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Abstract

In this paper we present an approach to exploit pre-calculated implication knowledge in the construction of
LinAIGs which represent sets of states of Linear Hybrid Systems. Our method computes implications between
linear constraints and uses this information to strengthen SAT-based equivalence checks which occur during the
construction of the LinAIGs. The approach is evaluated on several hybrid model checking benchmarks where
LinAIGs are used as the core data-structure of the model checker. The results show that the use of implications
can significantly reduce the number of applications of expensive SAT-modulo-Theories (SMT) methods, and thus
can accelerate LinAIG compaction methods which use equivalence checks.

I. INTRODUCTION

In this paper we present a method for optimizing state set representations which are used during
the verification of Linear Hybrid Systems (LHASs) [5], [4]. Just as BDDs in the verification of discrete
systems, e.g., the so-called LinAIGs form a symbolic representation for sets of states of Linear Hybrid
Systems, which include both Boolean and real-valued state variables. LinAIGs represent arbitrary
Boolean combinations (including conjunction, disjunction and negation) of Boolean variables and linear
constraints. This is in contrast to approaches like [9], [8] where sets of states of LHAs are represented by
explicit representations of discrete states in connection with sets of convex polyhedra (i.e. conjunctions
of linear constraints), with one such set for each explicitly represented discrete state. The advantages
of LinAIGs become evident in particular in the case of LHAs with large discrete state spaces which
prohibit an explicit representation of discrete states. In [5], [4] LinAIGs were used in the context of
model checking of CTL formulas by backward analysis.

LinAIGs are an extension of FRAIGs (Functionally Reduced AND-Inverter-Graphs) [10], [11] by
linear constraints. Just as FRAIGs for Boolean functions they use a number of methods to keep the
invariant that there is not any pair of equivalent nodes in the representation which represent the same
function (up to complementation). In FRAIGs most non-equivalences of nodes are found by simulation,
whereas SAT methods are used in order to prove equivalences. In the case of LinAIGs equivalence
proofs may need SAT-modulo-Theories (SMT) solvers (more precisely SMT solvers for linear arithmetic)
instead of SAT solvers, since Boolean functions were enhanced by linear constraints. Here we can make
use of the tremendous advances of SMT solvers like Yices [6] or MathSAT [3], e.g., which were achieved
during last years (see also [2]). In simpler cases however, equivalences can already be proven by (more
efficient) SAT solvers just looking at the Boolean abstractions of linear constraints.

In this paper we make a detailed look into the question how the applicability of SAT solvers can
be extended by inserting information about linear constraints into the SAT problems. The information
which we insert is given by implications between linear constraints which can be easily pre-computed
and inserted into the SAT problems in form of additional clauses. Since implications between linear
constraints are transitive, we arrive at several options for inserting implications between the subsets of
linear constraints contained in the equivalence problems at hand (as will be shown later on in the paper).
Our realizations for these options make use of well-known results from graph theory.

First experimental results using benchmarks from industrial case studies show that our “layered
approach” for keeping the representations as compact as possible is indeed successful. In most cases
it is highly profitable to transport “easy-to-detect” information (in form of implications between linear
constraints) from the real-valued domain into the Boolean domain. The experiments also suggest a
clear tendency how graph theoretical operations like transitive closure and transitive reduction should
be applied to the implications before inserting them into SAT problems.
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Fig. 1. The Structure of LinAIGs

The paper is organized as follows: In Sect. II we will give a short overview of the LinAIG data-
structure including the main algorithm to maintain functional reduction of the structure. Sect. III focusses
on implications, their computation and the graph based storage of implications. In Sect. IV we elaborate
on how to exploit implications in SAT-based equivalence checks. After presenting experimental results
in Sect. V, we conclude the paper in Sect. VI.

II. LINAIGS

Let C = {c1,...,cs} be a disjoint set of continuous variables ranging over the reals R, and let
B = {by,..., by} be a disjoint set of Boolean variables ranging over B = {0, 1}. Let L(C) = {a; -1 +
co.agp-cp+ag <0ja; € QA ¢ € C} be the set of linear constraints over C.

P(C) is the set of all Boolean combinations of elements from £(C'), a formula of P(C') represents
a non-convex polyhedron over R/. We consider formulas from P(B, C), which is the set of all boolean
combinations of boolean variables from B and linear constraints over C.

As a data-structure to represent formulas from P (B, C') we use LinAIGs [5], [4]. LinAIGs are And-
Inverter Graphs (AIGs) enriched with linear constraints. The structure of LinAIGs is illustrated in Figure
1.

The main component of LinAIGs are And-Inverter Graphs, which basically are Boolean circuits
solely consisting on AND gates and inverters. The second component of LinAIGs is a representation of
the linear constraints £(C'). The linear constraints are attached to the AIG by a set of new (Boolean)
constraint variables () = {qi, ..., qs}, where each occuring linear constraint /; is uniquely encoded by
some ¢; € ().

In order to keep the LinAIGs representation compact, we maintain the functional reduction property,
i.e. we avoid to represent equivalent (and antivalent) functions by different LinAIG nodes. Functionally
reduced LinAlIGs are called semi-canonical, since each node in a functionally reduced LinAIG represents
a unique function (modulo complementation). This goal is achieved already during the construction of
the LinAIG.

A. LinAIG Construction

Algorithm 1 shows the pseudo-code of the main LinAIG construction method computing the con-
junction for two AIG nodes a and b. The algorithm extends the creation method of functionally reduced
AIGs (FRAIGs) [10], [11] by adding SMT-based equivalence checks to find equivalences modulo linear
constraints. The method produces a functionally reduced LinAIG by a layered application of various
methods with increasing power and complexity:

First, trivial cases are checked, e.g. if operands a and b are equal (up to complementation) or one
of the two operands is a constant. Then a unique table lookup is performed to find a node in the AIG
which would be isomorphic to the inserted node.



Next, equivalence checks are performed without interpreting constraint variables by their correspond-
ing linear constraints. If two nodes can be proved to be equivalent already without interpreting constraint
variables, then it is clear that they will remain equivalent when constraint variables are replaced by the
corresponding linear constraints. These equivalence checks are reduced to SAT problems and in this way
they provide a sound, but incomplete method for identifying already existing nodes representing the same
function as the conjunction of a and b. However, just as for FRAIGs, not all nodes are considered as
candidates for Boolean equivalence, but simulation is used to filter out easy-to-detect non-equivalences.
L.e. candidate nodes for Boolean equivalence are collected by boolean simulation and only for candidate
nodes with simulation results identical to those of the new AND node SAT-based functional equivalence
checks are performed. Note that, due to the LinAIG’s functional reduction property, at most one of the
candidate node can be equivalent to the new node. If an equivalence is found, the candidate node is
returned. For the SAT-based equivalence check of two nodes n; and ns, we encode the miter circuit
ny & no for the input cones of n; and ny as a CNF formula omitting the correspondence of constraint
variables and linear constraints. If the SAT solver is able to find a satisfying assignment to the variables
of the CNF, the two nodes n; and n, are proven to be non-equivalent (as long as the constraint variables
are not replaced by the corresponding linear constraints) and in this case we learn the assignment to
the Boolean input variables computed by the SAT solver as an additional Boolean simulation vector to
refine future boolean simulations determining sets of candidate nodes.

Finally, exact equivalence checks are performed using an SMT solver taking linear constraints into
account. Here filtering of candidates for equivalence is performed as well, but now (in order to avoid
assignments to the constraint variables which are inconsistent wrt. the linear constraints) simulations
with assignments to real variables c, . .., ¢y have to be used for proving non-equivalence. Finally, if no
equivalent node was found, the new node is returned.

Algorithm 1 OperationAnd

1: function OPERATIONAND(a, b) > Returns an AIG node equivalent to a A b
2 (trivial, trivial_result) « trivialCase(a,b) > Checks for trivial cases, e.g.a = b
3 if trivial then

4 return trivial_result

5 (exists_isomorphic,isomorphic_result) < searchForlsomorphicNode(a,b)> Checks if an

isomorphic node exists

6: if exists_isomorphic then

7: return isomorphic_result

8: new «— newNode(a,b) > Creates a new AIG node

9: for c € {n € AIG|bsim(n) = bsim(new)} do > Find candidates based on Boolean simulation

10: if equivalentSAT(c,new) then > Perform a SAT-based equivalence check

11: delete(new)

12: return c

13: for c € {n € AIG|rsim(n) = rsim(new)} do > Find candidates based on real valued
simulation

14: if equivalentSMT (¢, new) then > Perform an SMT-based equivalence check

15: delete(new)

16: return c

17: insertIntoLin AIG(new)

18: return new

Note that linear constraints are also subject to functional reduction, i.e. before inserting a new linear
constraint into the LinAIG, we check if there already exists an equivalent (or antivalent) constraint.
(If global variable bounds for variables c¢; are given, then we call two linear constraints already as
equivalent, if they do not differ in the subspace given by these bounds.) In such a case we avoid the
creation of a new constraint variable and reuse the existing one.
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III. IMPLICATIONS

Since SMT solver calls may be expensive, we now look into the question how the (incomplete)
SAT-based equivalence checks can be strengthened by inserting information about the linear constraint
domain into SAT problems. The information which we use is given by implications between linear
constraints which can be easily computed a-priori.

Definition 1 (Set of Implications) Let C' be a set of real-valued continuous variables, each variable
c; € C has upper and lower bounds [b;, ub; € R, such that Ib; < ¢; < ub; (unbounded variables have
infinite bounds). Let L C L(C') be a set of linear constraints over C.

The set of implications Z(L) is defined as

I(L) = {(Z?l, 32) | ll,lg c L, ll 7é lz, ny, N € B, < /\ (lb, <c < Ubl)> — (l?l — l7212)}

1<i<f
where 19 denotes complementation, i.e. I} :=l; and 19 := ;.

Note that, according to this definition, /7" already implies /52, if the implication relation holds inside
the subspace /\,;., (Ib; < ¢; < ub;) given by the global bounds on the real variables.

Due to efficiency reasons we only compute a subset [ of Z(L):

We compute implications between (parallel) linear constraints o; - ¢y + ...+ ay - ¢y + oy < 0 and
aj-c1+...+oap-cp+aj <0 where o > o (and analogously between negations of linear constraints).
It is easy to see that this is the only possible case of implications without taking the bounds of variables
into account. An example is shown in Figure 2(a) where lc; implies lc.

Additionally we use an incomplete method to detect implications modulo global variable bounds,
where a linear constraint o} - ¢; + ...+ o5 - ¢ + af < 0 follows from g - ¢; + ... +af- ¢+ <0
within the variable bounds [b; < ¢; < ub;. Figure 2(b) shows a situation where [c; implies the non-
parallel [c3 within the bounds (grey box).

A. Implication Graph

Let L = {lcy,...,lc,} be aset of linear constraints. The set I C Z(L) of detected implication relations
between pairs of (negated) linear constraints from L is represented in the implication graph, a skew-
symmetric' directed graph IG(L,I) = (V, E), where the set of vertices V' = {vje,, vi, - -  Viey Uy f
contains two vertices for each linear constraint [c; of L: the vertex v, for the non-negated constraint
and vy for the negated constraint. For each detected implication (lc; — lc;) € I we add the directed

edge (vic,, Vic,) and — since in this case E — lc; holds as well — its contrapositive (UE, UE) to the set
of edges ' (implications containing negations of linear constraints are handled analogously).
The implication graph for the set of linear constraints {lci,...,lcs} and the implications {lc; —

leg,leg — les,leg — ley, leg — e, les — ey, les — leg} is shown in Figure 3.

'A directed graph is skew-symmetric iff it is isomorphic to the graph formed by reversing all of its edges. Here, the corresponding
isomorphism o is given by o(vic,) = v and o(vi;) = vie; , forall 1 <i <n.
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Fig. 3.  An Implication Graph

Theorem 1 (Acyclicity of the Implication Graph) Ler L. C L(C') be a set of linear constraints over
C, containing pairwise non-equivalent and non-antivalent linear constraints only, and let I be a set of
implications between (negations) of linear constraints from L.

Then the implication graph IG(L, 1) is acyclic.

Proof: Assume that IG(L, ) has a cycle vy, vy, ..., Vp_1,Vm, v1. Due to the construction of the
implication graph there exist cyclic implications between the corresponding linear constraints, and thus
all constraints corresponding to the nodes on the cycle are pairwise equivalent or antivalent (depending
on negations), which is a contradiction to the theorem’s assumptions. [ |

Since we detect and merge equivalent (and antivalent) linear constraints during construction of the
LinAIG, the set of constraints contained in the LinAIG is free of equivalences (and antivalences).
According to Theorem 1 an implication graph for that set of constraints occuring in a LinAIG is
acyclic.

As we will describe in Sect. IV we add implications to SAT-based equivalence checks based on the
transitive closure and the transitive reduction of the implication graph.

Definition 2 (Transitive Closure) Let G = (V, E) be a directed graph. The transitive closure G =
(V,E") of G is a directed graph, such that (v,w) € E' if and only if there exists a directed path from
vtow in G.

The transitive closure of an acyclic graph can be computed in O(|V] - |E|) time.

Definition 3 (Transitive Reduction) Let G = (V, E) be a directed graph. The transitive reduction
G- =(V,E'), E' C E, of G is the smallest directed graph, such that there is a directed path from v
to w in G~ if and only if there is a directed path from v to w in G.

The transitive reduction of a graph G intuitively is the smallest subgraph of G that maintains all
transitive relationships between vertices of G, i.e. if there exists a directed path p = v,...,w in G then
there also exists a directed path p’ = v, ..., w in G™.

As shown in [1] the transitive reduction of an acyclic, directed graph is uniquely determined and can
be computed in O(|V| - | E|) time.

The algorithm for computing the transitive reduction of a directed, acyclic graph first traverses the
graph in topological order and for each node v € V' determines the set of nodes reachs(v) reachable
from v with a path of length > 2. In the second step all those edges (v, w) € E are deleted from the
graph, where there exists a path from v to w with length > 2, i.e. where w € reachy(v).

The uniqueness of the transitive reduction can be shown by proving that if there exist two edges
(v,w), (v, w') € F and two paths p = v,...,w and ¢ = ¢/, ... w" with length > 2, removing one of
the edges does not prevent a removal of the second edge.

IV. EXPLOITING IMPLICATIONS IN SAT CHECKS

A. A Motivating Example

Consider a pair of LinAIG nodes that are equivalent w.r.t. linear constraints.

The pure SAT-based equivalence check of the two LinAIG may find spurious satisfying assignments
because the correspondence between constraint variables and linear constraints is not taken into account,
and therefore it may classify the two nodes as non-equivalent.



Example 1 Consider the following LinAIG nodes, where qy and q, are the constraint variables of
lcg:co—1 <0 and lcy : cg <0 respectively.

O
no

Checking the equivalence of ng and ny using a SAT solver will return the satisfying assignment (qy =
0,q1 = 1) and thus classify the nodes as non-equivalent.

On the other hand, it is clear that (¢, — 1 < 0) A (cog < 0) = (¢o < 0), i.e. an SMT-based equivalence
check with full knowledge of linear constraints would classify the pair of nodes as equivalent, since
all assignments to the constraint variables that may lead to a counter example are infeasible w.r.t. the
corresponding linear constraints. In the example, the SMT check will detect the equivalence of ny and
ny.

However, it is possible to strengthen the SAT-based equivalence check procedure by adding limited
knowledge about linear constraints, enabling the SAT solver to prove some of the equivalences that
originally can only be found by full SMT checks. The knowledge that we use for this strengthening is
a subset of the implications we compute a-priory by simple methods.

In the example, adding the implication (lc; — lcp) in form of a binary clause expressing the
implication in terms of constraint variables (¢o V q1) to the CNF formula encoding the SAT-based
equivalence check, allows the SAT solver to prove the equivalence of ny and n;.

The exploitation of implications in SAT instances consists of two parts: (1) adding clauses to the SAT
instances corresponding to implications, and (2) making simulation vectors, created from the satisfying
assignments found by the SAT solver, consistent with the implications.

B. Adding Clauses

Let n; and ny be two LinAIG nodes, whose equivalence is to be checked by a SAT solver. Let L be
the set of linear constraints occuring in the union of n;’s and ny’s cones. Let I be the set of computed
implications between pairs of (negated) linear constraints occuring in the LinAIG.

By adding a set of implications I' to a CNF we mean that for any implication (¢« — b) € I’ we
introduce a binary clause expressing the implication in terms of the corresponding constraint variables,
e. g. for the implication (l¢c; — lc;) we add the clause (g; V ¢;) and for the implication (Ic; — lc;) we
add the clause (G V q;).

There are several different strategies for selecting the set of implications to be added to the CNF of a
SAT-based equivalence check. We will take a look on some of these strategies and discuss their effect
on the SAT instance.

To support the discussion, we introduce an example on which we will apply the different strategies:
Let {lcy,lco,lcs, leg, les, leg} be the linear constraints of a LinAIG, suppose we pre-computed the impli-
cations I = {lc; — lcg, lcy — les, ley — ey, ley — les, les — les, les — leg). Let L = {ley, ley, les, lcg)
be the constraints that are occuring in the cones of the two LinAIG nodes, whose equivalence is to be
checked. Figure 4(a) shows one part of the skew-symmetric implication graph.

The simplest strategy to select a set of implications is to take all implications, irrespective of which
constraint variables are occuring in the cones of the checked nodes. This method adds new variables to
the SAT instance (exactly those constraint variables that are needed for the clausal representation of the
implications but that do not occur in the cones). Additionally, since the set of all computed implications
may contain redundant implications, redundant clauses may be added to the CNF of the SAT instance.
Especially the size of small and easy SAT instances can be increased dramatically by this strategy. In
the example variables for the constraints [c; and lc3 would be added to the CNF, as well as a clause
corresponding to the redundant implication lco — [cs.
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Fig. 4. Different Strategies for Selecting Implications

The introduction of new variables can be avoided by filtering the implications, such that only those
implications are selected, whose both constraints are occuring in the cones to the tested nodes. The
disadvantage of this strategy is shown in Figure 4(b): it is possible that some transitive implication
relationships are omitted, leading to a suboptimal addition of implication knowledge and therefore
resulting in a “weaker” SAT-check. In the example, the transitive implications [c; — lcy and lc; — lcs
are lost by simple filtering.

Omitting known transitive relationships between linear constraints occuring in the cones can be
overcome by computing the transitive closure of the implication graph before filtering out implications
concerning linear constraints not occuring in the cones. Again, the set of added implications is not
minimal, since redundant implications may be added to the SAT instance. In our example, the redundant
implication lc; — lcg is added to the SAT instance (Figure 4(c)).

The minimized set of implications, in the sense that neither unneeded variables are introduced to the
SAT instance nor redundant implications are added, while maintaining the transitive relationships, can
be computed in a three staged approach: (1) compute the transitive closure of the implication graph, (2)
restrict the resulting graph to the set of linear constraints occuring in the SAT instance, and (3) eliminate
redundant implications by computing the transitive reduction of the restricted graph. The resulting set
of implications for our example is shown in Figure 4(d).

In our experimental section we compare three of these strategies (adding all implications, adding the
filtered transitive closure of the implications, and adding the minimized filtered transitive closure of
the implications) against a LinAIG version that relies on SMT check only, as well as a version that
performs SMT and SAT checks but completely omits implications.

Note that the transitive closure of the implication graph only needs to be recomputed if a new set of
linear constraints is added to the LinAIG and some new implications are computed.

C. Making Simulation Vectors Consistent with Implications

To guide the process of functional reduction we use simulation by Boolean simulation vectors gener-
ated from earlier SAT-based equivalence checks. Since typically only a subset of the linear constraints
existing in the LinAIG is involved in a SAT-based equivalence check, and, depending on the strategy,
only a subset of all computed implications is added to the CNF, the satisfying assignment returned by
the SAT solver may be incomplete, in the sense that is only assigns values to a subset of constraint
variables. Such an incomplete assignment must be extended to a complete assignment before it can be
used as a simulation vector. The extension is performed by assigning random Boolean values to the
unassigned variables.

In case implications are used in the SAT-based equivalence checks, the completed simulation vector
has to be consistent with the implications, i. e. the simulation vector must not assign values to constraint
variables that are conflicting with an implication between the two variables. Inconsistent simulation



Model PeakNodes LCs RVars Implications AndOps Total Equiv.
3LP-cont-int-ED 12475 240 11 2985 276812 20765
3LP-cont-int-Sta 82171 546 11 15139 1009625 118689
3LP-cont 1271 118 8 412 16122 1222
3LP-disc-int-ED 3052 78 4 137 119453 21500
3LP-disc-int-Sta 3135 114 4 190 141955 29870
4LP-cont-int-ED 110115 391 11 7343 2897275 418935
4LP-cont-int-Sta 112349 829 11 26067 3400221 477556
4LP-cont 2582 231 8 1171 47917 4399
4LP-disc-int-ED 11020 111 4 197 160752 35729
4LP-disc-int-Sta 17936 202 4 335 196777 44995
xing-cont-int-ED 10614 1397 11 55671 412635 26467
xing-cont-int-const1 6122 2022 8 78662 141622 20376
TABLE 1

COMMON MODEL CHECKING STATISTICS

vectors may prevent SAT-based equivalence checks for nodes, whose equivalence can be proven by
SAT enriched with implications.

A simulation vector can be made consistent with the implications by traversing the implication graph’s
vertices in topological order, and for each outgoing edge ('Ulcel v, eJ) modifying the simulation vector’s

value for the constraint variable of the implied constraint accordmg to the corresponding 1mphcat10n
e.g. if the edge is of the form (vlci,vlcj) the simulation vector’s value of the constraint variable c; is
set to 1 if ¢;’s value is 1, implications involving negated constraints are handled analogously.

Since all edges of the implication graph are processed exactly once, the algorithm is linear in the
number of edges.

V. EXPERIMENTAL RESULTS

We implemented the proposed methods for exploiting implication knowledge in our LinAIG frame-
work. We use the SAT solver MiniSAT [7] for the Boolean reasoning part and the SMT solver Yices
[6] for performing SMT-based equivalence checks.

For demonstrating the effectiveness of the proposed method we ran the hybrid model checker FOMC
[5], [4], which relies on LinAIGs as a symbolic data-structure for representing and manipulating state
sets, on several hybrid model checking benchmarks from industrial case studies. Details on the model
checking algorithm and the used benchmarks can be found in [5], [4].

We created five different versions of the LinAIG construction algorithm: the first version (SMT only)
only uses SMT-based equivalence checks for detecting equivalent LinAIG nodes, the second version
(SMT, SAT) additionally applies SAT checks omitting implications, the third variant (SM7,SAT+Imp) adds
all computed implications to each SAT instance, the forth variant (SMT,SAT+FTImp) performs SMT-
and SAT-based equivalence checks adding the filtered transitive closure of the implications to each SAT
instance, and the fifth version (SMT,SAT+RFTImp) performs SMT- and SAT-based equivalence checks
and adds the transitive reduction of filtered transitive closure of the implications.

All experiments were performed on an AMD Quadcore-Opteron with 2.3 GHz and 64 GB RAM
running Linux. All reported run times are given in CPU seconds.

We assembled a table (Table I) that lists for all benchmarks some statistics common to the five LinAIG
variants, like the number of linear constraints created during model checking, the number of continuous
variables occuring, the number of computed implications, the peak number of LinAIG nodes, and the
total number of detected equivalences.

As shown in Table I the number of linear constraints created during model checking ranges from 78
to 2022, up to 78662 implications are computed, and up to 477556 equivalent nodes are constructed
during the procedure.

For each version we looked into the equivalence detection part of the algorithm. Table II shows
the results of the different methods by counting the number of SAT-based equivalence checks and the
number of equivalences detected by SAT (rows SAT: chk/eq), the number of SMT-based equivalence
checks and the number of equivalences detected by SMT (rows SMT: chk/eq), the amounts of time



needed for SAT solving?, implication handling®, and SMT solving (rows Time: SAT/Imp/SMT) in CPU
seconds, as well as the sum of the three times (rows total eq chk time), which summarizes the total
amount of time needed for detecting equivalent LinAIG nodes.

By looking at the rows SAT: chk/eq and SMT: chk/eq it is easy to see that 25% (xing-cont-int-constl) up
to 75% (3LP-cont-int-Sta) of all equivalences can already be detected by SAT-based equivalence checking
(omitting implications), and thus do not have to be tested by SMT-based equivalence checks. By adding
implications to the SAT checks, this ratio can be increased to values from 57% (xing-cont-int-ED) up to
almost 100% (3LP-disc-int-ED, 3LP-disc-int-Sta, 4LP-disc-int-ED, 4LP-disc-int-Sta), further reducing
the need to apply an SMT solver. This clearly indicates the usefulness of implications. As expected,
the versions SMT,SAT+Imp, SMT,SAT+FTImp, and SMT,SAT+RFTImp show a common behavior w.r.t.
the numbers of equivalences found by SAT, since in these versions the transitive relationships between
linear constraints occuring in the SAT-checks are maintained. The versions mainly differ in the times
used for SAT-based equivalence checks.

The experiments also show that the effort to minimize the set of added implications actually pays
off: the SAT runtimes of SMT,SAT+FTImp are consistently smaller than or similar to the SAT times
of SMT,SAT+Imp, while not changing the number of detected equivalences. Moreover, computing the
transitive reduction (SMT,SAT+RFTImp) results in even smaller runtimes compared to SMT,SAT+FTImp.

On almost all tested benchmarks the variant SMT,SAT+RFTImp results in the smallest total amounts
of time needed for checking the equivalence of LinAIG nodes (including SAT solving, handling of
implications and SMT solving). An exception are the two xing-benchmarks, where the utilization of
implications leads to a runtime increase. Detailed inspections of the model checking runs reveal the
cause of the increase: most of the constraints created during model checking of these benchmarks
are only temporary and become ‘“‘garbage” soon in the sense that they do not occur in state set
representations anymore. In the current implementation such constraints are remaining in the implication
graph, negatively affecting the run time for handling implications. On the other hand SMT checks are not
affected by unused linear constraints, since the SMT solver only deals with the constraints occurring in
the tested cones. This problem can be eliminated by applying “garbage collection” for unused constraints,
which will be added to our preliminary implementation in the near future.

In summary, the experimental results in Table II show that integrating easy-to-detect knowledge
about linear constraints into SAT checks can indeed accelerate model checking of hybrid systems by
successfully reducing the number of expensive SMT solver calls. Restricting the implications to those
between linear constraints occurring in the problem at hand and further minimizing the number of these
implications by transitive reduction turns out to be the best method among the alternatives investigated
here.

VI. CONCLUSIONS

We presented an approach for beneficially exploiting implication knowledge in the LinAIG con-
struction algorithm, especially focussing on “strengthening” SAT-based equivalence checks by different
strategies for adding sets of implications. Our experimental results on hybrid model checking benchmarks
from industrial case studies show that the number of applications of expensive SMT methods can
substantially be reduced by integrating sets of implications, minimized by graph theoretical operations,
into SAT-based equivalence checks, resulting in an accelerated LinAIG compaction.

In the future it will be interesting to use the implication knowledge also in other LinAIG optimization
techniques, such as don’t care based resynthesis of the underlying AIG structure.
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3LP-cont Time: SAT/Impl/SMT 0.0/0.0/1.3 0.0/0.0/1.0 0.2/0.1/0.7 0.1/0.2/0.6 0.1/0.2/0.8
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