaton
TAq. The self loop of a location li gets as guard the conjunction of the negated
guards of all outgoing transitions, thus the self loop of a location is enabled
whenever no other outgoing transition is enabled.

Moreover, we have to exclude non-deterministic behavior (as allowed for TAs)
to arrive at deterministic transition functions for FSMTs. When more than one
transition is enabled in a TA at the same time it is chosen non-deterministically
which one is taken. To establish determinism for FSMTs we use new input
variables. For a set of t transitions with the same source we build a graph with
one node for each transition and we add an edge between two transitions e1 and
e2 iff e1 and e2 are non-disjoint. Then the question how many additional input
variables are needed in order to make guards non-disjoint is reduced to a coloring
problem for the resulting graph. If col is the number of colors needed for coloring,
then we need �log(col)� input variables to make the guards disjoint. These input
variables can be shared within a TA but must not be shared among different
TAs. A timed automaton TAq requires t(q) = �log(col(q)max)� input variables to
guarantee determinism, where col

(q)
max is the maximum number of colors occurring

for transitions with the same source.
After these transformations we can build the transition functions, reset con-

ditions and invariant to get an FSMT representation of the timed system with
pure interleaving behavior. This is shown in Sect. 5.4.

5.3 Modifications for Parallelized Interleaving Behavior

In the previous section we have seen which modifications have to be done to
convert a timed system into an FSMT with pure interleaving behavior. In this
section we will show the modifications to get an FSMT with parallelized inter-
leaving behavior. To this end several potential conflicts have to be considered.
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– In a parallelized interleaving run there may be conflicts caused by resets
of clock variables. Consider the timed system shown in Fig. 3(a) which
consists of components TA(1) and TA(2). When parallel transitions of two
components are allowed, the state (s(1)

2 , s
(2)
2 , 0, 0) is reachable from state

(s(1)
1 , s

(2)
1 , 6, 6) by taking the transitions from s

(1)
1 and s

(2)
1 in parallel. But

according to interleaving semantics this state is unreachable. If w.l.o.g. TA(1)

takes the transition leaving its initial state first, then it resets the clock y

and y will never be larger than 1. Thus the transition of TA(2) from s
(2)
1 will

never be enabled and TA(2) always stays in its initial location. (A similar
observation holds for the case that TA(2) is executed first.)

To avoid the problem of reaching more states than allowed by the seman-
tics of interleaving, we force the timed system to simulate a pure interleaving
behavior in such cases by adding read/write-enable numbers for clock vari-
ables. Assume q timed automata TAi1 , . . . , TAiq having transitions which
both read and reset a clock variable xi at the same time. Then we need
�log(q + 2)� additional input variables to encode read/write-enable numbers
rwxi . With the following approach these read/write-enable numbers inhibit
that transitions reading xi and transitions resetting xi are enabled at the
same time: Each guard of a transition in TAik

(1 ≤ k ≤ q) with transitions
reading and resetting xi is extended by ‘rwxi = bin(k+1)’. The guard of each
transition only reading xi (only resetting xi) is extended by ‘rwxi = bin(0)’
(rwxi = bin(1)’). Note that enabling parallel transitions only reading xi or
enabling parallel transitions only writing xi does not cause a problem. (All
writes set the clock value to the same value 0.)2

– Another conflict of the same type may occur with integers. It is obvious
that two transitions updating the same integer inti must not be taken in
parallel because of write/write problems. But, just as we have seen for clock
variables there may also be read/write conflicts on integer variables. In the
timed system consisting of TA(3) and TA(4) shown in Fig. 3(b) the state
(s(1)

2 , s
(2)
2 ) is not reachable according to interleaving semantics. However it

is reachable, if transitions can be taken in parallel.
Just as for the read/write conflict for clock variables we force the timed

system to take an interleaving behavior for transitions causing conflicts on
integer variables. For each integer inti we introduce a read/write-enable
number rwinti . The guard of each transition reading the value of integer
inti is extended by ‘rwinti = bin(0)’. Assume q TAs TAi1 , . . . , TAiq updating
inti. Each guard of a transition in TAik

(1 ≤ k ≤ q) which updates inti is
extended by ‘rwinti = bin (k)’. This makes it impossible that two TAs write
inti at the same time, since the corresponding guards cannot be enabled at
the same time. Equally it is impossible that any integer variable is read and
updated in the same discrete transition.

2 Under certain circumstances the number of needed input variables can be minimized
based on the fact that transitions of the same component TAi can not be executed
in parallel anyway.
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The synchronization is handled in a similar way as we have seen in Sect. 5.2 for
pure interleaving behavior. Let us assume that transition i in TAq and transition
j in TAk are labeled with the same synchronization action a{(q,i),(k,j)}. Then the
guards of both transitions are changed to g

′′(q)
i = g

′′(k)
j := g

′(q)
i ∧g

′(k)
j . The action

a{(q,i),(k,j)} is no longer needed to synchronize the transitions. Both components
in the system synchronize by reading each others state bits and inputs.3

Parallelized interleaving is introduced to accelerate model checking runs by
reaching certain states faster. But of course, we should not lose intermediate
states of interleaved executions. For that reason we give each component the non-
deterministic choice to stay in its current location during a discrete step. For this
we introduce a self loop with guard ‘true’ to every location in the automaton. By
taking this transition the automaton does not leave the current location and does
no assignments to clocks or integer variables. Then, to introduce determinism
we do the same modifications using input variables as we have done for pure
interleaving behavior in Sect. 5.2.

The resulting system is deterministic and has a parallelized interleaving be-
havior. In the following section we show how to compute transition functions,
reset conditions and a global invariant.

5.4 Computation of a Symbolic Representation

Based on the guards g
′′(q)
i for transitions i of TAq (from (ε(i,s)1 , . . . , ε

(i,s)
lq

) to

(ε(i,d)
1 , . . . , ε

(i,d)
lq

)) as computed in Sect. 5.2 or 5.3 it is easy to compute the tran-
sition functions for state bits encoding locations of TAq. We have to consider
m′

q transitions for Tq (including new self loops added in Sect. 5.2 or 5.3). The

transition function δ
(q)
j computes when the state bit j in the modified automaton

TAq is set to true. (Assume that the set of all input variables we have added
according to Sect. 5.2 or 5.3 is {i1, . . . , ih}.) Then

δ
(q)
j (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨

1≤i≤m′
q

ε
(i,d)
j =1

g
′′(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (5)

The transition functions for state bits resulting from encoding of integer variables
are derived from location encodings, the guards computed in Sect. 5.2 or 5.3,
and right-hand side expressions of assignments.4 Details are omitted here.

Besides the transition functions we need the reset functions for clocks. The
following function indicates when the clock variable xi is reset in TAq:

3 For ease of exposition we omit the special case of concurrent read/write or
write/write on synchronizing transitions here.

4 In our prototype implementation we restrict the right-hand sides of assignments to
integer constants, integer variables and additions of two integers.
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reset(q)xi
(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨

1≤i≤m′
q

xi∈r
(q)
i

g
′′(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (6)

The overall reset function for a clock xi is computed by resetxi = ∨p
q=1reset

(q)
xi .

As a last component of the FSMT computed from a system of timed automata
TA1, . . . , TAP , we compute the global invariant Inv simply by conjunction of
all local invariants Inv(q).

The transition functions, reset conditions, and the invariant provide a fully
symbolic representation of the corresponding FSMT. Our model checking algo-
rithm uses this representation to perform fully symbolic model checking.

6 Experimental Results

Tab. 1 shows the results of our prototype FSMT-MC applied to several bench-
marks with safety properties. In principle our LinAIG based implementation
would allow model checking for full TCTL, but in our prototype only model
checking for safety properties is implemented. We ran FSMT-MC with pure
interleaving behavior (FSMT-MC inter) and with parallelized interleaving be-
havior (FSMT-MC para) and we compare the results to two state-of-the-art
model checkers Uppaal v.4 and RED 8. By default Uppaal performs forward
model checking and RED performs backward model checking. For Uppaal we
tried both breadth first (‘bf’) and depth first (‘df’) traversal. We did not per-
form a comparison with TMV [22]; for safety properties TMV was outperformed
by RED in [22]. All benchmarks were originally modeled as timed automata
and were automatically translated into FSMTs with pure interleaving and par-
allelized interleaving behavior. CPU times for our (un-optimized) translator are
also given in Tab. 1, column (TA2FSMT). We have conducted all experiments
on a 16 core AMD Opteron with 2.3 GHz and 64 GB RAM with a time limit
of 3 CPU hours and a memory limit of 2 GB. An entry ‘to’ in the table shows
that the time limit was reached, an entry ‘mo’ shows that the memory limit was
reached. All times in Tab. 1 are given in CPU seconds.

For our experiments we used parameterized benchmarks containing a number
n of identical components, since this made it easy for us to generate sets of
increasingly complex benchmarks for comparison. Actually we do not consider
parameterized benchmarks as the main field of application for our algorithm
and thus we did not make use of symmetry reduction [11,5], neither within our
tool nor within any competitor. The first column in Tab. 1 gives the number of
components for each benchmark instance.

The first benchmark implements our toy example from Fig. 1. It consists
of n TAs TA1, . . . , TAn as shown in Fig. 1 with ¬safe :=

∧n
i=1 s

(i)
1 (which is

reachable from the initial states). Comparing pure interleaving and parallelized
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interleaving, we can observe an enormous performance gain for parallelized in-
terleaving due to a reduction of the number of steps in state space traversal. Our
algorithm with parallelized interleaving behavior can finish state space traversal
just after one step by taking the transition (s(i)

0 → s
(i)
1 ) for all TAi in parallel.

Our algorithm with pure interleaving behavior computes in one step for each
state reached so far all the predecessors reachable by one backward step of an
arbitrary automaton. Thus in this simple example it needs n steps for a sys-
tem with n processes to arrive at the initial state. Uppaal performs much worse
on this example, since it works on an explicit representation of locations and
it computes all possible permutations of enabled transitions step by step. Our
approach clearly outperforms RED as well which is based on a different fully
symbolic representation and performs only pure interleaving.

The second benchmark is Fischer’s well known mutual exclusion protocol. As
property we verify if it is possible that all components are in the critical region
at the same time. As we can see in Tab. 1 the results of our algorithm with a
pure interleaving behavior are better than the results with a parallelized interleav-
ing behavior. This is caused by the fact that the Fischer protocol does not allow
parallel behavior. Even if we run our model with a parallelized interleaving behav-
ior, a pure interleaving behavior is simulated due to the read/write-enable num-
bers for the integer variable used in the benchmark. The additional inputs for the
read/write-enable numbers which have to be quantified in the discrete step are
responsible for the loss of performance. But in both configurations for pure in-
terleaving and for parallelized interleaving behavior our symbolic model checking
algorithm can solve systems with a lot more processes than Uppaal and RED.

The third benchmark ‘critical region’ models a system with n processes and
a distributed arbiter which controls access to a critical region.5 As we can see

Table 1. Experimental results

uppaal red fsmt-mc ta2fsmt
bf df inter para inter para

to
y

e
x
.

8 0.1 0.2 20 4 0.2 5 4
9 0.3 0.9 mo 5 0.2 6 5

14 360 777 mo 36 0.5 9 9
15 mo mo mo 58 0.5 9 10
22 mo mo mo 3308 1.4 41 21
23 mo mo mo to 1.5 42 24

100 mo mo mo to 73 170 936

F
is

ch
e
r

7 0.2 0.3 33 6 10 3 2
8 1 1.6 mo 19 24 4 3

11 77 308 mo 151 101 8 4
12 305 1686 mo 256 580 9 5
13 1190 9046 mo 517 1052 10 5
14 mo to mo 1259 1677 11 5
18 mo to mo 2515 4267 57 8
19 mo to mo 3218 to 59 9
21 mo to mo 8918 to 68 10

uppaal red fsmt-mc ta2fsmt
bf df inter para inter para

c
ri

t.
re

g
io

n 4 0.5 0.9 3 7 4 3 3
5 17 51 27 17 8 4 4
6 860 5294 mo 31 17 6 6
7 to to mo 71 50 7 8

13 to to mo 3869 1113 22 23
15 to to mo 8423 3627 28 32
16 to to mo to 2776 39 35
17 to to mo to 8762 46 42

F
D

D
I

9 0.1 3 76 4 4 22 40
10 0.2 13 mo 5 5 26 49
14 1 5445 mo 19 24 50 100
15 2 to mo 29 39 57 117
39 8081 to mo 2865 509 556 2590
40 to to mo 479 4852 591 1828
46 to to mo 4486 449 841 2070
47 to to mo to 3086 892 1652

5 A detailed description of this benchmark and models for all benchmarks used in this
paper can be found at http://www.informatik.uni-freiburg.de/∼morbe/fsmt/.
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in Tab. 1 our model checking algorithm is able to handle much more processes
than Uppaal and RED. As this benchmark allows parallel behavior our model
checking algorithm with parallelized interleaving performs best and it can solve
up to 17 processes whereas Uppaal runs into a timeout already for 7 processes
and RED exceeds the memory limit already for 6 processes.

Finally, our last benchmark ‘FDDI’ models a fiber-optic token ring local area
network [8] where we check that the token is always at exactly one station. Up-
paal is able to solve instances up to 39 stations, RED up to 9 stations. For the
FDDI model parallelized interleaving performs only slightly better than pure
interleaving. However, both variants are superior to Uppaal and RED. The ver-
sion with pure interleaving arrives at 46 instances, the version with parallelized
interleaving at 47 instances.

7 Conclusions

We presented a new formal model to represent real-time systems, the finite
state machine with time, which is well-suited for fully symbolic verification al-
gorithms. We presented a backward model checking algorithm to verify FSMTs.
In order to verify TAs with our algorithm we presented two different methods
to convert TAs into FSMTs. The resulting FSMT has either a pure interleaving
behavior or a parallelized interleaving behavior, which can dramatically reduce
the number of verification steps and brings an enormous gain of performance
for certain benchmark classes. Even for other benchmarks like the well-known
Fischer protocol which do not profit from parallelized interleaving, our model
checker outperforms other state-of-the-art model checkers due to its fully sym-
bolic data structure building upon the success of modern SMT solvers. Based on
the same algorithmic framework we plan to develop a model checker supporting
forward or combined forward / backward model checking as well.
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632 G. Morbé, F. Pigorsch, and C. Scholl

7. Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440.
Springer, Heidelberg (2007)

8. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

9. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

10. Ehlers, R., Fass, D., Gerke, M., Peter, H.J.: Fully symbolic timed model checking
using constraint matrix diagrams. In: RTSS, pp. 360–371 (2010)

11. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

12. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nordic J.
of Computing 6, 271–298 (1999)

13. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

14. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: RTSS, pp. 14–24.
IEEE Computer Society, Los Alamitos (1997)

15. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput.
J. 36(5), 450–462 (1993)

16. Mazurkiewicz, A.W.: Basic notions of trace theory. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, pp. 285–363. Springer, Hei-
delberg (1989)

17. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Tech. rep., EECS Dept. UC
Berkeley (2005)

18. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision
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