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Integrating Incremental Flow Pipes into a
Symbolic Model Checker for Hybrid Systems

Werner Damm∗‡ Stefan Disch§ Willem Hagemann♯♭

Christoph Scholl§ Uwe Waldmann♯ Boris Wirtz∗

August 24, 2011

We describe an approach to integrate incremental flow pipe computation into a
fully symbolic backward model checker for hybrid systems. Our method combines
the advantages of symbolic state set representation, such as the ability to deal with
large numbers of boolean variables, with an efficient way to handle continuous flows
defined by linear differential equations, possibly including bounded disturbances.

1 Introduction

When we want to verify safety properties for embedded control applications in the trans-
portation domain, we have to deal with two problems: The first one is the presence of a large
discrete state space. Even if the number of control laws (continuous modes) is rather small,
the number of discrete inputs (such as setting of control switches), counters, sanity checkbits,
possibly multiple concurrent state machines, system-degradation modes, and finite switching
variables makes it impossible to check the safety of such systems using verification tools that
treat all discrete states explicitly. To handle such models in a model checker, it is therefore
indispensable to use a fully symbolic representation. Examples include HRDs (Hybrid Re-
striction Diagrams), as used in the model checker RED [20], and LinAIGs (Linear constraint
And-Inverter-Graphs), as used in our own FOMC tool [7, 6]. Thanks to powerful simplification
and redundancy elimination techniques, LinAIGs allow the efficient representation of hybrid
state sets involving large numbers of discrete variables.

The second problem we have to tackle is the system dynamics. So far, fully symbolic model
checking approaches are restricted to dynamic behaviours that can be described by bounded
derivatives [3]. For more complex dynamics – linear differential equations and beyond – zono-
topes have been shown to be an efficient device for real-time and hybrid reachability testing
[1, 2, 11, 10, 15]. Using zonotopes continuous flow pipes can be computed fast and without
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wrapping effect. However, these approaches are restricted to systems with an explicit rep-
resentation of a small number of discrete states, and usually to bounded model checking.
Moreover, while the continuous flow can be computed rather precisely using zonotopes, un-
avoidable conversions from general polytopes to zonotopes when switching between discrete
steps and continuous flows can induce significant overapproximation errors.

In this paper we present a first approach to integrate a combined polytope/zonotope-based
flow pipe computation into a fully symbolic backward model checker for hybrid systems.
The paper is structured as follows: we start by describing the class of models we consider.
In Sect. 3 we recapitulate the basic properties of LinAIG-based backward model checking.
Then we consider flow pipe computations for single polytopes: we show how to compute
incremental flow pipes for backward model checking and explain the combination of polytopes
and zonotopes that we use. In Sect. 5 we lift this process to full LinAIGs and discuss measures
to deal with non-terminating flow pipes. Finally, we demonstrate the viability of our approch
using two case studies that we have analyzed with a prototypical integration of our method
within FOMC: an approach velocity controller from a driver assistance system and a railroad
crossing model involving speed supervision of a train and a cooperation protocol between the
train and a Radio Block Center (RBC).

2 Models

A hybrid system with discrete states consists of the following components:

• x is a vector of continuous variables x1, . . . , xr ranging over R. These variables represent
sensor values, actuator values, plant states, and other real-valued variables used for the
modeling of control-laws and plant dynamics.

• d and i are vectors of discrete variables d1, . . . , dn and i1, . . . , ip ranging over B = {0, 1}.
These variables represent states from state machines, switches, counters, sanity bits of
sensor values, etc. Elements of i are inputs.

• m is a vector of boolean mode variables that is used to represent a finite set of modes
M = {m1, . . . ,mk} ⊆ {0, 1}l using a suitable encoding. Each mode mi is associated
with a linear differential equation (LDE)

ẋ(t) = Aix(t) +Biu(t)

describing the time derivative of the evolution of the continuous variables x during
the mode mi. Here u(t) ∈ U ⊆ R

k ranges over some bounded set of disturbances U ,
Ai ∈ R

r×r, and Bi ∈ R
r×k.

• GC is a global constraint given by a formula in P(d,x,m), where P(d,x,m) denotes
the set of all boolean combinations of variables in d and m and linear constraints over
x (i. e., (in)equations of the form

∑
αixi ∼ α0, where ∼ ∈ {=, <,≤}). We assume that

GC specifies lower and upper bounds for all continuous variables.

• Init is a set of initial states given by a formula in P(d,x,m).

• DT is the set of discrete transitions; each discrete transition is given as a guarded
assignment of the form

ξi → d := gi(d, i,x,m); x := Lix+ bi; m := mji

2



where ξi ∈ P(d,x,m), gi is a vector of formulas in P(d ∪ i,x,m), Li ∈ R
r×r, bi ∈ R

r

and mji ∈ M.

The set DT of discrete transitions is partitioned into three disjoint sets DT d, DT d2c,
and DT c2d. DT d contains the purely discrete transitions, DT d2c contains the discrete-

to-continuous transitions and DT c2d the continuous-to-discrete transitions. We assume
that input variables occur only in DT c2d transitions.

The guards of the transitions from DT d (DT d2c, DT c2d) must be mutually exclusive.
The guards of the transitions from DT d and DT d2c form complete case distinctions,
i. e., the disjunction of all guards of transitions from DT d (DT d2c) is true. Transitions
from DT c2d are urgent: If the guard ξi of a transition from DT c2d holds, the continuous
flow must stop.

For each mode mi its boundary condition βi is given by the cofactor of the disjunction
of all discrete transition guards from DT c2d w. r. t. mi.

1 For each valuation of variables
in d, the boundary condition must be equivalent to a disjunction of non-strict (≤) linear
inequations.

We assume that each mode has a minimum dwell time, i. e., it is impossible that a mode
is left instantaneously in the moment when it is entered.

A state of a hybrid systems is a valuation of the variables d, x andm. Compared to standard
definitions of hybrid automata [12], the transitions in DT c2d correspond to “jumps” out of
continuous flows. Since we allow a (possibly empty) series of purely discrete transitions after
each jump, we additionally introduce discrete transitions in DT d and discrete-to-continuous
transitions in DT d2c (which again lead to a continuous flow). Thus, the system evolves by
alternating between continuous flows, in which time passes and only continuous variables are
changed according to the LDE associated with the currently active mode of the system, and
sequences of discrete transitions, which – following the synchrony hypothesis [4] – happen in
zero time.

3 LinAIG-based Model Checking

For efficiently implementing formulas from P(D,C,M) (for sets of states) we use a specific
data structure called LinAIGs [8, 7]. In that way both the discrete part and the continuous
part of the hybrid state space are represented by one symbolic representation.

LinAIGs are And-Inverter-Graphs (AIGs) [13] enriched by linear constraints. AIGs are basi-
cally boolean circuits consisting only of AND gates and inverters. In [18] a variant of AIGs, the
so-called Functionally Reduced AND-Inverter Graphs (FRAIGs) [17, 18] were tailored towards
the representation and manipulation of sets of states in symbolic model checking, replacing
BDDs as a compact representation of large discrete state spaces. To represent formulas from
P(D,C,M) in a LinAIG we introduce a set of new (boolean) constraint variables Q. Each
occurring linear constraint ℓi is then encoded by some qℓi ∈ Q (see Fig. 1), and the entire
formula is encoded as an AIG over the extended set of boolean variables.

For keeping the representation as compact as possible we use a multitude of methods. For
instance, inserting different nodes representing the same predicate is avoided using an SMT

1The cofactor is the partial evaluation of the disjunction w. r. t. m = mi. It does not depend on the mode
variables anymore.
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Figure 1: Structure of LinAIGs

(SAT modulo theories) solver which combines DPLL with linear programming as a decision
procedure [8, 7]. Another method which is essential for keeping the representation compact is
redundancy removal [19] which removes so-called redundant linear constraints from LinAIG

representations. A linear constraint is called redundant for a (possibly non-convex) polyhedron
(i.e., a boolean combination of linear constraints), if the polyhedron can be described without
using this linear constraint.

Our goal is to check whether all states reachable from the initial states of the system
(given by a LinAIG for Init ∈ P(D,C,M)) are within a given set of (safe) states Safe. To
establish this, a backwards fixpoint computation is performed. We start with the set ¬Safe and
repeatedly compute the pre-image until a fixpoint is reached or some initial state is reached
during the backward analysis. In the latter case, a state outside of Safe is reachable. We have
chosen the backwards direction, because in this case the pre-image for discrete transitions
can be expressed essentially by a substitution [8]. If the continuous behaviour is described
by bounds on the derivatives as in [7, 6], then the pre-image flow (φ) of a state set φ for
continuous transitions can be computed by quantifier elimination for real-valued variables,
e. g., using the Loos-Weispfenning method [16]. The modifications necessary to deal with more
complex dynamic behaviour will be the topic of the rest of this paper.

The structure of the model checking loop allows us to use a particular kind of optimization.
Suppose that we have to compute the pre-image of a state set ψi+1 at some point of the
iteration, and that we have already computed the pre-image of the state set φi in previous
iterations. Then all states in φi are “don’t-cares” for the current step: we may add them
to ψi+1 or we may leave them out without changing the result of the fixpoint iteration. In
other words, instead of continuing the iteration with ψi+1, we may as well use ψi+1 ∨ φi, or
ψi+1 ∧ ¬φi, or any state set in between. The don’t-care optimization procedure introduced
in [6] computes such a state set, and it does it in such a way that the result depends on a
minimal set of linear constraints.

4 Computing Continuous Pre-Images

4.1 Entry Hyperplanes

If the dynamic behaviour of a hybrid systems is described by constant or bounded derivatives,
the flow pipe or continuous pre-image flow (φ) of a state set φ ∈ P(D,C,M) is again a state set
in P(D,C,M) (and it can be computed in one step by quantifier elimination). This continuous
pre-image is the starting point of the pre-image computation for the next discrete super step.
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For richer dynamics, such as LDEs and beyond, such a one-step computation is in general
impossible. In most cases, one cannot avoid an incremental computation of the flow pipe using
a sufficiently small time step.

However, we do not need the entire pre-image to continue the computation: any subset of
flow (φ) that contains all states where the continuous mode can be entered in the forward
direction is sufficient. Assume for simplicity that the hybrid system starts in Init in some
continuous mode and that the continuous mode is not left immediately by a c2d transition2.
Under these circumstances there are two ways to enter a continuous mode: (a) directly from
Init or (b) via a discrete super-step from a predecessor continuous mode.

If φ itself does not already intersect Init , flow (φ)∩ Init is non-empty if and only if flow (φ)
intersects the boundary of Init , so for (a) it is sufficient to compute the intersections of
the continuous pre-image flow (φ) with the hyperplanes delimiting Init . This is completely
analogous to the forward model-checking case, where we have to check for intersections of the
flow-pipe with ¬Safe.

For (b), the situation is slightly more complicated. Under the assumption that each mode
of the model has a minimal dwell time and that all c2d-transitions are urgent, a continu-
ous mode can be left (in the forward direction) only at one of its exit hyperplanes, i. e., at
some hyperplane of the form a⊤x = c, where a⊤x ≤ c occurs in the guard of a c2d tran-
sition starting from the mode. In contrast to the forward model-checking case, we cannot
use these exit hyperplanes directly, but we have to compute the possible images of the exit
hyperplanes under discrete transformations. We may assume that every possible sequence of
discrete transformations can be described as a set of guarded assignments

ξi → d := . . . ; x := Lix+ bi; m := . . .

where Li is a linear mapping. The image of an exit hyperplane a⊤x = c under the assignment
x := Lix+ bi can be computed as follows:

Case 1: If Li is the identity mapping, then a⊤x = c is mapped to the hyperplane a⊤x =
c+ a⊤b.

Case 2: If Li is bijective and bi = 0, then a⊤x = c is mapped to the hyperplane (a⊤L−1

i )x =
c.

Case 3: If Li is a projection [x1 := 0, . . . , xj := 0] and bi = 0, then a⊤x =
∑
aixi = c

is mapped to an intersection of j or j+1 hyperplanes, namely x1 = 0, . . . , xj = 0, and, if
a1 = · · · = aj = 0, additionally a⊤x = c.

Case 4: Otherwise, the linear transformation Li can be written as a composition A2BA1,
where A1 and A2 are bijective and B is a projection, and the result is obtained by composing
the three special cases above.

The set of potential entry hyperplanes for a mode can then be computed from the exit
hyperplanes of its predecessor modes by selecting at least one of the images of each exit
hyperplane under each applicable transformation sequence.

However, this is mostly a theoretical result. In practice, those continuous variables that are
changed during the continuous modes are usually not changed arbitrarily in the discrete steps
in between. Only two cases are frequent: Either the variables occurring in exit hyperplanes
are not changed at all in any of the discrete supersteps. This is typical for variables describing
physical properies of a plant. Or at least one of the variables is a timer variable that is reset to

2Otherwise we have to extend Init by the set of all states that are reachable from Init using only discrete
transitions.
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a fixed value. In the first case, we can simply take the exit hyperplane as an entry hyperplane
of the following mode; in the second case, we can use xj = reset value for the timer variable
xj.

3

It should be clear that hybrid model checking using an incremental flow pipe computation
can only be efficient if mode changes are mostly deterministic. If transitions out of a continu-
ous mode can happen at any time, either because they are non-urgent, or because they depend
on external events (e. g., interrupts), any point of the flow pipe can be the starting point of
another flow pipe, and enumerating the resulting tree of successor states becomes intractable
very quickly. To analyze such models, bounded derivatives are usually a better choice. In fact,
at this point there is little difference between forward and backward model checking.

4.2 Incremental Flow Pipe Computation

We will now turn to the question how to compute the actual flow pipe. Let us first consider
flow pipes for individual polytopes; the extension to LinAIGs will be explained later.

If we have an undisturbed linear evolution

ẋ(t) = Ax(t)

an overapproximation of the set of points from which some convex P ⊆ R
r is reachable can be

computed as follows. Let τ > 0 be the time discretization step. We first compute the matrix
exponential e−τA of −τA. Second, we overapproximate the convex hull of P and e−τAP and
add a bloating ball to take care of the non-linearity of the evolution. The resulting set P1 is
is an overapproximation of the set of all points from which P is reachable during the time
interval [0, τ ]. The set of points from which P is reachable during the time interval [iτ, (i+1)τ ]
can then be computed using the recurrence relation Pi+1 = e−τAPi.

4

The operations considered so far can be implemented easily using a polytope representation.
If P is described by the linear inequations

∧
i∈I n

⊤
i x ≤ ui, then e−τAP is determined by

the linear inequations
∧

i∈I n
′
i
⊤x ≤ ui, where n′

i = (eτA)⊤ni, and the convex hull can be
overapproximated by the weak join.

The situation changes considerably when the linear evolution is disturbed, that is,

ẋ(t) = Ax(t) +Bu(t)

for u(t) in some bounded subset U ⊆ R
k. In this case, the recurrence relation takes the form

Pi+1 = e−τAPi ⊕V , where V is a set that depends on τ , A, B and U and ⊕ is the Minkowski
sum (pointwise sum of sets). Computing the Minkowski sum repeatedly is problematic for
polytopes, though: the exact computation is rather inefficient; computing an overapproxi-
mation in each iteration leads to a severe lack of precision, due to the so-called wrapping
effect.

Zonotopes are an alternative representation that has been proposed for this task by Gi-
rard [10]. A zonotope is a point-symmetric polytope given by a central point c ∈ R

r and a
list of direction vectors (generators) v1, . . . ,vk ∈ R

r:

Z = { c+
∑

αjvj | −1 ≤ αj ≤ 1 }.

3There may be several choices; in this case one should ensure that the variable(s) of the entry hyperplane are
actually modified in the LDE of the successor mode.

4The computations for backward reachability, as considered here, and forward reachability differ only in the
sign of the matrix τA.
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The set of zonotopes is closed under linear transformation and under the Minkowski sum. Both
operations can be computed very efficiently: The result of applying a linear transformation
Φ to a zonotope Z = (c, 〈v1, . . . ,vn〉) is obtained by applying Φ to each component of Z,
that is, ΦZ = (Φc, 〈Φv1, . . . ,Φvn〉). To compute the Minkowski sum of Z = (c, 〈v1, . . . ,vn〉)
and Z ′ = (c′, 〈v′

1, . . . ,v
′
n〉), one adds the central points and concatenates the lists of direction

vectors, hence Z ⊕ Z ′ = (c+ c′, 〈v1, . . . ,vn,v
′
1, . . . ,v

′
n〉). Zonotopes also have the advantage

that it is very easy to check whether a zonotope intersects a halfspace n⊤x ≤ u (or analogously,
a hyperplane): it suffices to compute min{n⊤(c+

∑
αjvj) | −1 ≤ αj ≤ 1 }, which is the same

as n⊤c+
∑
γjn

⊤vj , where γj = 1 for n⊤vj < 0 and γj = −1 otherwise.
However, zonotopes are a rather restrictive class of polytopes. In hybrid system verification,

we have to deal with alternations between continuous and discrete steps, and even if we
assume that the result of some continuous step is in fact a zonotope, the following discrete
step will in general not preserve this structure, so the input for the next continuous step can
be an arbitrary polytope. While it is possible to decompose general polytopes into a union
of zonotopes, this would lead to an explosion of the state set representation. The alternative
method would be overapproximation of polytopes by zonotopes; the error introduced this way
turned out to be much too large for the benchmarks we analyzed.

The solution to this problem is to use a mixed polytope/zonotope representation: To com-
pute the continuous pre-image of a convex polytope P , we first overapproximate it by a
zonotope Z. Then we compute in parallel the undisturbed flow pipe for the original polytope,
that is, a sequence of polytopes Pi, and the disturbed flow pipe for the overapproximating
zonotope, that is, a sequence of zonotopes of the form Zi = Φi−1Z1 ⊕

⊕
0≤j≤i−2

ΦjV . The
latter has a dual purpose: On the one hand, it serves to accumulate the influence of the distur-
bances, on the other hand, we use it to get a first inexpensive estimate whether the flow pipe
intersects Init or an entry or exit hyperplane. More costly methods only have to be applied
if we detect such an intersection with some Zi. In this case, we combine the corresponding
polytope Pi of the undisturbed flow pipe and the disturbance part

⊕
0≤j≤i−2

ΦjV of the dis-
turbed flow pipe; that is, we compute a polytope P ′

i that uses the same normal vectors as Pi

and overapproximates Pi ⊕
⊕

0≤j≤i−2
ΦjV . Then we use linear programming to test whether

there is also a non-empty intersection of P ′
i and Init or the hyperplane and to get a suitable

representation of the intersection.5

There is one more problem that we have to deal with. It can happen that the computed
flow pipe or a part of it leaves the boundary of the current mode. The first case is easy: if
the flow pipe leaves the mode boundary completely, we can simply abort the computation.
The second case is more difficult, though: if only some part of the flow pipe lies outside of the
mode boundary, we have to cut out those trajectories that cross the mode boundary but we
have to keep the rest. The solution that we use is essentially the one proposed in [14], namely
to compute also the pre-image of the entire mode invariant, which is then intersected with P ′

i

and Init or the hyperplane.

4.3 Termination

Termination is in general a problem for incremental flow pipe computation techniques. In
forward as well as in backward model checking, it can happen that the sequence of polytopes
in the flow pipe never completely traverses an entry or exit hyperplane, for instance because

5Due to the fact that Z1 is an overapproximation of P1, it can actually happen that Zi intersects Init, but
P ′
i does not.
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the LDE describes a circular motion (ẋ = y, ẏ = −x). It can also happen that some points of
the initial polytope move across the entry or exit hyperplane, whereas others remain fixed;
as an example consider the LDE ẋ = y, ẏ = 0 and any point lying on the axis y = 0.

Still computing backward flow pipes poses some additional problems: In forward model
checking, a flow pipe computation can always be stopped whenever the sequence of polytopes
has traversed an exit hyperplane completely. On the other hand, an entry hyperplane can
be traversed several times in the forward direction, hence traversing an entry hyperplane in
backward model checking is not a sufficient criterion for stopping the flow pipe computation.
The computation of a backward flow pipe can only be stopped if we have traversed an exit

hyperplane6 or a global constraint of the hybrid system.
In the sequel we will first consider terminating flow pipe computations. A solution to the

non-termination problem will be presented in Sect. 5.3.

5 Lifting the Flow Pipe Computation to LinAIGs

5.1 Converting a LinAIG to a Polytope-based Representation

So far, we have restricted ourselves to flow pipes of individual polytopes. Our goal is now to
extend this approach to arbitrary LinAIG representations of the state space. To this end, we
have to extract convex polytopes from the LinAIG representation, perform flow pipe compu-
tation and build a new LinAIG representation of the resulting state space using the computed
polytopes. However, since LinAIGs allow an arbitrary boolean combination of boolean vari-
ables and linear constraints, it is necessary to adapt the structure of the LinAIG first. Since
e.g. the flow pipe of a polytope P1∧P2 is not equal to the conjunction of the flow pipes for P1

and P2, we can not allow conjunctions of polytopes in the LinAIG we start from. This leads
us to the definition of so-called Z-formulas.

Z-formulas are defined recursively in the following way:

ZF := P | ZF ∧BF | ZF ∨BF | ZF ∨ ZF

where P are polytopes (conjunction of linear constraints) and BF are arbitrary purely boolean
formulas.

A Z-formula does not allow conjunctions of polytopes, nor does it allow negations of poly-
topes. Thus a Z-formula always represents the continuous part of the state space as a dis-
junction (union) of polytopes. Note that every formula in disjunctive normal form (DNF)
with terms given by conjunctions of boolean variables and polytopes is a special case of a
Z-formula.

One option would be to keep the LinAIG during all operations in a Z-formula structure.
This would imply that after every operation on the LinAIG (e.g. a simple AND-operation)
the resulting LinAIG representation has to be restructured in order to satisfy the definition of
Z-formulas, which may be very time-consuming. Another drawback is that the LinAIG loses
compaction potential if it is limited to a certain structure. Therefore we decided to convert
the LinAIG only when we really need the Z-formula structure.

The overall procedure for conversion is sketched in Alg. 1. The input is a LinAIG l which
represents the current state set. The conversion starts by a transformation of the AIG part of

6More precisely: an unconditional exit hyperplane. If the guard of a c2d transition is not simply a linear
constraint but a more complex formula, the situation is more complicated.

8



the LinAIG into a (reduced ordered) binary decision diagram (BDD) [5]. In a BDD every path
from the root node to the 1-terminal node represents a term of a corresponding DNF. Such
a path is called a 1-path. Thus, a BDD representation of the boolean structure of a LinAIG

implicitly represents a valid Z-formula. Since the polytope/zonotope-based flow computation
only operates on the polytopes of a Z-formula, it would be sufficient to extract polytopes
from 1-paths by intersecting all linear constraints represented by abstraction variables qli ∈ Q

occurring along the 1-path.

Input: LinAIG l

Result: BDD b, list of polytopes PL
begin

BDD b := convertToBDD(l);
partialReordering(b, (d1, . . . , dn, ql1 , . . . , qlk)) ;
(n1, . . . , nm) := searchConnectionNodes(b);
PL := [ ];
foreach ni ∈ (n1, . . . , nm) do

(Pi1 , . . . , Pij ) := collectPolytopes(ni);
PL.append( Pi1 , . . . , Pij ) ;

addVarBoundsToPolytopes(PL);
removeUnnecessaryLinConst(PL);
return (b,PL);

end

Alg. 1. Extracting the polytopes of a Z-formula out of a corresponding LinAIG

However, to keep our representations as compact as possible we avoid a complete DNF

conversion by enumerating 1-paths and we separate the purely Boolean part of the BDD

by reordering the variables. After reordering, every purely boolean variable di ∈ D has a
lower level in the variable order than any abstraction variable qi. Now on every path starting
from the root the boolean variables always occur before the abstraction variables. Nodes
which are labeled by abstraction variables and have at least one incoming edge from a node
labeled by a purely boolean variable are then called connection nodes. Fig. 2 shows a sketch
of a BDD with a variable order respecting the partition of variables into purely boolean and
abstraction variables. Each connection node represents a disjunction of polytopes. Now the set
of polytopes needed for flow computation is given by all 1-paths beginning at some connection
node. We can easily extract the polytopes by following these 1-paths. When we have collected
all polytopes in a list PL we intersect each polytope with the bounds on real variables in order
to ensure that it is bounded. Furthermore, we detect and eliminate redundant constraints in
the descriptions of the polytopes. The result of Alg. 1 is the upper part of the BDD b with
pointers to connection nodes as shown in Fig. 2 and a list of polytopes PL. The (upper part of
the) BDD b is needed to be able to transfer the flow computation result back into the LinAIG.

5.2 Converting the Flow Computation back to a LinAIG

In the BDD b every connection node ni represents a disjunction of the polytopes Pi1∨ . . .∨Pij .
The flow computation returns for every single initial polytope P a set of resulting polytopes
RP . We now build for every connection node ni the union ui of all resulting polytopes in
RPi1

∪ . . . ∪ RPij
. Finally, we traverse the BDD b recursively starting from the root node to

9



Figure 2: Sketch of a BDD with purely boolean variables above abstraction variables.

convert it back into a LinAIG. When reaching a connection node ni we replace the original
function of the connection node with the computed union of polytopes ui.

5.3 Termination Revisited

Combining the results of the previous three sections, we obtain a function flow ′ that takes a
LinAIG as input, converts it into a Z-formula, computes the flow pipe for each of its polytopes,
collects the intersections of each flow pipe with Init and possible entry hyperplanes, inserts
these intersections into the Z-formula, and returns the corresponding LinAIG.

We can then use flow ′(φ) as a replacement for the entire continuous pre-image flow (φ) in
the backward model-checking loop. However, this works only under the condition that every
individual flow pipe computation terminates.

The obvious technique to deal with non-terminating flow pipe computations is dovetailing:
We have to interleave the computation of continuous flow pipes and the rest of the model-
checking loop. The don’t-care optimization technique explained in Sect. 3 makes it rather easy
to implement this. As a first step, we extend the function flow ′: flow ′ gets an an additional
argument, a time bound n that determines the number of iteration steps, and it stores its
intermediate results in a hash table so that the computation can be resumed whenever a
flow pipe has to be computed for an identical polytope with a larger value of n. As a side
effect, flow ′ returns a state set that describes those states for which the flow pipe has been
computed completely within n time steps. Now let φi a set of states for which we have to
compute the continuous pre-image7. Let ωi−1 be the set of all states for which the flow pipe
has already been computed completely during previous iterations, and let χi−1 be the set of
all states for which the flow pipe has been started but not finished during previous iterations.
We set χi := φi ∨ χi−1, don’t-care optimize χi with respect to ωi−1, and take the result as
input for flow ′. The set of states returned by flow ′ for which the flow pipe has been computed
completely within n time steps is then added to ωi−1. Finally the time limit n is incremented
for the next model checking loop.

Note that, if all flow pipes terminate, then χi becomes a subset of ωi. If furthermore
φi+1 = φi, then don’t-care optimizing χi+1 w. r. t. ωi yields false, so we get the same behaviour
as for the simple implementation without dovetailing.

7That is, φi is the result of the last discrete pre-image computation.
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6 Experimental Results

We have integrated the polytope/zonotope-based flow pipe generation into our FOMC model
checker. In the following, we describe the experimental results that we obtained on two case
studies.

6.1 Approach Velocity Controller (AVC)

Our first case study comes from an advanced driver assistance system. We consider two
cars, a leading car cl and a following car cf . While cl drives at nearly constant velocity, the
acceleration of cf is controlled by its Approach Velocity Controller (AVC). The goal of the
AVC is to approach the leading car until a desired distance dist is established and to maintain
this distance afterwards.

Dynamics of the AVC The AVC has three modes, the Normal mode, where the accelera-
tion v̇f is computed by a linear differential equation, and two border modes, namely High-

Acceleration and LowAcceleration, which are introduced to avoid extreme accelerations or
decelerations.

Let vl the velocity of the leading car cl and d the measured distance from cf to cl. In the
Normal mode the AVC computes the acceleration v̇f by

v̇f = a(vl − vf ) + b(d− dist),

where a and b are parameters with a > 0, b > 0 and a2

4
≥ b.8

If the computed acceleration v̇f exceeds the upper limit amax the controller switch to the
HighAcceleration mode, where v̇f = amax is set. The analogous behavior holds if the computed
acceleration falls below the minimal allowed acceleration amin . The controller switches back
to Normal mode, as soon as the computed acceleration is within the allowed values.

The Model For the model we have chosen the parameter a = 0.29 and b = 0.01. The
initial velocity of the following car is between vmin = 0m

s
and vmax = 40m

s
and the initial

distance between both cars is between 450m and 500m. The desired distance is dist = 50m.
We restricted the considered time to the interval t ∈ [0s, 500s].

We proved a combined safety property depending on the initial velocity vl of the leading
car

(a) collision freedom: for vl ∈ [vmin , vmax ] the distance d is always greater than 0m,

(b) reaching the desired distance: for vl ∈ [vmin , 0.8vmax ] we can ensure that the desired
distance dist ± 5m is reached after 160s and kept afterward. The velocity of the following
car stays within the bounds vf ∈ [vmin − 1m

s
, vmax + 5m

sr
].

In addition we allow small disturbances on the acceleration of the leading car, v̇l = 0 + u,
with |u(t)| ≤ disturb.

8The right choice for these parameters can be read from the homogeneous solution of this linear differential
equation. Only for positive values of a and b a stable behavior can be guaranteed, which is approaching the

desired distance dist . If the discriminant a2

4
− b is chosen negatively the AVC would oscillate around dist .
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Results On an Intel Core 2 Duo T7500, 2.2 GHz, 2 GB RAM using one processor we
measured a running time of 57sec for the undisturbed model. For the disturbed one we
measured a running time of 77sec for the safe version (disturb = 0.1) and 37sec for the unsafe
version (disturb = 0.25).

6.2 Railroad Crossing

Our second sample model is derived from the verification of collision avoidance protocols for
train applications [9]. The system model consists of two parts, the speed supervision of the
train and a cooperation protocol between the train and a Radio Block Center (RBC).

Speed Controller The speed controller drives the current speed v towards a desired speed
vd. In the Normal mode the acceleration is computed by v̇ = 0.1(vd − v). If the computed
acceleration exceeds the maximal or minimal acceleration, that is, if v̇ ≥ 1.0 or v̇ ≤ −1.5
the controller switches to the Acceleration or Braking mode. The Acceleration mode sets the
acceleration to the fixed value v̇ = 1.0 and allows a transition back to the Normal mode if
0.1(vd − v) ≤ 0.8 is reached. The Braking mode behaves similarly with the fixed deceleration
v̇ = −1.5; it is left if 0.1(vd−v) ≥ −1.2. In addition the controller provides an Emergency mode
with maximum deceleration of v̇ = −3. The Emergency mode is entered if the cooperation
protocol signals a failure.

Cooperation Protocol The cooperation protocol distinguishes different phases. These phases
are modelled position dependent. In the Far phase the train receives optionally an isCrossing

message. In this case it sends a lockCrossing request to the railroad crossing and switches to
the Request phase. The railroad crossing has to acknowledge the request and starts locking the
crossing. In the Negotiation phase the train gets the signals isLockedCrossing and newEOA.
If the crossing is not locked or no new End of Authority (EOA) is provided the train has to
stop before reaching the current EOA. The protocol also maintains some error control and
signals a failure to the speed supervision.

Safety Property The safety property of the model is

Emergency mode activated → p ≤ EOA, (1)

i.e. if the Emergency mode is activated the position of train does not exceed EOA.
On the other hand we wanted to ensure that the train crosses the EOA if no failure occurs,

thus we showed that the target

not Emergency mode activated → p ≤ EOA, (2)

is not always globally true, i.e. the train crosses EOA if Emergency is not activated.

Results For target 1 we ran two variants with different disturbances, on an Intel Core 2 Duo
T7500, 2.2 GHz, 2 GB RAM using one processor. The safe variant with smaller disturbances
took 6 main loop iterations and a running time of 286 sec; the unsafe variant with higher
disturbances took 4 main loop iterations and a running time of 320 sec.

For target 2 we measured a running time of 164 sec; it took 3 main loop iterations.
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7 Conclusions

We have demonstrated that it is possible to integrate incremental flow pipe computation using
a combination of polytopes and zonotopes into a fully symbolic backward model checker for
hybrid systems. A prototype implementation has been integrated into our FOMC system and
so far the results are promising. We plan to extend the system to more complex dynamics,
and we will also investigate the potential of building a forward model checker based on the
same techniques – note that the termination problem becomes easier for the forward direction,
whereas the computation of discrete steps becomes more difficult, since it requires quantifier
elimination.
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