
A Probabilistic and Energy-Efficient Scheduling Approach
for Online Application in Real-Time Systems

Thorsten Zitterell
Department of Computer Science

Albert-Ludwigs-University, Freiburg, Germany
tzittere@informatik.uni-freiburg.de

Christoph Scholl
Department of Computer Science

Albert-Ludwigs-University, Freiburg, Germany
scholl@informatik.uni-freiburg.de

ABSTRACT
This work considers the problem of minimizing the power con-
sumption for real-time scheduling on processors with discrete op-
erating modes. We provide a model for determining the expected
energy demand based on statistical execution profiles which con-
siders both the current and subsequent tasks. If the load after the
execution of the current task is expected to be high and slack time is
conserved for subsequent tasks, we are able to derive an optimal so-
lution to the energy minimization problem. For the remaining cases
we propose a heuristic approach that also achieves a low run time
overhead. In contrast to previous work, our scheduling approach
is not restricted to single task scenarios, frame-based real-time sys-
tems, or pre-computed schedules. Simulations and comparisons
with energy-efficient schedulers from literature demonstrate the ef-
ficiency of our approach.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—scheduling;
D.4.7 [Operating Systems]: Organization and Design—real-time
systems and embedded systems

General Terms
Algorithms

Keywords
Energy-aware scheduling, hard real-time, dynamic voltage scaling

1. INTRODUCTION
Mobile and battery driven devices like cellular phones have to

meet high and competing demands. On the one hand they must be
able to run computationally expensive applications which require
powerful processors, on the other hand they should offer a long
operating time.

Dynamic Voltage and Frequency Scaling (DVFS) is an effective
method to control the trade-off between power consumption and
processing power. For CMOS designs the energy dissipated per

This work has partly been supported by the German Research
Foundation (DFG) within the Research Training Group 1103.

clock cycle is a quadratic function of the operating voltage [2].
However, a voltage reduction requires the reduction of the pro-
cessor frequency. Energy savings by DVFS can be large if the per-
formance at a lower frequency is still sufficient to execute the ap-
plications. DVFS solutions for commercial processors commonly
provide only discrete voltage and frequency settings [4, 11].

For hard real-time systems it is mandatory to specify the worst-
case execution time (WCET) of tasks or their worst-case execu-
tion cycles (WCEC), respectively. This information is required to
verify if a schedule is feasible and tasks will not miss their dead-
lines. However, real-time tasks usually show variations in their ex-
ecution time and the actual execution time is lower than assumed
for the worst case scenario. For instance, the time required for
object tracking within a camera picture depends on the motion of
the object. Online DVFS algorithms generally are superior to pre-
computed, fixed schedules: any static frequency schedule can not
utilize slack time resulting from variances in task execution times
to reduce the frequency and power consumption.

Some approaches, such as [5, 6], directly use slack time to re-
duce the execution frequency of a task. Other methods scale the
processor speed to a value which corresponds to the (temporarily)
reduced processor utilization [10]. However, a limitation of such
techniques is that they do not alter the processor speed until a task
terminates and only compute schedules based on the worst-case
behavior. Other studies showed that it is beneficial to additionally
consider statistical information about the execution profile of a task
[3, 8, 9, 12, 13, 14, 16]. As the execution probability decreases
with the number of executed cycles of a task, they propose to start
task execution with a lower frequency which is increased until the
job completes (accelerating frequency schedule (AFS)). Such ap-
proaches aim to minimize the expected energy demand without vi-
olating deadlines and defer the usage of higher frequencies associ-
ated with higher energy consumption. The authors of [15] showed
that it is NP-hard to find an optimal AFS for a single task.

The Lagrange multiplier method in [9] computes optimal ac-
celerating frequency schedules but it is restricted to single tasks.
Other approaches, such as [13, 16], provide interesting solutions
for so-called frame-based systems where all tasks share the same
deadline, have fixed priorities and are non-preemptive. However,
they do not provide solutions for more complex real-time systems
where preemptive tasks with dynamic priorities and arbitrary dead-
lines are used. Pre-computed optimal schedules are used in [12] for
EDF scheduling with non-uniform deadlines. The authors perform
an offline analysis of the (periodic) scheduling problem based on
execution profiles. However, their approach is not able to make use
of slack resulting from variances in execution time.

In our work, we consider the problem of minimizing the power
consumption for scheduling under real-time constraints and for pro-
cessors which are restricted to discrete operating modes. We pre-
sent a model which does not only consider the energy demand of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

42

4.2

SCHEDULE WITHOUT DVFSa)
worst-case schedule

f1

f4
τ1 τ2

d1 d2final schedule

f1

f4
τ1 τ2

d1 d2

GREEDY SLACK ALLOC.b)
slack is greedily used by τ1 at t

f1

f4

t

τ1 τ2

d1 d2final schedule

f1

f4 τ1

d1 d2

BALANCED SLACK ALLOC.c)
slack is partly allocated for τ1 at t

f1

f4

t d1 d2final schedule

f1

f4

d1 d2

Figure 1: Example for the consecutive execution of two tasks

single tasks executed in isolation but also includes the expected
load incurred by subsequent tasks. For the cases where slack time
is conserved for subsequent tasks, we are able to derive an optimal
solution to the energy minimization problem analytically. For the
remaining cases we propose a heuristic approach that also achieves
low run time overhead. We also discuss details on how our ap-
proach can be implemented efficiently based on histogram repre-
sentations for execution profiles. Our exact solution can be com-
puted online with a run time which is logarithmic in the number
m of discrete frequencies and logarithmic in the number of bins in
the histogram based representation for the execution profiles. We
further show that a rather small number of bins (in the order of 10
to 20) is enough to obtain nearly optimal results.

The rest of this paper is structured as follows. Preliminaries in-
cluding the energy model and a motivating example are given in
Sect. 2. The energy minimization problem is formulated in Sect. 3.
In Sect. 4, we describe our solution to the problem. Simulation re-
sults are presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2. PRELIMINARIES
2.1 System and Task Model

The processor provides m different operating frequencies F =
{f1, . . . , fm} with fi < fj for 1 ≤ i < j ≤ m. The power at
a frequency f is given by a function p : R

+ → R
+. We assume

that the system always changes to the lowest available frequency
when idling and the power function p(f) only accounts for the off-
set to the power consumption used in idle mode. We assume that
p(f)

f
(i.e. the energy consumption per cycle) is strictly monotoni-

cally increasing with f ∈ F . Moreover, we assume that p is strictly
convex. (Note that the power function for CMOS circuits, e.g., ful-
fills these assumptions.) For our approach we do not need stronger
restrictions to the power function (e.g. p(f) = fα as in [12]).

We assume a set of n periodic tasks. A task instance is specified
by its worst-case demand of execution cycles (WCEC) denoted by
Č and a period T . The variable Ř denotes the number of remaining
execution cycles. When a task is to be started, we have Ř = Č.
However, when a task is resumed (after an interrupt or preemption)
it is Ř < Č. Note, theˇ symbol indicates that a variable refers to a
number of clock cycles instead of an amount of time. For example,
Ž execution cycles at frequency f will take a time of Z = Ž ·f−1.

Further, we assume that there exists a function h : [0, Č] →
[0, 1] with h(y) = p for all y ∈ [x, x + 1) if the probability that
a task completes its execution exactly at cycle x is p. We define
q(x) = 1 − R x

0
h(z) dz which (for natural numbers x) can be in-

terpreted as the probability that a task terminates not earlier than at
cycle x or is executed at cycle x, respectively. In Sect. 4.3, we will
consider a discretized representation of this function.

In the following, we assume that tasks are scheduled according
to the Earliest Deadline First (EDF) strategy [7]. The worst-case
utilization factor of a task set Γ = {τi(Či, Ti), i = 1, . . . , n} is

given by U = f−1
m

P
τi∈Γ Či/Ti ≤ 1.

2.2 Motivating Example
Fig. 1 shows three different scheduling variants for executing two

jobs τ1 and τ2. The processor provides four discrete frequencies
f1 = 1

4
, f2 = 1

2
, f3 = 3

4
and f4 = 1 (given on the y-axes).

For this example, we use the simple power function p(f) = f3.
At maximum frequency, the worst-case execution times of the two
jobs are C1 = 0.9 and C2 = 1.8. The deadlines for τ1 and τ2

are d1 = 3.6 and d2 = 5.4, respectively. Moreover, we assume
that all tasks terminate earlier and the actual time demand at f4 is
A1 = 0.8 and A2 = 1.6.

Fig. 1a) shows both the worst-case and the actual schedule for
executing the two jobs without DVFS. For this non-DVFS method
(with actual execution times A1 = 0.8 and A2 = 1.6) the con-
sumed energy would be E1 = 0.8 · 13 + 1.6 · 13 = 2.4.

In Fig. 1b), a DVFS scheduler determines and uses the available
time of S1 = d1 − t = 3.6 time units to greedily reduce the fre-
quency. The lowest possible frequency to execute τ1 is C1

S1
= 1

4
=

f1. The instance of τ1 will also not miss its deadline d1 using this
frequency. However, τ1 only has an actual time demand of 0.8 (at
frequency f4), and hence will take 3.2 time units until completion.
Thus, the remaining unused time (slack) would be 0.4 time units
and the second job could reduce the frequency to C2

d2−d1+0.4
≈

0.81. As this frequency is not available, one could either use the
next higher frequency which would result in an energy consump-
tion of E2 = 3.2 · 0.253 + 1.6 · 13 = 1.65 or split the execution
of τ2 into intervals with different frequencies: we plan to execute
the instance for 1.6 time units with f3 and 0.6 time units with f4.
As the actual computation time is lower, τ2 will execute 1.6 time
units at f3 and only 0.4 time units at f4. This results in an energy
consumption of E3 = 3.2 · 0.253 +1.6 · 0.753 +0.4 · 13 = 1.125.

For the last considered variant in Fig. 1c) we follow the approach
of balancing the distribution of the available slack. When τ1 is
started it does not greedily allocate the available time of 3.6 time
units. In contrast to previous methods, it leaves some slack to the
subsequent task instance even if it shows its worst-case behavior.
This can be achieved for example by planning an execution of 0.8
time units at frequency f1 and 1.4 time units at frequency f2. The
upper diagram depicts the predicted worst-case schedule at time t.
As job τ1 terminates earlier again it will only spend 1.2 time units
in the second interval. In this example, the slack of 1.6 time units
is passed to τ2 which executes in intervals of 0.4, 2.2 and 0.8 time
units with discrete frequencies f1, f2 and f3, respectively. In the
final schedule, τ2 terminates earlier again and spends ≈ 0.53 time
units in the last interval. The energy consumption for this schedule
is E4 = (0.8 · 0.253 + 1.2 · 0.53) + (0.4 · 0.253 + 2.2 · 0.53 +
0.53 · 0.753) ≈ 0.67.

The example shows that greedily assigning slack to the current
task as in Fig. 1b) is not always an optimal solution. A variant
which distributes slack between the tasks as in Fig. 1c) performs
better and shows an energy reduction of 40% in our example. In
contrast, the greedy strategy may have been better if the compu-
tation time demand of τ2 tends to zero. This motivates our prob-
abilistic approach to determine frequency schedules based on the
expected energy of task execution which automatically chooses a
greedy or conservative strategy. As actual task execution times can
only be determined during run time, we took into account the ne-
cessity of a low complexity with respect to an online application.

43

4.2

2.3 General Scheduling Concept
In order to minimize the energy required for scheduling a task

set, our proposed scheduling approach consists of three steps which
are performed before the current task instance τX starts its exe-
cution: (a) Determine the available time SX for τX . If τX will
not consume more time than SX for its execution, then deadlines
will neither be violated for τX nor for subsequent tasks even in
the worst-case scenario. (b) Select other tasks which may follow
τX and determine their time demand SY as well as the number of
execution cycles for the worst case Y̌ and the average case Y̌AC .
(c) Compute a valid schedule for executing the current task by the
approach presented in this paper.

Step (a): To determine SX , we use a slack approximation scheme
based on [5]. Here, the system keeps track of the unused time
Ui which is the (remaining) time reserved for the execution of
each task. On task releases, the unused time Ui is initialized to
wi = U−1 ·Či ·f−1

m where U ≤ 1 is the given worst-case utilization
factor of the system. The available time SX for the current task is
composed of its unused time and that of completed instances. Dur-
ing run time, the active task consumes unused times of instances in
decreasing order of their priority, i.e., unused times of completed
higher-priority tasks are consumed first, followed by unused time
of the active task itself etc. Note that SX is also the amount of time
which can be given to τX so that no deadlines are violated for the
current and for subsequent tasks even for the worst-case scenario.

Step (b): For reasons of efficiency it is not be possible to con-
sider all task instances which follow the current task – an exact
analysis would have to consider all instances in the hyperperiod.
Therefore, at the current time t, we only consider a subset ΓY of
tasks which will follow or interrupt τX . We consider task instances
which have been preempted by τX and will be executed as soon as
τX completes as well as task instances which will preempt τX in
[t, t + SX]. The allocated time SY for such instances is the sum
of their unused times Ui. Note that SX and SY can be determined
in O(n) according to [5]. We specify the cycle demand of ΓY for

the average case and the worst case (Y̌AC and Y̌) as the sum of
the average and worst-case cycle demand of the task instances in
ΓY . Here, the expected cycle demand of an instance τi with Či

worst-case cycles and Ři worst-case remaining cycles is computed

by 1/qi(Či−Ři)·
hR Či

Či−Ři
qi(z) dz

i
using the task specific execu-

tion profile qi. Note that in Sect. 4.3, we will give implementation
details and explain how we compute such integrals in O(1).

We compute a new frequency schedule at the start and resump-
tion of each task based on the real information of when the previous
task terminated. However, it does not make sense to immediately
compute a discrete frequency schedule for both the current task and
the subsequent tasks in ΓY . Instead, we combine the tasks in ΓY

into one ‘virtual’ subsequent task τY which models the system load
in the near future. For the time being, we heuristically assume that
all subsequent tasks represented by τY can be scheduled with one
continuous frequency. In that way, the expected energy demand for
the subsequent tasks is approximated and the concrete assignment
for AFSs is deferred until a task instance is executed.

In the following, we will focus on step (c) and describe our
model for the expected energy as well as the minimization prob-
lem and our solution.

2.4 Expected Energy and Time Demand
The current task τX will be executed with an accelerating fre-

quency schedule (X̌1, . . . , X̌m) so that X̌i cycles are executed at
frequency fi for i ∈ {1, . . . , m}. The expected energy demand for
τX is modeled by

EX(X̌1,..,m)= 1
q(Č−Ř)

Pm
i=1

»
p(fi)

fi

R Č−(X̌i+1+···+X̌m)

Č−(X̌i+···+X̌m)
q(z) dz

–
.

Similarly, the expected time demand is given by

XAC(X̌1,..,m) = 1
q(Č−Ř)

Pm
i=1

»
1
fi

R Č−(X̌i+1+···+X̌m)

Č−(X̌i+···+X̌m)
q(z) dz

–
.

The worst-case execution time X(X̌1, . . . , X̌m) =
Pm

i=1 X̌i/fi

of an AFS must satisfy X(X̌1, . . . , X̌m) ≤ SX .
For the virtual task τY the worst-case time needed for the execu-

tion of Y̌ cycles at frequency fY is Y (fY) = Y̌ ·f−1
Y . The expected

time demand for the execution of τY is given by YAC(fY) = Y̌AC ·
f−1

Y which results in an energy demand of EY (fY) = Y̌AC
fY

·p(fY).

3. ENERGY MINIMIZATION PROBLEM
In order to find a schedule which minimizes the expected energy

demand, we have to solve the following optimization problem:

min.: E(X̌1, . . . , X̌m, fY) = EX(X̌1, . . . , X̌m) + EY (fY)

s. t.: X(X̌1, . . . , X̌m) ≤ SX (a), X̌1 + · · · + X̌m = Ř (b),

X̌i ≥ 0 for i = 1, . . . , m (c),

Y (fY) ≤ SX + SY − XAC(X̌1, . . . , X̌m) (d).

Constraints (a-c) guarantee a valid AFS for the worst-case execu-
tion of τX . With Constraint (d) we assume that τX has been ex-
ecuted with an average time demand XAC(·) and now the worst-
case execution time Y (fY) of τY must not exceed the remaining
time. This also causes a distribution of this slack between the cur-
rent task and the subsequent virtual task (cp. Fig. 1c)): Assume
that the system load in the near future (modeled by τY) is high
and thus fY has to be high in order to fulfill condition (d) with
(X̌1, ..., X̌m). In this case, the expected energy consumption may
be reduced by accelerating the execution time of τX which in turn
allows a reduction of fY and thus EY (fY).

Before, we analyze the optimization problem we transform it to
a standard form so that g0 represents the objective function and
gi ≤ 0 with i = 1, . . . , m + 2 represent inequality constraints by
performing the following steps:
(a) We use the equality constraint

Pm
i=1 X̌i = Ř and substitute

every occurrence of X̌1 using X̌1 = Ř −Pm
i=2 X̌i.

(b) We replace the equality constraint
Pm

i=1 X̌i = Ř and X̌1 ≥ 0

by
Pm

i=2 X̌i ≤ Ř. Thus, we obtain (with S := SX + SY):

g0(X̌2, . . . , X̌m, fY) = EX(X̌2, . . . , X̌m) + EY (fY) (1)

g1(X̌2, . . . , X̌m, fY) = XAC(X̌2, . . . , X̌m) + Y (fY) − S (2)

g2(X̌2, . . . , X̌m, fY) = X(X̌2, . . . , X̌m) − SX (3)

g3(X̌2, . . . , X̌m, fY) = −Ř +
Xm

i=2
X̌i (4)

gi(X̌2, . . . , X̌m, fY) = −X̌i−2, for i = 4, . . . , m + 2 (5)

By using the short notations q(i) :=
q(Č−Pm

j=i X̌j)
q(Č−Ř)

, g
(j)
0 :=Pj

i=2 q(i)
h

p(fi)
fi

− p(fi−1)

fi−1

i
, and g

(j)
1 :=

Pj
i=2 q(i)

ˆ
f−1

i − f−1
i−1

˜
we obtain the following gradients:

∇g0 = (g
(2)
0 , . . . , g

(m)
0 , Y̌AC/f2

Y · (ṗ(fY) · fY − p(fY)))T

∇g1 = (g
(2)
1 , . . . , g

(m)
1 ,−Y̌ /f2

Y)T

∇g2 = (f−1
2 − f−1

1 , f−1
3 − f−1

1 , f−1
4 − f−1

1 , . . . , 0)T

∇g3 = (1, 1, 1, . . . , 1, 0)T

∇gi+3 = (0, . . . , −1
(ith element)

, . . . , 0)T
for i = 1, . . . , m − 1

By a closer analysis of the gradients we are able to prove that the
following Karush-Kuhn-Tucker (KKT) condition holds [1]:

THEOREM 1. If x := (X̌2, . . . , X̌m, fY) is a (locally) minimal
solution to the given optimization problem, then there are μi ≥
0 with ∇g0(x) +

Pm+2
i=1 μi∇gi(x) = 0 and μigi(x) = 0 for

1 ≤ i ≤ m + 2.

44

4.2

4. SOLUTION
To solve the the energy minimization problem given above, we

first consider a ‘relaxed problem’ by omitting constraint g2. Inter-
estingly, we are able to solve the relaxed problem analytically and
we can prove that the unique optimal solution needs at most two
frequencies. If this solution fulfills g2≤0 (i.e. X(X̌2, . . . , X̌m) ≤
SX), then we also have a solution to the original problem. If the
solution to the relaxed problem does not fulfill g2 ≤ 0, we apply
a heuristic method for solving the original problem with constraint
X(X̌2, . . . , X̌m) = SX (i.e. g2 = 0, see Sect. 4.2).

4.1 Relaxed Energy Minimization Problem
For a solution x = (X̌2, . . . , X̌m, fY) with X(X̌2, . . . , X̌m) <

SX the available time is not greedily assigned to the current task
but slack is conserved for subsequent tasks. In this interesting case
it is g2(x) < 0 and we obtain the same KKT condition according
to Thm. 1 as for the relaxed problem (due to μ2g2(x) = 0 ⇒
μ2 = 0). By a careful (and non-trivial) analysis we can conclude
the following lemma from Thm. 1 and from the strict convexity of
the power function p(f) (details of the proof are omitted due to
lack of space):

LEMMA 2. Each solution x to the relaxed optimization prob-
lem and each solution x′ to the original problem with g2(x

′) < 0
(i.e. X(x′) < SX) uses no more than two discrete frequencies.
If two frequencies are used, then they are immediate neighbor fre-
quencies.
If we fix two discrete neighboring frequencies fi and fi+1, we have
the advantage that the energy function only depends on one inde-
pendent variable z: Ř − z cycles are executed with frequency fi,
z cycles with fi+1 and the continuous frequency fY can be de-
rived from Eqn. (2), since g1(x) has to be 0 for an optimal solution
x. By using the first and second derivative of the energy function
E(z) and by considering the boundaries of the interval [0, Ř] for z,
we consequentially deduce three different conditions on z to find
potential minimal solutions. Of course the solution changes with
the available amount of time S = SX + SY . For each of these
conditions we consider the energy function (depending on S) un-
der the constraint that the condition is fulfilled and we finally are
able to derive a complete characterization for the (globally) mini-
mal solutions. This result can be generalized to the case that the
pair of discrete neighboring frequencies is not fixed.

Due to lack of space we omit details of the proof and summarize
our results as follows:

THEOREM 3. Let F = {f1, . . . , fm} be the set of available
discrete frequencies with fi < fj for i < j. Let x be a solution to
the relaxed optimization problem or a solution to the original prob-
lem with X(x) < SX . Let X̌�

AC := 1
q(Č−Ř)

R Č

Č−Ř
q(y) dy, let the

frequency f�
i,i+1 be defined as the (unique) solution to the equation

ṗ(f�
i,i+1)·f�

i,i+1−p(f�
i,i+1) = Y̌

Y̌AC

(p(fi+1)/fi+1)−(p(fi)/fi)

(1/fi)−(1/fi+1)
, and

let Ki,i+1 :=
h

X̌�
AC

fi+1
+ Y̌

f�
i,i+1

,
X̌�

AC
fi

+ Y̌
f�

i,i+1

i
. Depending on

the available amount of time S, x uses only frequencies from F (S)
given as follows:

F (S) =

8>>>>>>>>>><
>>>>>>>>>>:

{f1} if S > max(K1,2)

{f1, f2} if S ∈ K1,2

{f2} if min(K1,2) > S > max(K2,3)

{f2, f3} if S ∈ K2,3

...
...

{fm−1, fm} if S ∈ Km−1,m

{fm} if min(Km−1,m) > S

Let Q−1(y) be the inverse of the strictly monotonic function Q(y)=R y

0
q(z) dz, i.e., of the anti-derivative of the function q(z).

If F (S)={fi, fi+1} and

z = Č − Q−1

(S−Y̌ /f�

i,i+1)·q(Č−Ř)+
Q(Č−Ř)

fi
− Q(Č)

fi+1
1
fi

− 1
fi+1

!
,

then x=(0, . . . , 0, Ř − z| {z }
freq. fi

, z|{z}
freq. fi+1

, 0, . . . , 0, f�
i,i+1).

If F (S) = {fi}, then x = (0, . . . , 0, Ř|{z}
freq. fi

, 0, . . . , 0, fY) with

frequency fY = Y̌ ·
“
S − X̌�

AC
fi

”−1

.

4.2 General Energy Minimization Problem
The solution x = (X̌2, . . . , X̌m, fY) which is obtained under

relaxed constraints is not valid if the worst-case time demand is
higher than the available time (X(X̌2, . . . , X̌m) > SX). For this
case we propose a heuristic fallback method so that hard deadlines
can still be met. In order to satisfy X(X̌2, . . . , X̌m) ≤ SX , we
have to consider solutions which consume less time, i.e., schedules
with the property X(X̌2, . . . , X̌m) = SX .

For a continuous frequency processor, it would be sufficient to
schedule the task with the frequency f = Ř/SX , and for discrete
frequency processors, one could select two neighbor frequencies
of f to execute the remaining cycles. However, we will try to do
better and determine the expected energy demand of all m−1 two-
frequency schedules x which satisfy X(X̌2, . . . , X̌m) = SX and
for which one frequency is an immediate neighbor of f . Note, the
expected energy of such schedules can be determined efficiently
with low costs as we will describe in Sect. 4.3 below. The distribu-
tion (za, zb) of cycles wrt. each pair of two fixed frequencies fa

and fb can be immediately computed by using za/fa + zb/fb =
SX and za + zb = Ř. The schedule with the lowest expected
energy is selected for scheduling the current task.

4.3 Implementation
An adequate data structure to represent the probability function

h(x) is a histogram-based representation as in Fig. 2a) which com-
bines execution cycles in groups or bins, respectively. This his-
togram can be generated for a specific task by profiling methods
and can be updated during run time if necessary. The trade-off be-
tween accuracy and storage space can be controlled by the number
of bins b. An important advantage of such a data structure is that the
function q(x) = 1 − R x

0
h(z) dz can be directly derived. As h(x)

is stepwise constant, the function q(x) is stepwise linear decreasing
as in Fig. 2b). Similarly, its anti-derivative Q(x) =

R x

0
q(z) dz is a

quadratic function in the specific bins as given in Fig. 2c).

a)

0 Č

h1 h2 h3 h4
b)

0

1

Č

q1

q2
q3 q4

c)

0

Č

Č

Q1
Q2Q3Q4

Figure 2: Probability Function
As a result it is convenient to pre-compute some function val-

ues at the bin borders qi and Qi and interpolate function values
for q(x), Q(x) and Q−1(y) as described in the following. Let the
execution profile be split into b equal-sized bins and let hi be the
probability that a task completes in the ith bin. Then, we define

qi := 1−Pi
k=1 hk and Qi :=

Pi
k=1 Č/b · ((qk + qk−1)/2) =

Č/b
h“Pi

k=0 qk

”
− q0/2 − qi/2

i
for i ∈ {0, . . . , b}. To com-

pute q(x) we first determine the corresponding bin (j+1) so that

x ∈ [j Č
b
, (j + 1) Č

b
] and define xl := j Č

b
for the left border of

this interval. Then, we perform a linear interpolation qj(x) =

qj + (x − xl) · qj+1−qj

Č/b
. Similarly, we can determine Qj(x) =

Qj+
R x

xl
qj(z) dz = Qj+(qj+1−qj)

b
2Č

(x−xl)
2+qj(x−xl). Vice

versa, to compute the inverse Q−1(y), we first determine the cor-

45

4.2

a) b)

0 10 20

0.72

0.74

0.76

Number of bins b

N
o

rm
.

E
n

er
g

y

0 10 20
0

0.1

Bins

E
x
ec

.
p

ro
fi

le

Figure 3: Number of bins and execution profile

responding interval j so that y ∈ [Qj , Qj+1] and use x = xj(y) =

xl +
“
qj −

q
q2

j − 2(y − Qj)
qj−qj+1

Č/b

”
· Č/b

qj−qj+1
as an explicit

expression to find an x such that Qj(x) = y.

4.4 Complexity
Slack estimation as well as the computation of the worst-case

and expected cycle demand of subsequent tasks can be performed
in O(n) for n periodic tasks. To find an exact solution to the re-
laxed problem, we have to determine intervals Ki,i+1 (see Thm. 3).
Each interval Ki,i+1 can be computed in O(1), if an explicit for-
mula is provided to solve for f�

i,j in ṗ(f�
i,j) · f�

i,j − p(f�
i,j) = c.

(For a practical system, one would approximate the power function
with a polynomial. Otherwise, as the term ṗ(f�

i,j) · f�
i,j − p(f�

i,j)
is strictly monotonic for strictly convex functions p(f), it would
also be convenient to provide sample points for this term and per-
form a binary search.) As the intervals Ki,i+1 do not overlap and
are linearly ordered with i, the appropriate set F (S) of frequen-
cies according to Thm. 3 can be computed using binary search in
O(log m). The interval boundaries need only be computed on-the-
fly during the binary search. This leads to an overall complexity of
O(log m) to compute F (S). The complexity for determining the
number of cycles z in Thm. 3 is O(log b) as the corresponding in-
tervals for Q−1(y) and Q(x) have to be found. If a fallback to the
heuristic solution is used, then the complexity is O(m) as m − 1
schedules are considered. Note that the computation of the inte-
grals in EX(. . .) and XAC(. . .) for two-frequency schedules takes
O(1) using the pre-computed function values Qi(x) as explained
in Sect. 4.3. Therefore, the overall complexity of our approach is
O(n + log m + log b + m) = O(n + m + log b).

5. EXPERIMENTS
5.1 Experimental Setup

In our experiments we use a processor model with five discrete
frequencies F = {150 MHz, 400 MHz, 600 MHz, 800 MHz,
1000 MHz} with corresponding power values 80, 170, 400, 900
and 1600 mW as in [14, 12]. The overall system power consump-
tion can be fitted with a curve pidle + p(f) using p(f) = 1.55 ·
10−6 mW

MHz3
· f3 and pidle = 60 mW.

For the simulations, we generate sets of periodic tasks Γ. The
relative deadline of a task is equal to its period which is randomly
chosen so that Ti ∈ [10 ms, 1000 ms]. We distribute the given
worst-case utilization factor U of the task set among the tasks, so
that U =

P
τi∈Γ Ui and ∀τiτj : 1

q
· Uj ≤ Ui ≤ q · Uj for a

given q ∈ R
+. We choose q = 3 to avoid exceeding differences in

task characteristics. Finally, we compute the worst-case number of
execution cycles according to Či = Ui · Ti · fm.

In this work, we model variances in the actual number of ex-
ecution cycles with a Gaussian distribution: First, we provide a
parameter r = B̌/Č to control the fraction of the best-case B̌ and

worst-case execution cycles Č. Second, for each task instance we
generate random numbers Ǎ with normal distribution for the exe-
cution cycles with a mean λ = (B̌ + Č)/2 and a deviation of μ =
(Č − B̌)/6. If Ǎ < B̌ or Ǎ > Č, we fix Ǎ to B̌ or Č, respectively.

The scheduling algorithm presented in this work is called ‘Prob-

abilistic Frequency Scheduling’ (PFS). As we also want to deter-
mine the effect of computing the exact solution to the relaxed prob-
lem, we additionally consider a variant PFSFB which omits this
step and directly proceeds with the heuristic method.

Moreover, we implemented various DVFS schedulers for com-
parison. We consider two utilization-based approaches: A static
method (UNI) and a dynamic method cycle-conserving EDF (CC)
[10]. UNI scales the processor to the lowest discrete frequency fi

for which fi
fm

is greater or equal to the worst-case utilization factor

U of the task set. CC dynamically computes the actual utilization
on task releases and completions, and scales to the corresponding
frequency during run time.

Slack-based methods either consider the slack of higher-priority
task instances (HP) [6] or both lower- and higher-priority task in-
stances (LHP) [5]. In our implementation, we use [5] for both HP

and LHP (for HP we omit the step for considering lower-priority
tasks). If the execution of the current instance τX does not ex-
ceed the available time SX , it is guaranteed that no task will miss
its deadlines. For our experiments, the methods HP and LHP are
combined with two frequency selection methods. The first method
‘Next Higher’ (NH) uses the lowest discrete frequency which is
higher than or equal to f = Ř/SX . The other method ‘Worst-case
split’ (WCS) uses two discrete neighbor frequencies fi ≤ f ≤
fi+1 to split the execution into two intervals (with Ř − X̌ and X̌

cycles) so that Ř−X̌
fi

+ X
fi+1

= SX . These combined approaches

are called HPNH, LHPNH, HPWCS, LHPWCS.
As probabilistic methods, we implemented two algorithms. The

first approach is called ‘Procrastinating’ (PC) and considers the
slack of lower- and higher-priority tasks. However, in contrast to
the simpler methods above it makes use of the statistical profile to
find an energy-minimal accelerating frequency schedule for a sin-
gle task according to the approximation method described in [9].
The load caused by subsequent tasks is not considered and the com-
putation is performed whenever a tasks starts or resumes. Another
implemented method which uses execution profiles is ‘Statistical
Integrated’ (SI). For a specific task set, statically optimal accel-
erating frequency schedules are pre-computed in an offline phase
according to [12] and used to schedule the tasks during run time.
Note that probabilistic methods as in [16] and [13] are not consid-
ered as they are restricted to a frame-based model.

5.2 Results
In a first step, we determined the number of bins b which are

necessary to provide an adequate representation of the execution
profile. The experiment in Fig. 3a) shows the energy-efficiency
for a given number of bins b with n = 10 tasks, U = 0.8 and a
BCEC/WCEC ratio of r = 1.0. The diagram shows that the energy
efficiency stabilizes for more than ≈ 12 bins. For our experiments,
we used b = 20 bins as our benchmarks showed that a higher num-
ber of bins no longer gives significant improvements. A possible
execution profile is given in 3b).

Simulation results for the energy efficiency are given in Fig. 4.
Each diagram shows the normalized energy consumption on the y-
axes (as a fraction of the energy consumption without DVFS, i.e.,
using the maximum frequency fm). For the three diagrams we
varied the number of tasks, the best-case to worst-case ratio r and
the worst-case utilization factor U . The results are averaged over
40 simulations, respectively.

First, we determined the energy-efficiency of our approach de-
pending on of the number of tasks in Fig. 4a). For this experiment,
we generated task sets with a worst-case utilization factor of U = 1
and set r = 0 so that task execution cycles can vary between 0
and Či. Such a setup results in an average utilization factor of
UAVG = 0.5. However, as the worst-case utilization factor U is
1, any scheduler which precomputes accelerating frequency sched-

46

4.2

a) U = 1.0, exec. cycles Ǎ ∈ [0, Č] b) U = 0.5, n = 10 tasks c) U = 1.0, n = 10 tasks

2 5 10 20

0.4

0.6

0.8

1

Number of tasks

N
o

rm
.

E
n

er
g

y
Uni Si Cc HpNh LhpNh

HpWcs LhpWcs Pc PfsFB Pfs

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

BCEC/WCEC ratio

N
o

rm
al

iz
ed

E
n

er
g

y

Si

Uni

Cc

HpWcs

HpNh

LhpNh

LhpWcs

Pc

PfsFB

Pfs

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

BCEC/WCEC ratio

N
o

rm
al

iz
ed

E
n

er
g

y

Figure 4: Energy efficiency wrt. number of tasks or variance of execution time

ules (SI) and/or which does not utilize online slack (UNI) has to use
the highest frequency so that no deadlines are violated. Our sched-
ulers PFS and PFSFB show the best overall performance among
all schedulers, the next best competitors are PC and LHPWCS. If
the number of tasks is increased, the energy-efficiency of all meth-
ods improves, especially for PFS which shows the highest energy-
savings. The higher the number of tasks, the more situations occur
where a starting or resuming task is allowed to use slack from pre-
vious tasks. As our probabilistic method includes the load of sub-
sequent tasks it finds a balanced slack distribution which is neither
too aggressive nor too conservative. For a task set with 20 tasks,
e.g., PFSFB needs 14.8% more energy than PFS, LHPWCS needs
20.8% more energy than PFS, and PC needs 21.3% more energy.
This observation is noteworthy, since compared to PFS much more
complex online computations are needed for PC and PC produces
schedules with m different frequencies instead of at most two.

In Fig. 4b), we used n = 10 tasks, a worst-case utilization fac-
tor of U = 0.5 and varied the ratio r = B̌/Č to alter the num-
ber of best-case execution cycles B̌. Again, our method shows an
overall good performance. Only for r = 1, SI shows slightly bet-
ter performance than PFS. In this rather unrealistic scenario, tasks
show no variances at all and slack redistribution during run time
does not make sense. The pre-computed but optimal schedules of
SI remain optimal. However, as soon as tasks show variances in
their computation time, the slack analysis and balanced distribu-
tion among the tasks shows a better efficiency. For the scenario of
Fig. 4b) the results of HPWCS are pretty close to the results of PFS,
since it seems to achieve an appropriate degree of aggressiveness in
frequency scaling by using slack of only higher-priority tasks and
splitting the execution into two intervals. However, for other sce-
narios like Fig. 4c) with U = 1 the efficiency of HPWCS can not
compete with our approach PFS.

In Fig. 4c), we increased the worst-case utilization factor to U =
1. Here, PFS again shows the best performance among all sched-
ulers, especially for lower ratios r = B̌/Č. A comparison of PFS

with PFSFB which uses only our heuristic fallback method shows
that providing the exact solution to the relaxed problem results in
large energy savings. In general, we observed that the fallback ratio
(the ratio of cases where we consider the heuristic solution in the
second step) decreases with a higher number of tasks. For n = 10
tasks and U =1, the average fallback ratio was between 0.1 % and
39.5 %. For n = 20 tasks, the average fallback ratio was never
higher than 21.8 %. This means that in most cases we are able to
provide an optimal solution analytically without having to search
for good solutions.

6. CONCLUSIONS
In this work, we proposed a method for estimating and minimiz-

ing the expected energy demand for real-time tasks which show
variations in their execution times. In our model, we do not only
consider the required computational time of single tasks in isola-
tion but also the load of subsequent tasks. Moreover, we performed

a theoretical analysis of the presented model and showed that it is
possible to find optimal solutions for a subset of problem instances.
For the remaining instances, we proposed a heuristic approach with
low overhead. For each context switch our approach uses at most
two switches of the processor frequency. Thus, the run time effi-
ciency of our frequency scaling scheme is much better than that for
straightforward generalizations of single-task approaches such as
[9]. Although we restrict the number of frequency changes, our en-
ergy minimization outperforms related approaches from literature
due to its ability to consider the future load that subsequent tasks
place on the system. As a further interesting application one can
also think about using our approach for more complex real-time
systems which include aperiodic tasks.

7. REFERENCES
[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd

edition, September 1999.

[2] T. D. Burd and R. W. Brodersen. Energy efficient CMOS
microprocessor design. In Proc. of HICSS 1995.

[3] F. Gruian. Hard real-time scheduling for low-energy using stochastic
data and DVS processors. In Proc. of ISLPED 2001.

[4] Intel. Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor, March 2004.
http://www.intel.com/design/intarch/papers/301174.htm.

[5] W. Kim, J. Kim, and S. Min. A dynamic voltage scaling algorithm
for dynamic-priority hard real-time systems using slack time
analysis. In Proc. of DATE 2002.

[6] C.-H. Lee and K. G. Shin. On-line dynamic voltage scaling for hard
real-time systems using the EDF algorithm. In Proc of. RTSS 2004.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[8] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling
algorithms with PACE. SIGMETRICS Perform. Eval. Rev.,
29(1):50–61, 2001.

[9] Z. Lu, Y. Zhang, M. Stan, J. Lach, and K. Skadron. Procrastinating
voltage scheduling with discrete frequency sets. In Proc. of DATE
2006.

[10] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In Proc. of SOSP 2001.

[11] TI. Power Management Guide, 2010. http://power.ti.com (TI
MSP430 & TPS780xx).

[12] C. Xian, Y.-H. Lu, and Z. Li. Dynamic voltage scaling for
multitasking real-time systems with uncertain execution time.
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 27(8):1467–1478, Aug. 2008.

[13] R. Xu, R. Melhem, and D. Mossé. A unified practical approach to
stochastic DVS scheduling. In Proc. of EMSOFT 2007.

[14] R. Xu, C. Xi, R. Melhem, and D. Moss. Practical PACE for
embedded systems. In Proc. of EMSOFT 2004.

[15] W. Yuan and K. Nahrstedt. Energy-efficient CPU scheduling for
multimedia applications. ACM Tran. Comp. Syst., 24(3):292–331,
2006.

[16] Y. Zhang, Z. Lu, J. Lach, K. Skadron, and M. R. Stan. Optimal
procrastinating voltage scheduling for hard real-time systems. In
Proc. of DAC 2005.

47

4.2

