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ABSTRACT
In this paper we present a solver for Quantified Boolean Formu-
las (QBFs) which is based on And-Inverter Graphs (AIGs). We
use a new quantifier elimination method for AIGs, which heuris-
tically combines cofactor-based quantifier elimination with quan-
tification using BDDs and thus benefits from the strengths of both
data structures. Moreover, we present a novel SAT-based method
for preprocessing QBFs that is able to efficiently detect variables
with forced truth assignments, allowing for an elimination of these
variables from the input formula. We describe the used algorithm
which heavily relies on the incremental features of modern SAT-
solvers. Experimental results demonstrate that our preprocessing
method can significantly improve the performance of QBF prepro-
cessing and thus is able to accelerate the overall solving process
when used in combination with state-of-the-art QBF-solvers. In
particular, we integrated the preprocessing technique as well as the
quantifier elimination method into the QBF-solver AIGSolve, al-
lowing it to outperform state-of-the-art solvers.

Categories and Subject Descriptors: J.6 [Computer Aided Engi-
neering]: Computer Aided Design

General Terms: Algorithms, Verification

Keywords: Quantified Boolean Formulas, Boolean Satisfiability

1. INTRODUCTION
Quantified Boolean Formulas (QBF) are a generalization of pro-

positional formulas by adding existential as well as universal quan-
tifiers. The addition of quantifiers on the one hand allows for the
compact representation of many different problems from verifica-
tion (e.g. [28, 9, 15]), planning (e.g. [25]), and other domains, but
on the other hand comes at the price of increased complexity: deter-
mining the satisfiability of a QBF is a PSPACE-complete problem
and thus assumed to be harder to solve than the SAT problem for
propositional formulas.

The importance of the problem has given rise to the development
of a number of powerful QBF-solvers which are able to tackle QBF
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problems originating from practical applications. Such solvers in-
clude search-based approaches [32, 13] which apply an extension
of the DPLL algorithm known from SAT [7], as well as solvers
based on eliminating variables by different methods, such as sym-
bolic skolemization [3], resolution and expansion [4], and symbolic
quantifier elimination using AIGs [23].

In this paper we propose a novel method for quantifier elimina-
tion which is based on the symbolic quantifier elimination using
AIGs [23], but combines the advantages of AIGs and BDDs [5]
by integrating both AIG and BDD techniques. The success of our
quantifier elimination method relies on a close interaction between
AIG and BDD techniques controlled by observing the sizes of in-
termediate results during the solution process.

Another improvement presented in this paper is based on pre-
processing. Similar to the SAT domain, where preprocessing [10]
has proven to be very effective in accelerating the solving process,
various preprocessors for QBF instances have been presented (e.g.
[27]), successfully supporting QBF-solvers by substantially simpli-
fying the input formulas.

One technique used by several solvers for SAT formulas is known
as failed literal detection [18] or as unit propagation look-ahead.
Given a CNF φ and a variable x occurring in φ this method specu-
latively performs unit propagation for φ∧x and φ∧x. If a conflict
occurs during the first (second) propagation, x (x) is called a failed
literal and φ is simplified by permanently assigning x to false
(true).

In [29] the authors describe a similar algorithm for the use in
a decision procedure for logic programming problems. They also
point out that it is not necessary to examine all literals, instead lit-
erals implied by non-failed literals may be skipped.

The detection of a failed literal x can also be achieved by re-
cursive learning [17] with depth 0, if the assignment of x to true
necessarily implies conflicting assignments. By increasing the re-
cursion depth, recursive learning is able to detect even more ‘failed
literals’ than a pure unit propagation look-ahead. However, for rea-
sons of efficiency the recursion depth of recursive learning is usu-
ally limited to small constants.

In this paper we present a novel method for preprocessing QBFs
called constant detection, that lifts the idea of failed literal detec-
tion to the QBF domain but differs from the former in two substan-
tial aspects:

(1) Since the QBF problem is much harder to solve than the SAT
problem, we can afford using a more powerful and more expensive
method for constant detection than unit propagation: in fact we
apply full SAT-checks for detecting constants.

(2) In order to avoid futile checks for constants, we apply a so-
phisticated learning scheme, that exploits satisfying assignments
returned by the SAT-solver to eliminate candidates for future con-
stants checks.

The paper is structured as follows. In Sect. 2 we briefly review
the logic of Quantified Boolean Formulas, in Sect. 3 we describe
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our algorithm for constant detection and in particular the learning
scheme, in Sect. 4 we describe the integration of constant detection
and the improved quantifier elimination scheme based on a close
interaction between AIGs and BDDs into the QBF-solver AIGSolve
[23]. In the last section we report the results for an extensive set of
experiments that demonstrate the effectiveness of our approach.

2. PRELIMINARIES
A quantified boolean formula ψ ∈ QBF in prenex form is a

formula Q1x1 . . .Qnxn.φ(x1, . . . , xn) where Qi ∈ {∀, ∃} are
universal and existential quantifiers and φ(x1, . . . , xn) is a propo-
sitional formula over the boolean variables x1, . . . , xn.

Q1x1 . . .Qnxn is called the prefix and φ is called the matrix
of ψ. If the matrix is in conjunctive normal form, a QBF is said
to be in prenex normal form. Existentially (universally) quantified
variables are called existential (universal) variables for short. The
quantifier prefix induces an order<q on the variables xi: xi <q xj

iff xi occurs before xj in the prefix.

3. CONSTANT DETECTION
Theorem 1 (Simplification by Constant Literals) Let
ψ = Q1x1 . . .Qnxn.φ(x1, . . . , xn) be a QBF.

Ifφ(x1, . . . , xn) → xi then

ψ′ = Q1x1 . . .Qnxn.φ(x1, . . . , xn) ∧ xi is equivalent toψ

Proof: Since (φ → xi) =⇒ (φ ≡ (φ ∧ xi)), the matrices of
ψ and ψ′ are equivalent, and thus the two QBFs are equivalent as
well [27].

Analogously, Thm. 1 holds for the case that φ(x1, . . . , xn) im-
plies xi.

If we can prove that φ(x1, . . . , xn) → xi holds, we call xi a
constant literal and we are allowed to add xi as a unit clause to
the QBF ψ, yielding an equivalent QBF ψ′. If xi is universally
quantified in ψ’s quantifier prefix, then ψ is unsatisfiable. If xi is
existential, the resulting QBF can be simplified by unit propagation,
eventually further enabling other simplification techniques.

3.1 SAT-Based Detection of Constant Literals
A naive approach to detect all constant literals of a QBF formula

is given in Alg. 1.

Algorithm 1: Naive detection of constant literals

Input: QBF Q1x1 . . .Qnxn.φ(x1, . . . , xn)
Output: Set of constant literals
C := ∅;
foreach xi ∈ {x1, . . . , xn} do

if φ ∧ xi is UNSAT then
C := C ∪{xi};

else if φ ∧ xi is UNSAT then
C := C ∪{xi};

return C

For each variable xi the algorithm performs SAT checks for test-
ing whether the variable (or its negation) is a constant literal. In
the worst case (if no constant literals exist) 2 · n SAT problems are
solved.

In case an individual SAT instance is satisfiable (and thus the
tested literal is not constant), the SAT-solver returns a SAT-model
of the SAT formula, assigning truth values to all variables occuring
in the formula. These models can be exploited to prevent (unsuc-
cessful) SAT checks for constants: suppose the SAT formula φ∧xi

is satisfiable and the returned modelM assigns the variable xj (oc-
curing in φ) to the value true. Then there is no need to check
whether φ∧ xj is unsatisfiable since M is also a model for φ∧ xj .
This observations give rise to an improved method for the detection
of constant literals as shown in Alg. 2.

The algorithm first checks whether φ is satisfiable and immedi-
ately returns if the instance is unsatisfiable. In case of satisfiability,
the SAT-model is examined: if it assigns true (false) to a vari-
able xi, we know that the literal xi (xi) cannot be a constant literal
and we record in the set T that the literal xi (xi) still needs to be
tested to be constant true. After this initial step we perform the
remaining recorded tests for constants exploiting the SAT-models
of satisfiable instances to refine the set T by deleting the literals
corresponding to variable assignments from it.

Altogether the algorithm performs at least |C| + 1 SAT-checks
(ignoring the case that φ is unsatisfiable) and at most n+1 checks if
either all variables are constant literals or no refinement is possible.

Algorithm 2: Improved detection of constant literals

Input: QBF Q1x1 . . .Qnxn.φ(x1, . . . , xn)
Output: Set of constant literals
C := ∅; T := ∅;
if φ is SAT then

foreach lit ∈ model(φ) do
T := T ∪{lit};

else
return UNSAT

foreach lit ∈ T do
if φ ∧ lit is UNSAT then

C := C ∪{lit};
else

foreach lit′ ∈ model(φ ∧ lit) do
T := T \{lit′};

return C

The number of calls to the SAT-solver can further be reduced
by modifying the solver’s decision heuristics: instead of deciding
variables to arbitrary values1 during the search for a satisfying as-
signment to disprove that a literal is constant true it would be bet-
ter, if the solver preferred to decide variables to values that have
not already occurred in satisfying assignments of previous constant
checks, such that the resulting satisfying assignment is more suc-
cessful in ruling out following checks for constants (i.e. the last
foreach-loop in Alg. 2 is more successful in removing candidates
from the set T ).

After computing the initial model of the CNF φ in Alg. 2, we
set the preferred decision value for each variable to the negation of
variable’s value in the initial model2.

As we will show in the experimental section, learning from sat-
isfying assignments as done in Alg. 2 in combination with modify-
ing the solver’s decision heuristics is indeed able to prevent a large
number of unsuccessful checks for constants, such that the aver-
age number of actually performed SAT-checks decreases to only a
small percentage of the possible checks.

Moreover, note that the SAT checks performed in Alg. 2 (check-
ing φ or φ∧lit for different literals) share almost all of their clauses.
Therefore we make use of the opportunity to perform incremen-
tal SAT checks [30]. Thereby, the solution of a series of similar
problems is accelerated to a large extent, since the solution process
for one SAT instance profits from knowledge (in form of conflict
clauses) obtained during the solution process for similar problems.

4. QBF SOLVING
To evaluate the performance of the algorithm presented in the

previous section as well as our quantifier elimination based on AIGs
and BDDs we modified the QBF-solver AIGSolve [23]. In this sec-
tion we summarize our modifications and show how they are inte-
grated into the flow of AIGSolve. Finally, we illustrate the approach
by analyzing the solution process for two typical examples from

1In our implementation we use MiniSAT [11], which decides vari-
ables to the value false by default.
2MiniSAT provides the function “setPolarity” for modifying the
default decision values of arbitrary variables.
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QBF Evaluation 2008 [22].

4.1 Preprocessing
In the main loop of the preprocessing phase unit propagation [8],

subsumption checking [10], for-all reduction [27], and equivalence
reduction [26] are applied until closure. Finally trivial SAT checks
(omitting the quantifier prefix) are performed to check whether the
matrix of the formula is unsatisfiable or a tautology [6].

The SAT-based constant detection is embedded into the main
preprocessing loop as depicted in Alg. 3. Note that the time the
solver is allowed to spend in constant detection is strictly limited.3

If the time for constant detection is exceeded, constant detection
is aborted and the set of constants discovered until this point is re-
turned.

Moreover, we extended AIGSolve’s preprocessing routine to per-
form a complete expansion of the universal variables [2, 4] if only
a few universal variables are remaining after preprocessing, effec-
tively turning the QBF problem into a pure SAT instance, which is
then handed over to a SAT-solver. Since expansion is only applied
to instances with few universal variables, the resulting formulas are
of moderate size and can efficiently be solved by SAT-solvers.

Algorithm 3: Modified preprocessor

Input: QBF Q in prenex normal form
Output: Simplified QBF
repeat

Q′ := Q;
repeat

Q′′ := Q;
UnitPropagation(Q);
Subsumption(Q);
ForAllReduction(Q);
EquivalenceReduction(Q);

until Q′′ = Q ;
C := ConstantDetection(Q);
Q := Q

V
c∈C c;

until Q′ = Q ;
if Only few universal quantifiers in Q then

Q := ExpandUniversals(Q);
if Matrix of Q is satisfiable then

return SAT
else

return UNSAT

else
TrivialSatisfiability(Q);

return Q

4.2 AIG-Based Solving with BDD Support
After preprocessing, AIGSolve scans the remaining QBF formula

for clausal gate definitions as it is done for example in SAT prepro-
cessing [10] or by other QBF preprocessors and solvers [4, 12] and
finally eliminates the defined variables by substituting them with
their definitions. Unlike other approaches, AIGSolve does not pro-
duce a flat CNF, which may blow up during this step, but generates
a compact non-CNF, circuit-like representation, which is later di-
rectly transformed into an And-Inverter Graph (AIG) [16].

Furthermore, the linear quantifier prefix of the prenex QBF for-
mula is dissolved by pushing the quantifiers into the non-CNF ma-
trix, producing a tree-shaped QBF formula while minimizing the
scope of quantifiers as also performed in sKizzo [3].

As presented in [23] the original AIGSolve would then transform
the QBF into an AIG representation and eliminate all quantifiers in
a bottom-up fashion by performing cofactoring on AIG cones (sim-
ilar to the BED-based approach in [1]), compressing the individual
results of quantifier elimination by BDD-sweeping [24], functional
reduction [20] and DAG-aware rewriting [19] of the AIG structure.

BDD-sweeping may compress the AIG representation of a func-
tion, if a BDD of reasonably small size can be constructed for this
function. If such a BDD is found, a structurally equivalent AIG

3In our implementation we used a limit of 20 seconds.

is built which replaces the original AIG, if this version is smaller.
Motivated by the observation already made by the authors of [23]
that BDD sweeping is able to compress the AIG representation in
many cases, we modified the quantifier elimination algorithm to
allow for an extended exploitation of good BDD representations:

Given an AIG f and a variable x which is to be quantified, we
first try to construct a BDD for the function represented by f . This
BDD construction is resource limited such that the procedure is
aborted in case the BDD representation blows up. If a BDD cannot
be computed or the BDD is too large, we perform normal cofactor
based quantifier elimination, followed by AIG-rewriting and func-
tional reduction steps to compress the resulting AIG.

If we were able to compute a reasonably small BDD for f , we
perform BDD-based quantifier elimination. Here we try not only to
quantify x, but also the other variables from the same (existential
or universal) quantifier block as x. The BDD based quantification
is performed with a size limit and it has the advantage that it can
eliminate several variables at once, if successful. If the BDD based
method does not fail, we transform the result back to an AIG repre-
sentation, again performing rewriting and functional reduction for
compressing the result.

If the quantifier elimination was performed by AIG operations
and the AIG did not grow too much due to the elimination, we stick
to AIG-based quantifier elimination for the next steps and avoid
computing BDDs.

4.3 Examples
Whereas pure BDD based methods have not been very success-

ful compared to other QBF solvers [21], we have made the experi-
ence that an integration of AIG- and BDD-based methods is very
beneficial.

To demonstrate the interaction between AIG- and BDD-based
quantifier elimination methods, we briefly look into the solver’s
behavior on two benchmarks from QBF Evaluation 2008:

The stmt21_4_354 instance initially contains 3112 variables dis-
tributed on two quantifier blocks, as well as 25780 clauses. AIG-
Solve’s preprocessor slightly reduces the number of variables by
5 and the number of clauses by 45. In the remaining QBF for-
mula, AIGSolve detects and extracts 2777 functional definitions
(2744 AND-gates and 33 XOR-gates), such that only a single bi-
nary clause is left in the formula and the innermost quantifier block
is reduced to only 70 existential variables. The resulting structure
of the QBF is shown on the left hand side of Fig. 1. Gray and
white ellipses denote universal and existential quantifier blocks, an-
notated with the number of quantifiers. If such an ellipse has more
than one outgoing edge, then it represents also an AND operation
for all outgoing edges before quantification. Sets of clauses are pre-
sented as white boxes, and the extracted gate structure is shown as
a gray trapezoid.

After transforming the functional definitions (2277 gates) into
an AIG representation consisting of 2414 nodes, AIGSolve starts
eliminating quantifiers in a bottom-up manner. The development
of AIG nodes is shown in Fig. 2 (upper part). AIGSolve first tries
to compute a BDD for the AIG structure which fails due to resource
limits. Therefore the solver starts to eliminate the innermost exis-
tential quantifiers using AIG-based quantifier elimination. Since
the number of AIG nodes is not increasing, the solver sticks to
AIG-based quantification and does not try to build BDDs for the re-
maining existential quantifiers. It can be observed that AIG based
quantifier elimination performs well for a large number of steps.
Although the AIG sizes may potentially double with each quantifi-
cation of a single variable in the worst case, the sizes remain small
due to the compression techniques used. After performing all ex-
istential quantifications, the solver then continues to eliminate the
universal quantifiers, again using the AIG-based method. Since the
number of AIG nodes actually grows during some universal quan-
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Figure 1: Quantifier Trees

tifications, the solver tries to compute BDD representations which
again fails due to resource limits (Crosses in Fig. 2 mark failed
BDD computations). At the point where only 67 universal quanti-
fiers are left, BDD computation finally succeeds and the remaining
quantifiers can be eliminated by BDD operations.

On the C880.blif_0.10_1.00_0_0_inp_exact instance, which is
hard according to QBF Evaluation,4 the solver’s behavior is com-
pletely different. Here, the preprocessor reduces the number of
variables from 1022 to 619 and the number of clauses from 6007 to
4201. Then 533 functional definitions (527 AND-gates and 6 XOR-
gates) are detected and extracted from the formula. The resulting
QBF structure after quantifier tree computation is shown in Fig. 1
(right hand side). Again, the solver starts to eliminate quantifiers
bottom-up, first trying to compute a BDD representation, which
fails, therefore AIG-based quantifier elimination is used. Unfortu-
nately, optimization techniques are not able to compress the AIG
representations such that the number of AIG nodes quickly grows.
Due to the growth, AIGSolve tries to compute BDDs for the inter-
mediate AIGs, which fails 14 times, forcing the solver to continue
AIG-based elimination for the innermost 14 quantifiers. Finally, af-
ter eliminating 14 quantifiers, the computation of a BDD succeeds
for an AIG containing 71287 nodes. The remaining quantifiers are
all eliminated by BDD operations.

These two examples with completely different characteristics il-
lustrate that a tight interaction between AIG and BDD based meth-
ods is indeed crucial for the success of the method.

5. EXPERIMENTAL RESULTS

5.1 Setup
For all experiments we used the complete benchmark set of the

QBF Evaluation 2008 [22] consisting of 3328 benchmarks from
various application domains. All benchmarks were run on a 16 core
AMD Opteron with 2.3 GHz and 64 GB of memory5. We used a

4This means that no solver taking part in the evaluation was able to
solve these instances within the timeout of 600 CPU seconds.
5The preprocessors and solvers were run as 32 bit processes, so the
memory was effectively limited to 4 GB.

Figure 2: Development of AIG node counts

time limit of 600 CPU seconds to be consistent with the result of
the QBF Evaluation, failed instances (violation of time or memory
limits) are considered to contribute 600 CPU seconds to the overall
run time.

We extended the AIG-based solver AIGSolve1.0 presented in
[23] by the methods described in this paper and refer to the re-
sulting solver as AIGSolve2.0.

5.2 Effect on preprocessing
In order to evaluate the effectiveness of the proposed SAT-based

constant detection technique, we first applied three variants of AIG-
Solve2.0’s preprocessing component on the complete QBF Evalu-
ation 2008 benchmark set: one which does not perform SAT-based
constant detection at all (“No Constant Detection”), one which ad-
ditionally includes SAT-based constant detection but with the origi-
nal decision heuristics (“Constant Detection (original decision heu-
ristics)”), and one which includes constant detection along with the
proposed modification of the decision heuristics (“Constant Detec-
tion (modified decision heuristics)”).

Table 1 shows the results grouped by benchmark classes: for
each benchmark class (“class”, with “count” instances), the table
lists the number of instances completely solved by each prepro-
cessor variant (“solved”). Columns “preproc. time” and “const.
det. time” give the average total preprocessing times and the aver-
age times used for SAT-based constant detection in CPU seconds.
To measure the effect of learning from satisfying assignments dur-
ing constant detection, the table also lists the average percentages
of avoided SAT checks (“avoided checks”). The global effect of
constant detection is shown in the remaining two columns: col-
umn “constants” lists the average ratio of detected constants and
initial variables of the instance, column “eliminated variables” de-
notes the average percentages of formula variables eliminated by
the whole preprocessing procedure (including unit propagation, de-
tection of equivalent literals etc.).

The preprocessor variant without constant detection is able to
preprocess the benchmarks in an average of 3.0 CPU seconds, al-
ready solving a total of 493 instances. On average 25.4% of the
initial variables are eliminated by the preprocessor.

Including the SAT-based constant detection method into the pre-
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abduction 303 1 6.0 2.8% 1 9.0 3.1 8.5% 15.9% 21.4% 1 6.1 0.1 87.2% 15.9% 21.4%
adder 32 0 0.0 11.9% 0 5.0 4.9 46.5% 0.0% 11.9% 0 0.4 0.3 98.2% 0.0% 11.9%
bbox 478 110 0.3 53.1% 110 11.4 11.1 32.6% 0.4% 54.2% 110 5.5 5.1 96.3% 0.6% 54.3%

blocks 13 8 0.0 74.8% 8 0.1 0.1 48.9% 9.4% 82.0% 8 0.1 0.0 77.8% 9.4% 82.0%
bmc 132 109 130.9 82.6% 108 144.3 12.4 56.2% 1.5% 81.8% 110 130.5 5.8 95.5% 1.6% 83.3%

circuits 63 8 195.8 39.7% 8 198.4 9.2 62.6% 0.0% 39.7% 8 190.1 2.3 98.6% 0.0% 39.7%
counter 24 8 0.1 34.1% 8 4.2 4.1 60.1% 0.0% 34.1% 8 0.2 0.2 94.9% 0.0% 34.1%

debug 38 0 456.5 1.1% 0 474.7 7.9 67.8% 0.0% 1.0% 0 471.1 6.5 89.0% 0.0% 1.1%
ev-pr 38 0 17.6 11.1% 0 34.8 13.6 10.4% 0.0% 11.7% 0 17.9 0.8 95.1% 0.0% 11.7%
fpga 8 2 5.1 25.6% 2 7.0 0.0 34.8% 0.0% 25.6% 2 6.2 0.0 88.5% 0.0% 25.6%

jmc-quant+sqr 20 0 0.0 6.3% 0 2.2 2.2 47.5% 0.1% 6.5% 0 0.2 0.1 95.6% 0.1% 6.5%
k_* 378 18 0.2 5.8% 44 3.9 3.6 76.9% 1.1% 19.5% 44 2.7 2.4 88.1% 1.1% 20.0%

planning 24 6 208.1 25.2% 5 256.1 5.0 58.7% 2.4% 21.8% 5 226.3 3.1 92.7% 2.4% 21.9%
qshifter 6 0 120.8 0.0% 0 121.3 0.0 47.5% 0.0% 0.0% 0 119.3 0.0 95.0% 0.0% 0.0%

scholl-becker 64 32 0.5 61.7% 32 3.4 3.3 50.8% 4.2% 62.4% 32 1.7 1.6 90.0% 4.2% 62.4%
sorting 84 10 0.0 21.1% 10 4.6 4.6 39.3% 0.0% 21.1% 10 0.3 0.2 89.3% 0.0% 21.1%

s_* 171 0 0.6 13.7% 0 11.9 11.1 91.5% 1.1% 15.2% 0 7.0 6.3 97.2% 1.3% 15.5%
stmt 713 6 0.1 2.5% 6 6.0 6.0 48.2% 0.5% 3.2% 6 0.7 0.6 96.5% 0.6% 3.3%

szymanski 12 0 0.7 0.3% 0 17.3 16.5 36.9% 0.1% 0.5% 0 12.2 11.3 95.3% 0.1% 0.5%
tipdiameter 203 36 0.2 28.5% 36 6.5 6.3 33.3% 9.3% 39.0% 36 2.3 2.1 88.2% 12.6% 44.6%
tipfixpoint 446 69 0.3 19.7% 69 13.6 13.2 25.3% 3.7% 26.5% 69 4.3 4.1 94.3% 7.2% 32.2%

other 78 70 5.2 90.3% 70 8.3 2.1 57.2% 2.2% 90.3% 70 5.3 0.5 76.6% 2.3% 90.3%
total 3328 493 3.0 25.4% 517 10.3 7.6 44.3% 3.1% 30.7% 519 5.4 2.6 92.9% 3.8% 31.9%

Table 1: Effects of Constant Detection on Preprocessing

processor (but not using the modified decision heuristics) increases
the average preprocessing time to 10.3 CPU seconds, on average
7.6 CPU seconds are used for constant detection. The constant de-
tection component of the preprocessor is able to prove that 3.1% of
the initial variables are constants, on average eliminating 30.7% of
all variables from the instances. Note that successful constant de-
tection may trigger further simplification steps in the preprocessor
such that the percentage of eliminated variables may be higher than
the sum of the percentages of eliminated variables without constant
detection and the percentage of detected constants. However, the
percentage of avoided SAT-checks is only 44.3%, which indicates
that learning from satisfying assignments during constant detection
is not very efficient when relying on the default decision heuristics
of the SAT-solver.

Using the modified decision heuristics considerably increases the
quality of satisfying assignments returned by the SAT-solver: the
percentage of avoided SAT checks raises to 92.9% while the time
used for constant detection decreases to 2.6 CPU seconds. Due to
faster constant detection, the time limit for constant detection is less
often violated, resulting in more variables to be detected as con-
stants (3.8%) and more variables to be removed from the instances
(31.9%). Moreover, 519 instances are solved just by applying pre-
processing.

On some benchmark classes constant detection is especially suc-
cessful: for abduction 15.9% of the variables are proven to be
constant, the tipdiameter benchmarks contain 12.6% constant vari-
ables, in blocks 9.4% constants are detected. Conversely, there are
some benchmark classes, where no constants could be detected, in-
cluding adder, circuits, and sorting.

Altogether, constant detection in combination with a clever mod-
ification of the decision heuristics notably improves the preproces-
sor in terms of eliminating variables from the preprocessed QBF
instance while leading to only a small increase in runtime.

5.3 Effect on solving and comparison with
state-of-the-art solvers

In a second experiment, we wanted to find out if the additional
effort for detecting constant literals and our modifications to the in-
teraction between AIG and BDD based solving techniques have a

positive effect on the performance of the actual solver component
of AIGSolve2.0. Again we used multiple preprocessor variants: one
with (“AIGSolve2.0 (CD)”) and without constant detection (“AIG-
Solve2.0 (no CD)”). For the variant with constant detection, we also
applied modification of the decision heuristics. For comparison, we
ran the latest versions of the two search-based QBF-solvers yQuaf-
fle [31] and QuBE [13], as well as the two elimination based solvers
Quantor [4] and sKizzo [3] on the benchmark set. This selection of
solvers includes the winners of the previous two QBF evaluations
(sKizzo and Quantor), as well as the most powerful search-based
solver according to QBF Evaluation 2008 (QuBE). Furthermore,
to capture the effect of the other modifications to AIGSolve that we
described in section 4, we also display results for AIGSolve1.0. The
results are shown in table 2: for each solver and each benchmark
class the column “solved” lists the number of solved instances,
the column “time” displays the total amount of used time in CPU
hours.

AIGSolve1.0 solves a total of 1976 instances, which lies between
the numbers of instances solved by sKizzo (1692) and QuBE (2205),
but which is considerably larger than the numbers achieved by the
solvers Quantor (973) and yQuaffle (923).

Applying the modifications to the quantification algorithm and
to the preprocessor (expansion of universal variables) (leading to
AIGSolve2.0 (without constant detection)) improves performance
in 19 benchmark classes, such that it is able to solve 2195 instances
in total which is slightly below the QuBE’s success rate. A closer
look at the the individual solver runs reveals that the large increase
of solved instances in the “bmc” class is due to the expansion of
universal variables, whereas the increase in other classes results
from the modified quantifier elimination algorithm.

Including the SAT-based constant detection method, lets AIG-
Solve2.0 improve its success rate in 9 of the 22 benchmark classes.
Altogether it solves 2370 benchmarks and thus clearly outperforms
all other solvers. The largest gain is achieved in the class abduc-
tion where constant detection was able to find the largest number
of constants. But also on other classes (especially tipfixpoint, stmt
and k_*) the solver’s performance increases notably.

Comparing the best version of AIGSolve2.0 with the four other
solvers, one can furthermore observe that AIGSolve2.0 has a large
number of uniquely solved instances: it uniquely succeeds on 261
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AIGSolve1.0 AIGSolve2.0 AIGSolve2.0
yQuaffle Quantor sKizzo QuBE (no CD) (CD)
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abduction 303 260 7.4 80 38.9 171 23.1 286 3.2 78 38.6 79 38.4 196 20.0
adder 32 4 4.7 8 4.0 10 3.7 5 4.5 19 2.8 24 1.7 24 1.7
bbox 478 142 56.0 130 58.0 171 51.5 388 16.8 196 48.2 205 45.9 212 44.7

blocks 13 11 0.4 13 0.0 8 0.8 7 1.0 6 1.2 8 0.8 8 0.8
bmc 132 70 11.2 115 3.4 86 7.9 57 13.1 30 17.2 109 4.8 110 4.7

circuits 63 4 9.8 8 9.3 6 9.5 4 9.8 4 9.9 8 9.3 8 9.2
counter 24 9 2.5 12 2.0 12 2.0 9 2.5 13 2.2 16 1.5 16 1.5

debug 38 0 6.3 33 2.1 0 6.3 0 6.3 0 6.3 0 6.3 0 6.3
ev-pr 38 7 5.2 1 6.2 10 4.7 17 3.8 0 6.3 1 6.3 2 6.2
fpga 8 7 0.2 8 0.0 7 0.2 6 0.4 6 0.6 5 0.5 5 0.5

jmc-quant+sqr 20 0 3.3 0 3.3 0 3.3 5 2.7 11 1.8 16 0.7 16 0.7
k_* 378 133 42.3 259 20.3 281 16.8 209 29.2 335 9.2 338 7.9 350 6.0

planning 24 8 2.8 15 1.8 4 3.3 6 3.1 1 3.8 9 2.7 10 2.8
qshifter 6 1 0.8 6 0.0 6 0.0 5 0.2 6 0.0 5 0.2 5 0.2

scholl-becker 64 36 5.1 38 4.8 32 5.3 37 4.8 46 3.2 50 2.2 50 2.4
sorting 84 25 10.2 39 7.6 12 12.0 33 8.8 10 12.8 11 12.2 11 12.2

s_* 171 1 28.3 17 26.1 13 26.4 62 19.6 33 24.2 66 20.3 66 20.3
stmt 713 9 117.3 21 115.5 633 14.8 610 17.4 653 17.0 665 12.2 682 8.8

szymanski 12 0 2.0 3 1.5 5 1.2 12 0.0 3 1.5 5 1.2 5 1.2
tipdiameter 203 68 22.8 77 21.3 96 18.3 157 8.4 184 4.1 185 3.4 190 2.7
tipfixpoint 446 66 63.4 19 71.2 54 66.0 222 39.9 270 32.3 314 24.7 328 21.8

other 78 62 2.9 71 1.2 75 0.5 68 1.8 72 1.2 76 0.5 76 0.5
total 3328 923 405.1 973 398.7 1692 277.8 2205 197.4 1976 244.4 2195 203.3 2370 175.1

Table 2: Comparison with other Solvers

benchmarks followed by QuBE (238), Quantor (72), sKizzo (3),
and yQuaffle (3).

247 of the instances solved by AIGSolve2.0 have also been rated
“hard” at the QBF Evaluation 2008, which indicates that no solver
taking part in the evaluation was able to solve these instances within
600 CPU seconds.

6. CONCLUSIONS
In this paper, we presented a novel preprocessing technique for

QBF deploying incremental SAT-checks to prove that variables are
constant in all satisfying assignments and thus can be eliminated.
As shown in the experiments, the key component of this method
is the exploitation of satisfying assignments computed by the SAT-
solver, which is especially effective when the solver’s decision heu-
ristics are modified to produce “helpful” assignments. Further-
more, we described an original hybrid quantifier elimination scheme
for AIGs, which combines AIG and BDD-based quantification to
profit from both representations. Experimental results on the in-
stances from the QBF Evaluation 2008 show that the integration of
the presented methods into the QBF solver AIGSolve considerably
increases the solver’s performance and lets it significantly outper-
form other state-of-the-art solvers.

For the future we plan to extend the hybrid quantifier elimination
algorithm by integrating and adapting other promising techniques
such as methods based on functional composition [14].
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